AIMEL

Integrated Development System - Figaro
User Guide

June 2002

Welcome to the Integrated Development Systd&s) from Atmel
Corporation. This versatile system works with a varietg AE
platforms, providing a range of design entry and simulation op-
tions when designing an Atmel field programmable gate array
(FPGA). ViewLogic’s Workview Office and Powerview products,
and OCAD Express for Windows are supported for schematic
entry and simulation. Simulation platforms supported also include
Vital VHDL systems from Model Technology, and the Verikig-
simulator.

Synthesis tools from Synopsys, Viewlogic, Everest Design
Systems and Exemplar Logic are integrated into the system to
provide optimum results. AtmelBS lets designers create fast,
efficient, and predictable designs wAfT40k SeriesFPGAs.

IDS has integrated aiDL planning environment to create effi-
cient, technology independevitiDL and Verilog designs on

Atmel FPGAs. Currently Synopsys, Exemplar, and Everest synthe-
sis software is supported.

IDS also supports designs in the XiliXiF format. It provides
the user with the ability to translate a XilixC3000,XC4000, or
XC5200family design into anAT40k device. Most of th&XBLOX
components in ANF design are automatically mapped to Atmel
Macro GeneratolcomponentsXNF import is integrated into the
Viewlogic design flow.

Operation of theDS is controlled by a single graphical interface,
the Figaro Desktop. Figaro integrates the programs, links them
through a unified data base, and provides a seamless working
environment that allows the user to move easily among the
programs. While the system is configured to help the user design
and layout the chip by invoking the appropriate design modules,
the user can also run programs independently frorgtibi

Window command-line.

It is recommended that the user also browse throughTiek

IDS Tutorial. The manual details steps to set up and implement
sample designs using Figaro and the supp@#etl interfaces. It
also discusses ways to optimize designs foAIr&00 and

AT40k architecture, so the user can create the chip in the most
efficient manner.

Conventions Used in This Manual

The following typographical conventions are used in this guide:

File names, and program names ardelvetica type, e.g.
atmel.ini, PLA2Cdb

Variables are iitalics, e.g.DesignName.lib

Text to be entered in input boxes are enclosed in “ ", e.g.
“4bitalu”

Italic text is used for names of buttons on the Flow Bars, e.g.
Open

Keyboard functions are shown €Key>, e.g.<Enter>

Buttons to execute functions are shown as pictograms, e.g.

Run

Product Updates

Updates are made available to users during the maintenance pe-
riod at no charge to the user. Each update comes with its own in-
stallation program, release notes, and any special instructions that
might be necessary to make the transition to the new software
version.

Sales Representatives

Atmel sales representatives are ready to assist with pre-sales questions,
product literature, price information, and product availability. To
contact a local sales representative, please call Atmel at
408.441.0311 during normal business hours.

Customer Service

Atmel Corporation Customer Service provides software and hard-
ware support and assists customers in uploading and downloading
files.

Assistance with any matter related to the IDS can be obtained by
the following methods:

1. Calling Customer Service at 408.436.4119 between 9 am
and 5 pm, Pacific Standard Time

2. Sending electronic mail to fpga@atmel.com
Accessing Atmel’'s web site at http://www.atmel.com

Faxing to 408.436.4200

S

Writing to:
Atmel Customer Service
2325 Orchard Parkway
San Jose, CA 95131
USA

System Basics

System Basics I

The Integrated Development SystddS), otherwise known as
Figaro, is designed to provide push-button capability in the design
of Atmel FPGAs. This allows the user to either automate the de-
sign process, or optimize the design by invoking manual place-
ment and routing options.

IDS supports many forms of design entry which include schemat-
ics, equation entry, and high-level language design. The system
then automatically places, routes and optimizes the design to fit
into the target device. Once that is completed, the user has a
choice of either downloading the data ontoRR&A, Serial
Configuration Memory, or creating a library of user defined mac-
ros UDMs) for future applications. Expanded design analysis
features provide delay estimates across the chip, as well as export
timing reports and back annotation files for many different
simulators.

The general concepts and organization of the design phases are
discussed in this chapter, along with the following topics. To learn
how to enter, simulate, compile, and back annotate a sample de-
sign with different menu options, refer to 1B Tutorial for more
information.

= IDS Design Flow

= Designs and User Libraries

= Common Design Information

= On-line Help

= The Transcript Window

= The Shell Window

= Starting and Ending a Session

1-1

System Basics

IDS Design Flow

The following diagram summarizes theS design flow functions
for bitstream creation.

Netiist Setup Design

Directory (User) Macro Library

Cptions /
Congtraints

Fincut

S Congstraints
}Open
Logic Librmiesxé?
Mamping ﬁ}
Constraints } Map
U Repedt
Parts Library Constraints
I:> }Parts

Physical and J \7

Timing
— fCompile i> Export

Librares

Timing @ @
Constraints
Reports Back
annaotation

Bitstream
IDS Design Flow

1-2

System Basics

Designs and User Libraries

The design directory holds all files related to the design. This
directory allows grouping of related designs and provides a
consistent structure so that Figaro can handle design management
tasks for the user. By Viewlogic and Intergraph convention, the
design directory is analogous to the project directory.

Design files include all schematic-related and Figaro data base
files. A design directory must be set up before schematic entry,
simulation, or layout of a design can commence. This directory is
the only place searched by Figaro for the design files.

See thdDS Tutorial for details on setting up a design. As a part of
the process, the directory for storing all the design data must be
identified to the system.

User Libraries

IDS supports the application of user libraries. The user library
management features are intended to facilitate design reuse and
help create high performance circuits. These libraries are reposito-
ries for user defined components which have been created by the
Macro Generatorsuser schematics, or language-based entry. The
system allows the user to specify as many libraries as needed. A
common practice is to set up a design-specific library and main-
tain another that contains common macros shared by different
designs.

A library consists of several parts which include the layout files,
the CAE system specific files (schematics, symbols, etc.), and any
related files that were used to produce the layout. Figaro will
maintain all files that go into and out of libraries as well as set up
the appropriate control files for tI@AE system to access the
libraries.

TheLibrary>Library Setupdialog box is used to create a user li-
brary. Once specified, Figaro will create the layout library file as
well as the library sub-directory for storing the rest of the library
information. TheFigaro chapter in théDS Tutorial will provide
details on this structure. Also refer to specific platforms under
“CAE Interfaces” in th& utorial for details on design related files
that are stored in the library.

1-3

System Basics

Sample structures for tHeC and Workstation environments are
provided below.

For the PC

If a layout library was defined as AtUselbitaluuserlib the fol-
lowing structure would be created:

c\AtUser¥bitalu
userlib
user\
macrol\
macroldesign files
CAE system files
macro2\
macro2design files
CAE system files
CAE system files\

For the Workstation

/AtUser4bitalu/
userlib
user/
macrol/
macroldesign files
CAE system files
macro2/
macro2design files
CAE system files
CAE system files/

1-4

System Basics

Common Design Information
Figaro.ini

The user can customize projects by configuring such items as pin
package specifications, design check rules, automatic place and
route performance, design analysis parameters, bitstream format,
and numerous ancillary screen output functions. The user can de-
termine the default setting each time when beginning a new
design.

In the design settings, the user can define such things as libraries
for design data, and where output is to be stored for each design.

Figaro utilizes two configuration files, tHigaro.ini and
DesignName.ini files, to store user and design settings.

The user environment is defined in figaro.ini file. This file con-
tains such information as individual user defined (or default) dis-
play threshold and color assignments, and tracks all designs from
a single location. The contents of figaro.ini file can be changed

under theDptions>OptionsandOptions>Display Optionmenus.

This file is stored in the directory where Figaro is run from. The
user should ensure that the program is started from the same
directory each time so the required setup information can be
reloaded.

DesignName.ini

The DesignName.ini file contains design settings that directly af-
fect the design data, independent of the user’s environment. This
file is maintained as needed. It is updated when changes to any
design specific setting, such as defining a user library, are made.

The DesignName.ini file is stored in the design directory. It will be
loaded whenever the design is selected vidrileeDesign Setup

or Open Desigmnmenu options. The file is given the same name as
the design. For the example design called “4bitalu”, there will be
a file namedibitalu.ini in its design directory.

The following output files contain information that reflect the op-
erations of the software:

15

System Basics

DesignName.log

The DesignName.log file contains a list of all operations initiated

for a design. Diverse information about the design setup, design
checks done when a design is opened, placement and routing sta-
tistics and many other details are stored in this file. All infor-
mation that is displayed in the transcript window will be stored in
the log as well. A toolbar button is available for viewing of the log
file. This file should be reviewed when any problem is encoun-
tered during execution of the design flow.

Program Output Files

The Integrated Design System is composed of many different pro-
grams, and the user will encounter a good variety of files in the
design directory. A detailed list of all program output files will be
found in the following documentation:

= IDS Tutorial Figaro - Figaro Files.
= Technical Reference & Release Notgssign Files.

Backup Files

Programs that modify the data base files generate a backup file.
When a new copy of most any file in the design is produced, the
previous copy is saved, with a*character as the last character
of the file extension. For exampl8ITALU.LOG, would be saved
as4BITALU.LO~.

On-line Help

TheHelp function contains detailed information on all parts of the
IDS. This function is context sensitive, but can also be invoked di-
rectly from the menu bar. The “Figaro” section of th& Tutorial
contains detailed information on how to invoke andHgp on
specific topics. An example of théelp window is shown below.

1-6

System Basics

File Edit Bookmark Help

Figaro Help Index

Help Instructions
Cluick Guide to Figaro Help

Overview
Integrated Development Systerm (DS Overiew
Figara Owerview
Steps in Creating a Design
User Interface

Task Summary
Summary of Main Figaro Tasks
Full Listing of Tasks
Reference Information
Glossary of Terms
Technical Reference
Menus and Comrmands
Figara Files
Figara Options
Solving Problems
Troubleshooting
Error Messages
Tool Information
Figaro Window Help Index
Erowser Help Index
Parts Assernbler Help Indesx
Dewice YWindow Help Index

The Help Window

The Transcript Window

All information about processes withiDS is displayed in the
transcript window. The information displayed here is also stored
in the design log file. Normal design information will be
displayed in a standard font in black. All warnings are displayed
in a bold font in blue. All errors are displayed in the same bold
font in red. The user should check this window first to determine
the progress of a design.

Refer to the “Figaro” section of thBS Tutorial for more details
on the transcript window.

1-7

System Basics

The Shell Window

The New Shell Windowutton in the vertical menu bar will create

a window for manipulation of files in the design directory.
Common operations such as editing simulation command files or
creating constraint files can easily be done, as the shell is invoked
in the design directory.

Starting a Session

Before beginning a session, verify that the appropriate environ-
ment variables are set for Figaro and the selectdglsystem.
These variables are discussed in the “Installation Guide” as well
as the Tutoriafor the specificCAE System.

To invoke Figaro from within Windows, double click on its icon,
or enter the command “figaro” if IdNIX. Set the active design
by using thd 4 | icon orFile>Design Setupnenu option.

Subsequent chapters will discuss each design phase or activity
represented by the Flowbar buttons.

