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Introduction
The C High-level Language (HLL) has
become increasingly popular for pro-
gramming m ic rocon t ro l l e rs .  The
advantages of using C compared to
assembler are numerous: reduced
development time, easier maintainability
and portability and easier to reuse code.
The penalty is larger code size and, as a
result of that, often reduced speed. To
reduce these penalties, the FPSLIC
architecture is tuned to efficiently decode
and execute instructions that are typi-
cally generated by C compilers.

The C compiler development was done
by IAR Systems before the FPSLIC
architecture and instruction set specifica-
tions were completed. The result of the
cooperation between the compiler devel-
opment team and the FPSLIC develop-
ment team is a microcontroller for which
highly efficient, high-performance code
is generated.

This application note describes how to
utilize the advantages of the FPSLIC
architecture and the development tools
to achieve more efficient C code than for
any other microcontroller.

Architecture Tuned for 
C Code
The thirty-two working registers are one
of the keys to efficient C coding. These
registers have the same function as the
traditional accumulator, except that there
are thirty-two of them. In one clock cycle,
AVR can feed two arbitrary registers
from the register file to the ALU, perform
an operation and write back the result to
the register file.

When data are stored in the thirty-two
working registers, there is no need to
move the data to and from memory
between each arithmetic instruction.
Some of the registers can be combined
to 16-bit pointers that efficiently access
data in the data and program memories.
For large memory sizes, the memory
pointers can be combined with a third
8-bit register to form 24-bit pointers that
can access 16M bytes of data, with no
paging!

Addressing Modes
The FPSLIC microcontroller architecture
has four memory pointers that are used
to access data and program memory.
The stack pointer (SP) is dedicated for
storing the return address after return
from a function. The C compiler allocates
one pointer as parameter stack. The two
remaining pointers are general-purpose
pointers used by the C compiler to load
and store data. The example below
shows how efficiently the pointers are
used for typical pointer operations in C.

char *pointer1 = &table[0];

char *pointer2 = &table[49];

*pointer1++ = *--pointer2;
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This generates the following assembly code:
LD R16,-Z; Pre-decrement Z pointer and load data

ST X+,R16; Store data and post increment

The four pointer addressing modes and examples are
shown below. All pointer operations are single-word
instructions that execute in two clock cycles.

1. Indirect addressing. For addressing of arrays and 
pointer variables:

*pointer = 0x00;

2. Indirect addressing with displacement. Allows 
accesses to all elements in a structure by pointing 
to the first element and add displacement without 
having to change the pointer value. Also used for 
accessing variables on the software stack and array 
accesses.

3. Indirect addressing with post-increment. For effi-
cient addressing of arrays and pointer variables with 
increment after access:

*pointer++ = 0xFF;

4. Indirect addressing with pre-decrement. For effi-
cient addressing of arrays and pointer variables with 
decrement before access:

*--pointer = 0xFF

The pointers are also used to access the Flash program
memory. In addition to indirect addressing with pointers,
the data memory can also be accessed by direct address-
ing. This gives access to the entire data memory in a two-
word instruction.

Support for 16/32-bit Variables
The FPSLIC instruction set includes special instructions for
handling 16-bit numbers. This includes Add/Subtract
Immediate Values to Word (ADIW, SBIW). Arithmetic oper-
ations and comparison of 16-bit numbers are completed
with two instructions in two clock cycles. 32-bit arithmetic
operations and comparison are ready in four instructions
and four cycles. This is more efficient than most 16-bit
processors!

C Code for AVR

Initializing the Stack Pointer
After power-up or RESET, the stack pointer needs to be set
up before any function is called. The linker command file
determines the placement and size of the stack pointer.
The configuration of memory sizes and stack pointer setup
is explained in Atmel’s application note “AVR032:  Linker
Command Files for the IAR ICCA90 Compiler”.

Accessing I/O Memory Locations
The AVR I/O memory is easily accessed in C. All registers
in the I/O memory are declared in a header file usually
named “ioxxxx.h”, where xxxx is the FPSLIC part number.
The code below shows examples of accessing I/O location.
The assembly code generated for each line is shown below
each C code line.

