"

Section I. Cyclone II Device Family Data Sheet

This section provides information for board layout designers to successfully layout their boards for Cyclone ${ }^{\circledR}$ II devices. It contains the required PCB layout guidelines, device pin tables, and package specifications.

This section includes the following chapters:

- Chapter 1. Introduction
- Chapter 2. Cyclone II Architecture
- Chapter 3. Configuration \& Testing
- Chapter 4. Hot Socketing \& Power-On Reset
- Chapter 5. DC Characteristics \& Timing Specifications
- Chapter 6. Reference \& Ordering Information

Revision History
Refer to each chapter for its own specific revision history. For information on when each chapter was updated, refer to the Chapter Revision Dates section, which appears in the complete handbook.

Following the immensely successful first-generation Cyclone ${ }^{\circledR}$ device family, Altera ${ }^{\circledR}$ Cyclone II FPGAs extend the low-cost FPGA density range to 68,416 logic elements (LEs) and provide up to 622 usable I/O pins and up to 1.1 Mbits of embedded memory. Cyclone II FPGAs are manufactured on $300-\mathrm{mm}$ wafers using TSMC's $90-\mathrm{nm}$ low-k dielectric process to ensure rapid availability and low cost. By minimizing silicon area, Cyclone II devices can support complex digital systems on a single chip at a cost that rivals that of ASICs. Unlike other FPGA vendors who compromise power consumption and performance for low-cost, Altera's latest generation of low-cost FPGAs-Cyclone II FPGAs, offer 60 percent higher performance and half the power consumption of competing $90-\mathrm{nm}$ FPGAs. The low cost and optimized feature set of Cyclone II FPGAs make them ideal solutions for a wide array of automotive, consumer, communications, video processing, test and measurement, and other end-market solutions. Reference designs, system diagrams, and IP, found at www.Altera.com, are available to help you rapidly develop complete end-market solutions using Cyclone II FPGAs.

Low-Cost Embedded Processing Solutions

Cyclone II devices support the Nios II embedded processor which allows you to implement custom-fit embedded processing solutions. Cyclone II devices can also expand the peripheral set, memory, I/O, or performance of embedded processors. Single or multiple Nios II embedded processors can be designed into a Cyclone II device to provide additional co-processing power or even replace existing embedded processors in your system. Using Cyclone II and Nios II together allow for low-cost, high-performance embedded processing solutions which allow you to extend your product's life cycle and improve time to market over standard product solutions.

Low-Cost DSP Solutions

Use Cyclone II FPGAs alone or as DSP co-processors to improve price-to-performance ratios for digital signal processing (DSP) applications. You can implement high-performance yet low-cost DSP systems with the following Cyclone II features and design support:

- Up to 15018×18 multipliers
- Up to 1.1 Mbit of on-chip embedded memory
- High-speed interfaces to external memory

- DSP intellectual property (IP) cores
 ■ DSP Builder interface to The Mathworks Simulink and Matlab design environment
 - DSP Development Kit, Cyclone II Edition

Cyclone II devices include a powerful FPGA feature set optimized for low-cost applications including a wide range of density, memory, embedded multiplier, and packaging options. Cyclone II devices support a wide range of common external memory interfaces and I/O protocols required in low-cost applications. Parameterizable IP cores from Altera and partners make using Cyclone II interfaces and protocols fast and easy.

Features

The Cyclone II device family offers the following features:

- High-density architecture with 4,608 to 68,416 LEs
- M4K embedded memory blocks
- Up to 1.1 Mbits of RAM available without reducing available logic
- 4,096 memory bits per block (4,608 bits per block including 512 parity bits)
- Variable port configurations of $\times 1, \times 2, \times 4, \times 8, \times 9, \times 16, \times 18, \times 32$, and $\times 36$
- True dual-port (one read and one write, two reads, or two writes) operation for $\times 1, \times 2, \times 4, \times 8, \times 9, \times 16$, and $\times 18$ modes
- Byte enables for data input masking during writes
- Up to $260-\mathrm{MHz}$ operation
- Embedded multipliers
- Up to $15018-\times 18$-bit multipliers are each configurable as two independent $9-\times 9$-bit multipliers with up to $250-\mathrm{MHz}$ performance
- Optional input and output registers
- Advanced I/O support
- High-speed differential I/O standard support, including LVDS, RSDS, mini-LVDS, LVPECL, differential HSTL, and differential SSTL
- Single-ended I/O standard support, including $2.5-\mathrm{V}$ and $1.8-\mathrm{V}$, SSTL class I and II, 1.8-V and 1.5-V HSTL class I and II, 3.3-V PCI and PCI-X 1.0, 3.3-, 2.5-, 1.8-, and 1.5-V LVCMOS, and 3.3-, 2.5-, and 1.8-V LVTTL
- Peripheral Component Interconnect Special Interest Group (PCI SIG) PCI Local Bus Specification, Revision 3.0 compliance for $3.3-\mathrm{V}$ operation at 33 or 66 MHz for 32- or 64-bit interfaces
- PCI Express with an external TI PHY and an Altera PCI Express $\times 1$ Megacore ${ }^{\circledR}$ function
- $133-\mathrm{MHz}$ PCI-X 1.0 specification compatibility
- High-speed external memory support, including DDR, DDR2, and SDR SDRAM, and QDRII SRAM supported by drop in Altera IP MegaCore functions for ease of use
- Three dedicated registers per I/O element (IOE): one input register, one output register, and one output-enable register
- Programmable bus-hold feature
- Programmable output drive strength feature
- Programmable delays from the pin to the IOE or logic array
- I/O bank grouping for unique VCCIO and/or VREF bank settings
- MultiVolt ${ }^{\mathrm{TM}}$ I/O standard support for 1.5-, 1.8-, 2.5-, and 3.3interfaces
- Hot-socketing operation support
- Tri-state with weak pull-up on I/O pins before and during configuration
- Programmable open-drain outputs
- Series on-chip termination support
- Flexible clock management circuitry
- Hierarchical clock network for up to $402.5-\mathrm{MHz}$ performance
- Up to four PLLs per device provide clock multiplication and division, phase shifting, programmable duty cycle, and external clock outputs, allowing system-level clock management and skew control
- Up to 16 global clock lines in the global clock network that drive throughout the entire device
- Device configuration
- Fast serial configuration allows configuration times less than 100 ms
- Decompression feature allows for smaller programming file storage and faster configuration times
- Supports multiple configuration modes: active serial, passive serial, and JTAG-based configuration
- Supports configuration through low-cost serial configuration devices
- Device configuration supports multiple voltages (either 3.3, 2.5, or 1.8 V)
- Intellectual property
- Altera megafunction and Altera MegaCore function support, and Altera Megafunctions Partners Program (AMPP ${ }^{\text {SM }}$) megafunction support, for a wide range of embedded processors, on-chip and off-chip interfaces, peripheral
functions, DSP functions, and communications functions and protocols. Visit the Altera IPMegaStore at www.Altera.com to download IP MegaCore functions.
- Nios II Embedded Processor support

The Cyclone II family offers devices with the Fast-On feature, which offers a faster power-on-reset (POR) time. Devices that support the Fast-On feature are designated with an " A " in the device ordering code. For example, EP2C8A, EP2C15A, and EP2C20A. The EP2C8A and EP2C20A are only available in the industrial speed grade. The EP2C15A is only available with the Fast-On feature and is available in both commercial and industrial grades. The Cyclone II "A" devices are identical in feature set and functionality to the non-A devices except for support of the faster POR time.

For more information on POR time specifications for Cyclone II A and non-A devices, refer to the Hot Socketing \& Power-On Reset chapter in the Cyclone II Device Handbook.

Table 1-1 lists the Cyclone II device family features. Table 1-2 lists the Cyclone II device package offerings and maximum user I/O pins.

Table 1-1. Cyclone II FPGA Family Features

Feature	EP2C5	EP2C8 (2)	EP2C15 (1)	EP2C20 (2)	EP2C35	EP2C50	EP2C70
LEs	4,608	8,256	14,448	18,752	33,216	50,528	68,416
M4K RAM blocks (4 Kbits plus 512 parity bits	26	36	52	52	105	129	250
Total RAM bits	119,808	165,888	239,616	239,616	483,840	594,432	$1,152,000$
Embedded multipliers (3)	13	18	26	26	35	86	150
PLLs	2	2	4	4	4	4	4
Maximum user I/O pins	158	182	315	315	475	450	622

Notes to Table 1-1:
(1) The EP2C15A is only available with the Fast On feature, which offers a faster POR time. This device is available in both commercial and industrial grade.
(2) The EP2C8 and EP2C20 optionally support the Fast On feature, which is designated with an "A" in the device ordering code. The EP2C8A and EP2C20A devices are only available in industrial grade.
(3) This is the total number of 18×18 multipliers. For the total number of 9×9 multipliers per device, multiply the total number of 18×18 multipliers by 2 .

Table 1-2. Cyclone II Package Options \& Maximum User I/O Pins Notes (1) (2)

Device	144-Pin TQFP (3)	208-Pin PQFP (4)	240-Pin PQFP	256-Pin FineLine BGA	484-Pin FineLine BGA	484-Pin Ultra FineLine BGA	672-Pin FineLine BGA	896-Pin FineLine BGA
EP2C5 (6)	89	142		$158(5)$				
EP2C8 (6)	85	138		182				
EP2C8A (6), (7)				182				
EP2C15A (6), (7)				152	315			
EP2C20 (6)			142	152	315			
EP2C20A (6), (7)				152	315			
EP2C35 (6)					322	322	475	
EP2C50 (6)					294	294	450	
EP2C70 (6)							422	622

Notes to Table 1-2:
(1) Cyclone II devices support vertical migration within the same package (for example, you can migrate between the EP2C20 device in the 484-pin FineLine BGA ${ }^{\circledR}$ package and the EP2C35 and EP2C50 devices in the same package).
(2) The Quartus ${ }^{\circledR}$ II software I/O pin counts include four additional pins, TDI, TDO, TMS, and TCK, which are not available as general purpose I/O pins.
(3) TQFP: thin quad flat pack.
(4) PQFP: plastic quad flat pack.
(5) Vertical migration is supported between the EP2C5F256 and the EP2C8F256 devices. However, not all of the DQ and DQS groups are supported. Vertical migration between the EP2C5 and the EP2C15 in the F256 package is not supported.
(6) The I/O pin counts for the EP2C5, EP2C8, and EP2C15A devices include 8 dedicated clock pins that can be used for data inputs. The I/O counts for the EP2C20, EP2C35, EP2C50, and EP2C70 devices include 16 dedicated clock pins that can be used for data inputs.
(7) EP2C8A, EP2C15A, and EP2C20A have a Fast On feature that has a faster POR time. The EP2C15A is only available with the Fast On option.

Cyclone II devices support vertical migration within the same package (for example, you can migrate between the EP2C35, EPC50, and EP2C70 devices in the 672-pin FineLine BGA package). The exception to vertical migration support within the Cyclone II family is noted in Table 1-3.

Vertical migration means that you can migrate to devices whose dedicated pins, configuration pins, and power pins are the same for a given package across device densities.

Table 1-3. Total Number of Non-Migratable I/O Pins for Cyclone II Vertical Migration Paths

Vertical Migration Path	144-Pin TQFP	208-Pin PQFP	256-Pin FineLine BGA (1)	484-Pin FineLine BGA (2)	484-Pin Ultra FineLine BGA	672-Pin FineLine BGA (3)
EP2C5 to EP2C8	4	4	$1(4)$			
EP2C8 to EP2C15			30			
EP2C15 to EP2C20			0	0		
EP2C20 to EP2C35				16		
EP2C35 to EP2C50			28	$28(5)$	28	
EP2C50 to EP2C70				28	28	

Notes to Table 1-3:
(1) Vertical migration between the EP2C5F256 to the EP2C15AF256 and the EP2C5F256 to the EP2C20F256 devices is not supported.
(2) When migrating from the EP2C20F484 device to the EP2C50F484 device, a total of 39 I/O pins are non-migratable.
(3) When migrating from the EP2C35F672 device to the EP2C70F672 device, a total of 56 I/O pins are non-migratable.
(4) In addition to the one non-migratable I/O pin, there are 34 DQ pins that are non-migratable.
(5) The pinouts of 484 FBGA and 484 UBGA are the same.
[1 When moving from one density to a larger density, I/O pins are often lost because of the greater number of power and ground pins required to support the additional logic within the larger device. For I/O pin migration across densities, you must cross reference the available I/O pins using the device pin-outs for all planned densities of a given package type to identify which I/O pins are migratable.

To ensure that your board layout supports migratable densities within one package offering, enable the applicable vertical migration path within the Quartus II software (go to Assignments menu, then Device, then click the Migration Devices button). After compilation, check the information messages for a full list of I/O, DQ, LVDS, and other pins that are not available because of the selected migration path. Table 1-3 lists the Cyclone II device package offerings and shows the total number of non-migratable I/O pins when migrating from one density device to a larger density device. Quartus II software

Cyclone II devices are available in up to three speed grades: $-6,-7$, and -8 , with -6 being the fastest. Table 1-4 shows the Cyclone II device speed-grade offerings.

Table 1-4. Cyclone II Device Speed Grades

Device	144-Pin TQFP	208-Pin PQFP	240-Pin PQFP	256-Pin FineLine BGA	484-Pin FineLine BGA	484-Pin Ultra FineLine BGA	672-Pin FineLine BGA	896-Pin FineLine BGA
EP2C5	$-6,-7,-8$	$-7,-8$		$-6,-7,-8$				
EP2C8	$-6,-7,-8$	$-7,-8$		$-6,-7,-8$				
EP2C8A (1)				-8				
EP2C15A				$-6,-7,-8$	$-6,-7,-8$			
EP2C20			-8	$-6,-7,-8$	$-6,-7,-8$			
EP2C20A (1)				-8	-8			
EP2C35					$-6,-7,-8$	$-6,-7,-8$	$-6,-7,-8$	
EP2C50					$-6,-7,-8$	$-6,-7,-8$	$-6,-7,-8$	
EP2C70							$-6,-7,-8$	$-6,-7,-8$

Note to Table 1-4:
(1) EP2C8A and EP2C20A are only available in industrial grade.

