

AVR453: Smart Battery Reference Design

Features
� Support for up to 4 Li-Ion series-connected battery cells
� Battery protection by dedicated Hardware

- Deep under voltage protection
- Over-current protection during charging
- Over-current protection during discharging
- Short circuit protection

� Charging and discharging current monitoring with 18 bit ADC
- Automatic Precharging after under-voltage situations
- State-of-Charge and State-of-Health status

� SMBus communication
- Full smart battery SMBus support
- Support for In-System Programming through SMBus
- Support for AES encrypted Firmware updates

1 Introduction
Rechargeable Lithium-Ion (Li-Ion) batteries are widely used in portable electronics
such as cell phones, digital cameras and laptop computers. This is mainly due to
the high energy to weight ratio of these batteries. Maximizing the lifetime and
energy storage of Li-Ion batteries requires careful monitoring and control of the
charge and discharge cycles. Incorrect use may even pose a threat to safety, as Li-
Ion batteries can explode under extreme conditions. For these reasons intelligent
batteries � smart batteries � have been introduced.

The Atmel ATmega406 AVR microcontroller has been created with smart battery
applications in mind. The feature set includes high accuracy ADCs, a TWI interface
for SMBus communications, as well as independent hardware features that can
protect the battery from incorrect use. This application note describes the
implementation of a smart battery using the Atmel ATmega406 microcontroller.

Figure 1-1. Smart battery from the author�s laptop

8-bit
Microcontrollers

Application Note

PRELIMINARY

Rev. 2599B-AVR-09/05

2 AVR453
2599B-AVR-09/05

2 Scope of implementation
The intent of the software associated with this application note is to provide an
infrastructure for dealing with issues that will be faced when designing a battery pack.
Although a functional battery pack has been implemented, there are likely many
customizations and feature enhancements that can be made. The designer is
encouraged to take what has been provided and personalize it.

The application note describes how the ATmega406 capabilities are employed to
achieve the functionality needed when implementing a smart battery.

The application note software has not implemented battery authentication, which is
desired in applications where the aftermarket represents significant revenue. This is
used to ensure that only an �original� battery can be used with the product.
Authentication is discussed further in section 6.7.

A Table of Contents is found on page 35.

Warning!
Incorrect handling of Li-Ion batteries poses a safety hazard: If Li-Ion batteries are
mistreated they can explode. Use caution when dealing with any aspect of the design
that may adversely impact safety; make sure you fully understand the behavior of the
hardware and the software as a system.

3 Release Notes for preliminary release of AVR453
Note that this document and the source code are preliminary. This release targets
ATmega406 rev E, older revisions of ATmega406 are not supported. For release
notes, please check the Release Notes section in the doxygen documentation
(readme.html), included with the source code.

Further, please refer to Table 5-2, to see which SMBus commands that can be
expected to respond correctly without modifications to the code.

4 Theory of operation
Smart battery systems consists of three elements:

• Smart battery host
• Smart battery pack
• Smart battery charger

 AVR453

 3

2599B-AVR-09/05

Figure 4-1. A typical smart battery system

Smart battery
pack

Smart battery
charger

SMBus

AC/DC

Smart battery
host

Power
control

Power
supply

Safety
signal

The smart battery host draws power from the smart battery pack (or just �smart
battery�) and can obtain information about type, brand, remaining charge status and
much more. Communication between the Host and the Battery is based on the
System Management Bus (SMBus). The smart battery charger is a charger that can
adapt its output based on the requests from the connected smart battery pack. This
information is either transmitted directly from the smart battery to the charger, or
retrieved directly from the smart battery pack by the charger, through the SMBus. The
safety signal communicates critical errors directly from the battery to the charger.

More information about the smart battery system is available in the Smart Battery
System Specification [1].

4.1 Li-Ion Battery technology
Li-Ion batteries are among the highest energy density cells on the market today, but
they require careful management to yield optimum life. Specifically, overcharging and
over-discharging are to be strictly avoided. Additionally, as with many battery types,
excessive discharge currents can overheat the cell. Due to the lithium content of the
cell, overheating is particularly dangerous and must be avoided. Further, the
temperature of the cells affects the charge capacity and must be taken into account
during charging, discharging and capacity estimation. By using the highly integrated
ATmega406 device, component count and hence cost can be kept to a minimum
while providing highly accurate charge estimates. Additionally, the presence of both
EEPROM and Flash on the ATmega406 permits storing of battery history information
such as temperature and current extremes that may aid in failure analysis of defective
packs.

4.1.1 Charging profile of Li-Ion batteries

A typical charging profile for Li-Ion cells is shown in Figure 4-2. In today�s portable
equipment, having the shortest possible charging time is often a key requirement.
Although less-optimal charging methods can be used, for fastest charging generally a
constant-current charge source is required until the cell reaches a defined threshold
voltage. The remaining charge is supplied by use of a constant-voltage charging
source. This is referred to as the Constant Current � Constant Voltage charging
method (CC-CV).

4 AVR453
2599B-AVR-09/05

Figure 4-2. Typical charging profile for a Li-Ion battery

4.5

4.0

3.5

3.0

2.5

C
el

l V
ol

ta
ge

 [V
]

Charge Time [h]

0 0.5 1.0 1.5 2.0 2.5
0

400

800

1200

1600

C
ha

rg
e

C
ur

re
nt

 [m
A

]
C

ap
ac

ity
 [m

A
h]

Constant-current
charging

Constant-voltage
charging

Current

Voltage

Capacity

It is important that the supplied current and voltage do not exceed the manufacturer�s
specifications for the cells, or overheating and cell rupture may result. The
ATmega406 monitors pack current and voltage independently in hardware and can
disconnect the pack from the charger in the event of over-current or over-voltage.
Additionally, if the designer incorporates thermal sensors the ATmega406 can sense
temperature and request the charger to reduce the charging current or voltage if
needed. The ATmega406 device includes an on-chip temperature sensor to provide a
low-cost alternative to external sensors or to serve as a backup in the event of an
external sensor failure.

A key in providing accurate state-of-charge estimates is the ability to monitor
precisely the charge and discharge currents. The ATmega406 device includes a high-
accuracy Coulomb Counter ADC that provides both high sensitivity and high
resolution for this purpose.

4.1.2 Discharging Li-Ion batteries

Discharge of Li-Ion cells must be terminated when the cell voltages reach a defined
lower limit. Discharging below this point will cause a structural change within the cell
and reduce its capacity permanently. Additionally, excess current during discharge
will overheat the cell and may cause a mechanical rupture.

Figure 4-3. Typical discharge profile for a Li-Ion battery.

Time

V
ol

ta
ge

Charge cut-off voltage

Open circuit voltage

Discharge cut-off voltage

End voltage

Working voltage span Unused
capacity

 AVR453

 5

2599B-AVR-09/05

To make best use of the available cell capacity, it is crucial that the cell voltage can
be accurately measured to allow operation down to as low voltage as possible without
going below the cell�s discharge voltage limit. By having the bottom limit of the
working voltage span as close as possible to the discharge cut-off voltage, the
unused capacity is minimized (see Figure 4-3). For this reason, it is advantageous to
have a high-accuracy ADC to measure the cell voltages. It is also critical to have as
little series resistance as possible in the system to prevent unnecessary voltage
drops. With the redundant safety features present in the ATmega406, it may be
possible to eliminate one or more stages of safety circuitry from the pack, thus
reducing the losses and increasing the pack output. Additionally, it is important to use
a low-resistance device for current measurement. The reference design uses a 5mΩ
resistor for this purpose and is able to measure current flow with a resolution better
than 1mA.

4.1.3 Cell balancing

Cell balancing is the technique of adjusting the voltage of the cells in a series-
connected stack to match each other. If cells have different charge and thus voltage,
the cell with the highest voltage determines the charge termination point, and the cell
with the lowest voltage determines the pack discharge termination point. Thus, any
deviations between cells will effectively double the error by affecting both the charge
and the discharge terminations. At manufacturing time, pack vendors typically match
cell capacities very closely. However, due to normal manufacturing variations, after
tens or hundreds of charge/discharge cycles even cells that were closely matched will
diverge in terms of their operating voltage and remaining capacity. Another possibility
is a weak cell, which will charge and discharge more quickly than the others in the
pack due to low capacity. This forces early termination of the charge and discharge
cycles, and may thus stop charging before the other cells are completely charged.

Voltage variations between cells should be kept as small as possible, preferably
under 5mV, but it should also be noted that system noise in measuring cell voltages,
such as may be generated by short current spikes which reduce the apparent cell
voltage due to internal resistance of the cell, must be taken into account when
deciding if the cells need to be balanced.

The ATmega406 device includes cell-balancing FETs across the cell voltage
monitoring pins. Thus, balancing always involves reducing the voltage and charge of
the highest voltage cell. These devices are rated for 2mA typical current. Although
this does not seem large enough at first glance, it is adequate for balancing. The
current through the balancing FET is limited by the series resistors in the filter
network on each of the differential cell voltage inputs (please refer to the datasheet).
Since the FET essentially shorts across the input, it is not possible to perform
accurate voltage measurements on any of the cell voltage inputs while any one of the
cell balancing FETs is enabled, as the filtering networks interact between channels to
a small extent.

If cell balancing is performed during charging the balancing FET allows a small
amount of the charge current to �bypass� the cell, thus it does not receive as much
charge as the other cells in the stack. During discharge, balancing increases the
discharge rate for the cell. Balancing is only performed on one cell at a time, and it
should always be the cell with the highest voltage that has its discharge rate
increased.

6 AVR453
2599B-AVR-09/05

4.2 Smart battery definition
There are several types of smart batteries, some smarter than others. The simplest
form of a smart battery provides information about the battery technology and charge
algorithm. The definition provided by the Smart Battery System Forum states that a
smart battery must at least be able to provide State-of-Charge information.

A fundamental need for Li-Ion batteries is short-circuit protection. More sophisticated
packs also include enhanced safety mechanisms to prevent over-charging, over-
discharging, over-temperature and other conditions that are dangerous or could
adversely affect battery longevity.

4.2.1 State of Charge

It is helpful to define the scope of functionality of a smart battery, both in terms of
what it does as well as what it does not do. Smart battery technology provides means
to track the State-of-Charge (SoC) of the battery by means of both hardware and by
algorithms, which predict cell behavior. The smart battery is therefore able to
calculate optimum voltage and current and send requests to the smart battery charger
during the charging cycle.

