

8-bit
Microcontrollers

Application Note

Rev. 8080A-AVR-09/07

AVR458: Charging Lithium-Ion Batteries with
ATAVRBC100

Features
• Fully Functional Design for Charging Lithium-Ion Batteries
• High Accuracy Measurement with 10-bit A/D Converter
• Modular “C” Source Code
• Easily Adjustable Battery and Charge Parameters
• Serial Interface for Communication with External Master
• One-wire Interface for Communication with Battery EEPROM
• Analogue Inputs for Reading Battery ID and Temperature
• Internal Temperature Sensor for Enhanced Thermal Management
• On-chip EEPROM for Storage of Battery and Run-Time Parameters

1 Introduction
This application note is based on the ATAVRBC100 Battery Charger reference
design (BC100) and focuses on how to use the reference design to charge Lithium-
Ion (Li-Ion) batteries. The firmware is written entirely in C language (using IAR®
Systems Embedded Workbench) and is easy to port to other AVR®
microcontrollers.

This application is based on the ATtiny861 microcontroller but it is possible to
migrate the design to other AVR microcontrollers, such as pin-compatible devices
ATtiny261 and ATtiny461. Low pin count devices such as ATtiny25/45/85 can also
be used, but with reduced functionality.

2 AVR458
8080A-AVR-09/07

2 Theory of Operation
Battery charging is made possible by a reversible chemical reaction that restores
energy in a chemical system. Depending on the chemicals used, the battery will have
certain characteristics. A detailed knowledge of these characteristics is required in
order to avoid inflicting damage to the battery.

2.1 Li-Ion Battery Technology
Lithium-Ion batteries have the highest energy/weight and energy/space ratios of
modern rechargeable batteries /1/ (See “References” section on page 29). It is
currently the fastest growing battery system on the market, with end applications such
as notebook computers, cell phones, portable media players, Personal Digital
Assistants (PDA), power tools and medical devices.

Compared to traditional, rechargeable batteries, Li-Ion batteries have low internal
resistance, high cycle life, fast charge time, low self-discharge, low toxicity and no
maintenance requirements. For example, lithium-ion cells with cobalt cathodes hold
twice the energy of a nickel-based battery and four-times that of lead acid /2/. Lithium-
ion is a low maintenance system, an advantage that most other chemistries cannot
claim. There is no memory effect with lithium-ion and the battery does not require
scheduled cycling to prolong its life. Lithium-ion has a low self-discharge and is
environmentally friendly. Disposal causes minimal harm.

Drawbacks of Li-Ion batteries include low tolerance of overcharge and the need for
embedded protection circuitry. An electrical short can result in a large current flow, a
temperature rise and thermal runaway in which flaming gases are vented.

2.1.1 Safety

Lithium-ion batteries are safe, provided certain precautions are met when charging
and discharging. In addition, battery manufacturers ensure a high level of reliability by
adding three layers of protection, as follows:

1. The amount of active material is limited to achieve a workable equilibrium of
energy density and safety.

2. Various safety mechanisms are included within each cell.
3. An electronic protection circuit is added inside the battery pack.

Cell protection devices work as follows:

• A PTC (positive temperature coefficient) device acts as a protection to inhibit high
current surges.

• The CID (circuit interrupt device) opens the electrical path if an excessively high
charge voltage raises the internal cell pressure.

• The safety vent allows a controlled release of gas in the event of a rapid increase
in cell pressure.

 AVR458

 3

8080A-AVR-09/07

The electronic protection circuit works as follows:

• A solid-state switch is opened if the charge voltage of any cell reaches a given
threshold.

• A fuse cuts the current flow if the skin temperature of the cell approaches 90°C
(194°F).

• The current path is cut when cell voltage drops below a given threshold. This is in
order to prevent the battery from over-discharging.

Today, lithium-ion is one of the most successful and safe battery chemistries
available with billions of cells being produced every year.

2.2 Charging Li-Ion Batteries
There is only one way to charge lithium-based batteries /3/. Manufacturers of Lithium-
Ion cells have very strict guidelines in charge procedures and the packs should be
charged as per the manufacturers "typical" charge technique.

Li-Ion batteries are charged using constant voltage, with current limiter to avoid
overheating in the initial stage of the charging process. Charging is terminated when
the charge current drops below a threshold set by the manufacturer. The battery
takes damage from overcharging and may explode if overcharged.