Document Revision History

Table 1-5 shows the revision history for this document.

Table 1-5. Document Revision History		
Date \& Document Version	Changes Made	Summary of Changes
February 2007 v3.1	- Added document revision history. - Added new Note (2) to Table 1-2.	- Note to explain difference between I/O pin count information provided in Table 1-2 and in the Quartus II software documentation.
November 2005 v2.1	- Updated Introduction and Features. - Updated Table 1-3.	
July 2005 v2.0	- Updated technical content throughout. - Updated Table 1-2. - Added Tables 1-3 and 1-4.	
November 2004 v1.1	- Updated Table 1-2. - Updated bullet list in the "Features" section.	
June 2004 v1.0	Added document to the Cyclone II Device Handbook.	

2. Cyclone II Architecture

Cyclone ${ }^{\circledR}$ II devices contain a two-dimensional row- and column-based architecture to implement custom logic. Column and row interconnects of varying speeds provide signal interconnects between logic array blocks (LABs), embedded memory blocks, and embedded multipliers.

The logic array consists of LABs, with 16 logic elements (LEs) in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device. Cyclone II devices range in density from 4,608 to 68,416 LEs.

Cyclone II devices provide a global clock network and up to four phase-locked loops (PLLs). The global clock network consists of up to 16 global clock lines that drive throughout the entire device. The global clock network can provide clocks for all resources within the device, such as input/output elements (IOEs), LEs, embedded multipliers, and embedded memory blocks. The global clock lines can also be used for other high fan-out signals. Cyclone II PLLs provide general-purpose clocking with clock synthesis and phase shifting as well as external outputs for high-speed differential I/O support.

M4K memory blocks are true dual-port memory blocks with 4 K bits of memory plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 260 MHz . These blocks are arranged in columns across the device in between certain LABs. Cyclone II devices offer between 119 to 1,152 Kbits of embedded memory.

Each embedded multiplier block can implement up to either two 9×9-bit multipliers, or one 18×18-bit multiplier with up to $250-\mathrm{MHz}$ performance. Embedded multipliers are arranged in columns across the device.

Each Cyclone II device I/O pin is fed by an IOE located at the ends of LAB rows and columns around the periphery of the device. I/O pins support various single-ended and differential I/O standards, such as the 66- and $33-\mathrm{MHz}, 64-$ and 32 -bit PCI standard, $\mathrm{PCI}-\mathrm{X}$, and the LVDS I/O standard at a maximum data rate of 805 megabits per second (Mbps) for inputs and 640 Mbps for outputs. Each IOE contains a bidirectional I/O buffer and three registers for registering input, output, and output-enable signals. Dual-purpose DQS, DQ, and DM pins along with delay chains (used to
phase-align double data rate (DDR) signals) provide interface support for external memory devices such as DDR, DDR2, and single data rate (SDR) SDRAM, and QDRII SRAM devices at up to 167 MHz .

Figure 2-1 shows a diagram of the Cyclone II EP2C20 device.

Figure 2-1. Cyclone II EP2C20 Device Block Diagram

The number of M4K memory blocks, embedded multiplier blocks, PLLs, rows, and columns vary per device.

Logic Elements

The smallest unit of logic in the Cyclone II architecture, the LE, is compact and provides advanced features with efficient logic utilization. Each LE features:

- A four-input look-up table (LUT), which is a function generator that can implement any function of four variables
- A programmable register
- A carry chain connection
- A register chain connection
- The ability to drive all types of interconnects: local, row, column, register chain, and direct link interconnects
- Support for register packing
- Support for register feedback

Figure 2-2 shows a Cyclone II LE.

Figure 2-2. Cyclone II LE

Each LE's programmable register can be configured for D, T, JK, or SR operation. Each register has data, clock, clock enable, and clear inputs. Signals that use the global clock network, general-purpose I/O pins, or any internal logic can drive the register's clock and clear control signals. Either general-purpose I/O pins or internal logic can drive the clock enable. For combinational functions, the LUT output bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The LUT or register output can drive these three outputs independently. Two LE outputs drive column or row and direct link routing connections and one drives local interconnect resources, allowing the LUT to drive one output while the register drives another output. This feature, register packing, improves device utilization because the device can use the register and the LUT for unrelated functions. When using register packing, the LAB-wide synchronous load control signal is not available. See "LAB Control Signals" on page 2-8 for more information.

Another special packing mode allows the register output to feed back into the LUT of the same LE so that the register is packed with its own fan-out LUT, providing another mechanism for improved fitting. The LE can also drive out registered and unregistered versions of the LUT output.

In addition to the three general routing outputs, the LEs within an LAB have register chain outputs. Register chain outputs allow registers within the same LAB to cascade together. The register chain output allows an LAB to use LUTs for a single combinational function and the registers to be used for an unrelated shift register implementation. These resources speed up connections between LABs while saving local interconnect resources. See "MultiTrack Interconnect" on page 2-10 for more information on register chain connections.

LE Operating Modes

The Cyclone II LE operates in one of the following modes:

- Normal mode
 - Arithmetic mode

Each mode uses LE resources differently. In each mode, six available inputs to the LE-the four data inputs from the LAB local interconnect, the LAB carry-in from the previous carry-chain LAB, and the register chain connection-are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes.

The Quartus ${ }^{\circledR}$ II software, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically chooses the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions. If required, you can also create special-purpose functions that specify which LE operating mode to use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and combinational functions. In normal mode, four data inputs from the LAB local interconnect are inputs to a four-input LUT (see Figure 2-3). The Quartus II Compiler automatically selects the carry-in or the data3 signal as one of the inputs to the LUT. LEs in normal mode support packed registers and register feedback.

Figure 2-3. LE in Normal Mode

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, counters, accumulators, and comparators. An LE in arithmetic mode implements a 2 -bit full adder and basic carry chain (see Figure 2-4). LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. Register feedback and register packing are supported when LEs are used in arithmetic mode.

Figure 2-4. LE in Arithmetic Mode

The Quartus II Compiler automatically creates carry chain logic during design processing, or you can create it manually during design entry. Parameterized functions such as LPM functions automatically take advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 16 LEs by automatically linking LABs in the same column. For enhanced fitting, a long carry chain runs vertically, which allows fast horizontal connections to M4K memory blocks or embedded multipliers through direct link interconnects. For example, if a design has a long carry chain in a LAB column next to a column of M4K memory blocks, any LE output can feed an adjacent M4K memory block through the direct link interconnect. Whereas if the carry chains ran horizontally, any LAB not next to the column of M4K memory blocks would use other row or column interconnects to drive a M4K memory block. A carry chain continues as far as a full column.

Logic Array Blocks

Each LAB consists of the following:

```
■ 16 LEs
| LAB control signals
| LE carry chains
| Register chains
- Local interconnect
```

The local interconnect transfers signals between LEs in the same LAB. Register chain connections transfer the output of one LE's register to the adjacent LE's register within an LAB. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of local, and register chain connections for performance and area efficiency. Figure 2-5 shows the Cyclone II LAB.

Figure 2-5. Cyclone II LAB Structure

LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is driven by column and row interconnects and LE outputs within the same LAB. Neighboring LABs, PLLs, M4K RAM blocks, and embedded multipliers from the left and right can also drive an LAB's local interconnect through the direct link connection. The direct link connection feature minimizes the use of row and column interconnects, providing higher performance and flexibility. Each LE can drive 48 LEs through fast local and direct link interconnects. Figure 2-6 shows the direct link connection.

Figure 2-6. Direct Link Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. The control signals include:

- Two clocks
- Two clock enables
- Two asynchronous clears
- One synchronous clear
- One synchronous load

This gives a maximum of seven control signals at a time. When using the LAB-wide synchronous load, the clkena of labclkl is not available. Additionally, register packing and synchronous load cannot be used simultaneously.

Each LAB can have up to four non-global control signals. Additional LAB control signals can be used as long as they are global signals.

Synchronous clear and load signals are useful for implementing counters and other functions. The synchronous clear and synchronous load signals are LAB-wide signals that affect all registers in the LAB.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked. For example, any LE in a particular LAB using the labclk1 signal also uses labclkena1. If the LAB uses both the rising and falling edges of a clock, it also uses both LAB-wide clock signals. De-asserting the clock enable signal turns off the LAB-wide clock.

The LAB row clocks [5..0] and LAB local interconnect generate the LABwide control signals. The MultiTrack ${ }^{\text {TM }}$ interconnect's inherent low skew allows clock and control signal distribution in addition to data. Figure 2-7 shows the LAB control signal generation circuit.

Figure 2-7. LAB-Wide Control Signals

LAB-wide signals control the logic for the register's clear signal. The LE directly supports an asynchronous clear function. Each LAB supports up to two asynchronous clear signals (labclr1 and labclr2).

A LAB-wide asynchronous load signal to control the logic for the register's preset signal is not available. The register preset is achieved by using a NOT gate push-back technique. Cyclone II devices can only support either a preset or asynchronous clear signal.

In addition to the clear port, Cyclone II devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This chip-wide reset overrides all other control signals.

MultiTrack Interconnect

In the Cyclone II architecture, connections between LEs, M4K memory blocks, embedded multipliers, and device I/O pins are provided by the MultiTrack interconnect structure with DirectDrive ${ }^{\mathrm{TM}}$ technology. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different speeds used for inter- and intra-design block connectivity. The Quartus II Compiler automatically places critical paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement within the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions.

The MultiTrack interconnect consists of row (direct link, R4, and R24) and column (register chain, C4, and C16) interconnects that span fixed distances. A routing structure with fixed-length resources for all devices allows predictable and repeatable performance when migrating through different device densities.

Row Interconnects

Dedicated row interconnects route signals to and from LABs, PLLs, M4K memory blocks, and embedded multipliers within the same row. These row resources include:

- Direct link interconnects between LABs and adjacent blocks
- R4 interconnects traversing four blocks to the right or left
- R24 interconnects for high-speed access across the length of the device

The direct link interconnect allows an LAB, M4K memory block, or embedded multiplier block to drive into the local interconnect of its left and right neighbors. Only one side of a PLL block interfaces with direct link and row interconnects. The direct link interconnect provides fast communication between adjacent LABs and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, three LABs and one M4K memory block, or three LABs and one embedded multiplier to the right or left of a source LAB. These resources are used for fast row connections in a fourLAB region. Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2-8 shows R4 interconnect connections from an LAB. R4 interconnects can drive and be driven by LABs, M4K memory blocks, embedded multipliers, PLLs, and row IOEs. For LAB interfacing, a primary LAB or LAB neighbor (see Figure 2-8) can drive a given R4 interconnect. For R4 interconnects that drive to the right, the primary LAB and right neighbor can drive on to the interconnect. For R4 interconnects that drive to the left, the primary LAB and its left neighbor can drive on to the interconnect. R4 interconnects can drive other R4 interconnects to extend the range of LABs they can drive. Additionally, R4 interconnects can drive R24 interconnects, C4, and C16 interconnects for connections from one row to another.

Figure 2-8. R4 Interconnect Connections

Notes to Figure 2-8:
(1) C 4 interconnects can drive R 4 interconnects.
(2) This pattern is repeated for every LAB in the LAB row.

R24 row interconnects span 24 LABs and provide the fastest resource for long row connections between non-adjacent LABs, M4K memory blocks, dedicated multipliers, and row IOEs. R24 row interconnects drive to other row or column interconnects at every fourth LAB. R24 row interconnects drive LAB local interconnects via R 4 and C 4 interconnects and do not drive directly to LAB local interconnects. R24 interconnects can drive R24, R4, C16, and C4 interconnects.

Column Interconnects

The column interconnect operates similar to the row interconnect. Each column of LABs is served by a dedicated column interconnect, which vertically routes signals to and from LABs, M4K memory blocks, embedded multipliers, and row and column IOEs. These column resources include:

- Register chain interconnects within an LAB
- C4 interconnects traversing a distance of four blocks in an up and down direction
- C16 interconnects for high-speed vertical routing through the device

Cyclone II devices include an enhanced interconnect structure within LABs for routing LE output to LE input connections faster using register chain connections. The register chain connection allows the register output of one LE to connect directly to the register input of the next LE in the LAB for fast shift registers. The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. Figure 2-9 shows the register chain interconnects.

Figure 2-9. Register Chain Interconnects

The C4 interconnects span four LABs, M4K blocks, or embedded multipliers up or down from a source LAB. Every LAB has its own set of C4 interconnects to drive either up or down. Figure 2-10 shows the C4 interconnect connections from an LAB in a column. The C 4 interconnects can drive and be driven by all types of architecture blocks, including PLLs, M4K memory blocks, embedded multiplier blocks, and column and row IOEs. For LAB interconnection, a primary LAB or its LAB neighbor (see Figure 2-10) can drive a given C4 interconnect. C4 interconnects can drive each other to extend their range as well as drive row interconnects for column-to-column connections.

Figure 2-10. C4 Interconnect Connections Note (1)

Note to Figure 2-10:
(1) Each C4 interconnect can drive either up or down four rows.