Further, the smart battery also enables the Host system to manage its power usage
so as to get maximum benefit from the remaining charge. Accurate measurements of
cell voltages and charge/discharge currents are the basis of any prediction, so the
ATmega406 device provides high-accuracy measurements and factory calibration
values. The SMBus protocol defines a number of commands that provide this
information to the Host system.

4.2.2 State of Health

A battery pack�s state of health is not a measure of its state of charge, but rather its
ability to accept and retain a charge as well as its current capacity. Due to aging,
number of charge/discharge cycles and other factors, a cell�s capacity will naturally
diminish over its lifetime. It is useful to be able to assess the condition of the battery
pack so that it can be determined if and when a replacement may be required. The
ATmega406 device is capable of providing enhanced measurements and performing
user-defined computations to aid in this determination. Pack capacity is continuously
recalibrated in the supplied software whenever the pack reaches the full charge or full
discharge state. Additionally the fast-responding Voltage ADC peripheral, when
combined with the Coulomb Counter ADC, makes cell impedance measurements
possible. The on-chip EEPROM also contributes by permitting the permanent storage
of historical data.

4.3 Smart batteries and SMBus
The SMBus is the protocol used with smart batteries. This Bus and protocol
architecture provides a means for keeping hardware costs low while also providing
flexible functionality in a modular way. SMBus is a protocol that allows multiple nodes
to respond to unique addresses. The Protocol is designed to handle multiple master
devices being connected to the bus (arbitration control) and to ensure that a node will
never lock the SMBus. The integrity of data can be verified by using Packet Error
Checking. Details and specifications for SMBus can be found at www.smbus.org.

An SMBus device can provide manufacturer information, tell the system what its
model/part number is, save its state for a suspend event, report different types of
errors, accept control parameters, and return its status. A smart battery can manage

http://www.smbus.org/

 AVR453

 7

2599B-AVR-09/05

its own charging, report errors, inform the Host of low-charge conditions, predict
remaining run-time, provide temperate, voltage and current information and
continuously self-correct to maintain prediction accuracy. The SMBus specification
also allows for five separate manufacturer-defined commands. One of these is used
in this reference implementation for performing in-system programming of the
ATmega406 device over SMBus. Another command is used to initiate, delete or
check status of calibration.

4.4 A Very smart battery controller – ATmega406
The features of the ATmega406 that pertain especially to use in smart battery
applications are as follows:

• Two Wire Interface (TWI) for SMBus communications
• High Resolution, high sensitivity ADC (referred to as a Coulomb Counter ADC)
• Multi-channel 12-bit voltage-measurement ADC (referred to as VADC)
• High-accuracy, calibrated voltage reference
• CPU-independent battery protection circuitry
• Integrated on-chip calibrated temperature sensor
• High-voltage-capable input and output pins
• High-voltage FET drivers for external charge, discharge and precharge FETs
• Integrated Cell-balancing FETs
• Wake-up timer
• Independent Watchdog timer
• On-chip low quiescent current voltage regulator

4.4.1 Two Wire Interface and SMBus

The communication mechanism of a smart battery system is the SMBus, which is
fundamentally based on the Two-Wire Interface (TWI). One primary difference from
TWI is that the SMBus specifies a minimum clock speed of 10kHz and a SMBCLK
low timeout of 35ms, mainly to identify Slave-device faults and to allow recovery from
such lockup conditions.

Another difference is that SMBus devices are expected to identify and report flaws in
the communication on the fly. Two mechanisms are provided in the SMBus
specification: the flaw is signaled either by withholding the ACK after the flawed byte
is received, or by holding the clock line low for more than 25ms. This latter is the
mechanism that is employed in this design.

Additional hardware has been provided to detect when the battery pack has been
removed or reinserted into the target system. This Bus Connect/Disconnect function
includes a timed filter to delay the indication of pack removal (Disconnect) in
accordance with the SMBus specification.

4.4.2 Analog to digital converters

The ATmega406 includes two separate ADCs: the 18-bit Coulomb Counter ADC
(CCADC) and the 12-bit Voltage ADC (VADC). Both use an internal high accuracy
calibrated voltage reference.

The CCADC is used to very accurately measure the current that flows in and out of
the battery pack, enabling reliable monitoring of the battery�s SoC (state of charge).

8 AVR453
2599B-AVR-09/05

Factory calibration of the CCADC offset must be performed to ensure maximum
accuracy.

The VADC is used to monitor the individual cell voltages, the chip temperature from
the internal temperature sensor, and can be used to monitor the temperature of the
batteries.

More details about the capabilities and the operation of these ADCs can be found in
the ATmega406 data sheet.

4.4.3 CPU-independent battery protection

The Battery Protection circuitry in the ATmega406 device provides CPU-independent
hardware monitoring of the pack voltage and current levels, and can disconnect the
pack from the load or charger to prevent critical failure by shutting off the two primary
control FETs. Specifically, there are four conditions that are monitored: deep under-
voltage, over-current during both charging and discharging, and short circuit. Short
circuit is distinct from discharge over-current in that it reacts more quickly and has a
higher threshold, whereas over-current protection is intended to watch for a
continuous condition that exceeds the cell ratings.

4.4.4 High Voltage tolerant I/O

Many pins of the ATmega406 are capable of accepting high voltage without damage.
This allows the ATmega406 to detect charger presence, monitor the pack and directly
control the external high-current pack-protection FETs using very few external
components.

The SMBus standard also requires an additional redundant Safety Signal line that can
communicate critical pack state information to the charger. Since this line connects
outside of the pack, a high-voltage line (PC0) is used for this purpose since it requires
no special protection circuitry to guard it from the voltage on the pack�s positive
terminal.

4.4.5 Integrated cell-balancing FETs

The integrated cell balancing FETs in ATmega406 save valuable board space and
help to achieve maximum pack performance for its entire life. Hardware ensures that
no more than one balancing FET is enabled at any given time. The software in this
design automatically disables and re-enables the balancing FET to yield correct
readings when performing cell voltage measurements.

4.4.6 Low power operation

The combination of low power CPU clock modes, low quiescent current voltage
regulator, low power Wake-up timer and oscillator, and low-power watch dog timer
enables the ATmega406 to provide full functionality while drawing the absolute
minimum power. Its low power modes ensure that pack shelf life is determined
primarily by self-discharge rather than circuitry power consumption.

 AVR453

 9

2599B-AVR-09/05

5 Implementation of smart battery
The software for this application is documented in the doxygen documentation
(readme.html), which is downloaded with the source. Please see the Compilation
info section first for details on complier(s) and settings. The software is targeted
specifically to the ATAVRSB100 development board hardware, which can be
purchased through Atmel sales channels and Atmel Distributors. The hardware is
described separately in application note AVR454. Both this application note, and the
source code for this implementation are available from the Atmel web site
(http://www.atmel.com/products/avr/).

The following description of the implementation assumes that the reader is somewhat
familiar with SMBus, smart battery and Rechargeable Batteries.

Figure 5-1. Typical operating circuit for the ATmega406 (from datasheet).

http://www.atmel.com/products/avr/

10 AVR453
2599B-AVR-09/05

5.1 Overview of the software implementation
The software implementation consists of two separate projects: a bootloader, and the
main battery application. The bootloader includes a subset (only enough code to
perform programming tasks over SMBus) of the application program�s SMBus code,
but implemented in a polled manner rather than using interrupts (no interrupts are
used in the bootloader). It also includes a small command interpreter and various low-
level memory programming functions. Optionally, AES or other encryption algorithms
may be added to protect the memory image during transfer.

The application program is more complex. In general, timer interrupts trigger the
VADC to perform periodic scans, and computations are performed on the results to
generate the data required to support the individual SMBus commands. The CCADC
produces its own interrupts when its charge-monitoring data is ready, and calculations
are performed on those results when they become available. SMBus communications
are handled almost entirely by the TWI interrupt�s state machine. Timer0 provides a
periodic timer tick that allows up to eight generic timer event users, and also controls
the duty-cycling and scanning of the LEDs.

The following table details the usage of each peripheral and the interrupts it uses.

Table 5-1. Interrupt Usage
Peripheral Interrupt Source File Usage

Battery Protection BP safety.c Shut down pack due to fault condition

External interrupts INT0-3 Gpio.c Unused

Pin Change PCINT0 Smbus.c PA6 monitoring SMBCLK for bus idle before Master Transmit mode

 PCINT1 Smbus.c Unused

Watchdog WDT Timer.c Software safety

Wake-up timer WAKEUP Timer.c Periodic wake-up during pack �Standby� operating mode

Timer1 TIMER1_COMP Timer.c Unused

 TIMER1_OVF Timer.c Unused

Timer0 TIMER0_COMPA Timer.c LED duty-cycle and multiplexing

 TIMER0_COMPB Timer.c PWM for main FETs; not presently used

 TIMER0_OVF Timer.c 2.048mS timer tick

TWI TWICD Smbus.c Pack insertion/removal notification

 TWI Smbus.c SMBus protocol state machine

VADC ADC Analog.c Automatic scanning of analog sources

CCADC CCCONV Analog.c Quick-response, non-accumulating current measurement

 CCREG Analog.c Triggers change from sampling to integrating current measurement

 CCACC Analog.c Indicates that a new Accumulated-current result is ready

EEPROM EE_READY n/a Unused

Flash SPM_READY n/a Unused

 AVR453

 11

2599B-AVR-09/05

5.1.1 Normal Code Execution

The primary code execution begins with a hardware initialization. All peripherals and
interrupt sources are set up, and interrupts are then enabled. SRAM variables are
initialized, and normal execution flow begins.

In addition to normal activity invoked by interrupts, there are two primary mechanisms
used to affect main loop code execution: generic timers and action flags.

The Timer0 Overflow interrupt provides eight generic software timers. When these
timers expire, a corresponding function is called (from within the ISR, so its execution
must be kept very short). This function may restart the timer, enable or disable a
peripheral, or take other small actions. If a larger task must be performed, this
function will assert an Action Flag.

Action flags are monitored in the main loop. When an action flag is asserted, a set of
actions will be taken and the flag will be cleared. To provide longer duration timers
than those available from the Generic Timers directly, one of the Generic Timer
channels asserts an action flag, which in turn tracks longer intervals within the main
loop. Based on these longer timeouts, other more infrequent actions are taken.

One such activity is the initiation of SMBus Master transactions as required by the
SMBus standard. Another activity is the initiation of VADC scanning for measuring
cell voltages, on-chip temperature, and thermistor reading. After a complete scan is
done, the VADC conversion results are used to recalculate these parameters, and
this in turn result in updates to the various SMBus variables.