2.2.1 Safety

Static electricity or a faulty charger may destroy the battery's protection circuit and
turn solid-state switches to a permanent ON position. This may happen without the
user knowing. A battery with a faulty protection circuit may function normally but does
not provide protection against abuse.

Consumer grade lithium-ion batteries cannot be charged below 0°C (32°F). If charged
at cold temperatures, battery packs may appear to be charging normally but chemical
reactions inside the cells may cause permanent damage and can compromise the
safety of the pack.

The battery will become more vulnerable to failure if subjected to impact, crush or
high rate charging.

The battery must remain cool. A battery pack that gets hot during charge should not
be used.

2.2.2 Priming & Charge Intervals

Unlike many other types of rechargeable batteries, Lithium-Ion batteries do not need
priming. The first charge of a Li-Ion battery is no different than the 10th or the 100th
charge.

Lithium-ion batteries may be – and should be – charged often. The battery lasts
longer with partial rather than full discharges. Full discharges should be avoided
because of wear.

The battery loses capacity due to aging, whether used or not.

4 AVR458

2.2.3 Charge Stages

There are two charge stages of a Lithium-Ion battery, as follows:

1. Constant current. Charging of a Li-Ion battery starts with applying constant current
to the battery. The size of the charge current is battery-dependent and given by the
manufacturer. This stage is complete when battery voltage has reached the
threshold given by the manufacturer.

2. Constant voltage. After battery threshold voltage has been reached the charger will
switch from supplying constant current to supplying constant voltage. This stage is
complete when charge current has dropped below the threshold given by the
manufacturer.

The below figure illustrates voltage and current of a lithium-ion battery during
charging.

Figure 1-1. Charge stages and limits of a Varta PoLiFlex® cell

In the figure above, “Overcharge” is the level at which cell protection circuitry cuts in
and opens a solid-state switch and discontinues the charge current path. After this,
battery voltage typically needs to drop several hundred millivolts before the current
path is restored. “Overdischarge” is the level at which the current path is cut in order
to prevent the battery from over-discharging. Recommended battery operating
voltage is typically a margin away from overcharge and discharge limits.

8080A-AVR-09/07

 AVR458

 5

8080A-AVR-09/07

2.2.4 Typical Charge Characteristics

Battery specifications should always be verified from manufacturer’s data sheets.
Below is a summary of typical lithium-ion battery charge characteristics. Actual
parameters may vary.

Table 1-1. Typical Charge Characteristics
Parameter Typical Value

Charge time 3 hours

Charge current 1 C

Charge efficiency 99.9 %

Charge current threshold 0.03 C

Charge voltage 4.20 V

Charge voltage tolerance (per cell) ± 0.05 V

Temperature range 0 … +45 °C

Humidity range 65 ± 20 RH

2.2.5 Typical Battery Characteristics

The table below summarises manufacturer’s data for the batteries types used in this
application. Other types of batteries may be used, but may require adjustments to
software and/or hardware.

Table 1-2. Manufacturer’s data for Varta PoLiFlex range of lithium-ion batteries /4/

Parameter PLF
443441

PLF
383562

PLF
503562

2P/PLF
503562 Unit

Rated capacity (typical) 550 750 1000 2000 mAh

Nominal voltage 3.70 V

Operating voltage range 2.75 … 4.20 V

Charge voltage 4.20 V

Charge voltage tolerance ± 50 mV

Charge current 520 720 955 955 mA

Charge cut-off time 3 3 3 4 hours

Charge cut-off current 10 14 19 38 mA

RID (resistor ID) 3.9 6.8 10 24 kΩ

NTC 10 kΩ

B-value 3435 K

Overcharge detection 4.35 V

Overdischarge detection 2.20 V

6 AVR458
8080A-AVR-09/07

2.3 Battery Charger
This application note is based on the ATAVRBC100 Battery Charger reference design
by Atmel®. The reference design is rather complex and has loads of features but this
application focuses on the low end of the design, only. For more information on the
BC100, please see AVR451 - BC100 Hardware User's Guide /5/.

2.3.1 Microcontroller

The BC100 hosts two microcontrollers; a master (ATmega644, by default) and a
slave (an ATtiny25/45/85 or ATtiny261/461/861, by default). The master
microcontroller is outside the scope of this application but it may be noted that the
microcontrollers are capable of communicating with each other such that the master
may request data from the slave at any time.

The slave microcontroller is fully capable of handling all tasks related to battery
charging and it does not require a master microcontroller to be present. It constantly
scans the connectors for batteries and, if found, charges them when required. The
slave microcontroller also constantly monitors the hardware for any anomalies.