Ending a Session

Select thd=ile>Exit menu option to end the Figaro session. A
prompt will be displayed to confirm exiting from the Desktop. If a
design has been modified in any way, an additional prompt will be
issued to save the design.

1-8

Design Entry

Design Entry I

The Integrated Development SystdidS) offers a wide array of
interfaces to work with design input processes such as schematic
capture, equation entry, macro generation,td planning and
entry. Once the design is entered, it can be simulated. A netlist
can then be created and the layout completed based on the
specifiedCAE system.

Figaro supports Viewlogic tools for schematic capture. This plat-
form is fully integrated withDS so the interface is transparent to
the user when moving between Figaro and the third party system
during all phases of the design.

Designs requiring equation entry are also supportd®8yAl-
thoughABEL andCUPL users must run these tools on PCs outside
of Figaro they can bring the resulting1, *.tt2, or *.pla, formatted

files intoIDS for optimization and/or conversion into schematics or
components for the user library in the PC. The macros created can
optionally be simulated with any of the supported CAE tools.

The user can also take advantage ofMlaero Generatorsn IDS

to create efficient and optimized building blocks for the design.
These functions range in complexity from simple gates to complex
parallel pipelined multipliers. The vast array@é&neratorswill

provide more opportunities and flexibility when implementing a
design.

Another possible method of design input is via high level design
languaggHDL) entry.HDLPIlanner offers an environment that
fosters code portability and facilitates the use of optimized macros.
The user can take advantage of functional modules previously
optimized for theAT40k architecture and apply them to current or
future designs.

To support HDL Entry, the Atmel macro library has been trans-
lated for third party vendors of synthesis tools such as Viewlogic,
SynopsysEverest, and Exemplar Logic. These synthesis tools are
integrated into Figaro to facilitate the high level design entry
process. As a result, performance can be optimized through op-
erator inferencing and use of the Atncro Generators

2-1

Design Entry

The AT40k library of components can be divided into 2 types of
macros: functional and dynamic. Functional macros are compo-
nents with fixed functions, such as the 2 inpND gate.

Dynamic macros are designed to allow user specification of any
desired function, to be attached as an attribute via an equation
string, on the symbol. This should be used only when a specific
function for anAT40k core cell is required. Designs targeted to
AT40k can use a mix of dynamic and functional macros. Please
refer to theAT4k Macro Libraryfor more details on the list of all
macros and the attributes available.

Once a design has been entered and synthesized with optional
tools, a netlist can be generated and used for placement and
routing.

2-2

Schematic Entry

Schematic Entry

The Integrated Development System is set up to provide the user
direct access to a variety of schematic capture tools from the
Figaro Desktop. The products supported are:

= Viewlogic PC products Workview OfficePROSries, and
WorkviewPlus; Sun workstation products Powerview, and
Workview

= OrCAD Express for Windows

To start schematic entry from Figaro, click on Sahematic
Entry button on the Flowbar as shown. T®&E tool of choice
will be brought up within the Figaro environment.

F-J Figaro - dbitalu : c:\atuser |_ 2] =]
File Edit ‘“ew Library Flow Tools Opfions Vindow Help

b B ERIB O DB | horen buen brate boompie | A |

O

£

LibraryCompilet: infa - Liorary Names = [none] =
“endarCanfiguration: info - Source vender atmef, Architecture library at40000
LibraryCompiler. infa - Liorary file ab40k na longer found on search path - using cached library

Ll

Schematic Entry

2-3

Schematic Entry

System Setup

Figaro automatically sets up the paths and directories needed for
the Atmel libraries, user libraries, and the design directory to in-
terface with theCAE system specified.

The AtmelFPGAIlibrary is used to reference logical and timing
models for every cell in the library, while the user libraries con-
tain custom macros created for functions specific to current or
prior designs. The design directory houses all the output files from
both the schematic tool and Figaro that are related to the design.

Figaro also automatically calls up tBAE tools in thelDS envi-
ronment and integrates the process into the design flow for netlist
creation.

Viewlogic

IDS controls the complete process of entering schematics with the
Viewlogic tool. Once a design has been set up viﬁ &on or
File>Design Setumlialog box, theschematic Entrjputton can be
used to bring up the schematic editor on the current design.

As part of the process, Figaro will update phaect.vpj, registry,
andviewdraw.ini files for Workview Office, or th@roject.Ist and
viewdraw.ini files for other Viewlogic systems. It will also invoke
the appropriate Viewlogic tool for schematic entry. The following
table lists the platform and the tool invoked:

CAE Platform Tool
Workview Office Viewdraw
PROSeries PROcapture
WorkviewPlus Viewdraw
Powerview Viewdraw
Workview Workview

2-4

Schematic Entry

Once in the schematic tool, all macros used must be: a) Atmel
FPGAlibrary components, b) user library components, or

¢) hierarchical blocks that have been created with the Atmel
FPGAlibrary. ViewlogicBUILTIN library elements cannot be

used as the Figaro placement and routing tools will not recognize
them.

Once the design has been captured, the user can proceed to simu-
late or compile. For compilation, the Viewloghtr files are read
directly by Figaro using th®penbutton.

OrCAD Express for Windows

IDS controls the complete process of entering schematics with the
OrCAD tool. Once a design has been set up vi{ Jé&on or
File>Design Setuglialog box, the&Schematic Entrjputton can be
used to bring up the schematic editor on the current design.

Once in the schematic tool, all macros used must be: a) Atmel
FPGAlibrary components, b) user library components, or

¢) hierarchical blocks that have been created with the Atmel
FPGAlibrary.

It is important to attach “hierarchical ports” to all input and

output pins at all levels of the design. The user should also change
the name and type for each port used. This ensures proper creation
of the ports and corresponding directions by the netlist generator for
Figaro to perform placement and routing.

Once the design has been captured, the user can proceed to
compile (Pre-layout Functional Simulation is not supported for
designs using the dynamic macros). For compilation, tiaADr
EDIF files are read directly by Figaro using fBpenbutton.

A VITAL VHDL library is supported for Post-layout Simulation of
OrCAD designs. For more details please refer to th@ADr
tutorial.

2-5

Schematic Entry

2-6

PLA Optimization

PLA Optimization I

The Integrated Development System provides the interfa@eAo
formatted designs from the Figaro Desktop. Before invoking this
function the user needs to enter, edit, and translatestheition based
designs to theLA format. Equation entry provides a compact way of
transferring logic descriptions to the AtnREIGA design tools. The

PLA optimization functiorallows the user to perform logic minimi-
zation, technology mapping, and layoutimjization from Figaro.

The resulting output can be converted into a hard macro or a sche-
matic for use in the design and simulated as needed?T4ke
compilers supported are:

= DATAI/O ABEL
= CUPL

The ABEL andCUPL compilers aré®Chased products, and the
resulting files can be set up to interface directly with the Figaro
software on either the PC or the workstation.

Click on thePLA Optimizatiorbutton on the Flowbar as shown to
initiate the optimization and conversion process.

3 Figaro - dbitalu : c:\atuser - 1= x|

Fle Ecit View Lbrary Flow Tools Opfions Window Help

b SEBOTE | bonn b b boomie | o

Active Project:

— Abitalu : chatuser

R Design Hame: | 4piay

Technology:

T insert o T cueL [T Generate iewLogic Schematic |
o

=3 Cancel Help |

& Atmel 40000 =
mel; Architecture liorary s140000
design will not bee supported as no liborary has been specified

[EN

PLA Optimization Dialog Box

2-7

PLA Optimization

Design Flow

This module is invoked as another means of design entry when an
optimized equation-based function is needed for a design.

The Figaro design flow allows a mixed method of design entry.
The design sub-modules are specifiedBEL or CUPL format,
optimized individually, and become sub-blocks or complete de-
signs. The individual sub-modules are then instantiated in a top
level schematic with the appropridt®s added to form a com-
plete design. Optionally tHeLA description can constitute a
complete design withOs automatically inserted by this tool.

The design flow utilizind®LA entry is illustrated and described in
detail below.

Module 1 Module2 |- Module n

l l l

Optimization Goal —>| PLA2Cdb |——>| PLA2Cdb |——>| PLA2Cdb

l l l

CAE Platform Sch, Sym & Sim Files, IDS Layout Library

l

Top Level Design
in Schematic

l

Final Design

PLA Design Flow inDS

2-8

PLA Optimization

System Setup

PLA Optimizationis tailored for compiling optimized user-defined
blocks. To ensure that tiBEL or CUPL PLA outputs are sent to
the correct directories, the design files should be in place prior to
initiating OptimizePLA Refer to theCAE Interfacessection in the
IDS Tutorial for a detailed description of the Setup process.

Conversion and Optimization

The process of creating a design starts with the design and library
setup as already mentioned. The design is partitioned into sub-
modules and aABEL or CUPL description is written for each of
them. This is done independent of the Figaro environment. The
user should run the appropriate program and options to generate
the files needed. These files should be stored in the design direc-
tory. When theéDptimizePLA buttonis selected, a dialog box
appears in the Figaro Desktop which looks like the following.

Active Project:

dhitalu : chatuser

Design Hame: dhitalu

Technology: ANDOR
¥l Inzert 10 [curL [T Generate YiewLogic Schermstic
Ok Cancel Help |

The PLA Optimization and Mapping Dialog Box

The options in the dialog box are explained in detail below.

2-9

PLA Optimization

Insertio The user can invoke the automatic pad insertion algo-
rithm by selecting this option. By defaulf;TL, OD andODEN

pad buffers are inserted. However, if thedigsignNamgin is

placed in the design directory, it can be specified to override the
default pad types. This file should contain a signal name and a
pad type, each on a separate line. An exampidile is given
below.

INLITTLP
IN2 ITTLP
OUT1 ODF
OUT2 ODF

Generate ViewLogic Schematic ~ This switch is used to create a
ViewLogic Schematic.

CUPL This switch is used to reagla files produced by the
CUPL compiler. By default, thettl or *.tt2 files produced by
ABEL compilers are used.

Technology If Technologyis set toAND XOR, pre-optimized
PLA files (*.tt1 for ABEL and*.pla for CUPL) are taken as input
andAND-XOR optimization is performed

Some designs can be more efficiently optimizedMB-OR
equations instead @fND-XOR equations. AlthougAND-OR
minimization is not done using@LA optimization, it will still

accept files that are optimized within tABEL environment After
such optimization imMBEL, aPLA file with the extension.tt2

will be created and should be placed in the design directory. This
file will be used for technology mapping AND-OR equations.

Note to Users of ABEL 5.X Software

The ABEL compiler version 5.1 onwards does not producela
file. Therefore, a.tt1 file cannot be used f&ND-XOR optimiza-
tion. If AND-XOR optimization is needed, users can copy and
rename the.tt2 file as*.ttl and performAND-XOR optimization.

2-10

Macro Generators

Macro Generators I

TheMacro Generatorgnodule provides the user with the ability

to construct highly efficient counters, adders, and other structured
blocks. It is designed to allow easy inclusion of r@gnerators

from Atmel and other third party vendors in the future. The core
set ofGeneratords based on thEIA Library of Parameterized
Macros (PM) standard. This core set has been enhanced to
achieve a superset to this specification.