A mechanism has been established in the VADC Conversion Complete ISR to handle
automatic scanning of all ten VADC channels. Besides taking readings, this scan
automatically manages the disabling and re-enabling of the cell balancing FETs.
Since filters are used on the cell inputs, the cell balancing FETs must be disabled
early enough in the scan to allow the filters to reach full voltage before a cell reading
is taken. The present implementation of the software scans all other channels before
scanning the cells, thus allowing maximum recovery time for the filter�s R-C time
constant. See section 4.1.3 for more details on cell balancing theory.

The Coulomb Counter ADC (CCADC) utilizes several different interrupts, depending
on the pack�s operating mode. Foreground code determines which mode to operate
the Coulomb Counter in, and this further influences the choice of CCADC operating
modes for the purpose of power management. Additionally, the 32kHz Crystal
oscillator supplies clock for the Wakeup timer, which is used in lower-power operating
modes.

As shown in the flowchart in Figure 5-2, the application first initializes all modules and
then enters an eternal loop. In every iteration, the loop first checks if any action flags
are set by the interrupt controlled parts of the application and acts accordingly. Four
times per second the quarter-second flag is set and the loop performs its regular
tasks. Inside the quarter-second flag check, the user can insert custom code to be
executed four times per second. Every fourth time the quarter-second flag is set, once
per second, there is a similar place to insert custom code to be executed once per
second.

When starting the 32kHz oscillator, it takes up to 2 seconds for it to stabilize.
Therefore, when the oscillator is started, a startup delay counter is initialized. The box
'Enable 32kHz oscillator...' in the flowchart takes care of updating this delay counter
and enabling the real-time clock when the startup delay has elapsed.

12 AVR453
2599B-AVR-09/05

Figure 5-2. Overview of the main loop

Main loop

Initialize all modules

Any action
flags set?

Restart quarter-second timer
if it has been stopped

ADC scan
complete?

Quarter-second
timer tick?

Handle ADC scan results

Restart quarter-second timer

Restart watchdog timer

Enable 32kHz oscillator if its
startup delay has expired

Multiple of 4
ticks, ie. one second

elapsed?

Start new ADC read
sequence for all channels

Alarm mode
flag set?

Clear flag and restart inter-
alarm-message delay timer

SMBus master
transmission done?

Clear error codes and restart
inter-message delay timer

Handle incoming SMBus
messages and start

transmitting waiting messages

Update LED states

Yes Yes

Yes

Yes

Yes

Yes

No No

No

No

No

No

Code to be executed
once per second can
be inserted here

Code to be executed
four times per second
can be inserted hereUser can insert

handling of custom
action flags here

Most of the charge and discharge control, cell balancing and thermal checks are
performed once per second, when a ADC scan sequence is finished. Updated ADC
readings are then available and ready for processing.

 AVR453

 13

2599B-AVR-09/05

Figure 5-3. Flowchart for �Handle ADC scan results�
Handle ADC scan

results

Calculate scaled values from
raw ADC samples and

shutdown on undervoltage or
overvoltage condition Code for processing of

cell current readings
can be inserted here

Compare cell voltages to
check if balancing is required

Check temperature values
against defined limits

Re-enable alarm mode if
disabled for more than 60 sec

Check for other alarm
conditions

Start transmitting any waiting
SMBus messages

Continue

Alarms for 'Remaining time' and
'Remaining Capacity' are checked
in this implementation. Other
checks can be inserted here.

Code for processing of
external thermistor readings
can be inserted here

To prevent alarm conditions from continuously generating alarm messages, an inter-
alarm-message delay counter is implemented. It is set up so that persistent alarm
messages are sent only once every 10 seconds. The SMBus specification also allows
a Host to disable the transmission of AlarmWarning messages temporarily for up to
60 seconds. The �Alarm mode flag set� decision box in the flowchart of Figure 5-2
takes care of starting this timer when required. When this timer expires, AlarmMode is
automatically re-enabled.

When a message has been transmitted on the SMBus interface, the �SMBus master
transmission done� decision box takes care of starting an inter-message delay
counter to leave some space between transmitted messages on the bus.

5.2 Battery Charging and Discharging
Three factors are involved in cell charge management: voltage, current, and
temperature. By monitoring current, it is possible to predict how much of the cell�s
capacity remains or how long a charging operation will take. Temperature may affect
the charging parameters as well as the estimates of cell capacity, and is also a
safety-monitoring tool.

Three variables are used to maintain state-of-charge information. They are:

• RunningAcc
• MaxTopAcc
• MaxBottomAcc

14 AVR453
2599B-AVR-09/05

RunningAcc holds the present state of charge at all times. It is possible that this
value may go negative, especially if the pack has not yet been fully calibrated. In
normal operation, when the pack reaches full charge this value will be reset to the
difference between its present value and the MaxBottomAcc value, and
MaxToppAcc will be assigned the result as well, and MaxBottomAcc will be zeroed.
A similar approach is used to recalibrate at full discharge.

While this reference implementation provides all the basic data gathering and
reporting functions needed for a smart battery, software algorithms must be added to
provide accurate capacity estimates as well as specific charging control methods.

5.3 Voltage ADC Results
Cell voltage is measured by the VADC. Up to four cells may be independently
measured. Although the range of the VADC itself is 0-1.1V, cell voltages are scaled
down in hardware by a factor of approximately 5.6, allowing a range of approx. 0-
6.2V. With 12 bits available to cover an input range of 0 to 1.100V, the discernable
voltage increment is 1.100V/4096 = 268µV, assuming no prescaling. With the
prescaling, the step corresponds to approximately 1.5mV. To ensure maximum
accuracy, calibration data for correct gain is generated during factory testing at 85°C
and is stored in the Signature Row (please refer to the ATmega406 datasheet for
details). A function call is provided to handle reading the desired value from this
storage area.

In the reference software, a VADC conversion is started every second. When this
conversion completes, the ADC_INT ISR will store the conversion result, then
automatically switch to the next VADC input and initiate a new conversion. This cycle
will continue until all inputs have been read. During this process, the cell balancing
FETs will be disabled and then re-enabled when appropriate. The point where the
balancing FETs are being disabled is chosen as a multiple of the 512µs VADC
conversion time, and is currently set at 512 µs. With the current circuit values of
500Ω+500Ω and 0.1µF, this corresponds to more than 5 RC time constants and the
error will thus be insignificant as long as the battery has negligible internal resistance.

5.3.1 Compensation of VADC results using Signature Row Data

The ATmega406 includes factory-determined calibration values. The function
ReadFactoryCalibration() is implemented to read these values into SRAM at
startup and to adjust the affected peripherals. Calibration values are available for the
RC oscillators, Bandgap, on-chip temperature sensor and all four cell inputs.

In some cases, such as the four cell measurement channels, the factory values must
be used as part of further calculations rather than directly adjusting the peripheral.

While the cell calibration values produce mV results as required for SMBus
commands through the use of simple binary math, the SMBus specification requires
temperature data to be produced in 0.1°K increments rather than whole degrees. As
such, the calculations for deriving temperature from the on-chip temperature sensor
are not as straightforward. The routine CalculateADCresults() performs all
calculations using the available calibration parameters.

Equation 5-1 shows how the cell voltages are calculated from the raw ADC reading
and the Voltage ADC Cell Gain (VADCCG) Calibration Word. The resulting values are
given in millivolts.

 AVR453

 15

2599B-AVR-09/05

Equation 5-1. Calculation to obtain correct cell voltage in mV

[] 14
Calib

cell 2
VADCCGADCreading

mVV
⋅

=

Equation 5-2 shows how the internal temperature is calculated from the raw ADC
reading and the Voltage Proportional to Absolute Temperature (VPTAT) Calibration
Word. The equation shows how to get the temperature in Kelvin and 1/10 Kelvin.

Equation 5-2. Calculation to obtain temperature in Kelvin and 1/10 Kelvin

[]

[] 14
Calib

14
Calib

2
10VPTATADCreading

K1.0 Temp.

2
VPTATADCreading

K1 Temp.

⋅⋅
=

⋅
=

o

o

5.4 Coulomb Counter ADC results
Current is monitored by the CCADC. The CCADC provides three main features:
Accumulated Current measurement, Instantaneous Current measurement and
detection of Regular Current condition. Each of these three modes has a dedicated
interrupt. All three modes are used in the reference software. The Accumulate
Current conversion result is the most accurate (18 bits including sign). The
Instantaneous Current conversion result has lower resolution (13 bit including sign)
but provides a new output every 3.9mS, allowing very fast response to system
changes. This result is used to compute the Current and AverageCurrent
parameters for SMBus reporting. When the connected system is operating in a very
low power mode, it is advantageous to reduce the ATmega406 operating power as
well so that it does not dominate the power consumption. In these cases it is
permissible to disable the CCADC and accumulate estimated current rather than
measured current. The Regular Current interrupt provides a mechanism to detect if
the target system has switched to a higher power operating mode so that the CCADC
can be re-enabled.

The Accumulate Current conversion produces a result of 17 bits plus sign. The actual
range of the converter's input signal is specified to be ±VREF / 5, or ±0.22V, and the
step size of the converter is therefore (0.22V / 217) = 1.678µV. However, it is not
recommended to use the full input voltage range of the ADC due to linearity issues
near the upper end of the range. Therefore, the useable range has been specified as
±0.15V, which is approximately 2/V22.0 . An example follows.

Assume a 5000mAh battery pack is used. The pack voltage is irrelevant as we are
only here concerned with current: A charge current of 1A flowing through a 5mΩ
sense resistor will yield 14,898.69 counts in the CCACC result registers each second.
This result consumes 15 bits (14 plus sign). Since this pack can only produce that
current flow for 1 hour, or 3600 seconds, the total accumulated result would fit in
(15+12) bits, or 27 bits. Thus, a 32-bit signed integer could handle a battery pack of
200,193mAh when using a 5mΩ sense resistor. The maximum current allowed to flow
could not be that high due to the input voltage range of the CCADC, so the current
flow would have to be limited to 30A. Further, SMBus commands are limited to
allowing only up to 32,767mAh, unless scaling factors are specified in the SMBus
SpecificationInfo() command, so the result will easily fit by a factor of 6.
Clearly, the use of a 32-bit value to hold the accumulated charge is more than
adequate for today's laptop systems. A higher value sense resistor could therefore be

16 AVR453
2599B-AVR-09/05

used and would yield even more resolution on low-current readings, specifically, up to
Ω⋅ m56 could be used without overflowing the 32-bit accumulator while still allowing

the maximum possible SMBus pack capacity.