#include <ioat94k.h> /* Include header file with symbolic names */

void C_task main(void)

{

char temp; /* Declare a temporary variable*/

/*To read and write to an I/O register*/

temp = PIND; /* Read PIND into a variable*/

// IN R16,LOW(16) ; Read I/O memory

TCCR0 = 0x4F; /* Write a value to an I/O location*/

// LDI R17,79 ; Load value

// OUT LOW(51),R17 ; Write I/O memory

/*Set and clear a single bit */

PORTD |= (1<<PIND2); /* PIND2 is pin number(0..7)in port */

// SBI LOW(24),LOW(2) ; Set bit in I/O

ADCSR &= ~(1<<ADEN); /* Clear ADEN bit in ADCSR register */

// CBI LOW(6),LOW(7) ; Clear bit in I/O

/* Set and clear a bitmask*/
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FPSLIC
DDRD |= 0x0C; /* Set bit 2 and 3 in DDRD register*/

// IN R17,LOW(17) ; Read I/O memory

// ORI R17,LOW(12) ; Modify

// OUT LOW(17),R17 ; Write I/O memory

ACSR &= ~(0x0C); /* Clear bit 2 and 3 in ACSR register*/

// IN R17,LOW(8) ; Read I/O memory

// ANDI R17,LOW(243) ; Modify

// OUT LOW(8),R17 ; Write I/O memory

/* Test if a single bit is set or cleared */

if(USR & (1<<TXC)) /* Check if UART Tx flag is set*/

{

PORTE |= (1<<PE0);

// SBIC LOW(11),LOW(6) ; Test direct on I/O

// SBI LOW(24),LOW(0)

while(!(SPSR & (1<<WCOL))); /* Wait for WCOL flag to be set */

// ?0003:SBIS LOW(14),LOW(6) ; Test direct on I/O

// RJMP ?0003

/* Test if an I/O register equals a bitmask */

if(UDR & 0xF3) /* Check if UDR register "and" 0xF3 is non-zero */

{

}

// IN R16,LOW(12) ; Read I/O memory

// ANDI R16,LOW(243) ; "And" value

// BREQ ?0008 ; Branch if equal

//?0008:

}

/* Set and clear bits in I/O registers can also be declared as macros */

#define SETBIT(ADDRESS,BIT) (ADDRESS |= (1<<BIT))

#define CLEARBIT(ADDRESS,BIT) (ADDRESS &= ~(1<<BIT))

/* Macro for testing of a single bit in an I/O location*/

#define CHECKBIT(ADDRESS,BIT) (ADDRESS & (1<<BIT))

/* Example of usage*/

if(CHECKBIT(PORTD,PIND1)) /* Test if PIN 1 is set*/

{

CLEARBIT(PORTD,PIND1); /* Clear PIN 1 on PORTD*/

}

if(!(CHECKBIT(PORTD,PIND1))) /* Test if PIN 1 is cleared*/

{

SETBIT(PORTD,PIND1); /* Set PIN 1 on PORTD*/

}
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Variables and Data Types

Data Types
As the FPSLIC is an 8-bit microcontroller, use of 16- and
32-bit variables should be limited to where it is absolutely

necessary. The following example shows the code size for
a loop counter for an 8-bit and 16-bit local variable.

8-bit Counter
unsigned char count8 = 5; /* Declare a varible, assign a value */

// LDI R16,5 ;Init variable

do /* Start a loop */

{

}while(--count8); /* Decrement loop counter and check for zero */

// ?0004:DEC R16 ; Decrement

// BRNE ?0004 ; Branch if not equal

16-bit Counter
unsigned int count16 = 6; /* Declare a variable, assign a value */

// LDI R24,LOW(6) ;Init variable, low byte

// LDI R25,0 ;Init variable, high byte

do /* Start a loop */

{

}while(--count16); /* Decrement loop counter and check for zero */

// ?0004:SBIW R24,LWRD(1) ; Subtract 16-bit value

// BRNE ?0004 ; Branch if not equal

Note: Always use the smallest applicable variable type. This is especially important for global variables.