2.3.2 Power supply

This application note does not focus on the power supply. It may, however, be noted
that the firmware constantly monitors the input voltage levels in order to make sure
operation is reliable.

2.3.3 Buck switches

The firmware on the slave microcontroller controls any of the three buck switches on
board the BC100. The default is to use a high-frequency PWM output of the
microcontroller to adjust the voltage and current flow to the battery. The voltage (and
current) of the buck switches are directly proportional to the duty cycle of the PWM
signal.

 AVR458

 7

8080A-AVR-09/07

3 Battery Charger Hardware
This application note is based on the ATAVRBC100 Battery Charger reference
design. A detailed hardware description will not be provided in this document. Please
see AVR451 - BC100 Hardware User's Guide for detailed information.

3.1 Configuration
The ATAVRBC100 Battery Charger reference design must be configured as detailed
below.

3.1.1 Microcontroller

The hardware should be populated as follows:

• Make sure socket SC300 is empty
• Populate socket SC301 with an ATtiny861

It is possible to use other AVR microcontrollers but this application has been
optimised for using ATtiny861. Pin compatible replacements such as ATtiny261 and
ATtiny461 /6/ may be used if the compiled code size is decreased. This can be done
by increasing the optimisation of the compiler and by removing unwanted features
from the firmware.

Other microcontroller options include ATtiny25, ATtiny45 and ATtiny85 /7/. These (as
well as other 8-pin AVR microcontrollers) use the SC300 socket on BC100. It should
be noted that due to reduced pin count the 8-pin microcontrollers provide less
features than the default 20-pin.

3.1.2 Programming Connector

The microcontroller can be programmed via 6-pin connector J301, using either SPI or
debugWIRE.

Please note that in some hardware revisions of BC100 it may be necessary to
remove R303 and disconnect pin 15 of U202. This procedure frees the /RESET line
for use by external programmer or debugger but removes the possibility for the
master microcontroller to reset the slave. Do not engineer the board unless required.
Alternatively, the microcontroller can always be programmed off-board.

3.1.3 Jumpers

The jumpers should be configured as follows:

• J400, J401, J407 & J408: Set jumpers to use Buck Switch C (20V / 1A)
• J405 & J406: Set jumpers to 1/4 (max measurable voltage 10V)

Other configurations are possible, but may require firmware changes. See variable
VBAT_RANGE in file ADC.h.

8 AVR458

3.1.4 Battery

This application uses a particular type of lithium-ion batteries and all configurations
presented here are based on manufacturer’s data. Other lithium-ion batteries may
naturally be used but it is up to the user to look up battery data from manufacturer’s
data sheets and make sure necessary adjustments are done to firmware and
hardware. See section 4.5.1 and file battery.h.

The figure below illustrates connection pads of the lithium-ion batteries used in this
application.

Figure 1-2. Connection pads of a Varta PoLiFlex cell.

The battery is connected to the battery charger as follows.

Table 1-3. Connecting battery to charger
Battery Connector Charger Connector Note

- (minus) BATTERY-

NTC NTC/RID Battery temperature measurement

ID SCL RID, Battery identification resistor

+ (plus) BATTERY+

3.1.5 Data EPROM

Some batteries are equipped with an embedded EPROM for storing charge and
manufacturing data. This application supports the use of EPROM via a one-wire
interface. The default is a DS2502 EPROM connected as follows.

Table 1-4. Connecting external EPROM DS2502 to charger
EPROM Pin Charger Connector

DATA 1-WIRE/SDA

GND BATTERY-

If an EPROM is not connected to the battery charger the application will simply
disregard its absence.

8080A-AVR-09/07

 AVR458

 9

8080A-AVR-09/07

3.1.6 Supply Voltage

The higher the supply voltage, the higher the minimum current the buck switches can
provide. For example, if supply voltage is about 9 V and buck charger C is used to
charge a battery at 4.20 V then the minimum attainable current is about 80 mA. At
this point the smallest decrease in PWM duty cycle (i.e. reducing the contents of
OCR1B by 1) will effectively turn off the current to the battery.

It is recommended to use a supply voltage some three volts above battery charge
voltage. In this application the battery is being charged at 4.20 V and the
recommended supply voltage is therefore 7.5 V.

Another method to lower the minimum charge current the hardware can provide is to
use a buck switch with a large inductor. In BC100 this means Buck Switch A.