Note that any CCADC offset that is present should be removed from each sample
before accumulation. Since such offset may be influenced by temperature, additional
algorithms may be required. Since the resolution of the offset is limited to the step
size of the converter, for smaller currents the error of only being able to use an
integer value for offset becomes a larger portion of the result. This fact may determine
both the value of sense resistor chosen as well as the point where a change is made
from using Accumulator mode to using periodically sampled or estimated
measurements.

5.4.1 CCADC result scaling

Since the CCADC accumulates steps of 1.678µV, which corresponds to 335.6µA
through a 5mΩ resistor, the accumulated results must be adjusted to correspond to a
1mAh scale for reporting purposes. The scale factor is 727,103600)3356.0/1(=⋅ .
To convert from 0.3356mAs to 1mAh scale, the accumulated result must be divided
by this number. To confirm, assume a 1A current is flowing for 1 hour. The
accumulated counts will be 2979.7 per second, or 10,727,056 per hour. Dividing by
10,727 will yield 1000, which is in the mAh scale.

Performing a division of a 32-bit integer by a 16-bit integer will produce a 32-bit result.
However, if the total value in the 32-bit accumulator is always lower than 336,582,624
(727,10215 ⋅) then the result of the division will not overflow. As discussed
previously, SMBus commands have as an upper limit 32,767mAh, so this is not an
issue when a 5mΩ sense resistor is used.

5.5 Customer calibration
Using the SMBus command OptionalMfgFunction4 the user controls calibration
of the internal 1.100V reference voltage and the charge/discharge current
measurement offset. The SMBus commands are described in section 5.9.1. The
software maintains separate state machines for the two calibration operations. When
using the OptionalMfgFunction4 in a read operation, the current calibration
states for both state machines are returned. However, when using the function in a
write operation, the state request is stored and handled later in the main loop.

Figure 5-4. Calibration word usage

LSBMSB

Unused

Internal 1.100V voltage reference

Current measurement offset

Not calibrated0 0

0 1

1 0

1 1

Running

Failed

Calibrated

N/A

Start calibration

Delete calibration

Reload calibration

Read state Write request

 AVR453

 17

2599B-AVR-09/05

Figure 5-5. Calibration states

Running

Not
calibrated

Failed

Calibrated

Request: Start
calibration

Request: Start
calibration

Request: Start
calibration

Request: Delete
calibration values

Request: Reload old
calibration values

Request: Delete
calibration values

Startup/
Reset

Calibration routine
finished

Calibration
success?

NO

YES

Valid
calibration

values?
YES

NO

Valid
calibration

values?

NO

YES

5.5.1 Calibrating the internal 1.100V Voltage Reference

Voltage reference calibration is implemented in the function CalibrateVREF() in
the file analog.h. The function assumes that a highly accurate reference voltage of
4.096V is connected to analog input ADC0 before initiating calibration. If 4.096V is not
present, calibration fails, but if a voltage close enough is present the VREF will be
calibrated wrongly and all subsequent ADC measurements will be incorrect. If
calibration fails, the voltage reference is reset to the factory calibration value, but the
old calibration values are still in eeprom and can be reloaded.

Figure 5-6. Flowchart for CalibrateVREF()

Use factory calibration values
(VREF=1.100V @ 85°C)

Measure external reference
voltage of 4.096V

Calculate BGCRR value
required to correct ∆V/∆T slope

Adjust BGCCR until measuring
external reference gives

expected values

Found suitable
value for BGCCR?

Save calibration parameters

CalibrateVREF()

SUCCESS FAILED

Yes

No

Please refer to the ATmega406 datasheet for more details on the Bandgap Reference
Calibration registers, BGCRR and BGCCR.

18 AVR453
2599B-AVR-09/05

5.5.2 CCADC offset calibration

Calibration for current measurement offset, or CCADC offset, is implemented in the
function CalibrateCCoffset() in the file analog.h. The function assumes that
the current through the sense resistor has been zero for at least one second before
initiation calibration. The result from the CCADC is then used to update the offset
calibration values. If the measured offset is outside predefined limits, the calibration
process fails and the offset calibration value is set to a default value of zero.

5.5.3 Storage of calibration values

If the calibration routine(s) are successful, the resulting values are stored in eeprom
at the addresses given in ee.h. When the Atmega406 is reset it checks if there are
valid values, and if so, uses them and updates the calibration state to reflect this.

5.6 Battery Protection
The Battery Protection Interrupt (BPINT) is used to indicate that a fault condition was
detected by the Battery Protect hardware. Tripping the safety mechanism forces the
pack into Power-Off Mode, but first a status flag is written to EEPROM to indicate the
reason for entering Power-Off Mode, to aid in debugging. This is implemented in the
routine DoShutdown(), and the Reason codes are defined in the file pwrmgmt.h. In
this implementation, no error messages are sent on the SMBus when battery
protection is triggered.

5.7 Pack Configuration
The header file pack.h and other related header files define critical parameters of the
pack, such as over-voltage, under-voltage, over-current, and thermal parameters, as
well as the number of stacked cells.

During debugging, it may be helpful to modify these values to prevent unintentional
triggering of hardware and software error detection mechanisms. Note that if such
mechanisms are tripped, the software will typically force the AVR into a Sleep mode,
resulting in a loss of control over the CPU via JTAG until a Reset is issued.

5.8 LED Control
The OC0A PWM output is used to control the brightness of five external LEDs. These
LEDs can be used for any purpose, but are typically used as charge indicators. Inside
the Timer 0 Compare Match A ISR, a counter variable cycles between each LED�s
corresponding control signal, forcing the output pin low if the LED has been enabled
in the LEDflags global variable. Thus, the battery capacity indicator function requires
no mainline code for its operation, other than that of deciding which LEDs to enable or
disable.

5.9 SMBUS Protocol Implementation
The reference software fully implements the required command set from Smart
Battery Data Specification version 1.1. AlarmWarning messages (command 0x16),
ChargingCurrent (0x15) and ChargingVoltage (0x15) are the only messages
generated by the software in SMBus Master Mode. All other commands are handled
by the pack as an SMBus Slave device. As a Slave, it will either accept data or
provide data as a response to a command originated from a smart battery host or a
smart battery charger.

 AVR453

 19

2599B-AVR-09/05

All word-size data maintained for SMBus commands are kept in the union variable
SV. The header file smbus.h includes two different ways to access this data, either
through the SMBvariables[][] array which provides byte-level access, or the
SMBvar_int[] array which provides word-level access. This approach reduces
code size and improves speed when dealing with flags and byte-wide data.

Table 5-2 provides details on the default value of each of these variables.

Table 5-2. SMBus Commands and Default data values
Command (ID) Data Direction & Size Default Value Data Source

ManufacturerAccess (0x00) R/W Word 0x4060 Initialized at startup

RemainingCapacityAlarm (0x01) R/W Word PACK_DESIGNCAPTYP(1) / 10 From battery specs

RemainingTimeAlarm (0x02) R/W Word 10 Per sbdat110, section 4.4.1

BatteryMode (0x03) R/W Word 0 Per sbdat110, section 5.1.4

AtRate (0x04) R/W Word Calculated as needed Per sbdat110, section 5.1.5

AtRateTimeToFull (0x05) Read Word Calculated as needed Per sbdat110, section 5.1.6

AtRateTimeToEmpty (0x06) Read Word Calculated as needed Per sbdat110, section 5.1.7

AtRateOK (0x07) Read Word Calculated as needed Per sbdat110, section 5.1.8

Temperature (0x08) Read Word Calculated as needed On-chip sensor

Voltage (0x09) Read Word Calculated as needed VADC readings

Current (0x0A) Read Word Calculated as needed CCADC Instantaneous

AverageCurrent (0x0B) Read Word Calculated as needed CCADC Instantaneous, avg�d

MaxError (0x0C) Read Word Calculated as needed Per sbdat110, section 5.1.13

RelativeStateOfCharge (0x0D) Read Word Calculated as needed Per sbdat110, section 5.1.14

AbsoluteStateOfCharge (0x0E) Read Word Calculated as needed Per sbdat110, section 5.1.15

RemainingCapacity (0x0F) Read Word Calculated as needed Per sbdat110, section 5.1.16

FullChargeCapacity (0x10) Read Word Calculated as needed Per sbdat110, section 5.1.17

RunTimeToEmpty (0x11) Read Word Calculated as needed Per sbdat110, section 5.1.18

AverageTimeToEmpty (0x12) Read Word Calculated as needed Per sbdat110, section 5.1.19

AverageTimeToFull (0x13) Read Word Calculated as needed Per sbdat110, section 5.1.20

ChargingCurrent (0x14) Read Word or Write to Charger Calculated as needed Per sbdat110, section 5.2.1

ChargingVoltage (0x15) Read Word or Write to Charger Calculated as needed Per sbdat110, section 5.2.2

BatteryStatus (0x16) Read Word or Write to Host 0x0080 Per sbdat110, section 4.4.1

CycleCount (0x17) Read Word 0 Per sbdat110, section 4.4.1

DesignCapacity (0x18) Read Word Calculated as needed From battery specs

DesignVoltage (0x19) Read Word Calculated as needed From battery specs

SpecificationInfo (0x1A) Read Word 0x0031 Per sbdat110, section 5.1.25

ManufactureDate (0x1B) Read Word Calculated at compile time Per sbdat110, section 5.1.26

SerialNumber (0x1C) Read Word User-defined Per sbdat110, section 5.1.27

Reserved (0x1D-0x1F) Read Word N/A N/A

ManufacturerName (0x20) Read String/Block User-defined Per sbdat110, section 5.1.28

DeviceName (0x21) Read String/Block User-defined Per sbdat110, section 5.1.29

DeviceChemistry (0x22) Read String/Block �LION� Per sbdat110, section 5.1.30

ManufacturerData (0x23) Read String/Block User-defined Per sbdat110, section 5.1.31

20 AVR453
2599B-AVR-09/05

Command (ID) Data Direction & Size Default Value Data Source

Reserved (0x24-0x2E) N/A N/A N/A

OptionalMfgFunction5 (0x2F) R/W Block N/A Bootloader

Reserved (0x30-0x3B) N/A N/A N/A

OptionalMfgFunction4 (0x3C) R/W Word N/A Calibration state

OptionalMfgFunction3 (0x3D) R/W Word N/A N/A

OptionalMfgFunction2 (0x3E) R/W Word N/A N/A

OptionalMfgFunction1 (0x3F) R/W Word N/A N/A

Notes: 1. Typical capacity in mAh for the battery pack. Defined in pack.h.