Efficient Use of Variables
A C program is divided into many functions that execute
small or big tasks. The functions receive data through
parameters and may also return data. Variables used
inside the function are called local variables. Variables
declared outside a function are called global variables.
Variables that are local, but must be preserved between
each time the function is used, should be declared as static
local variables.

Global variables that are declared outside a function are
assigned to an SRAM memory location. The SRAM
location is reserved for the global variable and cannot be
used for other purposes – this is considered to be a waste
of valuable SRAM space. Too many global variables make
the code less readable and hard to modify.

Table 1.  Variable and Code Size

Variable Code Size (Bytes)

8-bit 6

16-bit 8
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FPSLIC
Local variables are preferably assigned to a register when
they are declared. The local variable is kept in the same
register until the end of the function or until it is not refer-
enced further. Global variables must be loaded from the
SRAM into the working registers before they are accessed.

The following example illustrates the difference in code
size and execution speed for local variables compared to
global variables.

char global; /* This is a global variable */

void C_task main(void)

{

char local; /* This is a local variable*/

global -= 45; /* Subtraction with global variable*/

// LDS R16,LWRD(global) ; Load variable from SRAM to register R16

// SUBI R16,LOW(45) ; Perform subtraction

// STS LWRD(global),R16 ; Store data back in SRAM

local -= 34; /* Subtraction with local variable*/

// SUBI R16,LOW(34) ; Perform subtraction directly on local variable in

register R16

}

Note that the LDS and STS (Load and Store direct from/to
SRAM) are used to access the variables in SRAM. These
are two-word instructions that execute in two cycles.

A local static variable is loaded into a working register at
the start of the function and stored back to its SRAM loca-
tion at the end of the function. Static variables will therefore

give more efficient code than global variables if the variable
is accessed more than once inside the function.

To limit the use of global variables, functions can be called
with parameters and return a value commonly used in C.
Up to two parameters of simple data types (char, int, float,
double) are passed between functions in the registers R16
- R23. More than two parameters and complex data types
(arrays, structs) are either placed on the software stack or
passed between functions as pointers to SRAM locations.

When global variables are required, they should be col-
lected in structures whenever appropriate. This makes it
possible for the C compiler to address them indirectly. The
following example shows the code generation for global
variable versus global structures.

typedef struct

{

char sec;

}t;

t global /* Declare a global structure*/

char min;

void C_task main(void)

{

t *time = &global;

// LDI R30,LOW(global) ; Init Z pointer

// LDI R31,(global >> 8) ; Init Z high byte

if (++time->sec == 60)

{

Table 2.  Code Size and Execution Time for Variables

Variable
Code Size 
(Bytes)

Execution Time 
(Cycles)

Global 10 5

Local 2 1
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// LDD R16,Z+2 ; Load with displacement

// INC R16; Increment

// STD Z+2,R16 ; Store with displacement

// CPI R16,LOW(60) ; Compare

// BRNE ?0005 ; Branch if not equal

}

if ( ++min == 60)

{

// LDS R16,LWRD(min) ; Load direct from SRAM

// INC R16 ; Increment

// STS LWRD(min),R16 ; Store direct to SRAM

// CPI R16,LOW(60) ; Compare

// BRNE ?0005 ; Branch if not equal

}

}

When accessing the global variables as structures, the
compiler is using the Z-pointer and the LDD and STD
(Load/Store with displacement) instructions to access the
data. When the global variables are accessed without
structures, the compiler uses LDS and STS (Load/Store
direct to SRAM). The difference in code size is shown in
Table 3.

This does not include initialization of the Z-pointer (4 bytes)
for the global structure. To access one byte, the code size
will be the same, but if the structure consists of two bytes or
more it will be more efficient to access the global variables
in a structure.

Unused locations in the I/O memory can be utilized for stor-
ing global variables when certain peripherals are not used.
For example, if the UART1 is not used, the UART1 Baud
Rate Register (UBRR1) is available to store global
variables.

The I/O memory is accessed very efficiently and locations
below 0x1F in the I/O memory are especially suited since
they are bit-accessible.

Bit-field versus Bit-mask
To save valuable bytes of data storage it may be necessary
to save several single-bit flags into one byte. A common
use of this is bit flags that are packed in a status byte. This
can either be defined as bit-mask or bit-field. Below is an
example of the use of bit-mask and bit-field to declare a
status byte.