A complete explanation of each Generator available at the time of
release is provided in thieechnical Reference & Release Notes
Because of continuous additions to Macro Generatorssome

new functions may not be covered in the manual. OnHielp
provides the most current information, and is discussed in this
chapter. Both on-linélelp and theTechnical Referencmanual
provide information on the parameters available, pin type descrip-
tions, and truth tables. Statistics on speed, delay, size, gates per
cell, and power consumption are also addressed.

The basic user interface and details of how to get more informa-
tion about a specific Generator are explained below. A step by step
description on how to run a Generator is also available in the
AT40K IDSTutorial manual.

Design Flow

A design and its associated user library must be set up prior to the
initiation of this module. Once thdacro Generatordutton is se-
lected, the following dialog box will appear in the Figaro Desktop
as shown below.

2-11

Macro Generators

EAT 40K Macro Generators

Abzolute Value |

[T Crverfio

Adder-Ripple Carry |

Comparstar |

Deductar

Increment/Decrement by 1

Increment/Decrement by value

Multiplier-Serial Parallel

Multiplier - Signed

Multiplier-Unsigned

Options

Macro Hame I ¥ Hard Macro
.

O

- Browwse... | Batch

Size
Cancel | Help | | u]

Pin Map File Hame I

User Library I

Add to Batch

Generate

Macro Generators Dialog Box

The tabs along the bottom represent the various categories of
Macro Generatorsavailable. The arrow buttons along the bottom
allow the user to scroll through the entire selection. The tabs
along the side display tl&eneratorfunctions. A function may be

available for more than one category. The arrow buttons along the
side allow the user to scroll through the entire selection.

The user must enter the name of the macro to be created before
the Generators can put it into the library. Specify the appropriate
values for the parameters such as the input or output widths of the

function. If any required field is not filled in prior to selecting the
button an error message will be displayed.

The following fields must have values before pressing Generate:
Macro Hame,

User Library

Macro Generators Error Message

2-12

Macro Generators

To get details on component functionality and the associated
parameters, press ti{_Hel] button.

Verify the library path in th&ser Librarylist box or specify a
new library by pressing tHgrowsebutton.

WhenMacro Generatorss run,IDS will typically create a sche-
matic automatically for the specifi€@AE system. However, for
certainCAE platforms, a schematic is not required and so sche-
matic generation is an optional step which is controlled through a
check box in thélacro Generatorslialog box.

TheMacro Generatorgreate a fixed layout hard macro for

Figaro and the correspondi@iE systems symbol and simulation
models. In theMacro Generatorglialog box, the user has an op-
tion to generate just a schematic and simulation model for the de-
sired macro by clearing th¢ard Macrocheck box. This allows

the user to edit the schematic and change the logic of the macro
generated. However, the layout for the macro is not generated. It
is most efficient to use the output of tacro Generatoras a

hard macro.

The default pin names on the components generated attre
Generatorscan be changed by specifying the user defined pin
names in a file and providing the name of that file as the value for
the Pin Map File Nameoption in theMacro Generatorslialog

box. The optionapin map file allows alternate pin names to be
specified.

Press thd_Help] button in the dialog box to get information on the
default pin names of the component. piremap file syntax is as
follows:

map default_pin_name user_defined_pin_name

As an example, the default pin names generated for a 4 bit adder
component ar®ATAA[3:0], DATABI[3:0], SUM[3:0], CIN, COUT. To
change these pins 193:0], B[3:0], Q[3:0], RCI, RCO respectively the
correspondingin map file should contain the following lines.

mapDATAA A

mapDATAB B

mapCIN RCI

mapCOUT RCO

2-13

Macro Generators

mapSUM Q

Several macros can be generated in batch mode bythsidgid To
Batchfunction in theMacro Generatorglialog box. To use thdacro
Generatoré\dd To Batcliunction follow the steps below.

= Store the macro settings in the batch by presaoidyTo
Batchafter specifying the parameters for each macro. The
Batch Sizeon the lower right corner of thdacro Generators
dialog box will get incremented by one.

= Review the macros by pressivgew Batchto bring up the
following dialog box. To remove a macro from the batch list,
select a macro and preRemovePres<Closeto return tathe
Macro Generatodialog box

Batch Run Macro Generators ﬂ
Component Hame Selected Options
Mame Walle
Generstor Abszolute Value ;I
Pin Map File
Hari Macro true
Genergte Schematic falze
wvicdth g
- -
4 » | »

|
Remove Close |

View Batch Dialog Box

Presq_Generate] when all macros are configured to the appro-
priate settings anBatch Sizeshows the final count. After

each macro is generated and stored in the user library, the
Batch Sizeounter is decremented accordingly. The following
dialog box appears after successful completion oftaero
Generatorsbatch run.

Macro Generator batch run completed succesfully

Completed Batch Run Dialog Box

2-14

Macro Generators

User Library Structure

Although user libraries are discussed at great length elsewhere,
some important information that relate to Macro Generators
are highlighted below.

Output Files

Once all of the needed information is specifiddcro Generators
can be invoked to create a complete user library component with
the associated output files as follows:

Layout Except for thé/O modules, allseneratos create a hard
layout by default which is stored in the Figaro format user library.
Clearing theHard Macrooption instructs Figaro to leave the cir-
cuit as a soft macro.

Schematic TheGeneratorgproduce schematics for the Viewlogic
platform. For Viewlogic, the schematic is optional as the actual
connectivity information is provided in the netligtir files.

Simulation All Generatos produce information which can be
used to provide correct functional simulation. For Viewlogic, this
is contained in the design specifiar file. For all other tool flows,
either a Verilog owhdl file is produced to provide the functional
model.

Symbol To facilitate design entry using tlenerators symbols

are automatically created for all supported schematic entry tools.
The symbols will contain all the interface pins for the macros gen-
erated, with inputs on the left and outputs on the right.

HDL Support To support users who enter their designs with
VHDL, a template of the macro is created. This template will con-
tain the macro name and a list of the input and output pins in
VHDL syntax. It can be found in the library directory inside the
component’s sub-directory with the extensiovht. Structural
Verilog andvVHDL descriptions of the macros are provided for
Tool Flowsthat require them. These will be found in the library
directory under theerilog andvhdl sub-directories. . Thgostsim
directory contains descriptions with buses flattened in order to
facilitate Post-layout Simulation

2-15

Macro Generators

Statistics

After theMacro Generatohas completed running, a dialog box
will be displayed showing statistics of the macro. It will look like

the following.

AT40K Macro

Statistics

[Macro Performance (i:sing -2
Speed :

Critical Path Delay :

Power Consumption :

Macro - absq

speed grade)
178.6 MHz
56ns
0.0346 mA/MHz

[Macro Di

Logic Size (x*y):

1x3 logic cells

Macro Generators Statistics Box

The information displayed in this dialog box can also be found in
a file, identically named as the user library directory, with the
*.sts extension. For example a library namesdr.lib will have a
statistics file namedser/user.sts. Additionally in the library
directory under each component will be a file cahettro.Ist.

This file will contain details of the parameters used to generate
the macro. It will also contain a file callegacro.sts with the

above statistics for the macro.

2-16

HDL Planner

HDL Planner I

This section presents a design development environment, called
HDLPlanner, for planning and creatittbL designs for Atmel
FPGAs. SpeciaHDLPlanner features allow the incorporation of
technology specific information during the early planning stages
so a 100% technology independent design can be maintained.
Additionally, HDLPlanner prepares the input data to take
advantage of the synthesis software for optimum results.

The software’s interface can define and instantiate pre-verified
VHDL /Verilog modules in the design files quickly. The modules
can be parameterized for bit-widths and clock/reset schemes.

The HDL Hanner software is tightly integrated with the back-end
layout generation engines. Using tlacro Generatorsdesign
modules can be automatically translated into hard macros with
efficient implementation in AtmétPGAs. On-line module

statistics on area and delays can be accessed easily and used to
estimate design performance.

Finally, HDL Planner is an open system. Using its IPEditor user
interface, users can integrate their modules wittiidh Planner
and access them as if macros were supplied from the factory

It is an open knowledge archival system. Previously synthesized
modules become an effective resource because they can be reused
in future designs.

Synthesis Technology Limitations

The benefits of hardware description languagt3i () include the
ability to parameterize modules and create technology
independent designs. Parameterization allows generic definition

of a module to be defined once but used multiple times with
different parameters. The support for parameterization encourages
design reuse and simplifies design maintenance. Technology
independence iHDL also allows designs to be written once and
then targeted to a large nber of FPGAsor ASICs

2-17

HDL Planner

HoweverHDL descriptions must be synthesized and optimized to
realize their gate level implementation for placement and routing.
Often, that means relying on synthesis software capabilities for
module inferencing and logic optimization. Unlike manually en-
tered circuitsHDL designs are more inefficient because of the
inability of synthesis tools to fully incorporate technology specific
information during optimization. A notable improvement is
operator inferencing. This methodology identifies arithmetic and
boolean operators from a design and links them to their preferred
implementation from the technology library. However operator
inferencing does not guarantee optimal results, as illustrated
below.

process (clock, reset)
begin
if(reset = ‘b0) then
sum <= “00000000";
else if(clock = “1" and clock’event)
end Isfum <=a+b; ‘ Register Bank ‘ ‘Register Bank‘

end process; 1 1

A\~»/B A\ B

(@

(0)

(©)

(a)

VHDL template of registered adde(ty)

Optimized implementatiorf¢)

Preferred implementation.

Operator Inferencing Limitations

Additionally, only operators that are supported in the language
can be inferred. Macros suchasinters andFIFOs cannot be
inferred. They must be instantiated using modules defined in a
technology specific library, and technology independence is
compromised in the process.

2-18

HDL Planner

FPGA Technology Specific Considerations

Synthesis tools perform architecture specific optimization without
considering the technology contents of BRGA. Such items

include clocks and resets, tri-states, wired logic, 1/0O buffers, on-
chip configurable memory resources and their address decoding
circuitry. A cost driven optimization of these resources,
unavailable from synthesis tools, is important for achieving
optimum performance from the underlying FPGA technology.

HDL Planner’s design planning environment encourages the users
to follow meet-in-the-middlenethodology for creatingDL

designslt contains a set of well defined methodologies that can be
used to create technology independent descriptions. The graphical
interface allows the user to address architecture, technology, and
layout specific issues earlier in the design process, resulting in a
simplified and shortened design cycle. It also provides area and
delay statistics for corresponding performance estimates.

Graphical User Interface

HDL Planner Graphical user interface can be divided into three
separate components as outlined below.

TSJHDL Planning Software For AT40K FPGAS: untitied

Eile Edt WVHOL Tools Exemplar ‘iews Reports Help
BoEES|tmB|oochB®|Fe o |z=m s
Text: Category: Componert:
Defaut (Fired)] | [Register ~] [1atcnoen-Transparent Laten, with output v Define | Instance |
LIBRARY ieee
TSE ieee.std_logic_l164.all
- Do not delete following library and use clauses
Library works
use work. components. components.all
BNTITY enticyNeme IS

PoRT (

13

BND encieyaue;
ARCHITECTURE behaviour of entityNaue IS
-~ Add STONAL definicions here
BECIN
-~ Define the architesture hers
END behaviours
File: untitled [t Colt | EDITING

HDL Planner Graphical User Interface

2-19

HDL Planner

Design Editor

The built-in editor contains buttons to create and save projects, as
well as support basic text editing operations such as cut, copy,
paste, search, and find etc. Thisspecification conforms to the
Windows 97 standard.