C16 column interconnects span a length of 16 LABs and provide the fastest resource for long column connections between LABs，M4K memory blocks，embedded multipliers，and IOEs．C16 column interconnects drive to other row and column interconnects at every fourth LAB．C16 column interconnects drive LAB local interconnects via C4 and R4 interconnects and do not drive LAB local interconnects directly．C16 interconnects can drive R24，R4，C16，and C4 interconnects．

Device Routing

All embedded blocks communicate with the logic array similar to LAB－to－LAB interfaces．Each block（for example，M4K memory， embedded multiplier，or PLL）connects to row and column interconnects and has local interconnect regions driven by row and column interconnects．These blocks also have direct link interconnects for fast connections to and from a neighboring LAB．

Table 2－1 shows the Cyclone II device＇s routing scheme．

Table 2－1．Cyclone II Device Routing Scheme（Part 1 of 2）													
	Destination												
Source								山			д	$\begin{aligned} & \text { 峝 } \\ & \text { = } \\ & \text { 릉 } \end{aligned}$	$\begin{aligned} & \text { 山 } \\ & \text { 를 } \end{aligned}$
Register Chain								\checkmark					
Local Interconnect								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Direct Link Interconnect		\checkmark											
R4 Interconnect		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark						
R24 Interconnect				\checkmark	\checkmark	\checkmark	\checkmark						
C4 Interconnect		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark						
C16 Interconnect				\checkmark	\checkmark	\checkmark	\checkmark						

Table 2-1. Cyclone II Device Routing Scheme (Part 2 of 2)

Source	Destination												
								山			밈		$\begin{aligned} & \text { 山 } \\ & \text { O } \\ & \text { B } \end{aligned}$
LE	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							
M4K memory Block		\checkmark	\checkmark	\checkmark		\checkmark							
Embedded Multipliers		\checkmark	\checkmark	\checkmark		\checkmark							
PLL			\checkmark	\checkmark		\checkmark							
Column IOE						\checkmark	\checkmark						
Row IOE			\checkmark	\checkmark	\checkmark	\checkmark							

Global Clock Network \& Phase-Locked Loops

Cyclone II devices provide global clock networks and up to four PLLs for a complete clock management solution. Cyclone II clock network features include:

- Up to 16 global clock networks
- Up to four PLLs
- Global clock network dynamic clock source selection
- Global clock network dynamic enable and disable

Each global clock network has a clock control block to select from a number of input clock sources (PLL clock outputs, CLK [] pins, DPCLK [] pins, and internal logic) to drive onto the global clock network. Table 2-2 lists how many PLLs, CLK [] pins, DPCLK [] pins, and global clock networks are available in each Cyclone II device. CLK [] pins are dedicated clock pins and DPCLK [] pins are dual-purpose clock pins.

Table 2-2. Cyclone II Device Clock Resources

Device	Number of PLLs	Number of CLK Pins	Number of DPCLK Pins	Number of Global Clock Networks
EP2C5	2	8	8	8
EP2C8	2	8	8	8
EP2C15	4	16	20	16
EP2C20	4	16	20	16
EP2C35	4	16	20	16
EP2C50	4	16	20	16
EP2C70	4	16	20	16

Figures 2-11 and 2-12 show the location of the Cyclone II PLLs, CLK [] inputs, DPCLK [] pins, and clock control blocks.

Figure 2-11. EP2C5 \& EP2C8 PLL, CLK[], DPCLK[] \& Clock Control Block Locations

Note to Figure 2-11:
(1) There are four clock control blocks on each side.

Figure 2-12. EP2C15 \& Larger PLL, CLK[], DPCLK[] \& Clock Control Block Locations

Notes to Figure 2-12:
(1) There are four clock control blocks on each side.
(2) Only one of the corner CDPCLK pins in each corner can feed the clock control block at a time. The other CDPCLK pins can be used as general-purpose I/O pins.

Dedicated Clock Pins

Larger Cyclone II devices (EP2C15 and larger devices) have 16 dedicated clock pins (CLK [15. . 0], four pins on each side of the device). Smaller Cyclone II devices (EP2C5 and EP2C8 devices) have eight dedicated clock pins (CLK [7. . 0], four pins on left and right sides of the device). These CLK pins drive the global clock network (GCLK), as shown in Figures 2-11 and 2-12.

If the dedicated clock pins are not used to feed the global clock networks, they can be used as general-purpose input pins to feed the logic array using the MultiTrack interconnect. However, if they are used as generalpurpose input pins, they do not have support for an I/O register and must use LE-based registers in place of an I/O register.

Dual-Purpose Clock Pins

Cyclone II devices have either 20 dual-purpose clock pins, DPCLK [19..0] or 8 dual-purpose clock pins, DPCLK [7. . 0]. In the larger Cyclone II devices (EP2C15 devices and higher), there are 20 DPCLK pins; four on the left and right sides and six on the top and bottom of the device. The corner CDPCLK pins are first multiplexed before they drive into the clock control block. Since the signals pass through a multiplexer before feeding the clock control block, these signals incur more delay to the clock control block than other DPCLK pins that directly feed the clock control block. In the smaller Cyclone II devices (EP2C5 and EP2C8 devices), there are eight DPCLK pins; two on each side of the device (see Figures 2-11 and 2-12).

A programmable delay chain is available from the DPCLK pin to its fanout destinations. To set the propagation delay from the DPCLK pin to its fan-out destinations, use the Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations assignment in the Quartus II software.

These dual-purpose pins can connect to the global clock network for high-fanout control signals such as clocks, asynchronous clears, presets, and clock enables, or protocol control signals such as TRDY and IRDY for PCI, or DQS signals for external memory interfaces.

Global Clock Network

The 16 or 8 global clock networks drive throughout the entire device. Dedicated clock pins (CLK []), PLL outputs, the logic array, and dual-purpose clock (DPCLK []) pins can also drive the global clock network.

The global clock network can provide clocks for all resources within the device, such as IOEs, LEs, memory blocks, and embedded multipliers. The global clock lines can also be used for control signals, such as clock enables and synchronous or asynchronous clears fed from the external pin, or DQS signals for DDR SDRAM or QDRII SRAM interfaces. Internal logic can also drive the global clock network for internally generated global clocks and asynchronous clears, clock enables, or other control signals with large fan-out.

Clock Control Block

There is a clock control block for each global clock network available in Cyclone II devices. The clock control blocks are arranged on the device periphery and there are a maximum of 16 clock control blocks available per Cyclone II device. The larger Cyclone II devices (EP2C15 devices and larger) have 16 clock control blocks, four on each side of the device. The smaller Cyclone II devices (EP2C5 and EP2C8 devices) have eight clock control blocks, four on the left and right sides of the device.

The control block has these functions:

- Dynamic global clock network clock source selection
- Dynamic enable/disable of the global clock network

In Cyclone II devices, the dedicated CLK [] pins, PLL counter outputs, DPCLK [] pins, and internal logic can all feed the clock control block. The output from the clock control block in turn feeds the corresponding global clock network.

The following sources can be inputs to a given clock control block:

- Four clock pins on the same side as the clock control block
- Three PLL clock outputs from a PLL
- Four DPCLK pins (including CDPCLK pins) on the same side as the clock control block
- Four internally-generated signals

Of the sources listed, only two clock pins, two PLL clock outputs, one DPCLK pin, and one internally-generated signal are chosen to drive into a clock control block. Figure 2-13 shows a more detailed diagram of the clock control block. Out of these six inputs, the two clock input pins and two PLL outputs can be dynamic selected to feed a global clock network. The clock control block supports static selection of DPCLK and the signal from internal logic.

Figure 2-13. Clock Control Block

Notes to Figure 2-13:
(1) The CLKSWITCH signal can either be set through the configuration file or it can be dynamically set when using the manual PLL switchover feature. The output of the multiplexer is the input reference clock (f_{II}) for the PLL.
(2) The CLKSELECT [1.0] signals are fed by internal logic and can be used to dynamically select the clock source for the global clock network when the device is in user mode.
(3) The static clock select signals are set in the configuration file and cannot be dynamically controlled when the device is in user mode.
(4) Internal logic can be used to enabled or disabled the global clock network in user mode.

Global Clock Network Distribution

Cyclone II devices contains 16 global clock networks. The device uses multiplexers with these clocks to form six-bit buses to drive column IOE clocks, LAB row clocks, or row IOE clocks (see Figure 2-14). Another multiplexer at the LAB level selects two of the six LAB row clocks to feed the LE registers within the LAB.

Figure 2-14. Global Clock Network Multiplexers

LAB row clocks can feed LEs, M4K memory blocks, and embedded multipliers. The LAB row clocks also extend to the row I/O clock regions.

IOE clocks are associated with row or column block regions. Only six global clock resources feed to these row and column regions. Figure 2-15 shows the I/O clock regions.

Figure 2-15. LAB \& I/O Clock Regions

$\square \square$
For more information on the global clock network and the clock control block, see the PLLs in Cyclone II Devices chapter in Volume 1 of the Cyclone II Device Handbook.

PLLs

Cyclone II PLLs provide general-purpose clocking as well as support for the following features:

- Clock multiplication and division
- Phase shifting
- Programmable duty cycle
- Up to three internal clock outputs
- One dedicated external clock output
- Clock outputs for differential I/O support
- Manual clock switchover
- Gated lock signal
- Three different clock feedback modes
- Control signals

Cyclone II devices contain either two or four PLLs. Table 2-3 shows the PLLs available for each Cyclone II device.

Table 2-3. Cyclone II Device PLL Availability				
Device	PLL1	PLL2	PLL3	PLL4
EP2C5	\checkmark	\checkmark		
EP2C8	\checkmark	\checkmark		
EP2C15	\checkmark	\checkmark	\checkmark	\checkmark
EP2C20	\checkmark	\checkmark	\checkmark	\checkmark
EP2C35	\checkmark	\checkmark	\checkmark	\checkmark
EP2C50	\checkmark	\checkmark	\checkmark	\checkmark
EP2C70	\checkmark	\checkmark	\checkmark	\checkmark

Table 2-4 describes the PLL features in Cyclone II devices.

Feature	Description
Clock multiplication and division	$m /(n \times$ post-scale counter) m and post-scale counter values (C 0 to C 2) range from 1 to $32 . n$ ranges from 1 to 4.
Phase shift	Cyclone II PLLs have an advanced clock shift capability that enables programmable phase shifts in increments of at least 45°. The finest resolution of phase shifting is determined by the voltage control oscillator (VCO) period divided by 8 (for example, $1 / 1000 \mathrm{MHz} / 8=$ down to $125-\mathrm{ps}$ increments).
Programmable duty cycle	The programmable duty cycle allows PLLs to generate clock outputs with a variable duty cycle. This feature is supported on each PLL post-scale counter (C0-C2).
Number of internal clock outputs	The Cyclone II PLL has three outputs which can drive the global clock network. One of these outputs (C2) can also drive a dedicated PLL<\#>_OUT pin (single ended or differential).
Number of external clock outputs	The C2 output drives a dedicated PLL<\#>_OUT pin. If the C2 output is not used to drive an external clock output, it can be used to drive the internal global clock network. The C2 output can concurrently drive the external clock output and internal global clock network.
Manual clock switchover	The Cyclone II PLLs support manual switchover of the reference clock through internal logic. This enables you to switch between two reference input clocks during user mode for applications that may require clock redundancy or support for clocks with two different frequencies.
Gated lock signal	The lock output indicates that there is a stable clock output signal in phase with the reference clock. Cyclone II PLLs include a programmable counter that holds the lock signal low for a user-selected number of input clock transitions, allowing the PLL to lock before enabling the locked signal. Either a gated locked signal or an ungated locked signal from the locked port can drive internal logic or an output pin.
Clock feedback modes	In zero delay buffer mode, the external clock output pin is phase-aligned with the clock input pin for zero delay. In normal mode, the PLL compensates for the internal global clock network delay from the input clock pin to the clock port of the IOE output registers or registers in the logic array. In no compensation mode, the PLL does not compensate for any clock networks.
Control signals	The pllenable signal enables and disables the PLLs. The areset signal resets/resynchronizes the inputs for each PLL. The pfdena signal controls the phase frequency detector (PFD) output with a programmable gate.

Figure 2-16 shows a block diagram of the Cyclone II PLL.

Figure 2-16. Cyclone II PLL Note (1)

Notes to Figure 2-16:
(1) This input can be single-ended or differential. If you are using a differential I/O standard, then two CLK pins are used. LVDS input is supported via the secondary function of the dedicated CLK pins. For example, the CLKo pin's secondary function is LVDSCLK1p and the CLK1 pin's secondary function is LVDSCLK1n. If a differential I/O standard is assigned to the PLL clock input pin, the corresponding CLK (n) pin is also completely used. The Figure 2-16 shows the possible clock input connections (CLK0/CLK1) to PLL1.
(2) This counter output is shared between a dedicated external clock output I/O and the global clock network.

For more information on Cyclone II PLLs, see the PLLs in the Cyclone II Devices chapter in Volume 1 of the Cyclone II Device Handbook.

The Cyclone II embedded memory consists of columns of M4K memory blocks. The M4K memory blocks include input registers that synchronize writes and output registers to pipeline designs and improve system performance. The output registers can be bypassed, but input registers cannot.

Each M4K block can implement various types of memory with or without parity, including true dual-port, simple dual-port, and single-port RAM, ROM, and first-in first-out (FIFO) buffers. The M4K blocks support the following features:

- 4,608 RAM bits
- $250-\mathrm{MHz}$ performance
- True dual-port memory
- Simple dual-port memory
- Single-port memory
- Byte enable
- Parity bits
- Shift register
- FIFO buffer
- ROM
- Various clock modes
- Address clock enable
[1) Violating the setup or hold time on the memory block address registers could corrupt memory contents. This applies to both read and write operations.

Table 2-5 shows the capacity and distribution of the M4K memory blocks in each Cyclone II device.

Table 2-5. M4K Memory Capacity \& Distribution in Cyclone II Devices

Device	M4K Columns	M4K Blocks	Total RAM Bits
EP2C5	2	26	119,808
EP2C8	2	36	165,888
EP2C15	2	52	239,616
EP2C20	2	52	239,616
EP2C35	3	105	483,840
EP2C50	3	129	594,432
EP2C70	5	250	$1,152,000$

Table 2-6 summarizes the features supported by the M4K memory.