10 AVR458
8080A-AVR-09/07

4 Battery Charger Software
The firmware is written in C language using IAR Systems Embedded Workbench,
version 4.20. Since the firmware has been written entirely in C, it should not be a
difficult task to port it to other AVR C-compilers. Some compiler specific details may,
however, need to be rewritten.

In the table below are listed the files that are relevant to the compiler project.

Table 1-5. Project files (see IAR EW workspace file BC100_tiny.eww)
File Type Note

ADC.c C source code

ADC.h Header file
Functions related to A/D converter

AVR458.c

AVR458.h
Functions related to the different states
and charging

battery.c C source code

battery.h Header file

Battery-specific definitions and functions
related to battery control & data
acquisition

main.c C source code

main.h Header file
Main program / Program entry point

menu.c C source code

menu.h Header file
State machine definitions

OWI.c C source code

OWI.h Header file
Functions related to one-wire interface

PWM.c C source code

PWM.h Header file
Functions related to generating pulse-
width modulated output

time.c C source code

time.h Header file
Functions related to timekeeping and
measurement of time

USI.c C source code

USI.h Header file
Functions related to serial interface

4.1 Overview
The firmware integrates all functions required to charge two lithium-ion batteries.
Batteries are connected to separate ports such that one may be charged while the
other is idle. The firmware is fully automated and capable of stand-alone battery
monitoring and charging but it may also be used together with a master
microcontroller, such as the one implemented in BC100.

By default, the firmware fits into an ATtiny861 (build option: debug) or an ATtiny461
(build option: release). Memory requirements of the firmware are summarised in the
table below.

 AVR458

Table 1-6. Memory requirements of firmware
Build option Memory Approximate value

CODE (Flash) 5800 bytes

DATA (SRAM) 270 bytes Debug

XDATA (EEPROM) 130 bytes

CODE (Flash) 3900 bytes

DATA (SRAM) 270 bytes Release

XDATA (EEPROM) 130 bytes

4.2 State Machine
The state machine is rather simple and resides in the main() function. It simply looks
up the address of the next function to execute and then jumps to that function. The
flow chart of the state machine is illustrated in the figure below.

Figure 1-3. Flow chart of main function, including the state machine
main()

Set Current State = INIT

Look up address for Current State

Jump to function of Current State

Look up address for Next State

Set Current State = Next State

State function
Next State

Upon return, the state machine expects the function to indicate the next state as a
return argument. The recognised return codes are described in the table below.

Table 1-7. State machine codes (see source code, menu.h)
Label (1) Related Function (2) Description

INIT Initialize() Entry state

BATCON BatteryControl() Check hardware and batteries

PREQUAL Charge() Raise battery voltage, safety check

SLEEP Sleep() Low power consumption mode

CCURRENT Charge() Charge with constant current

CVOLTAGE Charge() Charge with constant voltage

ENDCHARGE Charge() End of successful charge

DISCHARGE Discharge()

ERROR Error() Resolve error, if possible

Notes: 1. Name of label, excluding leading “ST_”
2. Function name, as declared in source code

 11

8080A-AVR-09/07

12 AVR458

State functions are described in the following sections.

4.2.1 Initialize()

The initialisation function is the first state function that will be executed after device
reset. The flow chart of the function is shown in the figure below.

Figure 1-4. Flow chart of initialisation function
Initialize()

Set clock prescaler to 1

Initialize One-Wire Interface

Configure I/O pins and disable all batteries

Initialize Serial Peripheral Interface

Initialize Analoguo-to-Digital Converter

Read data from all batteries

Initialize timer functions

Return(BATCON)

The initialisation function always exits with the same return code, pointing to the state
function for battery control.

4.2.2 BatteryControl()

The battery control function verifies that jumpers are set correctly and then checks to
see if there are any enabled batteries present that require charging. The program flow
is illustrated in the figure below.

8080A-AVR-09/07

 AVR458

Figure 1-5. Flow chart of battery control function
BatteryControl()

JumperCheck()

JumperCheck()
OK?

Return(ERROR)

Any batteries
enabled?

Any battery:
Status OK and not

charged

Flag Error: no batteries enabled

Return(ERROR)

NO

NO

YES

YES

Disable (disconnect) all batteries

Return(SLEEP)

NO

Refresh data for selected data

Return(PREQUAL)

4.2.3 Charge()

The charge function contains the charging algorithm divided into stages. For this
application, it has four stages:

• Prequalification - during which the battery is charged with a constant current
until a sufficient charge voltage is reached. If this happens within a given time
limit, the battery is considered good and the charger may continue on the
next stage. If time runs out before the voltage is reached, or battery
temperature goes out of limits, the battery is considered bad and charging is
halted.