Module Definition and Instantiation Panes

Special list boxes and buttons are provided to select, define, and
instantiate modules. (Refer to the Graphical User Interface above).
Select a module and press efinebutton. This inserts a

generic definition of the module in the text window. Use the
Instancebutton to instantiate a macro selected from the
Componentist box. Once the macro is instantiated, its parameters
can be set by modifying the instantiation statement in the file.

EHI]L Planner !E E
| Top Level Desion | averager | ‘] O |
— Clock Signal Revert to Defaults |

Clack Signal I CLK |

Cancel |
Reset Signal I RST |

—Clock Trigger

Help |
Clock Edge |posedge ;|
Set or Reset
Set or Reset |reset -

—=et ! Reset Polarity
Set | Reset Polarity Ilow ;l

HDL Planner Dialog Box

A module can be parameterized to account for the clock edge
(positive or negative), as well as the set or reset pins and their
polarities (high or low). The appropriate options should be
selected before the component is defined or instantiated.

2-20

HDL Planner

Resource Estimation and Automatic Macro Generation

Menu buttons are provided to access area and macro statistics of
the component selected. Refer to the T&@scription of
Important Menu Buttonfor further details.

The menu buttoinvoke Macro Generatoris provided to create
layouts for all components instantiated in the design.Maero
Generatordialog box is shown below.

ssssse) Only those options that determine the physical properties
NOTEl can be supplied by the user. All other options are grayed
out.
MacioGonerators @
————
3 Pitch Ig latchOen_pr_WIDTH_S |

[Updated

Pin Map File Name I‘ =

|
|
User Library I ;I Elrowse..l

Add 1o Eatch| Generate | Cancel | Help

Macro Type ITransparent Latch

Batch size
[| o

Macro Generators Dialog Box

2-21

HDL Planner

Menu Item Menu Button Brief Description
vHpL! Entity Add HDL template for VHDL entity
Architecture Add HDL template for VHDL
architecture
Comp Declaration Add component declaration
statement
Comp Instantiation Add component instantiation
statement
Process Add a process Statement
Clocked Process Add a clocked process statement
If Add if statement
Case Add case statement
While Loop Add while loop statement
For Loop Add for loop
Signal Add signal definition statement
Variable Add variable definition statement
Constant Add constant definition statement
Type Add type declaration statement
library Add library statement
Package Add package statement
Verilog Module Definition Add a module definition statement
Module Instantiation Add module instantiation statement
Always Add an always statement
Clocked Always Add clocked always statement
If Add if statement
Case Add case statement
CaseX Add casex statement
Casez Add casez statement
For Add for loop
Repeat Add repeat loop

1 This item will be overlaid with Verilog if VerilogiDL is selected

2-22

HDL Planner

Menu Item Menu Button Brief Description
While Add while loop
Continuous Assignment | Add continuous assignment
statement
Blocking Assignment Add blocking assignment statement
Non Blocking Add non blocking assignment
Assignment statement
Register Add reg statement
Wire Add wir statement
Tristate Add tri statement
Define Add define statement
Parameter Add parameter statement
Defparam Add defparam statement
include Add include statement
Design Invoke Macro Invoke layout generator GUI
Generators
Report Macro Report information on modules used
Information in design
Generate Synthesis Generate synthesis script
Script
Exemplar 2 Synthesis Tips Access synthesis experience
Integrate a User Macro Invoke a software to integrate
macro in HDL PLanner
Views Behavioral Display a behavioral description of a
module
Structural Display structural description of a
module
Layout Display a layout of a module layout
in MGL
Reports Area Display area information for a
module
Delay Display delay information for a
module

Description of Important Menu Buttons

2 ltem Synopsys will be displayed if Synopsys synthesis software is selected

2-23

HDL Planner

Planning HDL Designs

The process begins with a well thought out partitioning of a

system into a set of modules as illustrated bekt. Planner
integrates the design planning philosophy into the process so the
user can write a modular and hierarchical design description.

Upon synthesis, a gate level netlist that is optimized for the target
technology will be createtiDL Planner allows the user to

estimate design resources and help avoid assumption changes late
in the design cycle.

HD.'_jPla””L{ Partition design into set of modules |

‘ Define and Instantiate modules ‘

I

‘ Estimate Design Resources ‘

Is partitioning acceptable?
yes
44{ Generate Module Layouts ‘

Library

‘ Generate Synthesis Script ‘

‘ Synthesize the design into a netlist H Constraints

>

Perform Placement and Routing ‘

HDL Planner Design Flow

HDL Planner Features and Benefits

Important features of thdDL Planner software and its built in
methodology are outlined below.

Design Entry Specific

Design Editing Thesoftwarehas an editing environment for plan-
ning, entering, and maintainindPDL descriptions. Its

comprehensive set of pre-verified templates of comig@ix

constructs can be used to speed up design entry. Refer to the Table
Description of Important Menu Buttoabove HDL templates can

also be used to facilitate the learningéfDL and Verilog

language syntax.

2-24

HDL Planner

Technology Independent Design Entry Designs created iHDL
Planner are 100% technology independent, conform to vendor laid
out synthesis guidelines, and contain complete simulation models
(so there are no black boxes).

Design Reuse HDL Planner has a User Interface to easily define
and instantiate pre-verified functional modules. These modules
can be parameterized for bit-widths as well as clock and reset
schemes.

Technology Specific

Links to Layouts TheMacro Generatorsnterface oHDL
Planner translates functional modules into layouts that are highly
optimized for the architecture and technology.

Management of Clock and Reset Resources HDL Planner

simplifies the task of managing the vast clock, set/reset resources
on theFPGA This feature is especially useful as no known
synthesis syem supports module parameterization around clocks
and resets.

Synthesis Tools Specific

Overcomes Synthesis Technology Limitations HDL Planner can
set up the data for synthesis to obtain the best output.

Tightly integrated with Synthesis Tools Synthesis scripts
generated byiDL Planner do not require user knowledge of
technology specific directives that are needed for efficient
synthesis.

Productivity Specific

Performance Estimation On-line reports and statistics of reusable
modules allow quick generation of performance estimates.

Shorter Design Cycle Pre-verified, reusable components and
automatic template generation minimizes the design cycle.
Software Architecture Specific

Completely Transparent HDL Planner is an open system. Users
can integrate their components and use them in their design
process as if they were shipped from the factory.

2-25

HDL Planner

Knowledge Archival HDL Planner has an open help system. The
user can take advantage of previously synthesized modules and
reuse them in future projects.

2-26

HDL Planner

2-27

HDL Entry

HDL Entry I

With significant improvements in the quality of designs produced
by synthesis tools, increasing numbers of circuit designers are
adopting a top down methodology based on Hardware Description
Languages (HDL) over the traditional design methodology of de-
sign entry with schematic capture systems. The top down design
methodology (also called high level or textual design methodol-
ogy), consists of working towards the physical implementation, by
specifying the design behavior#bL, and allowing synthesis

tools to automatically translate it to optimized gate level connec-
tivity under a set of design constraints. The gate level connectivity
produced by synthesis tools is compiled by placement and routing
programs.

This top down design methodology, which allows working at a
higher level of design abstraction, has many advantages. A few of
the important advantages are shorter design cycles, exploration of
many architectural alternatives, ease of design maintenance and
debugging, design re-use, and generation of hardware which is
correct by construction.

Today's synthesis tools have the ability to synthesize designs
under a wide range of design constraints. By specifying
technology specific constraints, layout related information can be
incorporated during synthesis to produce designs meeting desired
performance criteria. Therefore, the ability of a synthesis tool to
perform optimization under technology constraints is an

important component of top down methodology. In this fashion,
the constraint directed synthesis combines advantages of the top
down approach as well as bottom up approach, an approach in
which layout related issues are given more importance.

One important aspect of the latest synthesis products is the ability
to support operator inferencing. With this feature, the tools can
recognize functions such as adders, multipliers, comparators, etc.
in a design. The process allows the synthesis tools to identify spe-
cific components that can be better optimized byFiP@A layout
software.

2-28

HDL Entry

This technique is fully supported in Figaro through Mero
Generators Interfac€MGI) and specific libraries for the sup-
ported synthesis toolslDL synthesis tools from Viewlogic,
Everest, Synopsys (currently withadGl support), and Exemplar

Logic can be used with Figaro and subsequent designs imported
via a netlist interface.

2-29

HDL Entry

Viewlogic

Viewlogic synthesis tools are supported via a technology specific
library. These libraries are stored in the Atmel library directory
and must be copied to the appropriate Viewlogic locations before
synthesis is invoked. The currently supported tools include
VHDLDES, PROSn, Vsyn, and Aurora. All of these programs
read as input thesml technology files and produce as outyiit
files. These files can then be read in directly by Figaro.

In addition to ther.sml files, other files are needed to MMIGI.
See the tutorial on Viewlogic synthesis for more details.

The basic design flow for synthesis is to first define the design via
the Figardrile>Design Setuplialog box. This will set up the
Viewlogic environment. Next, push tisynthesidbutton on the
Flowbar to invoke the synthesis tool. Use the program to create
various hierarchical levels of the design mapped to the Atmel
FPGA architecture. Through operator inferencing, adders, multi-
pliers, and comparators can be automatically placed in the output
netlist. For any other structural componentsMiaero Generators
should be used in the design to provide the best possible perform-
ance for th&=PGA

Automatic pad insertion using the Viewlogic synthesis tools for the
Atmel architecture is available. An outline of the process can be
found in theTutorial.

Refer to the CAE Interfaces” section in th&T40K IDSTutorial

for design entry with the Viewlogic synthesis tools using the
“averager” example. This will describe in detail the set up of the
design, library, and technology files; hierarchical synthesis, crea-
tion and use of th#acro GeneratorcomponentsMGl flow, and

the final preparation of the design for placement and routing.

2-30

HDL Entry

Synopsys

The Synopsy§PGA/Design Compiler is a powerful synthesis and
optimization environment which can perform design synthesis un-
der the user-specified constraints. It can be used with the
Integrated Development System to optimize the layout and design
of Atmel FPGAs.

Synopsys synthesis is supported via a technology specific library.
These libraries are stored in thenel/lib/synopsys directory, and
must be set asBechnology Libranpefore synthesis can be per-
formed. The user should follow the appropriate Synopsys flow to
synthesize the design and produce&aiF netlist which can be

read into Figaro.

The basic design flow for synthesis is to first define the design via
the Figardrile>Design Setuplialog box. This will execute the
appropriate design directory setup. Next, the synthesis tool is run
using theSynthesidutton on the Flowbar and can be used to cre-
ate the various hierarchical levels of the design mapped to the
Atmel architecture.

TheMacro Generatorshould be used to replace structures such
as adders, multipliers, etc. in the design to provide the best
possible performance for tiGA Because automatito

insertion is available, there is no need to bring the results into a
schematic capture tool for final assembly.