/* Use of bit-mask for status bits*/

/* Define bit macros, note that they are similar to the I/O macros*/

#define SETBIT(x,y) (x |= (y)) /* Set bit y in byte x*/

#define CLEARBIT(x,y) (x &= (~y)) /* Clear bit y in byte x*/

#define CHECKBIT(x,y) (x & (y)) /* Check bit y in byte x*/

/* Define Status bit mask constants */

#define RETRANS 0x01 /* bit 0 : Retransmit Flag*/

#define WRITEFLAG 0x02 /* bit 1 : Flag set when write is due*/

#define EMPTY 0x04 /* bit 2 : Empty buffer flag*/

#define FULL 0x08 /* bit 3 : Full buffer flag*/

void C_task main(void)

{

Table 3.  Code Size for Global Variables

Variable Code Size (Bytes)

Structure 10

Non-structure 14
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char status; /* Declare a status byte*/

CLEARBIT(status,RETRANS); /* Clear RETRANS and WRITEFLAG*/

CLEARBIT(status,WRITEFLAG);

/*Check if RETRANS flag is cleared */

if (!(CHECKBIT(status, RETRANS)))

{

SETBIT(status,WRITEFLAG);

}

}

Bit-masks are handled very efficiently by the C compiler if
the status variable is declared as local variable within the

function it is used. Alternatively, use unused I/O locations
with bit-mask.

The same function with bit-fields:
/* Use of bit-fields for status bits*/

void C_task main(void)

{

struct {

char RETRANS: 1 ; /* bit 0 : Retransmit Flag*/

char WRITEFLAG : 1 ; /* bit 1 : Flag set when write is due */

char EMPTY : 1 ; /* bit 2 : Empty buffer flag*/

char FULL : 1 ; /* bit 3 : Full buffer flag*/

} status; /* Declare a status byte*/

status.RETRANS = 0; /* Clear RETRANS and WRITEFLAG*/

status.WRITEFLAG = 0;

if (!(status.RETRANS)) /* Check if RETRANS flag is cleared*/

{

status.WRITEFLAG = 1;

}

}

Bit-fields are not stored locally in the register file within the
function, but popped and pushed on the code stack each
time it is accessed. Therefore, the code generated with bit-
masks is more efficient and faster than using bit-fields. The
ANSI standard does not define how bit-fields are packed

into the byte, i.e., a bit-field placed in the MSB (Most Signif-
icant Bit) with one compiler can be placed in the LSB (Least
Significant Bit) in another compiler. With bit-mask, the user
has complete control of the bit placement inside the
variables.
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Accessing Flash Memory
A common way to define a constant is:

const char max = 127;

This constant is copied from Flash memory to SRAM at
start-up and remains in the SRAM for the rest of the pro-
gram execution. This is considered to be a waste of SRAM.

To save SRAM space, the constant can be saved in Flash
and loaded when it is needed.

flash char max = 127;

flash char string[] = "This string is stored in flash";

void main(void)

{

char flash *flashpointer; ; Declare flash pointer

flashpointer = &string[0]; ; Assign pointer to flash location

UDR1 = *flashpointer; ; Read data from flash and write to UART1

}

When strings are stored in Flash, like in the latter example,
they can be accessed directly or through pointers to the
Flash program memory. For the IAR C compiler, special

library routines exist for string handling. See the IAR Com-
piler User’s Manual for details.

Control Flow

The Main Function
The main function usually contains the main loop of the
program. In most cases, no functions are calling the main
function, and there is no need to preserve any registers

when entering it. The main function can therefore be
declared as C_task. This saves stack space and code size.

void C_task main(void) /* Declare main() as C_task*/

{

}

Loops
Eternal loops are most efficiently constructed using for( ; ;) { }:

for( ; ;)