Feature	Description
Maximum performance (1)	250 MHz
Total RAM bits per M4K block (including parity bits)	4,608
Configurations supported	$\begin{array}{\|l\|} \hline 4 \mathrm{~K} \times 1 \\ 2 \mathrm{~K} \times 2 \\ 1 \mathrm{~K} \times 4 \\ 512 \times 8 \\ 512 \times 9 \\ 256 \times 16 \\ 256 \times 18 \\ 128 \times 32 \text { (not available in true dual-port mode) } \\ 128 \times 36 \text { (not available in true dual-port mode) } \end{array}$
Parity bits	One parity bit for each byte. The parity bit, along with internal user logic, can implement parity checking for error detection to ensure data integrity.
Byte enable	M4K blocks support byte writes when the write port has a data width of $1,2,4,8,9,16,18,32$, or 36 bits. The byte enables allow the input data to be masked so the device can write to specific bytes. The unwritten bytes retain the previous written value.
Packed mode	Two single-port memory blocks can be packed into a single M4K block if each of the two independent block sizes are equal to or less than half of the M4K block size, and each of the single-port memory blocks is configured in single-clock mode.
Address clock enable	M4K blocks support address clock enable, which is used to hold the previous address value for as long as the signal is enabled. This feature is useful in handling misses in cache applications.
Memory initialization file (.mif)	When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents.
Power-up condition	Outputs cleared
Register clears	Output registers only
Same-port read-during-write	New data available at positive clock edge
Mixed-port read-during-write	Old data available at positive clock edge

Note to Table 2-6:
(1) Maximum performance information is preliminary until device characterization.

Memory Modes

Table 2-7 summarizes the different memory modes supported by the M4K memory blocks.

Table 2-7. M4K Memory Modes	
Memory Mode	Description
Single-port memory	M4K blocks support single-port mode, used when simultaneous reads and writes are not required. Single-port memory supports non-simultaneous reads and writes.
Simple dual-port memory	Simple dual-port memory supports a simultaneous read and write.
Simple dual-port with mixed width	Simple dual-port memory mode with different read and write port widths.
True dual-port memory	True dual-port mode supports any combination of two-port poperations: two reads, two writes, or one read and one write at two different clock frequencies.
True dual-port with mixed width	True dual-port mode with different read and write port widths.
Embedded shift register	M4K memory blocks are used to implement shift registers. Data is written into each address location at the falling edge of the clock and read from the address at the rising edge of the clock.
ROM	The M4K memory blocks support ROM mode. A MIF initializes the ROM contents of these blocks.
FIFO buffers	A single clock or dual clock FIFO may be implemented in the M4K blocks. Simultaneous read and write from an empty FIFO buffer is not supported.

IR Embedded Memory can be inferred in your HDL code or directly instantiated in the Quartus II software using the MegaWizard ${ }^{\circledR}$ Plug-in Manager Memory Compiler feature.

Clock Modes

Table 2-8 summarizes the different clock modes supported by the M4K memory.

Table 2-8. M4K Clock Modes	
Clock Mode	Description
Independent	In this mode, a separate clock is available for each port (ports A and B). Clock A controls all registers on the port A side, while clock B controls all registers on the port B side.
Input/output	On each of the two ports, A or B, one clock controls all registers for inputs into the memory block: data input, wren, and address. The other clock controls the block's data output registers.
Read/write	Up to two clocks are available in this mode. The write clock controls the block's data inputs, wraddress, and wren. The read clock controls the data output, rdaddress, and rden.
Single	In this mode, a single clock, together with clock enable, is used to control all registerg of the memory block. Asynchronous clear signals for the registers are not supported.

Table 2-9 shows which clock modes are supported by all M4K blocks when configured in the different memory modes.

Table 2-9. Cyclone II M4K Memory Clock Modes

Clocking Modes	True Dual-Port Mode	Simple Dual-Port Mode	Single-Port Mode
Independent	\checkmark		
Input/output	\checkmark	\checkmark	\checkmark
Read/write		\checkmark	
Single clock	\checkmark	\checkmark	\checkmark

M4K Routing Interface

The R4, C4, and direct link interconnects from adjacent LABs drive the M4K block local interconnect. The M4K blocks can communicate with LABs on either the left or right side through these row resources or with LAB columns on either the right or left with the column resources. Up to 16 direct link input connections to the M4K block are possible from the left adjacent LAB and another 16 possible from the right adjacent LAB. M4K block outputs can also connect to left and right LABs through each 16 direct link interconnects. Figure 2-17 shows the M4K block to logic array interface.

Figure 2-17. M4K RAM Block LAB Row Interface

For more information on Cyclone II embedded memory, see the Cyclone II Memory Blocks chapter in Volume 1 of the Cyclone II Device Handbook.

Embedded Multipliers

Cyclone II devices have embedded multiplier blocks optimized for multiplier-intensive digital signal processing (DSP) functions, such as finite impulse response (FIR) filters, fast Fourier transform (FFT) functions, and discrete cosine transform (DCT) functions. You can use the embedded multiplier in one of two basic operational modes, depending on the application needs:

- One 18-bit multiplier
- Up to two independent 9-bit multipliers

Embedded multipliers can operate at up to 250 MHz (for the fastest speed grade) for 18×18 and 9×9 multiplications when using both input and output registers.

Each Cyclone II device has one to three columns of embedded multipliers that efficiently implement multiplication functions. An embedded multiplier spans the height of one LAB row. Table $2-10$ shows the number of embedded multipliers in each Cyclone II device and the multipliers that can be implemented.

Table 2-10. Number of Embedded Multipliers in Cyclone II Devices				
Device	Embedded Multiplier Columns (1)	Embedded Multipliers	$\mathbf{9 \times 9}$ Multipliers	$\mathbf{1 8 \times 1 8}$ Multipliers
EP2C5	1	13	26	13
EP2C8	1	18	36	18
EP2C15	1	26	52	26
EP2C20	1	26	52	26
EP2C35	1	35	70	35
EP2C50	2	86	172	86
EP2C70	3	150	300	150

Note to Table 2-10:
(1) Each device has either the number of 9×9-, or 18×18-bit multipliers shown. The total number of multipliers for each device is not the sum of all the multipliers.

The embedded multiplier consists of the following elements:

- Multiplier block
- Input and output registers
- Input and output interfaces

Figure 2-18 shows the multiplier block architecture.

Figure 2-18. Multiplier Block Architecture

Note to Figure 2-18:
(1) If necessary, these signals can be registered once to match the data signal path.

Each multiplier operand can be a unique signed or unsigned number. Two signals, signa and signb, control the representation of each operand respectively. A logic 1 value on the signa signal indicates that data A is a signed number while a logic 0 value indicates an unsigned number. Table $2-11$ shows the sign of the multiplication result for the various operand sign representations. The result of the multiplication is signed if any one of the operands is a signed value.

Table 2-11. Multiplier Sign Representation

Data A (signa Value)	Data B (signb Value)	Result
Unsigned	Unsigned	Unsigned
Unsigned	Signed	Signed
Signed	Unsigned	Signed
Signed	Signed	Signed

There is only one signa and one signb signal for each dedicated multiplier. Therefore, all of the data A inputs feeding the same dedicated multiplier must have the same sign representation. Similarly, all of the data B inputs feeding the same dedicated multiplier must have the same sign representation. The signa and signb signals can be changed dynamically to modify the sign representation of the input operands at run time. The multiplier offers full precision regardless of the sign representation and can be registered using dedicated registers located at the input register stage.

Multiplier Modes

Table 2-12 summarizes the different modes that the embedded multipliers can operate in.

Table 2-12. Embedded Multiplier Modes

Multiplier Mode	Description
18-bit Multiplier	An embedded multiplier can be configured to support a single 18×18 multiplier for operand widths up to 18 bits. All 18-bit multiplier inputs and results can be registered independently. The multiplier operands can accept signed integers, unsigned integers, or a combination of both.
9-bit Multiplier	An embedded multiplier can be configured to support two 9 9 9 independent multipliers for operand widths up to 9-bits. Both 9-bit multiplier inputs and results can be registered independently. The multiplier operands can accept signed integers, unsigned integers or a combination of both. There is only one signa signal to control the sign representation of both data A inputs and one signb signal to control the sign representation of both data B inputs of the 9-bit multipliers within the same dedicated multiplier.

Embedded Multiplier Routing Interface

The R4, C4, and direct link interconnects from adjacent LABs drive the embedded multiplier row interface interconnect. The embedded multipliers can communicate with LABs on either the left or right side through these row resources or with LAB columns on either the right or left with the column resources. Up to 16 direct link input connections to the embedded multiplier are possible from the left adjacent LABs and another 16 possible from the right adjacent LAB. Embedded multiplier outputs can also connect to left and right LABs through 18 direct link interconnects each. Figure 2-19 shows the embedded multiplier to logic array interface.

Figure 2-19. Embedded Multiplier LAB Row Interface

There are five dynamic control input signals that feed the embedded multiplier: signa, signb, clk, clkena, and aclr. signa and signb can be registered to match the data signal input path. The same clk, clkena, and aclr signals feed all registers within a single embedded multiplier.

-. For more information on Cyclone II embedded multipliers, see the Embedded Multipliers in Cyclone II Devices chapter.

I/O Structure \&

Features

IOEs support many features, including:

- Differential and single-ended I/O standards - 3.3-V, 64- and 32-bit, 66- and 33-MHz PCI compliance
- Joint Test Action Group (JTAG) boundary-scan test (BST) support
- Output drive strength control
- Weak pull-up resistors during configuration
- Tri-state buffers
- Bus-hold circuitry
- Programmable pull-up resistors in user mode
- Programmable input and output delays
- Open-drain outputs
- DQ and DQS I/O pins
- $\mathrm{V}_{\text {REF }}$ pins

Cyclone II device IOEs contain a bidirectional I/O buffer and three registers for complete embedded bidirectional single data rate transfer. Figure 2-20 shows the Cyclone II IOE structure. The IOE contains one input register, one output register, and one output enable register. You can use the input registers for fast setup times and output registers for fast clock-to-output times. Additionally, you can use the output enable (OE) register for fast clock-to-output enable timing. The Quartus II software automatically duplicates a single OE register that controls multiple output or bidirectional pins. You can use IOEs as input, output, or bidirectional pins.

Figure 2-20. Cyclone II IOE Structure

Note to Figure 2-20:
(1) There are two paths available for combinational or registered inputs to the logic array. Each path contains a unique programmable delay chain.

The IOEs are located in I/O blocks around the periphery of the Cyclone II device. There are up to five IOEs per row I/O block and up to four IOEs per column I/O block (column I/O blocks span two columns). The row I/O blocks drive row, column (only C4 interconnects), or direct link interconnects. The column I/O blocks drive column interconnects. Figure 2-21 shows how a row I/O block connects to the logic array. Figure 2-22 shows how a column I/O block connects to the logic array.

Figure 2-21. Row I/O Block Connection to the Interconnect

Notes to Figure 2-21:
(1) The 35 data and control signals consist of five data out lines, io dataout [4..0], five output enables, io_coe [4. . 0], five input clock enables, io_cce_in [4..0], five output clock enables, io_cce_out [4. . 0], five clocks, io_cclk [4..0], five asynchronous clear signals, io_caclr [4..0], and five synchronous clear signals, io_csclr[4..0].
(2) Each of the five IOEs in the row I/O block can have two io_datain (combinational or registered) inputs.

Figure 2-22. Column I/O Block Connection to the Interconnect

Notes to Figure 2-22:
(1) The 28 data and control signals consist of four data out lines, io_dataout [3. . 0], four output enables, io_coe [3..0], four input clock enables, io_cce_in [3..0], four output clock enables, io_cce_out [3..0], four clocks, io_cclk [3..0], four asynchronous clear signals, io_caclr [3..0], and four synchronous clear signals, io_csclr[3..0].
(2) Each of the four IOEs in the column I/O block can have two io_datain (combinational or registered) inputs.

The pin's datain signals can drive the logic array. The logic array drives the control and data signals, providing a flexible routing resource. The row or column IOE clocks, io_clk [5..0], provide a dedicated routing resource for low-skew, high-speed clocks. The global clock network generates the IOE clocks that feed the row or column I/O regions (see "Global Clock Network \& Phase-Locked Loops" on page 2-16). Figure 2-23 illustrates the signal paths through the I/O block.

Figure 2-23. Signal Path Through the I/O Block

Each IOE contains its own control signal selection for the following control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, clk _in, and clk_out. Figure 2-24 illustrates the control signal selection.

Figure 2-24. Control Signal Selection per IOE

In normal bidirectional operation, you can use the input register for input data requiring fast setup times. The input register can have its own clock input and clock enable separate from the OE and output registers. You can use the output register for data requiring fast clock-to-output performance. The OE register is available for fast clock-to-output enable timing. The OE and output register share the same clock source and the same clock enable source from the local interconnect in the associated LAB, dedicated I/O clocks, or the column and row interconnects. All registers share sclr and aclr, but each register can individually disable sclr and aclr. Figure 2-25 shows the IOE in bidirectional configuration.

Figure 2-25. Cyclone II IOE in Bidirectional I/O Configuration

The Cyclone II device IOE includes programmable delays to ensure zero hold times, minimize setup times, or increase clock to output times.

A path in which a pin directly drives a register may require a programmable delay to ensure zero hold time, whereas a path in which a pin drives a register through combinational logic may not require the delay. Programmable delays decrease input-pin-to-logic-array and IOE input register delays. The Quartus II Compiler can program these delays to automatically minimize setup time while providing a zero hold time.

Programmable delays can increase the register-to-pin delays for output registers. Table $2-13$ shows the programmable delays for Cyclone II devices.