Refer to theCAE Interfacessection in theAT40K IDSTutorial for
design entry with the Synopsys synthesis tools using the
“averager” example. This will describe in detail the design and
library setups, hierarchical synthesis, creation and use of the
Macro Generatorgomponents, and final preparation of the
design for placement and routing.

2-31

HDL Entry

Synopsys FPGA Express

The Synopsy§PGAExpress can be used with the Integrated
Development System to optimize the layout and design of Atmel
FPGAs.

The user should follow the Synopsys FPGA Express flow to syn-
thesize the design and produceeanr netlist which can be read
into Figaro.

The basic design flow for synthesis is to first define the design via
the Figardrile>Design Setuplialog box. This will execute the
appropriate design directory setup. Next, the synthesis tool is run
using theSynthesidutton on the Flowbar and can be used to cre-
ate the various hierarchical levels of the design mapped to the
Atmel architecture.

Macro Generatolcomponents should be used to replace structures
such as adders, multipliers, etc. in the design to provide the best
possible performance for tiGA Because automatitO inser-

tion is available, there is no need to bring the results into a sche-
matic capture tool for final assembly.

Refer to theCAE Interfacessection in theAT40K IDSTutorial for
design entry with the Synopsys FPGA Express synthesis tools
using the “averager” example. This will describe in detail the
design and library setups, hierarchical synthesis, creation and use
of theMacro Generator€omponents, and final preparation of the
design for placement and routing.

2-32

HDL Entry

Everest

The Everest synthesis tool can be used with the Integrated
Development System to optimize the layout and design of Atmel
FPGAs.

The user should follow the appropriate Everest flow to synthesize
the design and produce BRnIF netlist which can be read into
Figaro.

The basic design flow for synthesis is to first define the design via
the Figardrile>Design Setuglialog box. This will execute the
appropriate design directory setup. Next, the synthesis tool is run
using theSynthesidutton on the Flowbar and can be used to cre-
ate the various hierarchical levels of the design mapped to the
Atmel architecture.

Everest synthesis tool can infer Atnhdacro Generatoicompo-

nents for adders, counters, multipliers, comparators and ROM’s in
a design. Those Atm#lacro Generatoicomponents are black
boxes and hence designs using inferred components cannot be
simulated until the design netlist is read into Figaro. Once the
design netlist is read into Figaro, the inferred components are
automatically identified and thdacro Generatorgalso called

MGI) dialog box will be brought up. ThdGlI dialog box lists all

the inferred components and their parameters like width and func-
tion. In theMGlI dialog box, users can change layout related
parameters like area/speed optimization, or layout folding, and
create a hard layout for the inferred components.

Because automatltO insertion is available, there is no need to
bring the results into a schematic capture tool for final assembly.

Refer to theCAE Interfacessection in theAT40K IDSTutorial for
design entry with the Everest synthesis tools using the “averager”
example. This will describe in detail the design and library setups,
hierarchical synthesis, creation and use ofMlaero Generators
components, and final preparation of the design for placement and
routing.

2-33

HDL Entry

Exemplar Logic

Exemplar Logic synthesis is supported via a technology specific
library. Technology libraries are provided for the Exemplar syn-
thesis tools Leonardo and Galileo Extreme. These libraries are
stored in thetmel/lib/exemplar/leonardo and
atmel/lib/exemplar/galileo subdirectories and must be copied to the
correct locatiof$SEXEMPLARIib) before synthesis is invoked.
Exemplar's ModGen Library for the AtmEPGAIis also provided
along with the synthesis library.

The appropriate Exemplar flow should be followed to synthesize
the design and produce BnIF netlist which can be loaded into

Figaro. Exemplar’s synthesis tools can infer ModGen
Components for arithmetic and relational operators in a design
from the Module Generation Library provided for the Atmel
FPGA Those AtmeFPGAModGen Library components are black
boxes and hence designs using ModGen components cannot be
simulated until the design netlist is read into Figaro. Once the
design netlist is read into Figaro, the ModGen components are
automatically identified and tHdacro Generatorgalso called

MGI) dialog box will be brought up. ThdGlI dialog box lists all
the ModGen components and their parameters like width and
function. In theMGlI dialog box, users can change layout related
parameters like area/speed optimization, or layout folding, and
create a hard layout for the ModGen components.

The basic design flow for synthesis is to first define the design via
the Figardrile>Design Setuplialog box. This will execute the
appropriate design directory set up. Next, the synthesis tool is run
using theSynthesidutton in the Flowbar. It can be used to create
various hierarchical levels of the design for mapping to the Atmel
architecture.

2-34

HDL Entry

Although the ModGen Library provides support for the arithmetic
and relational operators in the design, Mecro Generators

should be used to replace other regular structures to provide the
best possible performance for theGA The structural

vhdl/Verilog files that are created at the time of the macro
generation simplify this procedure. Because auton&lic

insertion is available, it is unnecessary to bring the results into a
schematic capture tool for final assembly.

Refer to theCAE Interfacessection in theAT40K IDSTutorial for
design entry with the Exemplar Logic synthesis tools using the
“averager” example. This will describe in detail the design and
library setups, hierarchical synthesis, creation and use of the
Macro Generator£omponentsMGI flow, and final preparation
of the design for placement and routing.

2-35

XNF Entry

XNF Entry |

Figaro supports designs in the XiliF format by use of a
technology mapper. It allows the user to translate a X800Q
400Q 4000Eand5200family design into a\T40k device.

The Xilinx XNF design flow is integrated as part of the synthesis
flow and is available for both tHeC and Workstation. Viewlogic
WIR files, VHDL or Verilog back annotation files can be exported
for Post-layout Simulatioas part of the process.

Most of the XilinxXBLOX components can be mapped to the
Atmel Macros.Once a design has been imported, it can be used
for placement and routing. A schematic must be first translated
into anXNF file with Xilinx software before it can be used IDS.

XNF import is integrated into the Viewlogic design flow. Basic
information on the user interface and design set up is briefly
described below. An explanation of eatBBLOX cell and library
component available is provided in thechnical Reference &
Release Note§.he manual also provides information on the
available parameters and pin map descriptions.

Design Flow

To initiate XNF import, first define the design via the Figaro
File>Design Setumlialog box. The user must specify the
Viewlogic environmentAT40k configuration ancKNF import

format as shown below. It is recommended that a user library be
set up before opening the design asMlaero Generatorwill be
called automatically, when applicable, to mapxB&OX cells.

2-36

XNF Entry

Mew Design B I
Design Hame: Design Directory: ok |
I Hhitali I catuser

Cancel |

Help |

A

Files of Type: Drives:

| Xilinx (*.xnf) LI | et d
Configuration:

|AT40K |
Tools Flow: Toolz Flow Description:

FPG& Express -wHOL | Import MNet TR

Export Met : FlatHier. Wik

Orad-Schematic
Export Delay : FlatHier. DTE

Design Setup Dialog Box

The import process can be started with eitheQGpenbutton or
File>Open as Desigifrom the menu. The optid@pen as Macro
cannot be used for the\F flow. During XNF import, theMacro
Generatorgdialog boxwill show up as needed. Create the macros
by pressing th{_Generate] button. Follow the standard Figaro

flow to perform placement and routing.

Although Figaro does not expotNF netlists, the output file can
be in Viewlogic,VHDL or Verilog format based on the simulator
used forPost-layout Simulatian

2-37

Netlist Generation

Netlist Generation I

Netlist generation is available via the Figaro Flowbar. This button
will invoke the needed processes to generate a netlist that can be
read into the system to perform placement and routing. This step
needs to be performed before a design is opened.

To ensure the netlist is up-do-date before proceeding to the layout
phase of the design, click on t@eeate Netlisbutton in the
Flowbar.

The netlist format varies with th@AE system specified. Please

refer to the appropriateCAE Interface$ section in theAT40K IDS
Tutorial manual ofTechnical Reference & Release Ndtas

details. Currently the system takes as input Viewlagidiles or

EDIF netlists from Synopsys, Everest, and Exemplar Logic. Auto-
matic generation of these files is supported for Viewlogic.
Synopsys, Everest and Exemplar Logic users must use the appro-
priate functions in these tools to prepare the netlist for Figaro.

2-38

Simulation

Simulation I

The Integrated Development System offers the userHomtttional
SimulationandPost-layout SimulationFunctional or pre-layout
simulation helps the user ensure circuit validity. This allows the
user to identify potential functional problems and rectify them in
the circuit before placement and routing.

The Post-layout Simulatiomodule performs the same analysis as
Functional Simulationexcept the results reflect the final physical
design complete with timing information.

Figaro is designed to interface with simulation tools fOAE
systems such as Viewlogic, Model Technology, and Cadence.
These platforms can be used to perfémctionalor Post-layout
Simulationon a design entered through any of the methods dis-
cussed in the “Design Entry” chapter of thiser’'s Guide

EFigalo - 4bitalu : c:\atuservdbitalu =] B I

File Edit ‘“iew Lbrary Flow Tools Options Window Help

T Dpenl)Mapl)PansI }Cc.mpilel Eﬂﬂ

Library Compiler: info - Lbrary file atfk no longer found on search path - using cached lib@ny +
Restore: info - Import from o:'atuzeridbitalubser lib *

I Functional simulation I

Functional Simulation

31

Simulation

32

Functional Simulation

Functional Simulation |

Functional Simulatiorprovides functional verification of the cir-
cuit's characteristics. The simulation predicts real-world behavior
by accounting for physical circuit nodes.

Figaro will prepare all configuration files and netlists as well as
run all processes needed to invoke the simulator for the specified
CAE system. However the user must provide the cortieatilsis

file or inputs to the simulator to verify circuit functionality.

The AT40k library of components can be divided into 2 types of
macros: functional and dynamic. Functional macros are compo-
nents with fixed functions, such as the 2 inpND gate.

Dynamic macros are designed to allow user specification of any
desired function, to be attached as an attribute via an equation
string, on the symbol. This should be used only when a specific
function for anAT40k core cell is required. Designs targeted to
AT40k can use a mix of dynamic and functional macros.

Simulating With Dynamic Macros

Designs which use Dynamic Macros cannot be simulated directly
from schematics or synthesis. This is because the various simula-
tors do not have models for the Look Up Tabla$T() which

these macros emulate. Therefore any design which contains these
components must first be read into Figaro, mapped (as needed),
and brought through to initial placement before the appropriate
netlist can be generated for simulation.

Figaro Interface

Figaro provides a totally integrated environment so the user can
access the simulation tool of the specifisE system directly

from the Desktop. Simulation is supported by the AtRRGA
library. The appropriate library is automatically set up according to
user specification from the Desktop.

33

Functional Simulation

To start, press theunctional Simulatiorbutton on the Flowbar.
Figaro will proceed to prepare all inputs and invoke the simulator.
The user should refer to the documentation folAE system on
how to simulate the design before proceeding. For designs
containing Dynamic Macros, u3®ols>Post Mapping Simulation

to verify the functionality of the desigRost Mapping Simulation
can only be performed after initial placement, as explained in the
section “Simulating with Dynamic Macros” above.

The next section will describe the processes in general for the re-
spectiveCAE systems. Refer to th€T40K IDSTutorial and
Technical Referencmanuals for more details.