Local copies of all variables required by the SMBus command set are maintained in
SRAM. In some cases, these values are treated as read-only; in other cases, the
Battery pack, the Host, the Charger or any of these may modify the variables.

Some variables affect other commands and variables. For instance, the
CapacityMode flag will affect all calculations involving mA vs. mW. For more
information, see the Smart Battery Data Specification, section 5.1.4. The AtRate()
function is part of a two-stage procedure for determining time remaining for either
charging or discharging at a given rate. See the Smart Battery Data Specification,
section 5.1.6 for more information on the AtRate() command. The
SpecificationInfo() command contains bits that define scaling parameters for
the pack voltage and current to allow very high capacity and high voltage packs. See
the Smart Battery Data Specification, section 5.1.25 for more information on the
AtRate() command.

5.9.1 SMBus Slave Mode

Slave Mode SMBus communications are almost entirely interrupt-driven in the AVR.
The ATmega406 TWI module is able to receive a Slave Address transmission from a
Master device even if the system clock to the TWI peripheral is not enabled. Upon
completion of the byte, an interrupt will be generated if enabled and if the received
address matches that programmed in the TWAR register. This will wake the
ATmega406 from all but the Power-Off Sleep Mode.

When the SMBus itself is inactive, as determined by if both clock (SCL/SMBCLK) and
data (SDA/SMBDATA) lines being low for more than 2 seconds, the TWI Bus
Connect/Disconnect Interrupt will alert the smart battery that it may switch to Power-
Save mode (please refer to section 5.10 for operation modes). Likewise, when bus
activity resumes, the same interrupt will immediately awaken the ATmega406 to
restore operation.

Once the system is active, upon receiving a match to the pack�s address the TWI
interrupt service routine will track the protocol state by means of a state machine. The
diagram of Figure 5-7 defines the behavior.

 AVR453

 21

2599B-AVR-09/05

Figure 5-7. Flowchart for TWI Interrupt Service Routine

IDLE TW_Wait4Cmd

Error,
Stop

Generate a
Bus Timeout TW_Wait4RW

TW_ReplyData

TW_Wait4Data

TW_MSLA_W
(Send SLA+W)

TW_MCMD_W
(Send buffered

Cmd, then Data)

SLA_W

Valid Cmd?No

RCMD

Yes

REPEATED
START

RDATA

RDATA

STOP

Timeout
Complete

ACK,
SLA_R

NAK Error

START

Send a STOP

STOP

ACK

Error
ACK

Out of Data?

No

Yes

MASTER-MODE STATES

SLAVE-MODE STATES

ErrorError

Error

When the AVR receives the Command byte, a table look-up is used to check that the
command is valid for SMBus Slave mode. If it is not, a bus timeout error is generated
to inform the sender of the fault. If the command is valid, the bus is re-enabled by
clearing the TWI Interrupt flag (TWINT) and the state machine advances.

5.9.1.1 SMBus Slave Write

If the next action on the bus, after the acknowledge of the Command byte, is that a
byte is received, this indicates a WRITE sequence so the state machine remains in
Slave Receive mode and collects the remaining data (see Figure 5-7). When all bytes

22 AVR453
2599B-AVR-09/05

have been received, a flag is set asking for the foreground code to process the
received command.

Figure 5-8. SMBus Slave Write command examples

To slave From slave

PS Slave Address Command CodeW Data ByteA A A

S Slave Address Command CodeW Data Byte LowA A PData Byte HighA A

S Slave Address Command CodeW Data ByteA A PPEC AA

Write Byte Protocol format

Write Word Protocol format

Write Byte Protocol format with PEC

In the foreground code, a PEC validation is performed if the byte count indicates that
PEC has been sent. Once it is determined that the data is valid, the command byte is
used as an index into a table of pointers to functions, with each function
corresponding to one and only one command. In most cases the function will write the
received data to the SRAM-based SMBus variables. As needed, other actions will
also be taken. Once the action is completed, the bus is re-enabled and is then ready
for further transactions. If modifications are made to the software, it is important that
the bus is re-enabled in less than 25ms or the Host may assume that the pack is
generating a bus timeout error.

5.9.1.2 SMBus Slave Read

Alternately, if the next bus action after receiving a Command byte is a Repeated
Start, this indicates that a READ is being requested (see Figure 5-9). The command
value is stored and a flag is set for requesting the foreground code, in the main loop
that is, to generate the data for the response. The command value is used by the
foreground code as an offset into a table of pointers to functions. The referenced
function will assemble the required data, calculating PEC if needed, and trigger the
sequence for transmitting the data back to the bus master.

Figure 5-9. SMBus Slave Read command example

To slave From slave

AS Slave Address Command CodeW A
Read Byte Protocol format with PEC

S Slave Address RA Data Byte PA

5.9.1.3 SMBus time-out error generation

Error checking is performed at appropriate points in the flow. For instance, if an
invalid command is received, this can be detected immediately. When errors are
detected, the ATmega406 returns to the IDLE state of the TWI state machine and
does not clear the TWINT flag in TWCR, thereby leaving the SCL line stuck low. A
25ms timer is also started; when this timer expires, foreground code releases the SCL
line by clearing TWINT and resetting the TWI peripheral to an Idle condition, and the
SMBus is free to resume activity. See Section 5.8.3 for more details.

5.9.2 SMBus Master Mode

Master mode is initiated by the foreground code. When a message is available for
transmission via Master mode, typically caused by a timer event expiring, it is placed
in the TWI Master Transmit Buffer. However, transmission cannot begin immediately

 AVR453

 23

2599B-AVR-09/05

due to the SMBus requirement that a bus master is required to check for bus idle time
of 50µs.

To meet this requirement, the ATmega406 pin-change detection mechanism is used
to monitor for bus idle conditions. This reference implementation assumes that PA6 is
connected to the SMBCLK (SCL) signal. Alternatively, in a user specific
implementation, any I/O signal with pin-change capability can be used instead of PA6.
Note that the SCL line may not be read directly as the SCL and SDA lines are not
shared with general-purpose I/O ports.

A multi-stage method is employed to ensure bus availability (refer to Figure 5-10).
First, the presence of a message in the Transmit Buffer results in execution of the
foreground code that manages Master mode. Next, if the Slave state machine is not
in the IDLE state, no attempt is made to take control of the bus. Next, the SCL line is
checked by reading PA6 to be sure it is not currently at a logical zero condition. At
this point the bus appears to be free, so as the last stage a flag (TEST50US) is
asserted to indicate that the 50µs bus-free test has now begun. During this time the
SCL line is monitored by means of enabling the Pin-Change Interrupt for PA6. The
foreground SMBus Master mode management code is then exited. With a clock
speed of 1MHz, 50µs corresponds to 50 instructions at most. Therefore, when the
code is re-entered it is guaranteed that at least 50µs has passed and handling the
timing of the 50µs by the use of a timer is thus not required.

Figure 5-10. Initiation of Master Transmit from smart battery
SMBus Master Mode

Msg present in
SMBus TX buffer?

SMBus state
machine IDLE?

SMBCLK is idle
(logic high)

Test SMBLK idle
for 50µs

Set SMLOCK flag

Start transmission

Transmission of
start bit ok?

Clear TEST50US and
SMLOCK flags

Activate TWI ISR in
state 0x08

Return to main loop

Yes Yes Yes

Yes

No No No

No

Clears the TEST50US flag if
SMBus is not free for 50µs.

Rest of communication is handled by
ISR, which also clears the SMLOCK
flag when transmission is competed.

When the Pin-Change Interrupt is enabled, any bus activity will trigger the interrupt.
The corresponding ISR will clear the TEST50US flag, indicating that the bus is not
free. Thus, when the foreground code is re-entered, if this flag is not asserted but
there is a message in the buffer, it is understood that the test has failed and must be
started again; thus the flag will again be asserted and the routine will be exited.

24 AVR453
2599B-AVR-09/05

When the foreground code is eventually called again from the main loop and the
TEST50US flag is still asserted, conditions are good for beginning a transmission.
One last check is performed to ensure that the SMBCLK line is not low and the TWI
ISR State Machine is in the IDLE state. Finally, a START bit is transmitted to take
control of the bus. An additional lock flag (SMLOCK) is also asserted to indicate that
Master mode has been entered by the TWI Hardware, so that the foreground code
will not attempt to repeatedly initiate a transmission for the same message.

If the ATmega406 is successful in taking ownership of the bus, at the completion of
the transmission of the Start bit the TWI ISR will be activated with a Status code of
0x08. As a result, the state machine will now vector into the states related to Master
Mode transmission, and the ISR will handle all further aspects of the transmission.
Alternatively, if the TWI module is unsuccessful in taking over the bus, the TWI ISR
will still be entered but with status codes that are indicative of an error having
occurred. In this latter case, the SMLOCK and TEST50US flags will be cleared to
force another bus takeover attempt in the future.

5.9.3 Handling SMBus Errors

When an error is detected in SMBus communications while operating as a Slave
device, there are two ways to signal this to the Master: (1) withhold the ACK, or (2)
generate a Bus Timeout. The ATmega406 TWI peripheral only activates TWINT after
it has already provided either an ACK or a NAK automatically; therefore, the
ACK/NAK response cannot be based on a validity check of the data that was just
transferred. As a result, the only viable response mechanism for the AVR is to force
the Bus Timeout error. The first possible point in time where an error could be
detected is dependent on whether the ATmega406 is receiving data, or is expected to
send data back to the Master.

In an SMBus Slave Write transaction, such as �Write Word�, the ISR handles all facets
of the transaction without intervention from the foreground code; therefore, there is
little opportunity to check for errors until all of the data for this command has been
transferred to the ATmega406. The Slave Write transactions are also �blind� in the
sense that all received data bytes, including the final byte, are to be ACK�d. Although
this would normally simplify the Slave�s receive routine by not requiring it to know how
many bytes should be received (and thus be in a position to NAK the final byte rather
than simply ACKing everything), the lack of such knowledge results in the ISR being
unable to generate a Bus Timeout error. This is because the Master will send a STOP
after the final byte has been ACK�d, and as a result the ATmega406 has lost control
over the SCL line since it is now in the �not addressed Slave� mode.

To resolve this issue, on Write-type transactions the command byte must be checked
to determine how many additional data bytes are expected. Thus, after the specified
number of bytes has been received, the complete received command can be passed
to the foreground code for error checking while still holding SCL and therefore stalling
the bus. The foreground code is thereafter responsible for forcing TWINT to be
cleared after its check is completed. If the received command is error-free, it will clear
TWINT immediately. If there are one or more errors, the TWINT, and thereby also the
SCL line, will not be cleared until after the Timeout period has elapsed, and the
received command will be discarded.