Table 2-13. Cyclone II Programmable Delay Chain	
Programmable Delays	Quartus II Logic Option
Input pin to logic array delay	Input delay from pin to internal cells
Input pin to input register delay	Input delay from pin to input register
Output pin delay	Delay from output register to output pin

There are two paths in the IOE for an input to reach the logic array. Each of the two paths can have a different delay. This allows you to adjust delays from the pin to internal LE registers that reside in two different areas of the device. You set the two combinational input delays by selecting different delays for two different paths under the Input delay from pin to internal cells logic option in the Quartus II software. However, if the pin uses the input register, one of delays is disregarded because the IOE only has two paths to internal logic. If the input register is used, the IOE uses one input path. The other input path is then available for the combinational path, and only one input delay assignment is applied.

The IOE registers in each I/O block share the same source for clear or preset. You can program preset or clear for each individual IOE, but both features cannot be used simultaneously. You can also program the registers to power up high or low after configuration is complete. If programmed to power up low, an asynchronous clear can control the registers. If programmed to power up high, an asynchronous preset can control the registers. This feature prevents the inadvertent activation of another device's active-low input upon power up. If one register in an IOE uses a preset or clear signal then all registers in the IOE must use that same signal if they require preset or clear. Additionally a synchronous reset signal is available for the IOE registers.

External Memory Interfacing

Cyclone II devices support a broad range of external memory interfaces such as SDR SDRAM, DDR SDRAM, DDR2 SDRAM, and QDRII SRAM external memories. Cyclone II devices feature dedicated high-speed interfaces that transfer data between external memory devices at up to $167 \mathrm{MHz} / 333 \mathrm{Mbps}$ for DDR and DDR2 SDRAM devices and $167 \mathrm{MHz} / 667 \mathrm{Mbps}$ for QDRII SRAM devices. The programmable DQS delay chain allows you to fine tune the phase shift for the input clocks or strobes to properly align clock edges as needed to capture data.

In Cyclone II devices, all the I/O banks support SDR and DDR SDRAM memory up to $167 \mathrm{MHz} / 333 \mathrm{Mbps}$. All I/O banks support DQS signals with the DQ bus modes of $\times 8 / \times 9$, or $\times 16 / \times 18$. Table $2-14$ shows the external memory interfaces supported in Cyclone II devices.

Table 2-14. External Memory Support in Cyclone II Devices Note (1)

Memory Standard	I/O Standard	Maximum Bus Width	Maximum Clock Rate Supported (MHZ)	Maximum Data Rate Supported (Mbps)
	LVTTL (2)	72	167	167
DDR SDRAM	SSTL-2 class I (2)	72	167	$333(1)$
	SSTL-2 class II (2)	72	133	$267(1)$
DDR2 SDRAM	SSTL-18 class I (2)	72	167	$333(1)$
	SSTL-18 class II (3)	72	125	$250(1)$
QDRII SRAM (4)	$1.8-\mathrm{V}$ HSTL class I (2)	36	167	$668(1)$
	$1.8-\mathrm{V}$ HSTL class II (3)	36	100	$400(1)$

Notes to Table 2-14:
(1) The data rate is for designs using the Clock Delay Control circuitry.
(2) The I/O standards are supported on all the I/O banks of the Cyclone II device.
(3) The I/O standards are supported only on the I/O banks on the top and bottom of the Cyclone II device.
(4) For maximum performance, Altera recommends using the 1.8-V HSTL I/O standard because of higher I/O drive strength. QDRII SRAM devices also support the 1.5-V HSTL I/O standard.

Cyclone II devices use data (DQ), data strobe (DQS), and clock pins to interface with external memory. Figure 2-26 shows the DQ and DQS pins in the $\times 8 / \times 9$ mode.

Figure 2-26. Cyclone II Device DQ \& DQS Groups in $\times 8 / \times 9$ Mode Notes (1), (2)

Notes to Figure 2-26:
(1) Each DQ group consists of a DQS pin, DM pin, and up to nine DQ pins.
(2) This is an idealized pin layout. For actual pin layout, refer to the pin table.

Cyclone II devices support the data strobe or read clock signal (DQS) used in DDR and DDR2 SDRAM. Cyclone II devices can use either bidirectional data strobes or unidirectional read clocks. The dedicated external memory interface in Cyclone II devices also includes programmable delay circuitry that can shift the incoming DQS signals to center align the DQS signals within the data window.

The DQS signal is usually associated with a group of data (DQ) pins. The phase-shifted DQS signals drive the global clock network, which is used to clock the DQ signals on internal LE registers.

Table 2-15 shows the number of DQ pin groups per device.

Table 2-15. Cyclone II DQS \& DQ Bus Mode Support (Part 1 of 2) Note (1)					
Device	Package	Number of $\times 8$ Groups	Number of $\times 9$ Groups (5), (6)	Number of $\times 16$ Groups	Number of $\times 18$ Groups (5), (6)
EP2C5	144-pin TQFP (2)	3	3	0	0
	208-pin PQFP	7 (3)	4	3	3
EP2C8	144-pin TQFP (2)	3	3	0	0
	208-pin PQFP	7 (3)	4	3	3
	256-pin FineLine BGA ${ }^{\circledR}$	8 (3)	4	4	4
EP2C15	256-pin FineLine BGA	8	4	4	4
	484-pin FineLine BGA	16 (4)	8	8	8
EP2C20	256-pin FineLine BGA	8	4	4	4
	484-pin FineLine BGA	16 (4)	8	8	8

Table 2-15. Cyclone II DQS \& DQ Bus Mode Support (Part 2 of 2) Note (1)

Device	Package	Number of $\times 8$ Groups	Number of $\times 9$ Groups (5), (6)	Number of $\times 16$ Groups	Number of $\times 18$ Groups (5), (6)
EP2C35	484 -pin FineLine BGA	$16(4)$	8	8	8
	672-pin FineLine BGA	$20(4)$	8	8	8
EP2C50	$484-$ pin FineLine BGA	$16(4)$	8	8	8
	672-pin FineLine BGA	$20(4)$	8	8	8
EP2C70	$672-$ pin FineLine BGA	$20(4)$	8	8	8
	$896-$ pin FineLine BGA	$20(4)$	8	8	8

Notes to Table 2-15:
(1) Numbers are preliminary.
(2) EP2C5 and EP2C8 devices in the 144-pin TQFP package do not have any DQ pin groups in I/O bank 1.
(3) Because of available clock resources, only a total of $6 \mathrm{DQ} / \mathrm{DQS}$ groups can be implemented.
(4) Because of available clock resources, only a total of $14 \mathrm{DQ} / \mathrm{DQS}$ groups can be implemented.
(5) The $\times 9$ DQS/DQ groups are also used as $\times 8 \mathrm{DQS} / \mathrm{DQ}$ groups. The $\times 18 \mathrm{DQS} / \mathrm{DQ}$ groups are also used as $\times 16$ DQS/DQ groups.
(6) For QDRI implementation, if you connect the D ports (write data) to the Cyclone II DQ pins, the total available $\times 9$ DQS /DQ and $\times 18$ DQS/DQ groups are half of that shown in Table 2-15.

You can use any of the DQ pins for the parity pins in Cyclone II devices. The Cyclone II device family supports parity in the $\times 8 / \times 9$, and $\times 16 / \times 18$ mode. There is one parity bit available per eight bits of data pins.

The data mask, DM, pins are required when writing to DDR SDRAM and DDR2 SDRAM devices. A low signal on the DM pin indicates that the write is valid. If the DM signal is high, the memory masks the DQ signals. In Cyclone II devices, the DM pins are assigned and are the preferred pins. Each group of DQS and DQ signals requires a DM pin.

When using the Cyclone II I/O banks to interface with the DDR memory, at least one PLL with two clock outputs is needed to generate the system and write clock. The system clock is used to clock the DQS write signals, commands, and addresses. The write clock is shifted by -90° from the system clock and is used to clock the DQ signals during writes.

Figure 2-27 illustrates DDR SDRAM interfacing from the I/O through the dedicated circuitry to the logic array.

Figure 2-27. DDR SDRAM Interfacing

For more information on Cyclone II external memory interfaces, see the External Memory Interfaces chapter in Volume 1 of the Cyclone II Device Handbook.

Programmable Drive Strength

The output buffer for each Cyclone II device I/O pin has a programmable drive strength control for certain I/O standards. The LVTTL, LVCMOS, SSTL-2 class I and II, SSTL-18 class I and II, HSTL-18 class I and II, and HSTL-1.5 class I and II standards have several levels of drive strength that you can control. Using minimum settings provides signal slew rate control to reduce system noise and signal overshoot. Table 2-16 shows the possible settings for the I/O standards with drive strength control.

Table 2-16. Programmable Drive Strength (Part 1 of 2) Note (1)

I/O Standard	$\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{0 \mathrm{~L}}$ Current Strength Setting (mA)	
	Top \& Bottom I/O Pins	Side I/O Pins
LVTTL (3.3 V)	4	4
	8	8
	12	12
	16	16
	20	20
	24	24
LVCMOS (3.3 V)	4	4
	8	8
	12	12
	16	
	20	
	24	
LVTTL/LVCMOS (2.5 V)	4	4
	8	8
	12	
	16	
LVTTL/LVCMOS (1.8 V)	2	2
	4	4
	6	6
	8	8
	10	10
	12	12

Table 2-16. Programmable Drive Strength (Part 2 of 2) Note (1)

I/O Standard	$\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{LL}}$ Current Strength Setting (mA)	
	Top \& Bottom I/O Pins	Side I/O Pins
LVCMOS (1.5 V)	2	2
	4	4
	6	6
	8	
SSTL-2 class I	8	8
	12	12
SSTL-2 class II	16	16
	20	
	24	
SSTL-18 class I	6	6
	8	8
	10	10
	12	
SSTL-18 class II	16	
	18	
HSTL-18 class I	8	8
	10	10
	12	12
HSTL-18 class II	16	
	18	
	20	
HSTL-15 class I	8	8
	10	
	12	
HSTL-15 class II	16	

Note to Table 2-16:
(1) The default current in the Quartus II software is the maximum setting for each I/O standard.

Open-Drain Output

Cyclone II devices provide an optional open-drain (equivalent to an open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (that is, interrupt and write-enable signals) that can be asserted by any of several devices.

Slew Rate Control

Slew rate control is performed by using programmable output drive strength.

Bus Hold

Each Cyclone II device user I/O pin provides an optional bus-hold feature. The bus-hold circuitry can hold the signal on an I/O pin at its last-driven state. Since the bus-hold feature holds the last-driven state of the pin until the next input signal is present, an external pull-up or pull-down resistor is not necessary to hold a signal level when the bus is tri-stated.

The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. You can select this feature individually for each I/O pin. The bus-hold output drives no higher than $\mathrm{V}_{\mathrm{CCIO}}$ to prevent overdriving signals.
[1) If the bus-hold feature is enabled, the device cannot use the programmable pull-up option. Disable the bus-hold feature when the I/O pin is configured for differential signals. Bus hold circuitry is not available on the dedicated clock pins.

The bus-hold circuitry is only active after configuration. When going into user mode, the bus-hold circuit captures the value on the pin present at the end of configuration.

The bus-hold circuitry uses a resistor with a nominal resistance $\left(\mathrm{R}_{\mathrm{BH}}\right)$ of approximately $7 \mathrm{k} \Omega$ to pull the signal level to the last-driven state. Refer to the DC Characteristics \& Timing Specifications chapter in Volume 1 of the Cyclone II Device Handbook for the specific sustaining current for each $\mathrm{V}_{\text {CCIO }}$ voltage level driven through the resistor and overdrive current used to identify the next driven input level.

Programmable Pull-Up Resistor

Each Cyclone II device I/O pin provides an optional programmable pull-up resistor during user mode. If you enable this feature for an I/O pin, the pull-up resistor (typically $25 \mathrm{k} \Omega$) holds the output to the $\mathrm{V}_{\text {CCIO }}$ level of the output pin's bank.
[家 If the programmable pull-up is enabled, the device cannot use the bus-hold feature. The programmable pull-up resistors are not supported on the dedicated configuration, JTAG, and dedicated clock pins.

Advanced I/O Standard Support

Table 2-17 shows the I/O standards supported by Cyclone II devices and which I/O pins support them.