Viewlogic Simulators

The Viewlogic simulators for theC and Workstation are fully
supported byDS. The underlying functionalities are similar. In
either casef-unctional Simulatiorexecutes two programsheck
andvsm, before runnind?RGsim or ViewSim/Fusion. Theheck
program ensures that all wire files are current,wndcreates
input files for the simulation.

The Atmel libraries for the Viewlogic simulators are created using
parameterized attributes in order to support the speed bins and the
speed ranges. Befovem can be run successfully, the attributes

file must be copied to the current design directory. This is handled
by IDS internally. The file, located in the Atmid directory, is
namedsphin40k.var. It is copied to the design directory and
renameddesignName.var.

Model Technology V-System

The Model Technology V-SystemADL simulator is a/ITAL
compliantVHDL based simulator. It is integrated in@s as part
of the Exemplar Tools Flow.

Input for Functional/Post-Mapping Simulatias aVHDL netlist
file generated by the user or as a result of synthesis on the original
HDL design.

For VHDL design simulations/ITAL 95 compliant AtmelFPGA
libraries are provided along witBS. Themodelsim.ini file has to
be modified accordingly to point to the Atmel library. The library
is calledAT40K and is installed in thatmel/lib/mti directory.

3-4

Functional Simulation

The design/HDL files should first be compiled and then simu-
lated with the command prompt in tBéell WindowThe V-

System simulator cannot be invoked from the push buttons on the
IDS desktop.

35

Functional Simulation

Cadence Verilog-XL

Verilog-XL is the simulator supported byS for the Cadence
CAE system. However Atmel Verilog libraries can also be used
with other Verilog simulators as well.

Input for Functional/Post-Mapping Simulatids aVerilog netlist
file generated by the user or as a result of synthesis on the original
HDL design..

For Verilog design simulations/erilog libraries for AtmelFPGA
components are provided along wWil¥8. The library is called

AT40K and is installed in thatmel/lib/verilog directory. The file

prim.v contains the simulation models for the user-defined Verilog
primitives in the Atmel FPGA Verilog library. This file can be
specified in the command-line using tveoption.

The VerilogXL simulator cannot be invoked from the push
buttons on th¢DS desktop. The design‘gerilog files should be
simulated with the command prompt in tBleell Window

The command-line syntax should include all user and Atmel librar-
ies, themin/typ/maxSpeed Ranggpecification, and the design’s
Verilog files.

3-6

Post-mapping Simulation

Post-mapping Simulation |

Designs which use Dynamic Macros cannot be simulated directly
from schematics or synthesis. This is because the various simula-
tors do not have models for the Look Up Tablg$T() which

these macros emulate. Therefore any design which contains these
components must first be read into Figaro, mapped (as needed),
and brought through to initial placement before the appropriate
netlist can be generated for simulation.

Figaro Interface

Figaro provides a totally integrated environment so the user can
access the simulation tool of the specifisE system directly

from the Desktop. Simulation is supported by the AtRRGA
library. The appropriate library is automatically set up according to
user specification from the Desktop.

Figaro will proceed to prepare all inputs and invoke the simulator.
The user should refer to the documentation folAE system on
how to simulate the design before proceeding. To start post-
mapping simulation, ustools>Post Mapping Simulaticio ver-

ify the functionality of the desigiirost Mapping Simulationan

only be performed after initial placement.

37

Post-mapping Simulation

3-8

Post-layout Simulation

Post-layout Simulation |

Post-layout Simulatioperforms post-layout timing and functional
verification to provide an accurate estimate of the circuit's input to
output timing characteristics. It notes the post-layout wire delays,
including pin-to-pin delays, setup and hold times, and actual wire
delays, to predict device timing and performance.

Figaro will prepare all necessary configuration files, netlists and
delay files, as well as run all processes required to invoke the
simulator for the specifie@AE system. The user will need to pro-
vide the correct stimulus file or inputs to the simulator to verify
the circuit functionality.

A new simulation netlist is needed whenever a design has gone
through placement and routing. This is required to support the
design transformations resulting from the compilation process.
The netlist is a flattened representation of the design as all
hierarchy will have been removed and buses mapped to their
scalar components. Because the various components of the design
have been mapped into theT architecture, the internal signals

are often changed. As the internal nodes will be typically
unavailable, all stimulus for the circuit should be atltbdevel

for correct simulation of the design.

In addition to the simulation netlist, a back annotation file
containing information on macro delays intrinsic to the
components, as well as routing delays, is generatdeioftr
layout SimulationThis file will be output in a format that
matches the flattened netlist created by Figaro as discussed
previously.

Figaro Interface

Figaro provides a totally integrated environment so the user can
access the simulation tool of the specifisE system directly

from the Desktop. Simulation is supported by the AtRRGA
library. The appropriate library is automatically set up according to
the part chosen..

39

Post-layout Simulation

To start, press theost-layout Simulatiobutton on the Flowbar.
The Post-layout Simulatiodialog box will appear, and the user is
asked to set th&peed Rangas shown below. Select the desired
option and initiate the process.

Simulation Setup

SpeedRange (@ Max (O Typ (3 Min

Cancel | Help

Post-layout Simulation Dialog Box

The Speed Rangiadicates whether the delay values to simulate
areMinimum Typical or Maximumcase scenarios. Maximum
Speed Rangeepresents the worst case analysis. The program will
default toMaximum

Once the above values have been specified, pre{_run] but-
ton to prepare all inputs and invoke the simulator. The user
should refer to the documentation for th&E system on how to
simulate the design before proceeding.

The next section will describe the processes in general for the re-
spectiveCAE systems. Refer to thET40K IDSTutorial and
Technical Reference & Release Ndt@smore details.

Viewlogic Simulators

For Post-layout SimulatiogrFigaro will generate the back annota-
tion files and needed netlists before runnimg. The same
stimulus files used fdfFunctional Simulatiorcan be used to test
the circuit, provided that no internal nodes are being acca$sed.
simulators will be invoked as discussedrimctionalSimulation

with the following differences.

3-10

Post-layout Simulation

A new set ofwir files will be created by Figaro to support transfor-
mations that result from the mapping of the original circuit to the
AT40K architecture. The netlists will be flat as discussed in the
Post-layoutintroduction. These new files are found in figba
sub-directory for the design. The system will automatically modify
theviewdraw.ini file to point to the correct set of files whBost-
layout Simulatioris invoked.

Along with the above files, designName.dtb file (or separate

* dtb files for the partitioned designs) is created infiffiga direc-
tory which contains all of the routing delays between the macros
in the design. Again, this information is created and accessed
during Post-layout Simulation

Model Technology V-System

The Model Technology V-SystemADL simulator is a/HDL
based simulator. It is integrated in@s as part of the Exemplar
Tools Flow .

For Post-layout Simulatigrboth a back annotation file (or sepa-
rate*.sdf files for the partitioned designs) in the Standard Delay
File (SDF) format and a neWHDL netlist are created. These files
are output to theesign/figha directory. The simulator is then in-
voked in a similar fashion as Functional Simulation.

The SDFfile, which contains routing delay information as well as
the intrinsic delays for the macros referenced in the design, will
match the new flattened netlist.

ssesss When a design is flattened, all buses used will be split out
into their individual components. The stimulus files
should be changed appropriately to take this into
consideration before the simulator is invoked by the user.

Cadence Verilog-XL

For Post-layout Simulatigrboth a back annotation (or separate
*.dtb files for the partitioned designs) in the Standard Delay File
(SDP format and a new Verilog netlist (if required as outlined in
the Post-layoutintroduction) are created. These files are output to
the design/figha directory. The simulator is then invoked in a
similar fashion as iffrunctional Simulation.

311

Post-layout Simulation

The SDFfile contains routing delay information as well as the in-
trinsic delays for the macros referenced in the designSDife

file will either match the original input hierarchy or the new flat-
tened netlist as needed.

AAAAAA When a design is flattened, all buses used will be split out
into their individual components. The stimulus files
should be changed appropriately to take this into
consideration before the simulator is invoked.

Other Simulator Flows

The Flowbar buttons are provided to be used with various sup-
ported simulator tools and flows. Simulation with other platforms
is still supported but not in the automatic fashion as for the above
systems. After the design has been placed and routed (with the
EDIF input that is generated by the tools), the user can create the
needed back annotation files via #ike>Export dialog box. This
dialog box allows the specification of many different back annota-
tion formats such aSDF, DBA andDTB for flattened designs.
These files can then be read into the simulator as needed.

312

Design Implementation

Design Implementation |

Open

This section serves as an overview to Figaro as it pertains to the
design implementation functions @pen, MappParts and

Compile Step by step instructions on how to execute a design are
discussed in thEigaro section of théAT4 IDS Tutorial.

The preceding modules in the Flowbar allows the user to perform
the preliminary functions of design entry and verification through
to netlist generation. Once the netlist is created, Figaro can
generate a data base for automatic and/or manual placement and
routing.

TheOpenmodule is used to either create a data base for the
design by opening a netlist, or load in a previously saved data
base. Figaro takes the netlist created from\tbttist button and
converts it into a data base file for use &eagignor Macro. This
directs Figaro to either prepare the design for eventual bitstream
output, or leave it as a macro for library check-in.

The other application for this module is to provide access to a
previously created design. The user can then resume work on
manual placement, routing, or other tasks needed for
implementation of the layout.

EFigam - adder : c:\atuser

File Edit “iew Library Flow Tools Options Window Help
ﬂ g E*Eo b“il% 3:)- @ E‘% | I’Open|}Map| 'Parts| }Cumpi\e | CB T‘—T }\“ |

The Open Button

4-13%

Design Implementation

Map

Selection of thévlap button will causéDS to search for an open
design before proceeding. If none is found, Figaro will bring up
the Open as Desigdialog box. Once a design has been loaded,
the optional mapping step can proceed.

Mapping is the process of optimizing design logic and adapting it
to the Atmel architecture. It can be used to achieve area
optimization for a netlist created with tAgd40k library.

Although it is an optional step, mapping should be run to achieve
the best possible circuit speed and density.

Mapping takes the instances from the design netlist and:

a) Converts the instances to a technology-independent form.

b) Performs area optimization to reduce the space utilization. It
will try to pack the input design into the core cells.

c) Generates instances specific to the selected device.

The Design Browseand theMap Browsercan be used to view the
results of this process.

Fil= Edit ‘“iew Library Flow Toolz Options Window Help

ﬂ gﬁéﬁggg :‘% ||}Openlm| bPadS“CUmpile | & @} DJ"H«L1 }\" |
=

Open as Design or Macro... info - Finished Cpen as Desion or Macro... &t October 5, 1995 ot 211:14 &m - Success ;I
Hevhoard: info - Key "Shift F10' not bound to any function
Keyhoard: info - Key "Shift F10' not bound to any function

=

Run the Mapper [

The Mapper Button

Design Implementation

Selecting Parts

Selection of théarts button will causeDS to search for an open
design before proceeding. If none is found, Figaro will bring up
the Open as Desigdialog box. If mapping has been enabled, the
design will first be mapped befoRart Selectioris invoked. Once

a design is available, the program will display Baets
Assemblewindow andPart Selecdialog box. Thé”arts
Assembleserves three important functions by: a) allowing the
user to select the part or parts needed for the design, b) providing
the user with the means to pre-plat@s by assigning pin locks

for the design, and c) partitioning the design.