{

/* This is an eternal loop*/

}

// ?0001:RJMP ?0001 ; Jump to label

do{ }while(expression) loops generally generates more effi-
cient code than while{ } and for{expr1; expr2; expr3). The

following example shows the code generated for a do{ }
while loop:

char counter = 100; /* Declare loop counter variable*/

// LDI R16,100 ; Init variable

do

{

} while(--counter); /* Decrement counter and test for zero*/

?0004:DEC R16 ; Decrement

// BRNE ?0004 ; Branch if not equal

Pre-decrement variables such as loop counter usually give
the most efficient code. Pre-decrement and post-increment

is more efficient because branches are depending on the
flags after decrement.
FPSLIC8
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Macros versus Functions
Functions that assemble into 3 - 4 lines or less of assembly
code can in some cases be handled more efficiently as
macros. When using macros, the macro name will be
replaced by the actual code inside the macro at compile
time. For very small functions, the compiler generates less

code and gives higher speed to use macros than it does to
call a function.

The example below shows how a task can be executed in a
function and as a macro.

/* Main function to call the task*/

void C_task main(void)

{

UDR1 = read_and_convert(); /* Read value and write to UART1*/

}

/* Function to read pin value and convert it to ASCII*/

char read_and_convert(void)

{

return (PINE + 0x48); /* Return the value as ASCII character */

}

/* A macro to do the same task*/

#define read_and_convert (PINE + 0x48)

The code with function assembles into the following code:
main:

// RCALL read_and_convert ; Call function

// OUT LOW(12),R16 ; Write to I/O memory

read_and_convert:

// IN R16,LOW(22) ; Read I/O memory

// SUBI R16,LOW(184) ; Add 48 to value

// RET ; Return

The code with macro assembles into this code:
main:

// IN R16,LOW(22) ; Read I/O memory

// SUBI R16,LOW(184) ; Add 48 to value

// OUT LOW(12),R16 ; Write I/O memory

Table 4.  Code Size and Execution Time for Macros and Functions

Variable Code Size (Bytes) Execution Time (Cycles)

Function 10 10

Macro 6 3
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Sixteen Hints to Reduce Code Size
1. Compile with full-size optimization.

2. Use local variables whenever possible.

3. Use the smallest applicable data type. Use 
unsigned, if applicable.

4. If a non-local variable is only referenced within one 
function, it should be declared static.

5. Collect non-local data in structures whenever 
natural. This increases the possibility of indirect 
addressing without pointer reload.

6. Use for( ; ;) { } for eternal loops.

7. Use do { } while(expression) if applicable.

8. Use descending loop counters and pre-decrement if 
applicable.

9. Access I/O memory directly (i.e., do not use 
pointers).

10. Use bit-masks on unsigned chars or unsigned ints 
instead of bit-fields.

11. Declare main as C_task if not called from anywhere 
in the program.

12. Use macros instead of functions for tasks that gen-
erate less than 2 - 3 lines of assembly code.

13. Reduce the size of the interrupt vector segment 
(INTVEC) to what is actually needed by the applica-
tion. Alternatively, concatenate all the CODE 
segments into one declaration and it will be done 
automatically.

14. Code reuse is intra-modular. Collect several func-
tions in one module (i.e., in one file) to increase 
code reuse factor.

15. In some cases, full-speed optimization results in 
lower code size than full-size optimization. Compile 
on a module-by-module basis to investigate what 
gives the best result.

16. Optimize C_startup to not initialize unused seg-
ments (i.e., IDATA0 or IDATA1 if all variables are tiny 
or small).

Five Hints to Reduce RAM 
Requirements
1. All constants and literals should be placed in Flash 

by using the Flash keyword.

2. Avoid using global variables if the variables are local 
in nature. This also saves code space. Local vari-
ables are allocated from the stack dynamically and 
are removed when the function goes out of scope.

3. If using large functions with variables with a limited 
lifetime within the function, the use of subscopes 
can be beneficial.

4. Get good estimates of the sizes of the software 
stack and return stack (linker file).

5. Do not waste space for the IDATA0 and UDATA0 
segments unless you are using tiny variables (linker 
file).

Checklist for Debugging Programs
1. Ensure that the CSTACK segment is sufficiently 

large.

2. Ensure that the RSTACK segment is sufficiently 
large.

3. If a regular function and an interrupt routine are 
communicating through a global variable, make 
sure this variable is declared volatile to ensure that 
it is reread from RAM each time it is checked.
FPSLIC10
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