Table 2-17. Cyclone II Supported I/O Standards \& Constraints (Part 1 of 2)								
I/O Standard	Type	$\mathrm{V}_{\text {ccio }}$ Level		Top \& Bottom I/O Pins		Side I/O Pins		
		Input	Output	$\begin{array}{\|l} \text { CLK, } \\ \text { DQS } \end{array}$	User I/O Pins	$\begin{array}{\|l} \hline \text { CLK, } \\ \text { DQS } \end{array}$	PLL_OUT	User I/O Pins
3.3-V LVTTL and LVCMOS (1)	Single ended	$\begin{aligned} & 3.3 \mathrm{~V} / \\ & 2.5 \mathrm{~V} \end{aligned}$	3.3 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2.5-V LVTTL and LVCMOS	Single ended	$\begin{aligned} & 3.3 \mathrm{~V} / \\ & 2.5 \mathrm{~V} \end{aligned}$	2.5 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1.8-V LVTTL and LVCMOS	Single ended	$\begin{aligned} & \hline 1.8 \mathrm{~V} / \\ & 1.5 \mathrm{~V} \end{aligned}$	1.8 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1.5-V LVCMOS	Single ended	$\begin{aligned} & \hline 1.8 \mathrm{~V} / \\ & 1.5 \mathrm{~V} \end{aligned}$	1.5 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SSTL-2 class I	Voltage referenced	2.5 V	2.5 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SSTL-2 class II	Voltage referenced	2.5 V	2.5 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SSTL-18 class I	Voltage referenced	1.8 V	1.8 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SSTL-18 class II	Voltage referenced	1.8 V	1.8 V	\checkmark	\checkmark	(2)	(2)	(2)
HSTL-18 class I	Voltage referenced	1.8 V	1.8 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HSTL-18 class II	Voltage referenced	1.8 V	1.8 V	\checkmark	\checkmark	(2)	(2)	(2)
HSTL-15 class I	Voltage referenced	1.5 V	1.5 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HSTL-15 class II	Voltage referenced	1.5 V	1.5 V	\checkmark	\checkmark	(2)	(2)	(2)
PCl and PCI-X (1) (3)	Single ended	3.3 V	3.3 V			\checkmark	\checkmark	\checkmark
Differential SSTL-2 class I or class II	Pseudo differential (4)	(5)	2.5 V				\checkmark	
		2.5 V	(5)	$\sqrt{(6)}$		$\sqrt{ }(6)$		
Differential SSTL-18 class I or class II	Pseudo differential (4)	(5)	1.8 V				\checkmark (7)	
		1.8 V	(5)	$\sqrt{ }(6)$		$\sqrt{ }(6)$		

Table 2-17. Cyclone II Supported I/O Standards \& Constraints (Part 2 of 2)

I/O Standard	Type	$\mathrm{V}_{\text {cııo }}$ Level		Top \& Bottom I/O Pins		Side I/O Pins		
		Input	Output	$\begin{aligned} & \text { CLK, } \\ & \text { DQS } \end{aligned}$	User I/O Pins	CLK, DQS	PLL_OUT	User I/O Pins
Differential HSTL-15 class I or class II	Pseudo differential (4)	(5)	1.5 V				$\checkmark(7)$	
		1.5 V	(5)	$\sqrt{ }(6)$		$\sqrt{ }(6)$		
Differential HSTL-18 class I or class II	Pseudo differential (4)	(5)	1.8 V				\checkmark (7)	
		1.8 V	(5)	$\sqrt{ }(6)$		$\sqrt{ }(6)$		
LVDS	Differential	2.5 V	2.5 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RSDS and mini-LVDS (8)	Differential	(5)	2.5 V		\checkmark		\checkmark	\checkmark
LVPECL (9)	Differential	$\begin{array}{\|l} \hline 3.3 \mathrm{~V} / \\ 2.5 \mathrm{~V} / \\ 1.8 \mathrm{~V} / \\ 1.5 \mathrm{~V} \end{array}$	(5)	\checkmark		\checkmark		

Notes to Table 2-17:
(1) To drive inputs higher than $\mathrm{V}_{\mathrm{CCIO}}$ but less than 4.0 V , disable the PCI clamping diode and turn on the Allow LVTTL and LVCMOS input levels to overdrive input buffer option in the Quartus II software.
(2) These pins support SSTL-18 class II and 1.8- and 1.5-V HSTL class II inputs.
(3) PCI-X does not meet the IV curve requirement at the linear region. PCI-clamp diode is not available on top and bottom I/O pins.
(4) Pseudo-differential HSTL and SSTL outputs use two single-ended outputs with the second output programmed as inverted. Pseudo-differential HSTL and SSTL inputs treat differential inputs as two single-ended HSTL and SSTL inputs and only decode one of them.
(5) This I/O standard is not supported on these I/O pins.
(6) This I/O standard is only supported on the dedicated clock pins.
(7) PLL_OUT does not support differential SSTL-18 class II and differential 1.8 and 1.5-V HSTL class II.
(8) mini-LVDS and RSDS are only supported on output pins.
(9) LVPECL is only supported on clock inputs.

- For more information on Cyclone II supported I/O standards, see the Selectable I/O Standards in Cyclone II Devices chapter in Volume 1 of the Cyclone II Device Handbook.

High-Speed Differential Interfaces

Cyclone II devices can transmit and receive data through LVDS signals at a data rate of up to 640 Mbps and 805 Mbps , respectively. For the LVDS transmitter and receiver, the Cyclone II device's input and output pins support serialization and deserialization through internal logic.

The reduced swing differential signaling (RSDS) and mini-LVDS standards are derivatives of the LVDS standard. The RSDS and mini-LVDS I/O standards are similar in electrical characteristics to LVDS, but have a smaller voltage swing and therefore provide increased power benefits and reduced electromagnetic interference (EMI). Cyclone II devices support the RSDS and mini-LVDS I/O standards at data rates up to 311 Mbps at the transmitter.

A subset of pins in each I/O bank (on both rows and columns) support the high-speed I/O interface. The dual-purpose LVDS pins require an external-resistor network at the transmitter channels in addition to $100-\Omega$ termination resistors on receiver channels. These pins do not contain dedicated serialization or deserialization circuitry. Therefore, internal logic performs serialization and deserialization functions.

Cyclone II pin tables list the pins that support the high-speed I/O interface. The number of LVDS channels supported in each device family member is listed in Table 2-18.

Table 2-18. Cyclone II Device LVDS Channels (Part 1 of 2)		
Device	Pin Count	Number of LVDS Channels (1)
	144	$31(35)$
	208	$56(60)$
	256	$61(65)$
EP2C8	144	$29(33)$
	208	$53(57)$
	256	$75(79)$
EP2C15	256	$52(60)$
	484	$128(136)$
	240	$45(53)$
	256	$52(60)$
	484	$128(136)$
	484	$131(139)$
	672	$201(209)$
	484	$119(127)$

Table 2-18. Cyclone II Device LVDS Channels (Part 2 of 2)		
Device	Pin Count	Number of LVDS Channels (1)
	672	$160(168)$
	896	$257(265)$

Note to Table 2-18:
(1) The first number represents the number of bidirectional I/O pins which can be used as inputs or outputs. The number in parenthesis includes dedicated clock input pin pairs which can only be used as inputs.

You can use I/O pins and internal logic to implement a high-speed I/O receiver and transmitter in Cyclone II devices. Cyclone II devices do not contain dedicated serialization or deserialization circuitry. Therefore, shift registers, internal PLLs, and IOEs are used to perform serial-to-parallel conversions on incoming data and parallel-to-serial conversion on outgoing data.

The maximum internal clock frequency for a receiver and for a transmitter is 402.5 MHz . The maximum input data rate of 805 Mbps and the maximum output data rate of 640 Mbps is only achieved when DDIO registers are used. The LVDS standard does not require an input reference voltage, but it does require a $100-\Omega$ termination resistor between the two signals at the input buffer. An external resistor network is required on the transmitter side.

For more information on Cyclone II differential I/O interfaces, see the High-Speed Differential Interfaces in Cyclone II Devices chapter in Volume 1 of the Cyclone II Device Handbook.

Series On-Chip Termination

On-chip termination helps to prevent reflections and maintain signal integrity. This also minimizes the need for external resistors in high pin count ball grid array (BGA) packages. Cyclone II devices provide I/O driver on-chip impedance matching and on-chip series termination for single-ended outputs and bidirectional pins.

Cyclone II devices support driver impedance matching to the impedance of the transmission line, typically 25 or 50Ω When used with the output drivers, on-chip termination sets the output driver impedance to 25 or 50Ω Cyclone II devices also support I/O driver series termination ($\mathrm{R}_{\mathrm{S}}=50 \Omega$) for SSTL-2 and SSTL-18. Table 2-19 lists the I/O standards that support impedance matching and series termination.

Table 2-19. I/O Standards Supporting Series Termination		Note (1)
I/O Standards	Target $\mathbf{R}_{\mathbf{S}}(\Omega)$	$\mathbf{V}_{\text {ccio }}(\mathbf{V})$
3.3-V LVTTL and LVCMOS	$25(2)$	3.3
2.5-V LVTTL and LVCMOS	$50(2)$	2.5
1.8-V LVTTL and LVCMOS	$50(2)$	1.8
SSTL-2 class I	$50(2)$	2.5
SSTL-18 class I	$50(2)$	1.8

Notes to Table 2-19:
(1) Supported conditions are $\mathrm{V}_{\text {CCIO }}=\mathrm{V}_{\text {CCIO }} \pm 50 \mathrm{mV}$.
(2) These R_{S} values are nominal values. Actual impedance varies across process, voltage, and temperature conditions.
[家 The recommended frequency range of operation is pending silicon characterization.

On-chip series termination can be supported on any I/O bank. $\mathrm{V}_{\mathrm{CCIO}}$ and $\mathrm{V}_{\text {REF }}$ must be compatible for all I/O pins in order to enable on-chip series termination in a given I/O bank. I/O standards that support different R_{S} values can reside in the same I/O bank as long as their $\mathrm{V}_{\text {CCIO }}$ and $\mathrm{V}_{\text {REF }}$ are not conflicting.
[1 When using on-chip series termination, programmable drive strength is not available.

Impedance matching is implemented using the capabilities of the output driver and is subject to a certain degree of variation, depending on the process, voltage and temperature. The actual tolerance is pending silicon characterization.

I/O Banks

The I/O pins on Cyclone II devices are grouped together into I/O banks and each bank has a separate power bus. EP2C5 and EP2C8 devices have four I/O banks (see Figure 2-28), while EP2C15, EP2C20, EP2C35, EP2C50, and EP2C70 devices have eight I/O banks (see Figure 2-29). Each device I/O pin is associated with one I/O bank. To accommodate voltage-referenced I/O standards, each Cyclone II I/O bank has a VREF bus. Each bank in EP2C5, EP2C8, EP2C15, EP2C20, EP2C35, and EP2C50 devices supports two VREF pins and each bank of EP2C70 supports four VREF pins. When using the VREF pins, each VREF pin must be properly connected to the appropriate voltage level. In the event these pins are not used as VREF pins, they may be used as regular I/O pins.

The top and bottom I/O banks (banks 2 and 4 in EP2C5 and EP2C8 devices and banks 3, 4, 7, and 8 in EP2C15, EP2C20, EP2C35, EP2C50, and EP2C70 devices) support all I/O standards listed in Table 2-17, except the PCI/PCI-XI/O standards. The left and right side I/O banks (banks 1 and 3 in EP2C5 and EP2C8 devices and banks 1, 2,5, and 6 in EP2C15, EP2C20, EP2C35, EP2C50, and EP2C70 devices) support I/O standards listed in Table 2-17, except SSTL-18 class II, HSTL-18 class II, and HSTL-15 class II I/O standards. See Table 2-17 for a complete list of supported I/O standards.

The top and bottom I/O banks (banks 2 and 4 in EP2C5 and EP2C8 devices and banks 3, 4, 7, and 8 in EP2C15, EP2C20, EP2C35, EP2C50, and EP2C70 devices) support DDR2 memory up to $167 \mathrm{MHz} / 333 \mathrm{Mbps}$ and QDR memory up to $167 \mathrm{MHz} / 668 \mathrm{Mbps}$. The left and right side I/O banks (1 and 3 of EP2C5 and EP2C8 devices and 1, 2, 5, and 6 of EP2C15, EP2C20, EP2C35, EP2C50, and EP2C70 devices) only support SDR and DDR SDRAM interfaces. All the I/O banks of the Cyclone II devices support SDR memory up to $167 \mathrm{MHz} / 167 \mathrm{Mbps}$ and DDR memory up to $167 \mathrm{MHz} / 333 \mathrm{Mbps}$.

IT DDR2 and QDRII interfaces may be implemented in Cyclone II side banks if the use of class I I/O standard is acceptable.

Figure 2-28. EP2C5 \& EP2C8 I/O Banks Notes (1), (2)

Notes to Figure 2-28:
(1) This is a top view of the silicon die.
(2) This is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.
(3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
(4) The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock pins.
(5) The differential 1.8-V and 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock pins.

Figure 2-29. EP2C15, EP2C20, EP2C35, EP2C50 \& EP2C70 I/O Banks Notes (1), (2)

Notes to Figure 2-29:
(1) This is a top view of the silicon die.
(2) This is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.
(3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
(4) The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock pins.
(5) The differential 1.8-V and 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock pins.

Each I/O bank has its own VCCIO pins. A single device can support $1.5-\mathrm{V}, 1.8-\mathrm{V}, 2.5-\mathrm{V}$, and $3.3-\mathrm{V}$ interfaces; each individual bank can support a different standard with different I/O voltages. Each bank also has dual-purpose VREF pins to support any one of the voltage-referenced
standards (e.g., SSTL-2) independently. If an I/O bank does not use voltage-referenced standards, the VREF pins are available as user I/O pins.

Each I/O bank can support multiple standards with the same $\mathrm{V}_{\mathrm{CCIO}}$ for input and output pins. For example, when $V_{\text {CCIO }}$ is $3.3-\mathrm{V}$, a bank can support LVTTL, LVCMOS, and 3.3-V PCI for inputs and outputs. Voltage-referenced standards can be supported in an I/O bank using any number of single-ended or differential standards as long as they use the same $\mathrm{V}_{\text {REF }}$ and a compatible $\mathrm{V}_{\text {CCIO }}$ value.

MultiVolt I/O Interface

The Cyclone II architecture supports the MultiVolt I/O interface feature, which allows Cyclone II devices in all packages to interface with systems of different supply voltages. Cyclone II devices have one set of $V_{C C}$ pins (VCCINT) that power the internal device logic array and input buffers that use the LVPECL, LVDS, HSTL, or SSTL I/O standards. Cyclone II devices also have four or eight sets of VCC pins (VCCIO) that power the I/O output drivers and input buffers that use the LVTTL, LVCMOS, or PCI I/O standards.

The Cyclone II VCCINT pins must always be connected to a $1.2-\mathrm{V}$ power supply. If the $\mathrm{V}_{\text {CCINT }}$ level is 1.2 V , then input pins are $1.5-\mathrm{V}, 1.8-\mathrm{V}, 2.5-\mathrm{V}$, and $3.3-\mathrm{V}$ tolerant. The VCCIO pins can be connected to either a $1.5-\mathrm{V}$, $1.8-\mathrm{V}, 2.5-\mathrm{V}$, or $3.3-\mathrm{V}$ power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (i.e., when VCCIO pins are connected to a $1.5-\mathrm{V}$ power supply, the output levels are compatible with $1.5-\mathrm{V}$ systems). When VCCIO pins are connected to a $3.3-\mathrm{V}$ power supply, the output high is $3.3-\mathrm{V}$ and is compatible with $3.3-\mathrm{V}$ systems. Table $2-20$ summarizes Cyclone II MultiVolt I/O support.