• Constant current charge - during which the battery is charged with a higher,
battery-specific current until the battery voltage reaches its maximum. If this
happens within the battery’s maximum charge time limit, the charger goes to
the next stage. If the time limit expires, or battery temperature goes out of
limits, the battery is considered bad and charging is halted.

• Constant voltage charge – during which the battery is charged at the
maximum battery voltage until the charge current sinks beneath a battery-
specific cut-off limit, or the maximum charge time limit expires. Here too,
charging is halted if battery temperature goes out of limits.

• End charge – in which the charger decides whether to go into the sleep state,
or to attempt a charge of the other battery.

ChargeParameters and HaltParameters are central variables in this function. The
program flow of this state function is illustrated in the figure below.

 13

8080A-AVR-09/07

14 AVR458

Figure 1-6. Flow chart of the charge state function

Charge()

What is the current
state?

Set charge current to the
defined prequalification

current.
(BAT_CURRENT_PREQUAL)

Set charge current to the
battery's maximum current.

(BattData.MaxCurrent)

Set charge voltage to the
defined maximum.

(BAT_VOLTAGE_MAX)

ST_PREQUAL

ST_CCURRENT ST_CVOLTAGE

ST_ENDCHARGE

Set voltage limit to defined
prequalification voltage.

(BAT_VOLTAGE_PREQUAL)

Set ST_CCURRENT as the
next desired state.

Set voltage limit to the defined
maximum.

(BAT_VOLTAGE_MAX)

Flag that charging should halt
once voltage reaches limit or

time runs out, and that
timeout means that battery is

exhausted.

Set minimum and maximum
temperature to defined limits.
(BAT_TEMPERATURE_MIN

& MAX)

Start PWM output.

Start charge timer with
defined limit.

(BAT_TIME_PREQUAL)

Call ConstantCurrent()
to start charging, get
next state in return.

Return next state to
main().

Set ST_CVOLTAGE as the
next desired state.

Start charge timer with
the battery's maximum

charge time.
(BattData.MaxTime)

Call ConstantCurrent()
to continue charging,

get next state in return.

Set ST_ENDCHARGE as the
next desired state.

Set current limit to the
battery's cutoff limit.

(BattData.MinCurrent)

Flag that charging should halt
once current sinks below limit,

or time runs out.

Callt ConstantVoltage()
to continue charging,

get next state in return.

Stop PWM output.

Flag battery as charged.

Is the other battery
enabled?

Set ST_BATCON as
next state.

Set ST_SLEEP as next
state.

YES

NO

4.2.4 Discharge()

This function has not been implemented.

8080A-AVR-09/07

 AVR458

4.2.5 Sleep()

The application enters sleep mode when all batteries have been fully charged. It
wakes up at regular intervals to check the current status of the batteries. Sleep mode
is terminated as soon as any battery requires charging.

Sleep mode is illustrated in the flow chart below.

Figure 1-7. Flow chart of sleep function
Sleep()

Sleep for 8 seconds

Enable actual battery

Set first battery to actual

Actual battery
charged?

First battery
actual?

Return(BATCON)

Set second battery to actual

YES

NO

YES

NO

4.2.6 Error()

Program flow is diverted here when an error has occurred. The error handler contains
some simple algorithms that try to resolve the most common problems. Program
execution will exit the error handler when all sources of error have been cleared.

The program flow is illustrated in the figure below.

 15

8080A-AVR-09/07

16 AVR458

Figure 1-8. Flow chart of error handler
Error()

Stop PW M output

Disable all batteries

Sleep for 8 seconds

Jumper
mismatch

error?

Check jumpers

Clear bit in error flag

NO
batteries

error?

Any batteries
enabled?

Clear bit in error flag

PW M
control
error?

Clear bit in error flag

Battery
temperature

error?

Clear bit in error flag

YES

NO

YES

YES

NO

NO

YES

NO

YES

Battery
exhausted

error?

Any error
 flags set?

NO

Clear battery exhausted bit

Change active battery

Clear bit in error flag

Return(INIT)

NOYes

YES

8080A-AVR-09/07

 AVR458

 17

8080A-AVR-09/07

4.3 Charging Functions
These functions are called by Charge() after all parameters have been set.

4.3.1 Constant Current/Voltage

These two functions are similar, apart from what ADC measurements they try to keep
within limits. Therefore, only the flow chart for ConstantCurrent() is illustrated in the
figure below. They both make use of the variable ChargeParameters.