Since the command byte must be checked itself, it can also be easily validated from
within the ISR. If any error conditions are discovered, the ISR resets its state back to
IDLE and leaves SCL asserted low by not clearing TWINT, and signals the
foreground code to cause a bus timeout error. After generating the timeout the
foreground code clears TWINT, thereby restarting the TWI module.

 AVR453

 25

2599B-AVR-09/05

The two-wire interface is designed to inherently handle a number of physical-layer
errors as well. Since the bus is open-drain with pull-up resistors, bus contention is
resolved at the time of the first bit-level difference between two bus masters
transmitting simultaneously. The ACK/NAK bit after each byte serves as a presence
indicator for the addressed device. However, the protocol does not guarantee
uncorrupted delivery, as there is no provision for parity or other detection mechanism
on a byte-for-byte basis. The inclusion of PEC in the specification is intended to
provide an indication of whether error-free delivery has been achieved.

Please refer to Table 5-3 for details about error handling.

Table 5-3. Error handling in SMBus slave mode
Moment of Occurrence Error Responsive action

Command value out of
range

This error can only be detected after the ACK for the (erroneous) Command
Byte has already been sent. The next transaction on the bus could be either a
data write to the Slave (which could therefore be NAK�d), or a Repeated Start
condition as a precursor to initiating a Read from the Slave.

After receipt of
Command Byte

Command not valid in
slave mode

This error can only be detected after the ACK for the (erroneous) Command
Byte has already been sent. The next transaction on the bus could be either a
data write to the Slave (which could therefore be NAK�d), or a Repeated Start
condition as a precursor to initiating a Read from the Slave.

Command only allowed
in Slave Read mode

The TWINT flag is not cleared, a timeout error is generated, and the packet is
discarded.

After receipt of the first
data byte during Slave
Write transactions Attempted to write bits

that are read-only or
�reserved�

In this case, the Write-type command itself was valid, but the action requested
for that command type was not valid. This error is identified by the foreground
command interpreter code. If the Slave discovers such an error, the TWINT
flag is not cleared, a timeout error is generated, and the packet is discarded.

PEC error The ISR software determines in advance precisely how much data is
expected so that it can halt the bus prior to the Master issuing a STOP, when
dealing with a Write-type command. When all data bytes have been received,
the received message (including PEC) is passed to the foreground code for
interpretation and error checking. If the Slave�s received PEC from the Master
does not match its internally-generated value a transmission error has
occurred, so the TWINT flag is not cleared, a timeout error is generated, and
the packet is discarded.

After receipt of the
complete packet

Value out of range The TWINT flag is not cleared, a timeout error is generated, and the packet is
discarded.

5.9.4 Packet Error Checking Implementation

The SMBus implementation in this reference design supports the use of Packet Error
Checking (PEC). When a Master device communicates with the ATmega406 as a
Slave, its desire to use PEC is indicated by whether it provides an ACK or a NAK
after the last data byte is transferred during a Slave Read command. If an ACK is
issued, it indicates that the Master still needs more data; this must be assumed to be
a request for the PEC byte. Please refer to the SMBus specification for more details.

To accommodate the request for a PEC byte, the firmware will always generate a
PEC value, but when handling a �Read� command the firmware allows the Master to
determine whether it is sent or not, as described above. Whenever any Master
(whether the Host, a Charger or other device) requests PEC information on a Read
command, a flag, UsePEC, is asserted indicating that the AVR should use PEC on its
transmissions from then on (for both Slave Transmit functions as well as its own
SMBus Master mode commands). Likewise, if any Master performs a Slave Read
command and does not request PEC, then the flag is de-asserted.

26 AVR453
2599B-AVR-09/05

For Slave Read command types, PEC is generated using all bytes from the complete
transaction. This includes the original Slave Address + W, the Command, the Slave
Address + R, and all of the reply data. Depending on whether the slave address is
assigned by the Host system or is fixed, it may be possible to pre-calculate a partial
CRC value based on the Slave address and the command, rather than generating it
on-the-fly each time.

For Slave Write command types, it is not known for certain whether PEC will be
included in the transmission. Therefore the TWI ISR code must accommodate the
presence or absence of PEC, regardless of the state of the UsePEC flag. Upon
completion of the receive operation, it is determined whether the PEC value is
included as part of the received packet. As discussed in the previous section, the
number of expected bytes is determined in advance according to the specific
command, knowing that PEC may or may not be present in addition to this. After all
expected bytes are received, the ISR leaves TWINT asserted and notifies the
foreground code of the presence of a complete packet. The foreground code then
analyzes the packet for errors, and if any are found a timeout error is generated and
the packet is discarded. Otherwise, the command action is carried out and TWINT is
cleared, freeing the bus to allow the Master to send a STOP and return the ISR state
machine to the IDLE state.

In cases where errors are detected by the foreground code, it is necessary to be able
to force the ISR back to the IDLE state. Therefore, the ISR�s state variable has scope
beyond the ISR itself.

5.10 In System Programming (ISP) over SMBus
This feature allows upgrades to a smart battery firmware, or rather the ATmega406
firmware, while in its target application. There are many possible ways of
implementing the ISP functionality; the one provided offers basic ISP through the
SMBus and does not require any additional hardware connections on the battery
pack. Alternatively, advanced ISP with support for encrypted firmware upgrades could
be added. Please refer to the Application Notes AVR230 and AVR231 for respectively
DES and AES encryption for ISP firmware upgrades, and AVR109 for a general
treatment of the bootloader concept. Please study the sections in the datasheet
regarding self-programming and lock-bits to ensure correct protection of the firmware.

The software structure used is essentially two separate code images. One image
contains the smart battery application itself and resides in the lower portion of the
Flash memory area, called the Application Section. A second code image resides in
the Boot Section of the ATmega406 Flash memory.

The boot loader functionality is restricted to a simplistic SMBus protocol handler,
capable only of managing ISP over SMBus. In order to force the compiler to create
code that begins at Flash memory address 0x4800 (word address) rather than at
0x0000, a special linker (.XCL) file is used to define a different memory range for
program space. No special compiler settings are required beyond the normal settings
for the ATmega406 device, except for the use of this customized linker file. Since the
boot loader section only has up to 4Kbytes of code space, care has been taken to
ensure that only necessary functionality is included. The present code implementation
uses less than 1800 bytes of code space, so there is still space to expand the
functionality while using less than 4Kbytes if desired.

To start code execution of a Boot Loader located in the Boot Section after RESET,
rather than at the beginning of the Application Section, the BOOTRST fuse should be
programmed (Please refer to the ATmega406 datasheet for details on fuse settings).

 AVR453

 27

2599B-AVR-09/05

The Boot Loader code initially performs a simple check of the Application Section of
the flash memory to determine if it contains a valid program image. In the
low_level_init() function of the bootloader code, if the Reset vector at location
0x0000 contains 0xFFFF, it can be safely assumed that the Application area does not
contain a valid image, and control will stay with the boot loader. Otherwise, a jump to
address 0x0000 is performed, effectively starting the main application code.

Since the SMBus imposes a startup time limit of 500ms, the number of clock cycles
available for the Boot Loader to perform extensive validity checks, like a complete
CRC of the application section, is limited. It is possible to implement a more complete
validation of the Application code and to also perform a very thorough verification in
the primary application, and run this after the SMBus interface is brought into
operation. This is left up to the user to implement.

If the Application Section of flash memory does not contain a valid image, then
execution continues in the Boot Loader�s code. The entry point for the bootloader
when being accessed from the application area is the entry point to the bootloader�s
main() function. Note that if any changes are made to the bootloader code or if it is
recompiled, this address should be verified and the smbus.c code should reflect the
correct address in its handler for OptionalMfgFunction5. Since this could be
entered from either the boot loader or from the application area, all critical variables
for the boot loader are initialized inside of main() to ensure that they are properly
initialized regardless of how main() was entered. It also ensures that all interrupts
are disabled to prevent inadvertent execution of any application-area code. Next, it
initializes the TWI port to prepare it for SMBus communications. Finally, control
passes to the main loop of the loader.

The main loop waits for the only SMBus command that is valid for the boot loader,
namely, OptionalMfgFunction5. Upon receiving this command, it interprets the
contents per the protocol defined below and performs the requested action.

Each SMBus Slave Write command modifies a Status flag based on success or
failure of the command. It is possible, but not necessary, to query this Status flag after
each Slave Write operation, even those that only update a portion of the SRAM data
buffer. For operations that take a relatively long time, such as erasing flash or
EEPROM, the Status flag will also indicate if the device is busy.

All communications are expected to use the standard smart battery address.
Likewise, only command identifier 0x2F, OptionalMfgFunction5, is used for ISP
over SMBus. All Slave Write operations use the Write Block mode and must all
conform to the protocol defined below. Slave Read operations use only the Read
Block protocol and will only return the Status value. It is left to the designer to
implement a Memory Read command if this is desired, but this may expose the
internal memory contents to copying.

Figure 5-11. Boot loader Write command frame (Slave Write).
OptionalMfgFunction5 (0x2F) Byte Count

Sub-command Mem Type Offset

Addr High Addr Low Block Size

Data Data P

A A

A A A

A A A

A

S Slave Address (0x16) W A

28 AVR453
2599B-AVR-09/05

Note that both EEPROM and Flash memory addresses are given as byte addresses.
For the Slave Write commands, the meaning of the fields varies by the specific
command and the memory type.

Five primary commands are implemented within the OptionalMfgFunction5
command: Write, Erase, Patch, Insert and Verify. Provision is also included for a
Read command, but this should be omitted in final products as it poses a security
hole. Alternatively, one could consider adding an encryption layer.

There are also two secondary commands, Exit and Activate. Activate is used to
switch to bootloader mode while running in the main application, and is ignored if
received while already in the bootloader. Exit is used when all bootloader tasks have
been completed and it is desired to start executing the main application code.

Two additional optional commands may be implemented by the user, the �w� and �v�
commands (distinguished by the use of lower-case letters). These commands
indicate that decryption should be performed on the data block (either an entire page
for Flash, or the specified block size for EEPROM) prior to the write or verify
operation. In this way, encrypted data may be transferred to the internal SRAM buffer
but will be decrypted before use, ensuring data security.

Table 5-4. OptionalMfgFunction5 Sub-commands
Command Command fields required Functionality(1)

WRITE (�W� / �w�) Mem Type: (F)lash / (N)onvolatile EEPROM
Offset: Buffer offset (EEPROM only)
Addr High/Low: Start address in Flash/EEPROM
Block Size: Bytes to write (EEPROM only)

Write the contents of the internal SRAM buffer to the
specified memory region. Operation may fail based on
settings of the �lock� fuse bits.