Table 2-20. Cyclone II MultiVolt I/O Support (Part 1 of 2)					Note (1)			
$\mathrm{V}_{\text {clio }}(\mathrm{V})$	Input Signal				Output Signal			
	1.5 V	1.8 V	2.5 V	3.3 V	1.5 V	1.8 V	2.5 V	3.3 V
1.5	\checkmark	\checkmark	\checkmark (2)	\checkmark (2)	\checkmark			
1.8	\checkmark (4)	\checkmark	\checkmark (2)	\checkmark (2)	\checkmark (3)	\checkmark		
2.5			\checkmark	\checkmark	\checkmark (5)	\checkmark (5)	\checkmark	

Table 2-20. Cyclone II MultiVolt I/O Support (Part 2 of 2)					Note (1)			
$\mathrm{V}_{\text {clıo }}(\mathrm{V})$	Input Signal				Output Signal			
	1.5 V	1.8 V	2.5 V	3.3 V	1.5 V	1.8 V	2.5 V	3.3 V
3.3			\checkmark (4)	\checkmark	\checkmark (6)	\checkmark (6)	\checkmark (6)	\checkmark

Notes to Table 2-20:
(1) The PCI clamping diode must be disabled to drive an input with voltages higher than $\mathrm{V}_{\mathrm{CCIO}}$.
(2) These input values overdrive the input buffer, so the pin leakage current is slightly higher than the default value. To drive inputs higher than $\mathrm{V}_{\mathrm{CCIO}}$ but less than 4.0 V , disable the PCI clamping diode and turn on Allow voltage overdrive for LVTTL/LVCMOS input pins option in Device setting option in the Quartus II software.
(3) When $\mathrm{V}_{\mathrm{CCIO}}=1.8-\mathrm{V}$, a Cyclone II device can drive a $1.5-\mathrm{V}$ device with $1.8-\mathrm{V}$ tolerant inputs.
(4) When $\mathrm{V}_{\mathrm{CCIO}}=3.3-\mathrm{V}$ and a $2.5-\mathrm{V}$ input signal feeds an input pin or when $\mathrm{V}_{\mathrm{CCIO}}=1.8-\mathrm{V}$ and a $1.5-\mathrm{V}$ input signal feeds an input pin, the $V_{\text {CCIO }}$ supply current will be slightly larger than expected. The reason for this increase is that the input signal level does not drive to the $\mathrm{V}_{\mathrm{CCIO}}$ rail, which causes the input buffer to not completely shut off.
(5) When $\mathrm{V}_{\mathrm{CCIO}}=2.5-\mathrm{V}$, a Cyclone II device can drive a $1.5-\mathrm{V}$ or $1.8-\mathrm{V}$ device with $2.5-\mathrm{V}$ tolerant inputs.
(6) When $\mathrm{V}_{\mathrm{CCIO}}=3.3-\mathrm{V}$, a Cyclone II device can drive a $1.5-\mathrm{V}, 1.8-\mathrm{V}$, or $2.5-\mathrm{V}$ device with $3.3-\mathrm{V}$ tolerant inputs.

Document Revision History

Table 2-21 shows the revision history for this document.

Table 2-21. Document Revision History		
Date \& Document Version	Changes Made	Summary of Changes
February 2007 v3.1	- Added document revision history. - Removed Table 2-1. - Updated Figure 2-25. - Added new Note (1) to Table 2-17. - Added handpara note in "I/O Banks" section. - Updated Note (2) to Table 2-20.	- Removed Drive Strength Control from Figure 2-25. - Elaboration of DDR2 and QDRII interfaces supported by I/O bank included.
November 2005 v2.1	- Updated Table 2-7. - Updated Figures 2-11 and 2-12. - Updated Programmable Drive Strength table. - Updated Table 2-16. - Updated Table 2-18. - Updated Table 2-19.	
July 2005 v2.0	- Updated technical content throughout. - Updated Table 2-16.	
February 2005 v1.2	Updated figure 2-12.	
November 2004 v1.1	Updated Table 2-19.	
June 2004 v1.0	Added document to the Cyclone II Device Handbook.	

3. Configuration \& Testing

> IEEE Std. 1149.1 (JTAG) Boundary Scan Support

All Cyclone ${ }^{\circledR}$ II devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1. JTAG boundary-scan testing can be performed either before or after, but not during configuration. Cyclone II devices can also use the JTAG port for configuration with the Quartus ${ }^{\circledR}$ II software or hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc).

Cyclone II devices support IOE I/O standard reconfiguration through the JTAG BST chain. The JTAG chain can update the I/O standard for all input and output pins any time before or during user mode through the CONFIG_IO instruction. You can use this capability for JTAG testing before configuration when some of the Cyclone II pins drive or receive from other devices on the board using voltage-referenced standards. Since the Cyclone II device might not be configured before JTAG testing, the I/O pins may not be configured for appropriate electrical standards for chip-to-chip communication. Programming the I/O standards via JTAG allows you to fully test I/O connections to other devices.

- For information on I/O reconfiguration, refer to the MorphIO: An I/O Reconfiguration Solution for Altera Devices White Paper.

A device operating in JTAG mode uses four required pins: TDI, TDO, TMS, and TCK. The TCK pin has an internal weak pull-down resister, while the TDI and TMS pins have weak internal pull-up resistors. The TDO output pin and all JTAG input pin voltage is determined by the $\mathrm{V}_{\mathrm{CCIO}}$ of the bank where it resides. The bank $\mathrm{V}_{\mathrm{CCIO}}$ selects whether the JTAG inputs are 1.5-, 1.8-, 2.5-, or 3.3-V compatible.
[Stratix ${ }^{\circledR}$ II, Stratix, Cyclone II and Cyclone devices must be within the first 8 devices in a JTAG chain. All of these devices have the same JTAG controller. If any of the Stratix II, Stratix, Cyclone II or Cyclone devices are in the 9th of further position, they fail configuration. This does not affect Signal Tap II.

Cyclone II devices also use the JTAG port to monitor the logic operation of the device with the SignalTap ${ }^{\circledR}$ II embedded logic analyzer. Cyclone II devices support the JTAG instructions shown in Table 3-1.

Table 3-1. Cyclone II JTAG Instructions (Part 1 of 2)				
JTAG Instruction	Instruction Code			Description
SAMPLE/PRELOAD	00	0000	0101	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap II embedded logic analyzer.
Extest (1)	00	0000	1111	Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS		111	1111	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.
USERCODE	00	0000	0111	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.
IDCODE		0000	0110	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
HIGHZ (1)		0000	1011	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation, while tri-stating all of the I/O pins.
CLAMP (1)		0000	1010	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation while holding I/O pins to a state defined by the data in the boundary-scan register.
$\begin{aligned} & \text { ICR } \\ & \text { instructions } \end{aligned}$				Used when configuring a Cyclone II device via the JTAG port with a USB Blaster ${ }^{\text {TM }}$, ByteBlaster ${ }^{\text {rm }}$ II, MasterBlaster ${ }^{\text {TM }}$ or ByteBlasterMV ${ }^{\text {TM }}$ download cable, or when using a Jam File or JBC File via an embedded processor.
PULSE_NCONFIG		0000	0001	Emulates pulsing the nCONFIG pin low to trigger reconfiguration even though the physical pin is unaffected.

Table 3-1. Cyclone II JTAG Instructions (Part 2 of 2)

JTAG Instruction	Instruction Code	Description
CONFIG_IO	0000001101	Allows configuration of I/O standards through the JTAG chain for JTAG testing. Can be executed before, after, or during configuration. Stops configuration if executed during configuration. Once issued, the CONFIG_IO instruction holds nSTATUS low to reset the conniguration device. nSTATUS is held low until the device is reconfigured.
SignalTap II instructions	Monitors internal device operation with the SignalTap II embedded logic analyzer.	

Note to Table 3-1:
(1) Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST.

The Quartus II software has an Auto Usercode feature where you can choose to use the checksum value of a programming file as the JTAG user code. If selected, the checksum is automatically loaded to the USERCODE register. In the Settings dialog box in the Assignments menu, click Device \& Pin Options, then General, and then turn on the Auto Usercode option.

The Cyclone II device instruction register length is 10 bits and the USERCODE register length is 32 bits. Tables 3-2 and 3-3 show the boundary-scan register length and device IDCODE information for Cyclone II devices.

Table 3-2. Cyclone II Boundary-Scan Register Length

Device	Boundary-Scan Register Length
EP2C5	498
EP2C8	597
EP2C15	969
EP2C20	969
EP2C35	1,449
EP2C50	1,374
EP2C70	1,890

Table 3-3. 32-Bit Cyclone II Device IDCODE

Device	IDCODE (32 Bits) (1)					
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer Identity (11 Bits)	LSB (1 Bit) (2)		
	0000	0010000010110001	00001101110	1		
EP2C8	0000	0010000010110010	00001101110	1		
EP2C15	0000	0010000010110011	00001101110	1		
EP2C20	0000	0010000010110011	00001101110	1		
EP2C35	0000	0010000010110100	00001101110	1		
EP2C50	0000	0010000010110101	00001101110	1		
EP2C70	0000	0010000010110110	00001101110	1		

Notes to Table 3-3:
(1) The most significant bit (MSB) is on the left.
(2) The IDCODE's least significant bit (LSB) is always 1.

For more information on the Cyclone II JTAG specifications, refer to the DC Characteristics \& Timing Specifications chapter in the Cyclone II Device Handbook, Volume 1.

SignalTap II Embedded Logic
 Analyzer

Cyclone II devices support the SignalTap II embedded logic analyzer, which monitors design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry. You can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages, such as FineLine BGA ${ }^{\circledR}$ packages, because it can be difficult to add a connection to a pin during the debugging process after a board is designed and manufactured.

The logic, circuitry, and interconnects in the Cyclone II architecture are configured with CMOS SRAM elements. Altera FPGA devices are reconfigurable and every device is tested with a high coverage production test program so you do not have to perform fault testing and can instead focus on simulation and design verification.

Cyclone II devices are configured at system power-up with data stored in an Altera configuration device or provided by a system controller. The Cyclone II device's optimized interface allows the device to act as controller in an active serial configuration scheme with EPCS serial configuration devices. The serial configuration device can be programmed via SRunner, the ByteBlaster II or USB Blaster download cable, the Altera Programming Unit (APU), or third-party programmers.

In addition to EPCS serial configuration devices, Altera offers in-system programmability (ISP)-capable configuration devices that can configure Cyclone II devices via a serial data stream using the Passive serial (PS) configuration mode. The PS interface also enables microprocessors to treat Cyclone II devices as memory and configure them by writing to a virtual memory location, simplifying reconfiguration. After a Cyclone II device has been configured, it can be reconfigured in-circuit by resetting the device and loading new configuration data. Real-time changes can be made during system operation, enabling innovative reconfigurable applications.

The Cyclone II architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. You can use the 10 MHz internal oscillator or the optional CLKUSR pin during the initialization. The 10 MHz internal oscillator is disabled in user mode. Together, the configuration and initialization processes are called command mode. Normal device operation is called user mode.

SRAM configuration elements allow Cyclone II devices to be reconfigured in-circuit by loading new configuration data into the device. With real-time reconfiguration, the device is forced into command mode with the nCONFIG pin. The configuration process loads different configuration data, reinitializes the device, and resumes user-mode operation. You can perform in-field upgrades by distributing new configuration files within the system or remotely.

A built-in weak pull-up resistor pulls all user I / O pins to $\mathrm{V}_{\mathrm{CCIO}}$ before and during device configuration.

The configuration pins support $1.5-\mathrm{V} / 1.8-\mathrm{V}$ or $2.5-\mathrm{V} / 3.3-\mathrm{V}$ I/O standards. The voltage level of the configuration output pins is determined by the $\mathrm{V}_{\mathrm{CCIO}}$ of the bank where the pins reside. The bank $\mathrm{V}_{\mathrm{CCIO}}$ selects whether the configuration inputs are $1.5-\mathrm{V}, 1.8-\mathrm{V}, 2.5-\mathrm{V}$, or 3.3-V compatible.

Configuration Schemes

You can load the configuration data for a Cyclone II device with one of three configuration schemes (see Table 3-4), chosen on the basis of the target application. You can use a configuration device, intelligent controller, or the JTAG port to configure a Cyclone II device. A low-cost configuration device can automatically configure a Cyclone II device at system power-up.

Multiple Cyclone II devices can be configured in any of the three configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 3-4. Data Sources for Configuration	
Configuration Scheme	\quad Data Source
Active serial (AS)	Low-cost serial configuration device
Passive serial (PS)	Enhanced or EPC2 configuration device, MasterBlaster, ByteBlasterMV, ByteBlaster II or USB Blaster download cable, or serial data source
JTAG	MasterBlaster, ByteBlasterMV, ByteBlaster II or USB Blaster download cable or a microprocessor with a Jam or JBC file
For more information on configuration, see the Configuring Cyclone II Devices chapter of the Cyclone II Handbook, Volume 2.	

> Cyclone II Automated Single Event Upset Detection

Cyclone II devices offer on-chip circuitry for automated checking of single event upset (SEU) detection. Some applications that require the device to operate error free at high elevations or in close proximity to earth's North or South Pole require periodic checks to ensure continued data integrity. The error detection cyclic redundancy code (CRC) feature controlled by the Device \& Pin Options dialog box in the Quartus II software uses a 32-bit CRC circuit to ensure data reliability and is one of the best options for mitigating SEU.