If a Master microcontroller is present, it may temporarily stop the charging by flagging
a charge inhibit. This is to prevent battery damage during prolonged serial transfers.

18 AVR458

Figure 1-9. Flow chart for ConstantCurrent()

ConstantCurrent()

Charging of battery
inhibited?

Were we stopped by
Master MCU

earlier?

Flag that Master MCU
stopped the charging.

Stop timers.

Drop PWM output to
zero.

YES

NO

Start timers
again.

YES

Current below
hysteresis?

NO

Remove flag that Master
MCU stopped the

charging.

Current above
hysteresis?

Increment PWM
duty cycle.

YES

NO

Decrement PWM
duty cycle.

YES

HaltNow()?

NO

NO

Return next state.

YES

Wait for ADC
conversions to

complete.

4.3.2 Charge Halt Determination

Charge halt is determined by HaltNow(). This function is called by ConstantCurrent()
and ConstantVoltage() every time they loop, to decide if a stage of charging is done.

With the variable HaltParameters the user can specify at what terms the charging
should be halted, and if an error should be flagged if f.ex. the time limit expires. An
error flag will also result in ST_ERROR being set as the next state, thereby aborting

8080A-AVR-09/07

 AVR458

 19

8080A-AVR-09/07

the charge. If no errors are flagged, the next desired state, set earlier in Charge(), will
apply.

Lastly, the function checks if temperature is within limits, if the battery is OK and if
mains voltage is above minimum. Should any of these tests fail, the next state is set
to an appropriate error handler (ST_ERROR, ST_INIT or ST_SLEEP) and charging is
aborted.

20 AVR458

Figure 1-10. Flow chart for HaltNow() part 1.

8080A-AVR-09/07

 AVR458

Figure 1-11. Flow chart for HaltNow() part 2

 21

8080A-AVR-09/07

22 AVR458

Figure 1-12. Flow chart for HaltNow() part 3

8080A-AVR-09/07

 AVR458

Figure 1-13. Flow chart for HaltNow() part 4

3

Battery temperature
too cold or hot?

Set Halt flag.

Flag a battery
temperature error and

set ST_ERROR as next
state.

YES

BatteryCheck() OK?

NO

Stop PWM output.

NO

Set Halt flag.

Set ST_INIT as next
state.

Is mains voltage
OK?

YES

Stop PWM output.

Set Halt flag.

Set ST_SLEEP as next
state.

NO

Return Halt flag.

YES

4.4 Other Functions
The program flow is mainly state-based, but some processing takes place in the
background. This includes A/D conversion, time keeping and serial interface handling.
All of these functions are interrupt-driven.

4.4.1 A/D Conversion

The A/D converter uses the multiplexer to read in data from several channels. At the
end of a conversion the ADC Interrupt Service Routine (ISR) is called, as illustrated in

 23

8080A-AVR-09/07

24 AVR458

the flow chart below. After the ISR is complete program execution will return to
normal.

Figure 1-14. Flow chart of ADC interrupt service routine
ADC_ISR()

Disable ADC

MUX channel?

Save NTC reading Save RID reading

Set next MUX = 0b000010 Set next MUX = 0b000011

0b0000100b000001

Format and save IBAT Format and save VIN

Update averaged IBAT Update supple voltage flag

Set next MUX = 0b000101Update ADC flag

Set next MUX = 0b000001

Set next MUX = 0b000001

Update MUX

ELSE

0b000101 0b000011

ADC halted?

Disable ADC

YES

Enable and start ADC

Return from interrupt

NO

8080A-AVR-09/07

 AVR458

4.4.2 Master-Slave Communication

This application is designed to work as stand-alone but it also supports co-operation
with other microcontrollers. The Universal Serial Interface (USI) can be used for
communication between microcontrollers. The basic protocol for this interface has
been developed but some functions need to be finalised.

Figure 1-15. Flow chart of USI overflow interrupt service routine
USI_OVF_ISR()

Update flags

Which state?

Save incoming data

Set address

Change state to DATA

Save incoming data

Set Read/Write flag

Set SRAM/EEPROM flag

Change state to ADDRESS

Read or write?

(not implemented)

(not implemented)

Block counter
non-zero?

Counter Zero?

Decrease counter

Set COMMAND state

Return from interrupt

COMMAND

ADDRESS

DATA

YES

NO

4.5 Implementation
This section describes how to configure, create and download the software.

4.5.1 Configuration

The most important compile-time constants are discussed in the table below. See file
battery.h for more program constants.