The user can specify the Atmel part(s) and package(s) as well as
select the speed grade. The suitability of a certain part for ease of
compiling is presented by the visual display on the screen and in
the Part Selectiordialog box. The amount of logic aRAM

resources needed are represented by the left and right bar graphs
respectively irParts Assemblewindow. A high demand on the

chip resources will increase the need for manual pre-placement
and routing to complete the design.

Fil= Edit ‘“iew Library Flow Toolz Options Window Help

ﬂ EEE@QE?% ||}Open“Map|bPads|bCUmpiIe | @ @} DJ"H«L1 }\" |
=

Open as Design or Macro... info - Finished Cpen as Desion or Macro... &t October 5, 1995 ot 211:14 &m - Success ;I
Hevhoard: info - Key "Shift F10' not bound to any function
Keyhoard: info - Key "Shift F10' not bound to any function

=

Feun "add & part, or parts” inthe Parts Window |

The Add Parts Button

4-33t

Design Implementation

Compiling

The Compilefunction directs Figaro to place, route, and generate
a bitstream (or check-in a macro) automatically. Figaro will
automatically call up th®pen, MapandParts modules in
sequence if only th€ompilebutton is selected for design
implementation.

Depending on the specification of the circuitvéacro or Design
the result will either be a bitstream for downloading, or a
component for the macro library.

Fil= Edit ‘“iew Library Flow Toolz Options Window Help

g EE ﬁ% £ @ :‘% | |}Open ‘ }Map| bPadSIbCUmpile | & @} DJ"H«L1 }\" |

Open as Design or Macro... info - Finished Cpen as Desion or Macro... &t October 5, 1995 ot 211:14 &m - Success ;I
Hevhoard: info - Key "Shift F10' not bound to any function
Keyhoard: info - Key "Shift F10' not bound to any function

=

Automatically program whole design |

The Compile Button

Device Programming

Device Programming I

Following placement and routing, the design is ready for the user
to generate the bitstream file for programming the AtRREGA

device. The user can program and download the design as needed.
There are two parts to Device Programming. The first is the actual
creation of the bitstream file. This is done as part oCihepile

for Designprocess. The second part involves utilities which can
manipulate and or check the bitstream.

Device Programming brings the design from building the bit-
stream through downloading it to tARGAor Serial Configuration
Memory device on the Prototype Board. Other utilities included
allows the user to reduce the output data into a smaller format
(Compress Bitstreainchange the design from one base design to
other optional designd\(indow Bitstreary) combine several
designs into one bitstreatigscade Bitstreajpand download to the
FPGAor Serial Configuration MemonpbwnLoadBitstrean).

File Edit

Flow | Tools Options Window Help

I BEROBBE oo o | & BIOE A
= 1
MGL Edior
#dd probe
Remove probe
HOC HDL Planner
O
£

Figara: Info - 5263 configuration bytes wiitten to fle: £ vatusenaddsr hex B
Figara info - 5263 configuration bybes written to fle: c:hatuseriadder hisr
Bitstream: info - Finished Sitstream ot Octoker 5, 1998 ot 10142732 am - Success

Ll

Generats & winciowed kit stream |

IDS Bitstream Utilities

51

Device Programming

5-2

Build Bitstream

Build Bitstream I

Build Bitstreamis the final stage of th€ompile for Desigmproc-

ess, where the physical data base is converted into the bitstream
file. Build Bitstreamis invoked after all layout applications are
completed. It can be invoked via thlbw>Compile>Bitstream
menu option or th&itStr button on the Device Flowbar.

Initizl Placement

Optimize Placement

Initizl Route

Optimize Boute Shift+F11

Bit=tream

Compile Menu

The various options for controlling bitstream generation are avail-
able under th©ptions>OptionsAT40kBitstreamdialog box as
shown below.

53

Build Bitstream

E Options

Delay Calculstar
Design Checker
Design Configuration
Design Constraints
ECO

Export Formsts

HCL Planner

Help

Mapping

MG Support

MGL Editor

Part Selection
Partitioner

Place and Route
Synthesis Tool Invoc
Timing Snalysis
“iewdlogic Import
Hilirx

N

—Configurstion Register

[(B0) Reset Addresses

¥ (B2 Cascade Disabled

] (B3) Check Function Disakled
| (B4 Memory Lockout

O (BE) Global Tristate Enable
i (B7) Wide (16 bit) data access
O (B13) Free Running Oscillstor
i (B14) Ozcillstor Fregquency 0
- (B15) Oscillstor Freguency 1
r (B16) GCLKO dizakle

[T (B17) GCLKA disable

r (B18) GCLKZ dizakle

[T (B19) GCLKS disable

r (B20) GCLK4 dizakle

[T (B21) GCLKS disable

i (B22) GCLKE dizable

[T (B23) GCLKT disable

i (B24) FCLKO disable

[T (B25) FCLK1 disable

i (B26) FCLKZ disable

[T (B27) FCLKS disable

[T (B30) Reset Disahle

¥ (B31) Tristate During Config.

hdl

034 |
Revert to Defauts |
Cancel |

Help |

Global Options Dialog Box

In order to store the correct setup configuration features and
options in the bitstream file, as well as generate the bitstream pro-
gramming file, the user must determine how configuration data
will be loaded into th&RAM of theFPGA There are thirty-two
configuration control register bits for this purpose. Control

register option values are drawn from #iBik Bitstream

Options Consult theAT4k Datasheefor more information on
control register loading.

5-4

Build Bitstream

In addition to the Configuration Register bits, there RAM
Initialization checkbox in thé T4k Bitstream Options If this

box is checked, the user-configuraBl&aM units on theFPGA

will be cleared during device programming. If it is un-checked,
the RAM contents will retain their previous contents.

Creating a Bitstream

Bitstream creation is the last step in design compilation. Before
pressing th&€€ompilebutton on the main Flowbar or tiBtStr

button on the Device Window Flowbar, verify that the options

have been set appropriately as discussed in the previous section. A
bitstream can only be created after a design has been completely
placed and routed. @pen as Macravas used to create the lay-

out, the bitstream option will be unavailable.

The process of creating a bitstream is one of translating the Figaro
based design into an Atmel specific bitstream. Results of the bit-
stream process are displayed in the transcript window.

The bitstream creation process generates threefieginName.bst,
DesignName.hex, andDesignName.hxr. DesignName.bst is an
Atmel bitstream format fileDesignName.hex is anMCS-86
format file, andDesignName.hxr is anMCS-86format file
designed for use with third-party programmers for serial
configuration memory devices.

55

Build Bitstream

5-6

Bitstream Utilities

Bitstream Utilities I

Bitstream Utilitiesprovide the ability to compress, window, cas-
cade, and download files that have been createdBititlreaming
from theCompilemodule. AnFPGA device can have its changed
behavior programmed and re-programmed with data windows in
Window BitstreamCompress Bitstreammompresses the bitstream
into windows, programming only areas of the chip which are
being usedCascade Bitstrearallows the user to generate a
bitstream to program multiple cascaded devices. The download
process is specifically set up to support the transfer of the
bitstream to the Atmel prototype or serial configuration memory
boards.

RO .
COmpress...
Cazcade...

oioi
& Dowvnload. ..

Bitstream Utilities

AAAAAA The bitstream utilities are not available until at least one
bitstream has been created for any of the designs specified
in theFile>Design Setumlialog box.

57

Bitstream Utilities

5-8

Window Bitstream

Window Bitstream I

Window Bitstream is used to program or re-program a portion of
the FPGAdevice. This tool is an important step in the support of
cache logic as it can determine which parts of the design have
changed, and create a bitstream to configure only that part of the
chip. A maximum of 255 windows can be produced.

a Bitstream Window !El m

Active Design Bitstreams:

I cilatuseriadder.bst ;I

Baseline Bitstreams:

o atuserimult bst
chatuzerizub bet

QK | Cancel | Help |

Window Bitstream Dialog Box

The user prepares two similar designs and creates separate bit-
stream files. The program compares the bitstreams and the result-
ing differences are placed into a new bitstream file. This new file
contains only the information required to transform the baseline
design into the new design. The data in this file is in a windowed
format, and it will only program the changed portions of the
design.

59

Window Bitstream

Starting a Session

Pull down the menu optiohools>Bitstream>Windowo bring up

the dialog box. As seen in the above dialog box there is a bit-
stream for the active or current design. The user must pick among
the baseline bitstreams for the one which will be compared against
the active design. The operation will result in a new bitstream for
the active design. This contains the windows which will transform
the selected baseline bitstream into the current design.

Select[_o_] to initiateWindow The process runs to completion
and ends without user intervention.

Further details on the Windowing process can be found by select-

ing the[_wy_| button.

5-10

Compress Bitstream

Compress Bitstream I

The Compresprogram allows the user to compress the bitstream
output for faster loading, and to fit into a smaller memory device
as needed. For larger devices of the AtRRBAs, it is recom-
mended that the bitstream be compressed.

AAAAAA Use compressed bitstreams to program a device only im-
mediately following power-up, or configuration reset, or
when programming two completely independent functions
that are to work simultaneously.

E Bitstream Compress !EI E

Active Project Bitstreams:

c:atuseriadder bat
catuserimutt bst
catuserizub bst

Cancel | Help |

Compress Bitstream Dialog Box

Starting a Session

Pull down the menu optiohools>Bitstream>Compres$Select

the bitstream to compress and click_o_] to initiate the pro-
gram. The process runs to completion and ends without user
intervention. The output of this program will be a new bitstream,
with the same file name, that is smaller than the original.

Input toCompressnust be irBsT format but output will be in
HEX, HXR andBST format. TheHXR format is for use with third
party serial configuration memory programmers.

5-11

Compress Bitstream

Selec{_o_] to initiateCompressThe process runs to completion
and ends without user intervention.

Further details on thEompresgprocess can be found by selecting

the[_t | button.

5-12

Cascade Bitstream

Cascade Bitstream I

The Cascademodule allows the user to concatenate several bit-
stream files into a single file with the appropriate control register
settings. This single file can then be downloaded to a master
FPGAwhich will subsequently load other devices in the system.

E Bitstreams Cascade !E ﬂ
Active Design:
adder : chatuser
Design Bitstreams: Selected Design Bitstreams:
o iatuzertadder bst T[] -]

- -
3 K] 5
I Ok | Cancel | Help |

Cascade Bitstream Dialog Box

Starting a Session

Pull down the menu optiofiools>Bitstream>Cascadél he
Design Bitstreaméist box displays all design directories in the
system that contain bitstream files. To create a list of bitstream
files for cascading, click on bitstream file names fidesign
Bitstreamdo place them under tigelected Design Bitstreams
list box. Click on a file in th&elected Design Bitstrearhex to
remove it from the box. Cascading of the bitstream files will be
executed in the order shown.

Selec{_o_] to initiateCascade The process runs to completion
and ends without user intervention.

5-13

Cascade Bitstream

sssss¢. When creating entries f@ascadethe total file number is
NOTEl - not allowed to exceed 8, to avoid potential problems when
programming thé&PGA parts.