ERASE (�E�) Mem Type: (F)lash / (N)onvolatile EEPROM
Addr High/Low: Start address in Flash/EEPROM
Block Size: Bytes to erase (EEPROM only)

Erase the specified memory region. Operation may fail
based on settings of the �lock� fuse bits. This operation
does not affect or make use of the internal SRAM buffer.

PATCH (�P�) Mem Type: (F)lash / (N)onvolatile EEPROM
Offset: Buffer offset (EEPROM only)
Addr High/Low: Start address in Flash/EEPROM
Block Size: Bytes to read (EEPROM only)

Loads the internal SRAM buffer with the present
contents of the specified memory region. The buffer may
then be partially overwritten using the INSERT command
and then written back to memory.

INSERT (�I�) Offset: Buffer offset
Block Size: Byte count
Data: Data bytes to write to SRAM buffer

Place the specified data into the internal SRAM buffer,
starting at the specified buffer offset. Note that a
complete fill of the buffer is not possible in a single
INSERT operation.

VERIFY(�V� / �v�) Mem Type: (F)lash / (N)onvolatile EEPROM
Offset: Buffer offset (EEPROM only)
Addr High/Low: Start address in Flash/EEPROM
Block Size: Bytes to verify (EEPROM only)

After loading the internal SRAM buffer, the Verify
command will perform a comparison to the specified
memory region. The Status flag will indicate the
good/bad result of the comparison.

READ Not implemented at this time The Read command may be used primarily to read out
the contents of the device�s EEPROM memory so that it
may be restored after a programming operation.

ACTIVATE (�A�) None, but data Byte Count has to be 1, i.e.
equivalent to Word Write.

Transfer control from Application code to Bootloader. All
other smart battery functions stop.

EXIT (�X�) None Transfer control from Bootloader to Application code. All
smart battery functions start again.

Notes: 2. Setting of lock bits may limit the possibilities to read and write to the Flash from the Boot Loader. Please refer to
the datasheet for more details.

 AVR453

 29

2599B-AVR-09/05

W: If Flash is specified, the address is the base of the Flash page to be written, in
bytes. No other information is required as only a complete page can be written to
flash. If EEPROM is specified, then the address is the starting address in EEPROM
space; offset is the starting location within the on-chip SRAM buffer, and the byte
count must be provided in the Block Size parameter.

w: Same as the �W� command, but the contents of the SRAM buffer must first be
decrypted before being written. Also, the contents of this message are also encrypted
to prevent an attacker from gaining information about the target location of the write
command.

V: For both Flash and EEPROM, the address is any valid address (byte-based); it is
not restricted to page boundaries. If flash is specified, the byte count is assumed to
be 128 bytes as a precaution against someone easily mapping the contents of flash
one byte at a time. For EEPROM, and byte size from 1 to 128 may be used.

v: Same as the �V� command, but the contents of the SRAM buffer must first be
decrypted before being verified. Additionally, the contents of this message block are
also encrypted to prevent an attacker from gaining information about the target
location of the write command.

E: For Flash memory, an entire Flash page will be erased; the address is forced to
the beginning of the specified page. Any EEPROM address and byte count is
allowed, up to 128 bytes.

P: To �patch� a memory area, first the Patch command is issued to copy the original
memory contents to the internal SRAM buffer. The address must be at a page
boundary for Flash memory. Next, the �I� command is used to supply �repair� data that
overwrites only parts of the buffer contents. Finally, a �W� is performed to save the
update.

I: Since this command writes only to the internal SRAM buffer, the Address field is
ignored. The Offset and Block Size values are required, as well as the data block.
Due to SMBus packet size limits, only up to 24 bytes may be transferred on the initial
packet. However, if the Byte Count field specifies more than 24 bytes, then
subsequent �chained� SMBus packets are expected to contain only data, thus
allowing up to 32 bytes to be transferred in each subsequent packet until the Block
Size that was specified in the initial packet has been fulfilled. The most that can ever
be transferred is dictated by the SRAM buffer size (128 bytes) minus the starting
offset. Thus, for a complete fill of the buffer using chained packets, an offset of zero
must be specified. Alternately, individual Insert command packets may be issued with
any amount of data as long as the offset plus the size of any packet does not exceed
128.

Note that the Write and Verify commands, whether for EEPROM or Flash memory as
its target, use only the contents of the on-chip data buffer, not the data block within
the �W� or �V� SMBus message. All data must first be written to the on-chip SRAM
data buffer using the �I� command, and subsequently stored or verified from there.
Note that data held in the buffer is not destroyed after a Write or Verify operation, so if
the same data needs to be repeatedly written to different memory locations, this can
be done by sending new �W� commands without having to reload the SRAM buffer
after each �W� operation; simply supply a different address in the �W� command each
time.

Encrypted data may be used for writing or verifying EEPROM or SRAM memory as
well if desired. Note that use of the Patch command cannot be supported when using
encryption.

30 AVR453
2599B-AVR-09/05

5.11 Power Modes of Operation
The battery pack can be in one of four power modes: Power-Off, Power-Save, Idle
and Active. These mode names reflect the Sleep Modes for ATmega406. Refer to
Table 5-5. Note that the implementation made is meant as a reference to how the
power management can be implemented; it can be implemented differently if desired.

Table 5-5. Smart battery modes of operation
Mode of Operation Used when:

Power-Off Used when battery fully drained, also referred to as a
Deep Under-voltage condition. Only charging through
pre-charge FET is supported. Host cannot draw power
from battery.

Power-Save Used when Host is turned off, or if the battery is
disconnected from Host/ Charger.

Idle Used when discharge rate is low.

Active Used during charging and �normal� discharging rates

In all modes except Power-Off Mode, the Hardware Battery Protect circuitry is
initialized and operational. See the accompanying state chart in Figure 5-12 for a
graphical view of the interaction of these modes.

Figure 5-12. Operating modes

Power-Off

Power-
Save

Idle

Active

Deep Under-voltage /
Over-temperature /

BP_INT

Deep Under-voltage /
Over-temperature /

BP_INT

Deep Under-voltage /
Over-temperature /

BP_INT

Charger Active
(BATT signal)

TWI bus
connected

TWI bus
disconnected

Regular Current
Interrupt

Low discharge
rate

Charging

TWI bus
disconnected

Power applied

5.11.1 Power-Off Mode

In this mode, the pack has no charge remaining and is waiting for a recharge cycle.
The ATmega406 is prevented from operating due to the on-chip voltage regulator
being in power-off mode (please refer to the ATmega406 datasheet for details on the
Power-Off Sleep Mode). In the Power-Off Sleep Mode the ATmega406 draws virtually
no current from the battery. This mode is used to protect the battery: If a Li-Ion battery
discharged under a certain limit it will be subject to permanent damage.

The Precharge FET is enabled automatically in hardware, allowing low-current
charging to occur. The Charge and Discharge FETs are disabled via hardware. Since

 AVR453

 31

2599B-AVR-09/05

the ATmega406 is not executing code, no current measurement nor time
measurement takes place in this mode. The SMBus is also inactive.

This mode is entered automatically by hardware if the battery voltage drops below the
ATmega406 Deep Under-Voltage detection level that result in an automatic power-off
of the on-chip voltage regulator (See datasheet regarding available Deep Under-
Voltage levels). Software can also force entry into this mode when the pack voltage
drops below minimum cell voltage levels in order to prevent permanent cell damage.
The hardware protection can thus be seen as a secondary independent battery
protection circuit.

This mode is exited by a hard Reset is caused by the BATT pin going higher than 6 -
8V, which causes a Power-On-Reset with the PORF bit in MCUSR set to 1.
Therefore, upon initial execution of the main() function after a Reset, when the
PORF flag is set the operating mode will, in this implementation, be forced to be the
Power-Save mode.

5.11.2 Power-Save Mode

In this mode, the battery is essentially asleep due to having been either removed from
the Host or Charger, or the Host having been turned off. However, the CPU is ready
to wake up immediately in response to either SMBus activity, which generates a TWI
Bus Connect interrupt, or external low-level interrupts. Low-level interrupts are
typically generated by a Charge Display pushbutton, used to show the charge state of
the battery using a bar of LEDs.

In this mode, the Precharge FET is deliberately enabled to allow low-current charging.
The Charge and Discharge FETs are disabled to prevent accidental short-circuits
from occurring outside of the pack. Upon entering Power-Save Mode, the software
disables the CCADC, configures the Wake-Up Timer and switches the ATmega406 to
Power-Save Sleep Mode. Since the CCADC is disabled, battery drain cannot be
measured and must be estimated. To aid in estimating battery drain, elapsed time is
maintained through the use of the Wake-Up Timer. Thus, fixed periodic subtractions
from the battery�s available charge can be made to maintain a reasonably accurate
charge estimate. The SMBus is not active in this mode except for the TWI Bus
Connect/Disconnect interrupt, which is used to detect activity on the SMBus.

This mode is entered when either an SMBus Power-Down command is received while
in either Idle or Active Mode, or when the SMBus has been disabled. The TWI Bus
Connect/Disconnect interrupt is used to detect the latter condition.

This mode is exited when either the battery's available power has dropped to zero, in
which case the Power-Off Mode will be entered; or the host system has activated the
SMBus, typically due to either the battery being inserted into the system or the
system being activated. When the host system has activated the SMBus, the battery
will switch to Active Mode, from which it can change to Idle Mode if appropriate.

5.11.3 Idle Mode

This mode is used when the battery is active, but is discharged at a low rate, e.g.
when maintaining a laptop computer's memory in Standby mode. The Precharge FET
is disabled but the Charge and Discharge FETs are enabled. At low discharge rates,
the current consumption of the ATmega406 itself could be a contributing factor in the
overall power consumption and therefore the ATmega406 is operated in a reduced
power configuration; hence the use of Idle Sleep Mode. Rather than continuously
measuring the current consumption of the system, the current drain is only
periodically sampled by using the Regular Current operating mode of the CCADC.

32 AVR453
2599B-AVR-09/05

Despite the somewhat relaxed timing requirements, the 32kHz crystal oscillator is
used as the CCADC clock source in this mode. The SMBus must be fully active and
ready to respond to all requests, but other tasks such as battery voltage and
temperature measurements can operate at a reduced rate in order to save power.