 25

8080A-AVR-09/07

26 AVR458
8080A-AVR-09/07

Table 1-8. Battery-related compile-time constants (see source file battery.h)
Label Description

BAT_CELL_NUMBER
The number of cells in the battery. Each of the defined cell
voltages gets multiplied by this, to define
BAT_VOLTAGE_MAX, _LOW, _MIN and _PREQUAL.

CELL_VOLTAGE_SAFETY
In case unmatched batteries are to be charged, this constant
is subtracted from CELL_VOLTAGE_MAX for every extra cell
in the battery, ie. BAT_CELL_NUMBER – 1.

CELL_VOLTAGE_MAX The voltage at which a cell should be charged.

CELL_VOLTAGE_LOW The lowest voltage at which a cell is considered charged.
Charging will start when voltage drops below this level.

CELL_VOLTAGE_MIN
The lowest voltage at which charging may be initiated.
Should generally be set to the voltage limit under which
further discharge of batteries will cause damage.

CELL_VOLTAGE_PREQUAL The voltage to which a cell should be charged to during
prequalification.

BAT_TEMPERATURE_MAX The highest battery temperature allowed. Charging will stop /
not start if above this.

BAT_TEMPERATURE_MIN The lowest battery temperature allowed. Charging will stop /
not start if above this.

BAT_CURRENT_PREQUAL Charge current during prequalification mode.

BAT_CURRENT_HYST Charge current hysteresis. Current will not be adjusted when
within plus or minus this value from target.

BAT_VOLTAGE_HYST Charge voltage hysteresis. Current will not be adjusted when
within plus or minus this value from target.

BAT_VOLTAGE_PREQUAL Target voltage during prequalification stage. If this voltage is
not achieved the battery will be marked as exhausted.

BAT_TIME_PREQUAL Maximum amount of time to spend in prequalification stage.

DEF_BAT_CAPACITY Default battery capacity.

DEF_BAT_CURRENT_MAX Default maximum charge current.

DEF_BAT_TIME_MAX Default maximum charge time.

DEF_BAT_CURRENT_MIN Default cut-off charge current.

ALLOW_NO_RID
If defined, batteries without RID (or not matching the lookup-
table) will cause the charger to use the battery defaults.
Otherwise, charge is halted.

RID[].Low and RID[].High Assume RID resistance match if value within these limits.

RID[].Capacity Battery capacity for given RID.

RID[].Icharge Charge current for given RID.

RID[].tCutOff Maximum charge time for given RID.

RID[].IcutOff Charge termination current for given RID.

NTC[] Temperature look-up table.

4.5.2 Compilation

Before compiling the code the following configurations should be made.

 AVR458

Table 1-9. Compiler configuration
Section Tab Field Value

Processor
configuration

ATtiny861 (1)

Target
Memory
model

Small

Data stack 0x40

Return
address
stack

24
General
Options

System

Enable bit
definitions
…

Selected

C/C++
Compiler Language Require

prototypes
Selected

Output Format Other: ubrof8

Linker Extra
Options

Command
Line

-y(CODE)
-Ointel-extended,(DATA)=EXE_DIR\$PROJ_FNAME$_data.hex

-Ointel-extended,(XDATA)=EXE_DIR\$PROJ_FNAME$_eeprom.hex

Notes: 1. Other options possible. See section 3.1.1 on page 7 for more information.

4.5.3 Programming

The compiled code is conveniently downloaded to the target device using
AVR Studio® and a debugger or programming tool of choice, such as the JTAGICE
mkII.

Note that the compiled code contains EEPROM data that must be loaded to the target
for the software to work. Answer OK when AVR Studio asks if EEPROM contents
should be loaded. This is illustrated in the figure below.

Figure 1-16. Loading initialised data to EEPROM

The program expects the use of the internal oscillator and that the clock signal is not
prescaled. Some fuse bits must be programmed to ensure proper program execution.
The fuse bit settings that deviate from the default are listed in the table below.

Table 1-10. Non-default fuse bit settings
Fuse Bit Setting Description

CKDIV8 1 (unprogrammed) Do not divide clock by eight

CKSEL3…0 0010 Use internal oscillator

 27

8080A-AVR-09/07

28 AVR458
8080A-AVR-09/07

5 Known Limitations
Here are listed known limitations of the design.

5.1 Battery Current Measurement
Battery current is sensed using a shunt resistor with very low resistance. This means
noise is easily picked up in the measured signal and that even noise with very low
amplitude may disturb the measurements. As a remedy, the battery current measured
is averaged over four samples.