Input toCascademust be irBST format but output will be
in bothHEX andBST format.

The Sequence FileandEPROMSize options are not
available for AT40k series FPGAs.

Further details on th€ascadegrocess can be found by selecting

the[_ | button

5-14

Download Bitstream

DownLoad Bitstream I

The DownlLoadoption is the last step in designing and laying out
a programmable device. This function is available for use when
doing design prototyping. The user can download the data
through the specified parallel port oir@to an Atmel prototype
board, Atmel serial configuration memory board, or to any
download board supplied by the user.

E Bitstream Download !EI ﬂ
Active Design:
adder : cihatuser

Design Bitstreams:

catuseriadder bt |
catuserimutt et

catuserisub bt

cWCONFIG WM

o
3
Download Port: I LPT1 vl Download Device: I FPGA, vl

Ok | Cancel | Help |

DownLoad Bitstream Dialog Box

The DownLoadprocess requires a special download cable that is
part of the Download Assembly shipped with the Atmel Integrated
Development System. To ensure successful execution of the
download process, the user should check all hardware
connections.

The DownLoadbutton on the Figaro Flowbar is only active on the
PC platform. For workstation users, thewnload program
(downld40.exe) can be found in thatmel/bin directory. This pro-
gram, along with the bitstream file, must be transferred”G a

for downloading. Refer to the Command Reference section of the
Technical Reference & Release Ndtasfurther details on run-
ning the program from the command-line.

5-19

Download Bitstream

Another option is to download the bitstream to Atmel’'s Serial
Configuration Memory. This assumes that the memory prototype
board is connected to tiR€, The program used for this purpose is
cf.exe which is in theatmel/bin directory. Both the program and
the bitstream file must be transferred t®G&for downloading.

Refer to the Command Reference section offéaehnical

Reference & Release Noties further details on running the
program from the command-line.

Starting a Session

Pull down the menu optichools>Bitstream>DownLoadr select
the DownLoadbutton from the Figaro Flowbar.

Tools Opfions Window Help
r oy g,
E Yopen | W | bparts | bcompie | & | A
O
o
ConstraintsComplier: infa - Constraints successMully naced in 0,009 seconds 4]
Open as Design or Macra... info - Finished Open as Design or Macro... st October 5, 1999 ot 211:14 am - Success
Keyhoartt info - Key 'Shitt F10' nat bound to any function 3
DawnLoad bit stream |

DownLoad in the Flowbar

Specify the appropriate parallel port and then s{_o_| to initi-
ateDownLoad The process runs to completion and ends without
user intervention.

5-20

Download Bitstream

Stand-alone Session

The stand-alonBownld40 program can be ported to multiple
computers. With this feature, the user can carry out the circuit
testing process at any site.

In executingDownld40 from theDOS command-line, a typical run
is similar to the following example:

c:\> Downld40 /p Ipt2 DesignName.bst
A comparable means to run tkfgorogram for the Serial Configura-

tion Memory is available. In executirgfrom theDOS command-
line, a typical run is similar to the following example:

c:\> cf /p /i Ig DesignName.bst

5-21

Macro Generator Language

MGL

The Figaro software is shipped with a rang®datro Generators
for the AT40k serie=PGAs. (For more information, please refer
to the ‘Design Entry, Macro Generatorssection in thigJser's
Guide. TheGeneratorsare written in a new language called
MGL (Macro Generator LanguageJ he language is specially
developed by Atmel to allow the programmatic creation of user
macros. Designers can write their oacro Generator

programs usinghis languagéo produce parameterized macros
with hard layout and routing. A compiler, editor, and debugging
tools forMGL are included to facilitate this process.

This section provides a brief overviewMEGL and its associated
tools. For a more thorough description of the language, refer to
the MGL section of th&echnical Reference & Release Notes

Language Overview

MGL is a highly specialized language, whose principal purpose is
the creation of hard user macros. The various language constructs
have been optimized specifically for this task, and superfluous fea-
tures have been avoided as much as possible. The language does,
however, support a range of features that are common to most
high-level design languageld{Ls) as listed below.

= “If .. then .. else ..” and “case” statements for conditional
branching

= “For” and “while” loops

= User-defined functions

= Printing and error handling

= Arithmetic operators and built-in arithmetic functions
= File input and output

= Common data types such as integer, float, boolean, string and
array

6-1

Macro Generator Language

MGL differs from otheHDLSs in its ability to describe the physical
properties of a macro, including its placement and routing. Macro
creation is performed in two distinct stages:

= Defining the macro interface.
= Defining the contents of the macro in terms of component in-
stantiations, as well as their logical and physical connectivities.

The macro interface is described usingrdarface blockas illus-
trated below.

counter : macro;

interface “Count™{width} of counter is
inputports(“CLOCK”, “RESET");
foriin 0O to (width-1) loop
outputports(“Q"{i});
end loop;
end interface;

Interface block

The figure above describes the interface of a variable-width
counter macro, witlCLOCK andRESETIinputs, and an output bus
Q[width-1:0]. A graphical representation of the interface pro-
duced is shown below.

Q0
o1
Count4
Q2
CLOCK — — Q3
RESET

Macro Symbol

The contents of a macro is described usiograents bloclas in
the following example.

6-2

Macro Generator Language

contents of counter is
.. statements ...

end contents;

Contents Block

The process of defining the contents of a macro (i.e. its underlying
implementation) consists of three main tasks:

= Instantiating components

= Connecting components together via nets

= Specifying the physical routing resources used by those nets

To instantiate a component within the macro contents, the first
step is to specify a component from either a library, or another
MGL program. Aninstance blocks then used to describe the in-
stantiation of that component as shown below.

/I Get macro from vendor library
aMacro : macro := getmacro(“FGEN1RF");

instance “Cell0” of aMacro is
location(0, 0);
functiong(“!IFB”);
connections(“CLK™->“CLOCK”,
“RS"->“RESET",
‘G->Q0);
end instance;

Instance Block

The instance block creates an instance dcf@GBN1RF macrdga
generic cell consisting of a 4-inpUtT, a register and a feedback
connection) called “Cell0". It places the cell at location (0,0).

Next the cell is programmed to negate the feedback connection
and feed it into the register. Then the ports on the cell are con-
nected to the appropriate nets within the macro. The schematic of
the instance block is shown below.

6-3

Macro Generator Language

00 y— QO

Q1
Cello e

Q2
CLOCK
Q3

cLocK —¢ RESE — | o3

I

RESET

Instance Block Schematic

The routing within a macro is defined usingpate block such as
the one shown below.

route of “CARRY1" is
nodes((0, 1, “yOut”),
(0, 2,"yIn));
end route;

Route Block

The route taken by the neCARRY1" is described by attaching
route nodes to the net. The net is connected from the Y (orthogonal)
output of the core cell at location (0,1) to the Y input of the core
cell at location (0,2).

Cell2| (0,2)

CARRY1

Celll| (0,1)

Graphical View of Route Block

The above is a brief outline of how to create a user-customized
macro usingGL. Additional MGL features that support the pro-
grammatic generation of entire designs (includiqg) are
covered in th@echnical Reference & Release Notes

6-4

Macro Generator Language

MGL Editing and Debugging tools

An MGL editing environment can be reached fromTbels

menu in Figaro, undevGL Editor. Figaro must be set up with an
AT40k design before thBIGL Editor can be invoked. The editor
allowsMGL files to be edited, debugged and compiled.

J“'LI

MGL Editor: upcount.mgl

File Edit Tools Insert Help

B OFES | Lol o h®E

3

e | W £.3 W

|Default (Fized)

FaTa TN =

<

if (width > MAX_ARRAYT WIDTH) then
errvor("Counter eidth is too large (maximwen is ", MAX ARRAY WIDTH, ")").
end 1if;

S/ Define the interface of the counter
interface name of counter is
for i in 0 to width-1 loop
outputports(Q0UT + 1) ;
end loop;

inputports(CLOCK_POSITIVE, RESET LOW);
end interface;

£ Define the contents of the counter. We've got special cases for the first and last
£ counter stages.
contents of counter is

for 1 in 0 to width-1 loop

afell = counterfell{ 1 = 0, i = width-1}; /7 fse the function above to create a ¥

]

3

I /sjo_design/fpgal/peapledjstockiat TkAigaramgl |
i

MGL Viewer

The following buttons are available on tM&L Editor toolbar:

Updates the file being edited with the latest saved version.

Creates a new MGL file for editing.

Opens a new MGL file.

Saves the file being edited.

0D % O &

Prints the current MGL file.

6-5

Macro Generator Language

Cuts the selected text and places it in the clipboard.

Copies the selected text and places it in the clipboard.

Pastes the contents of the clipboard.

Multi-level Undo function.

Multi-level Redo function.

Searches for a given string in the current file.

Searches for a given string and replaces it with another.

Places the cursor at the start of the file.

Places the cursor at the end of the file.

Increases the indent level of the selected text.

Decreases the indent level of the selected text.

Default (Fixed) =]

Text size menu button - Allows the user to select the font
size for displaying the MGL file.

LY

Switches dynamic syntax highlighting on and off.

$...%

Comments out the selected text.

*(T)+

Globally switches all user breakpoints (set using the
setbreak() function) on or off.

Pl]

Single-steps through the MGL code, bring up the MGL
Debugger window after each command is executed.

nolpi 1

Compiles the current MGL file and, if successful, gives
the user the option of running the generated macro
through the UDM (User-Defined Macro) flow in IDS.

6-6

Macro Generator Language

Most of these features can also be accessed through the menu bar.
In addition, theEdit menu allows the user Bo Toa selected line

and toggle on and off thiuto Indentfeature. Thénsertmenu

provides several of the most commdGL constructs as

templates, which can be inserted into the user’s code and then
modified as needed.

The Debugger Window

The Debugger window is split into three main sections as shown
below. The top allows the user to inspect the value of variables
and constants at various scopes in the program. The middle
displays the source code with the current execution point
highlighted. The bottom provides controls for: a) stepping into the
next statement,

b) over the next statement, or c) proceeding with normal code
execution.

MGL Debugger Window

Variahles & Constants

Scope
Name Type Falue
foen macro FGENIRF (Atmel 40K Library) :l Igmbaj
counterCell [macro FIRST
interfaceName |string ‘FIRST’ UpCounter()
firstCell hoolean true for loop
lastlell hoolean false

counter Cell{ 3

v
| | L

Source View (PreProcessed)

end if;

/¢ Here's where we instantiate the appropriate FBEN macro and set its
properties

A4 accordingly

instance "COUNTINST'<-— *** INSTANCE BLOCK *** of fgen is

o o

Debug Flow Control ‘ Sy, » | ‘

=

MGL Debugger Window

6-7

	Title
	Introduction
	System Basics
	Design Entry
	Schematic Entry
	PLA Optimization
	Macro Generators
	HDL Planner
	HDL Entry
	XNF Entry
	Netlist Generation

	Simulation
	Functional Simulation
	Post-mapping Simulation
	Post-layout Simulation

	Design Implementation
	Device Programming
	Build Bitstream

	Bitstream Utilities
	Window Bitstream
	Compress Bitstream
	Cascade Bitstream
	Download Bitstream

	Macro Generator Language