This mode is entered only from Active Mode, as the main difference from that mode is
the accuracy of the method of measuring pack current. Specifically, when battery
current drain falls below a predetermined level, the software changes to this mode in
order to conserve power. Upon entry, the CCADC operating mode is reconfigured to
use the Regular Current mode rather than the Accumulate Mode. Note that the result
of the first four conversions is discarded by software as they do not hold reliable
measurements. The CCADC Regular Discharge Current register is initialized upon
entry. The CCADC Regular Charge Current register is not used in this
implementation.

This mode will be exited if a charge current is detected, in which case Active Mode
will be used. Also, if the battery current drain exceeds a selected level, the Regular
Current Interrupt will fire and the software will switch back to Active Mode.

Since any interrupt will bring the ATmega406 out of Idle Sleep Mode, a mechanism
must be established to identify when it is allowable for the ATmega406 to re-enter Idle
Sleep Mode. In this implementation, if all active tasks in the main loop have been
handled, it is ok to enter Idle Sleep Mode again.

The tasks that need to be handled include periodic VADC scans and calculations of
the cell voltages, SMBus communication, CCADC current measurements and charge
tracking. All of these are initiated or maintained by interrupts, and therefore sleeping
while waiting for interrupts is not problematic in this application. The VADC peripheral
receives clock in Active, Idle and ADC Noise Reduction Sleep Modes, while SMBus
transmissions (including Slave-mode responses) requires either Active or Idle Sleep
Mode. Therefore, Idle Sleep Mode is used instead of ADC Noise Reduction Sleep
Mode.

5.11.4 Active Mode

In this mode, the battery is either charged or discharged at a relatively high current.
When charging, the ATmega406 current consumption is unimportant. When
discharging at a high rate, the ATmega406 current consumption is negligible
compared that of the Host. Therefore in this mode the ATmega406 could be left
running continuously without detrimental impact on battery life. However, since the
software is already designed to utilize Idle Sleep Mode, it is used in the battery�s
Active Mode also.

In Active Mode, the Charge and Discharge FETs are enabled and the Precharge FET
is disabled. The CCADC runs in Accumulate mode for maximum accuracy, using the
32kHz crystal clock oscillator. The SMBus is fully active.

Active Mode can be entered from either Idle or Power-Save Mode. When the battery
is awake while being charged, Active Mode is always used. When high discharge
currents exist or when first waking up from Power-Save Mode, Active Mode is
selected because it measures the pack conditions with maximum accuracy. The
CCADC is switched to Accumulate mode upon entry. The first four CCADC
conversions after a mode switch, both for Instantaneous and Accumulate
conversions, must be ignored, as they will not be accurate. This is handled in the
software; however, the current gained or lost during that time is not accounted for in
this implementation.

 AVR453

 33

2599B-AVR-09/05

The software exits Active Mode in response to one of two conditions: either the
SMBus has gone inactive, in which case it switches to Power-Save Mode; or when
the current drain falls below a predetermined level, in which case it switches to Idle
Mode.

6 Areas for Potential Improvement

6.1 Calibration
Depending on the accuracy of the sense resistor used, it may be necessary to include
gain calibration on the current measurement. In order to avoid frequently dealing with
expensive 'long' multiply operations, it is recommended to add scaling to the routines
that report results and capacities, rather than correcting each and every sample. It is
possible to adjust the calibration of the Current and AverageCurrent readings in
approximately 0.5% steps by modifying the number of samples of the Instantaneous
CCADC interrupt that are used each second. Please see the source code for details.

6.2 Power Management
The three active power modes have been designed as an example to highlight how
the various peripherals and capabilities of the ATmega406 device can be exploited.
More sophisticated modes can be added as desired.

It is possible to use the Interrupt mode of the watchdog timer to provide a periodic
wakeup in Power-Down Sleep Mode rather than using the Wakeup Timer with the
Power-Save Sleep Mode. This would result in slightly lower current consumption
since the SlowRC Oscillator could then be turned off in Power-Down Sleep Mode.

Also, if better resolution is needed for the Wake Up Timer�s estimated power
consumption while in Shutdown mode, the WakeUp_ISR() routine can be enhanced.

6.3 Temperature Measurement and Utilization
Thermal effects on pack capacity are not presently being taken into account, as this
effect can vary widely from one cell manufacturer to another.

Additionally, since it is not possible to know in advance what thermistor the designer
will choose, the temperature calculations for thermistors is left to the designer. The
supplied software provides the necessary infrastructure to measure the VADC result
for each thermistor.

6.4 Hardware Battery Protection
In the present software, any fault condition resulting in triggering of HWP_int() will
result in the pack switching to Power-Off Mode. A status code is saved to EEPROM
to aid in determining the specific fault that occurred. This routine can be enhanced to
allow multiple retries before shutting down the pack completely.

6.5 EEPROM
Considerably more use can be made of the on-chip EEPROM memory of the
ATmega406, such as maintaining pack charge state information, and historical data
such as the number of charge/discharge cycles or thermal extremes.

34 AVR453
2599B-AVR-09/05

6.6 Encrypted firmware updates
The bootloader in this implementation is prepared for, but does not implement
encrypted communication. If desired, please also check out the application notes
AVR230: DES Bootloader and AVR231: AES Bootloader.

6.7 Battery Authentication
If the bootloader or application code were enhanced to include encryption, it would be
possible to implement secure authentication codes via a challenge/response
mechanism to ensure that only the right battery can be used with a given product.

7 Literature reference list
1. SMBus specification

http://www.smbus.org/specs/smbus110.pdf
2. Smart Battery Data Specification

http://www.sbs-forum.org/specs/sbdat110.pdf
3. Smart Battery Charger Specification

http://www.sbs-forum.org/specs/sbc110.pdf
4. ATmega406 Datasheet

http://www.atmel.com/dyn/resources/prod_documents/doc2548.pdf
5. Application note: AVR454: HW User�s Guide � ATAVRSB100 - Smart Battery

Development Board
http://www.atmel.com/dyn/products/app_notes.asp?family_id=607

6. Doxygen documentation: readme.html and doxygen directory downloaded with
the source code.

http://www.smbus.org/specs/smbus110.pdf
http://www.sbs-forum.org/specs/sbdat110.pdf
http://www.sbs-forum.org/specs/sbc110.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2548.pdf
http://www.atmel.com/dyn/products/app_notes.asp?family_id=607

 AVR453

 35

2599B-AVR-09/05

8 Table of Contents
Features... 1
1 Introduction .. 1
2 Scope of implementation .. 2
3 Release Notes for preliminary release of AVR453 2
4 Theory of operation ... 2

4.1 Li-Ion Battery technology... 3
4.1.1 Charging profile of Li-Ion batteries .. 3
4.1.2 Discharging Li-Ion batteries... 4
4.1.3 Cell balancing.. 5

4.2 Smart battery definition ... 6
4.2.1 State of Charge ... 6
4.2.2 State of Health... 6

4.3 Smart batteries and SMBus .. 6
4.4 A Very smart battery controller � ATmega406 .. 7

4.4.1 Two Wire Interface and SMBus... 7
4.4.2 Analog to digital converters ... 7
4.4.3 CPU-independent battery protection ... 8
4.4.4 High Voltage tolerant I/O ... 8
4.4.5 Integrated cell-balancing FETs.. 8
4.4.6 Low power operation ... 8

5 Implementation of smart battery .. 9
5.1 Overview of the software implementation ... 10

5.1.1 Normal Code Execution... 11
5.2 Battery Charging and Discharging .. 13
5.3 Voltage ADC Results... 14

5.3.1 Compensation of VADC results using Signature Row Data 14
5.4 Coulomb Counter ADC results .. 15

5.4.1 CCADC result scaling.. 16
5.5 Customer calibration ... 16

5.5.1 Calibrating the internal 1.100V Voltage Reference.. 17
5.5.2 CCADC offset calibration... 18
5.5.3 Storage of calibration values ... 18

5.6 Battery Protection.. 18
5.7 Pack Configuration .. 18
5.8 LED Control ... 18
5.9 SMBUS Protocol Implementation.. 18

5.9.1 SMBus Slave Mode... 20
5.9.2 SMBus Master Mode... 22
5.9.3 Handling SMBus Errors ... 24
5.9.4 Packet Error Checking Implementation ... 25

36 AVR453
2599B-AVR-09/05

5.10 In System Programming (ISP) over SMBus.. 26
5.11 Power Modes of Operation.. 30

5.11.1 Power-Off Mode .. 30
5.11.2 Power-Save Mode... 31
5.11.3 Idle Mode... 31
5.11.4 Active Mode... 32

6 Areas for Potential Improvement.. 33
6.1 Calibration ... 33
6.2 Power Management .. 33
6.3 Temperature Measurement and Utilization ... 33
6.4 Hardware Battery Protection ... 33
6.5 EEPROM... 33
6.6 Encrypted firmware updates.. 34
6.7 Battery Authentication ... 34

7 Literature reference list ... 34
8 Table of Contents... 35
Disclaimer... 37

2599B-AVR-09/05

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel�s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, AVR Studio® and
others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be
trademarks of others.

	Introduction
	Scope of implementation
	Release Notes for preliminary release of AVR453
	Theory of operation
	Li-Ion Battery technology
	Charging profile of Li-Ion batteries
	Discharging Li-Ion batteries
	Cell balancing

	Smart battery definition
	State of Charge
	State of Health

	Smart batteries and SMBus
	A Very smart battery controller – ATmega406
	Two Wire Interface and SMBus
	Analog to digital converters
	CPU-independent battery protection
	High Voltage tolerant I/O
	Integrated cell-balancing FETs
	Low power operation

	Implementation of smart battery
	Overview of the software implementation
	Normal Code Execution

	Battery Charging and Discharging
	Voltage ADC Results
	Compensation of VADC results using Signature Row Data

	Coulomb Counter ADC results
	CCADC result scaling

	Customer calibration
	Calibrating the internal 1.100V Voltage Reference
	CCADC offset calibration
	Storage of calibration values

	Battery Protection
	Pack Configuration
	LED Control
	SMBUS Protocol Implementation
	SMBus Slave Mode
	SMBus Slave Write
	SMBus Slave Read
	SMBus time-out error generation

	SMBus Master Mode
	Handling SMBus Errors
	Packet Error Checking Implementation

	In System Programming (ISP) over SMBus
	Power Modes of Operation
	Power-Off Mode
	Power-Save Mode
	Idle Mode
	Active Mode

	Areas for Potential Improvement
	Calibration
	Power Management
	Temperature Measurement and Utilization
	Hardware Battery Protection
	EEPROM
	Encrypted firmware updates
	Battery Authentication

	Literature reference list
	Table of Contents