Yet, it is not uncommon to find fluctuations in the order of 1 or 2 LSB. By default (see
section 3.1.3) this means a measurement error of 7 or 14 mA (see function ScaleI() in
file ADC.c). In practice, this may result in premature end of charge cycle.

The suggested solution is to optimise the size of the shunt resistor (R410: the larger,
the better) and the resistor divider (R400…R410, R427, R428, R446 and R447).

5.2 RID Sensing
Battery identification resistor is sensed via pin PA2 (ADC2). The default pull-up
resistor on this line (R305 in ATAVRBC100 Battery Charger reference design) is 4.7
kohm. This limits the size of the sense resistor to TBD ohm.

When using Varta PoLiFlex batteries this means the largest battery size that can be
reliably sensed is 1000 mAh. For larger sense resistors / battery sizes the pull-up
resistor on BC100 must be changed. In addition, the software must be updated to
reflect the new pull-up resistor value.

5.3 Buck chargers
The choice of buck charger (and supply voltage) sets a limit on how low the minimum
charge current may be. The higher the supply voltage and the smaller the buck switch
inductor, the higher will the minimum charge current be. This means some
configurations may result in premature end of charge cycle.

The remedy is to use a low supply voltage and a buck switch with a large inductor.

 AVR458

 29

8080A-AVR-09/07

6 References
1. “What’s the best battery?”. Retrieved April 3, 2007, from Battery University:

http://www.batteryuniversity.com/partone-3.htm

2. “Lithium-ion safety concerns”. Retrieved April 3, 2007, from Battery University:
http://www.batteryuniversity.com/partone-5B.htm

3. “Charging lithium-ion batteries”. Retrieved April 3, 2007, from Battery University:
http://www.batteryuniversity.com/partone-12.htm

4. “VARTA PoLiFlex Sales Program and Technical Handbook”. Retrieved May 10,
2007, from VARTA Microbattery:
http://www.varta-microbattery.com/en/oempages/index.htm

5. “AVR451 - BC100 Hardware User's Guide”. Available from Atmel web site:
http://www.atmel.com/products/avr/

6. “ATtiny261/461/861 Data Sheet”. Available from Atmel web site:
http://www.atmel.com/products/avr/

7. “ATtiny25/45/85 Data Sheet”. Available from Atmel web site:
http://www.atmel.com/products/avr/

http://www.batteryuniversity.com/partone-3.htm
http://www.batteryuniversity.com/partone-5B.htm
http://www.batteryuniversity.com/partone-12.htm
http://www.varta-microbattery.com/en/oempages/index.htm
http://www.atmel.com/products/avr/
http://www.atmel.com/products/avr/
http://www.atmel.com/products/avr/

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

©2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, AVR Studio® and others are registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8080A-AVR-09/07

	1 Introduction
	2 Theory of Operation
	2.1 Li-Ion Battery Technology
	2.1.1 Safety

	2.2 Charging Li-Ion Batteries
	2.2.1 Safety
	2.2.2 Priming & Charge Intervals
	2.2.3 Charge Stages
	2.2.4 Typical Charge Characteristics
	2.2.5 Typical Battery Characteristics

	2.3 Battery Charger
	2.3.1 Microcontroller
	2.3.2 Power supply
	2.3.3 Buck switches

	3 Battery Charger Hardware
	3.1 Configuration
	3.1.1 Microcontroller
	3.1.2 Programming Connector
	3.1.3 Jumpers
	3.1.4 Battery
	3.1.5 Data EPROM
	3.1.6 Supply Voltage

	4 Battery Charger Software
	4.1 Overview
	4.2 State Machine
	4.2.1 Initialize()
	4.2.2 BatteryControl()
	4.2.3 Charge()
	Discharge()
	4.2.5 Sleep()
	4.2.6 Error()

	4.3 Charging Functions
	4.3.1 Constant Current/Voltage
	4.3.2 Charge Halt Determination

	4.4 Other Functions
	4.4.1 A/D Conversion
	4.4.2 Master-Slave Communication

	4.5 Implementation
	4.5.1 Configuration
	4.5.2 Compilation
	4.5.3 Programming

	5 Known Limitations
	5.1 Battery Current Measurement
	5.2 RID Sensing
	5.3 Buck chargers

	6 References