You can implement the error detection CRC feature with existing circuitry in Cyclone II devices, eliminating the need for external logic. For Cyclone II devices, the CRC is pre-computed by Quartus II software and then sent to the device as part of the POF file header. The CRC_ERROR pin reports a soft error when configuration SRAM data is corrupted, indicating to the user to preform a device reconfiguration.

Custom-Built Circuitry

Dedicated circuitry in the Cyclone II devices performs error detection automatically. This error detection circuitry in Cyclone II devices constantly checks for errors in the configuration SRAM cells while the device is in user mode. You can monitor one external pin for the error and use it to trigger a re-configuration cycle. You can select the desired time between checks by adjusting a built-in clock divider.

Software Interface

In the Quartus II software version 4.1 and later, you can turn on the automated error detection CRC feature in the Device \& Pin Options dialog box. This dialog box allows you to enable the feature and set the internal frequency of the CRC checker between 400 kHz to 80 MHz . This controls the rate that the CRC circuitry verifies the internal configuration SRAM bits in the FPGA device.

For more information on CRC, refer to AN: 357 Error Detection Using CRC in Altera FPGAs.

Document Revision History

Table 3-5 shows the revision history for this document.

Table 3-5. Document Revision History		
 Document Version	Changes Made	Summary of Changes
February 2007 v2. 2	- Added document revision history. - Added new handpara nore in "IEEE Std. 1149.1 (JTAG) Boundary Scan Support" section. - Updated "Cyclone II Automated Single Event Upset Detection" section.	- Added information about limitation of cascading multi devices in the same JTAG chain. - Corrected information on CRC calculation.
July 2005 v2.0	Updated technical content.	
February 2005 v1.2	Updated information on JTAG chain limitations.	
November 2004 v1.1	Updated Table 3-4.	
June 2004 v1.0	Added document to the Cyclone II Device Handbook.	

部吕员部。

4．Hot Socketing \＆Power－On Reset

Cyclone ${ }^{\circledR}$ II devices offer hot socketing（also known as hot plug－in，hot insertion，or hot swap）and power sequencing support without the use of any external devices．You can insert or remove a Cyclone II board in a system during system operation without causing undesirable effects to the board or to the running system bus．

The hot－socketing feature lessens the board design difficulty when using Cyclone II devices on printed circuit boards（PCBs）that also contain a mixture of $3.3-$ ， $2.5-1.8-$ ，and $1.5-\mathrm{V}$ devices．With the Cyclone II hot－socketing feature，you no longer need to ensure a proper power－up sequence for each device on the board．

The Cyclone II hot－socketing feature provides：
－Board or device insertion and removal without external components or board manipulation
－Support for any power－up sequence
－Non－intrusive I／O buffers to system buses during hot insertion
This chapter also discusses the power－on reset（POR）circuitry in Cyclone II devices．The POR circuitry keeps the devices in the reset state until the $V_{C C}$ is within operating range．

Cyclone II devices offer hot－socketing capability with all three features listed above without any external components or special design requirements．The hot－socketing feature in Cyclone II devices offers the following：
－The device can be driven before power－up without any damage to the device itself．
－I／O pins remain tri－stated during power－up．The device does not drive out before or during power－up，thereby affecting other buses in operation．

Devices Can Be Driven before Power-Up

You can drive signals into the I/O pins, dedicated input pins, and dedicated clock pins of Cyclone II devices before or during power-up or power-down without damaging the device. Cyclone II devices support any power-up or power-down sequence ($\mathrm{V}_{\mathrm{CCIO}}$ and $\mathrm{V}_{\mathrm{CCINT}}$) to simplify system level design.

I/O Pins Remain Tri-Stated during Power-Up

A device that does not support hot socketing may interrupt system operation or cause contention by driving out before or during power-up. In a hot-socketing situation, the Cyclone II device's output buffers are turned off during system power-up or power-down. The Cyclone II device also does not drive out until the device is configured and has attained proper operating conditions. The I/O pins are tri-stated until the device enters user mode with a weak pull-up resistor (R) to 3.3V. Refer to Figure 4-1 for more information.

IL You can power up or power down the $\mathrm{V}_{\text {CCIO }}$ and $\mathrm{V}_{\text {CCINT }}$ pins in any sequence. The $\mathrm{V}_{\mathrm{CCIO}}$ and $\mathrm{V}_{\text {CCINT }}$ must have monotonic rise to their steady state levels. (Refer to Figure 4-3 for more information.) The power supply ramp rates can range from $100 \mu \mathrm{~s}$ to 100 ms for non " A " devices. Both V_{CC} supplies must power down within 100 ms of each other to prevent I/O pins from driving out. During hot socketing, the I/O pin capacitance is less than 15 pF and the clock pin capacitance is less than 20 pF . Cyclone II devices meet the following hot-socketing specification.

■ The hot-socketing DC specification is $\left|\mathrm{I}_{\text {IOPIN }}\right|<300 \mu \mathrm{~A}$.

- The hot-socketing AC specification is $\left|\mathrm{I}_{\text {IOPIN }}\right|<8 \mathrm{~mA}$ for 10 ns or less.

This specification takes into account the pin capacitance but not board trace and external loading capacitance. You must consider additional capacitance for trace, connector, and loading separately.
$\mathrm{I}_{\text {IOPIN }}$ is the current at any user I/O pin on the device. The DC specification applies when all V_{CC} supplies to the device are stable in the powered-up or powered-down conditions. For the AC specification, the peak current duration due to power-up transients is 10 ns or less.

A possible concern for semiconductor devices in general regarding hot socketing is the potential for latch-up. Latch-up can occur when electrical subsystems are hot socketed into an active system. During hot socketing, the signal pins may be connected and driven by the active system before
the power supply can provide current to the device's V_{CC} and ground planes. This condition can lead to latch-up and cause a low-impedance path from V_{CC} to ground within the device. As a result, the device extends a large amount of current, possibly causing electrical damage.

Altera has ensured by design of the I/O buffers and hot-socketing circuitry, that Cyclone II devices are immune to latch-up during hot socketing.

Hot-Socketing
 Feature
 Implementation in Cyclone II Devices

The hot-socketing feature turns off the output buffer during power up (either $\mathrm{V}_{\text {CCINT }}$ or $\mathrm{V}_{\text {CCIO }}$ supplies) or power down. The hot-socket circuit generates an internal HOTSCKT signal when either $\mathrm{V}_{\text {CCINT }}$ or $\mathrm{V}_{\text {CCIO }}$ is below the threshold voltage. Designs cannot use the HOTSCKT signal for other purposes. The HOTSCKT signal cuts off the output buffer to ensure that no DC current (except for weak pull-up leakage current) leaks through the pin. When V_{CC} ramps up slowly, V_{CC} is still relatively low even after the internal POR signal (not available to the FPGA fabric used by customer designs) is released and the configuration is finished. The CONF_DONE, nCEO, and nSTATUS pins fail to respond, as the output buffer cannot drive out because the hot-socketing circuitry keeps the I/O pins tristated at this low V_{CC} voltage. Therefore, the hot-socketing circuit has been removed on these configuration output or bidirectional pins to ensure that they are able to operate during configuration. These pins are expected to drive out during power-up and power-down sequences.

Each I/O pin has the circuitry shown in Figure 4-1.

Figure 4-1. Hot-Socketing Circuit Block Diagram for Cyclone II Devices

The POR circuit monitors $\mathrm{V}_{\text {CCINT }}$ voltage level and keeps I / O pins tri-stated until the device is in user mode. The weak pull-up resistor (R) from the I / O pin to $\mathrm{V}_{\mathrm{CCIO}}$ keeps the I / O pins from floating. The voltage tolerance control circuit permits the I/O pins to be driven by 3.3 V before $\mathrm{V}_{\mathrm{CCIO}}$ and / or $\mathrm{V}_{\mathrm{CCINT}}$ are powered, and it prevents the I / O pins from driving out when the device is not in user mode.

For more information, see the DC Characteristics \& Timing Specifications chapter in Volume 1 of the Cyclone II Device Handbook for the value of the internal weak pull-up resistors.

Figure 4-2 shows a transistor level cross section of the Cyclone II device I/O buffers. This design ensures that the output buffers do not drive when $\mathrm{V}_{\text {CCIO }}$ is powered before $\mathrm{V}_{\text {CCINT }}$ or if the I / O pad voltage is higher than $\mathrm{V}_{\mathrm{CCIO}}$. This also applies for sudden voltage spikes during hot socketing. The $\mathrm{V}_{\text {PAD }}$ leakage current charges the voltage tolerance control circuit capacitance.

Figure 4-2. Transistor Level Diagram of FPGA Device I/O Buffers

Notes to Figure 4-2:
(1) This is the logic array signal or the larger of either the $\mathrm{V}_{\text {CCIO }}$ or $\mathrm{V}_{\text {PAD }}$ signal.
(2) This is the larger of either the $V_{\text {CCIO }}$ or $V_{\text {PAD }}$ signal.

Power-On Reset Circuitry

Cyclone II devices contain POR circuitry to keep the device in a reset state until the power supply voltage levels have stabilized during power-up. The POR circuit monitors the $\mathrm{V}_{\text {CCINT }}$ voltage levels and tri-states all user I / O pins until the V_{CC} reaches the recommended operating levels. In addition, the POR circuitry also monitors the $\mathrm{V}_{\mathrm{CCIO}}$ level of the two I / O banks that contains configuration pins (I/O banks 1 and 3 for EP2C5 and EP2C8, I/O banks 2 and 6 for EP2C15A, EP2C20, EP2C35, EP2C50, and EP2C70) and tri-states all user I/O pins until the V_{CC} reaches the recommended operating levels.

After the Cyclone II device enters user mode, the POR circuit continues to monitor the $\mathrm{V}_{\text {CCINT }}$ voltage level so that a brown-out condition during user mode can be detected. If the $\mathrm{V}_{\mathrm{CCINT}}$ voltage sags below the POR trip point during user mode, the POR circuit resets the device. If the $\mathrm{V}_{\mathrm{CCIO}}$ voltage sags during user mode, the POR circuit does not reset the device.

"Wake-up" Time for Cyclone II Devices

In some applications, it may be necessary for a device to wake up very quickly in order to begin operation. The Cyclone II device family offers the Fast-On feature to support fast wake-up time applications. Devices that support the Fast-On feature are designated with an " A " in the ordering code and have stricter power up requirements compared to nonA devices.

For Cyclone II devices, wake-up time consists of power-up, POR, configuration, and initialization. The device must properly go through all four stages to configure correctly and begin operation. You can calculate wake-up time using the following equation:

$$
\text { Wake-Up Time }=V_{C C} \text { Ramp Time }+ \text { POR Time }+ \text { Configuration Time }+ \text { Initialization Time }
$$

Figure 4-3 illustrates the components of wake up time.

Figure 4-3. Cyclone II Wake-Up Time

Note to Figure 4-3:
(1) V_{CC} ramp must be monotonic.

The V_{CC} ramp time and POR time will depend on the device characteristics and the power supply used in your system. The fast-on devices require a maximum V_{CC} ramp time of 2 ms and have a maximum POR time of 12 ms .

Configuration time will depend on the configuration mode chosen and the configuration file size. You can calculate configuration time by multiplying the number of bits in the configuration file with the period of the configuration clock. For fast configuration times, you should use Passive Serial (PS) configuration mode with maximum DCLK frequency of 100 MHz . In addition, you can use compression to reduce the configuration file size and speed up the configuration time. The $\mathrm{t}_{\mathrm{CD} 2 \mathrm{UM}}$ or $\mathrm{t}_{\mathrm{CD} 2 \mathrm{UMC}}$ parameters will determine the initialization time.

IT For more information on the $\mathrm{t}_{\mathrm{CD} 2 \mathrm{UM}}$ or $\mathrm{t}_{\text {CD2UMC }}$ parameters, refer to the Configuring Cyclone II Devices chapter in the Cyclone II Device Handbook.

If you cannot meet the maximum $V_{C C}$ ramp time requirement, you must use an external component to hold n CONFI low until the power supplies have reached their minimum recommend operating levels. Otherwise, the device may not properly configure and enter user mode.

Conclusion

Document

 Revision HistoryCyclone II devices are hot socketable and support all power-up and power-down sequences with the one requirement that $\mathrm{V}_{\mathrm{CCIO}}$ and $\mathrm{V}_{\text {CCINT }}$ be powered up and down within 100 ms of each other to keep the I/O pins from driving out. Cyclone II devices do not require any external devices for hot socketing and power sequencing.

Table 4-1 shows the revision history for this document.

Table 4-1. Document Revision History		
 Document Version	Changes Made	Summary of Changes
February 2007 v3.1	- Added document revision history. - Updated "//O Pins Remain Tri-Stated during Power-Up" section. - Updated "Power-On Reset Circuitry" section. - Added footnote to Figure 4-3.	- Specified $\mathrm{V}_{\mathrm{CCIO}}$ and $\mathrm{V}_{\text {CCINT }}$ supplies must be GND when "not powered". - Added clarification about input-tristate behavior. - Added infomation on V_{CC} monotonic ramp.
July 2005 v2.0	Updated technical content throughout.	
February 2005 v1.1	Removed ESD section.	
June 2004 v1.0	Added document to the Cyclone II Device Handbook.	

5. DC Characteristics \& Timing Specifications

Operating Conditions

Cyclone ${ }^{\circledR}$ II devices are offered in commercial, industrial, and extended temperature grades. Commercial devices are offered in -6 (fastest), $-7,-8$ speed grades.

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise noted, the parameter values in this chapter apply to all Cyclone II devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades. All parameters representing voltages are measured with respect to ground.

Tables 5-1 through 5-4 provide information on absolute maximum ratings.

Table 5-1. Cyclone II Device Absolute Maximum Ratings Notes (1), (2)

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
$\mathrm{V}_{\text {CCINT }}$	Supply voltage	With respect to ground	-0.5	1.8	V
$\mathrm{V}_{\text {CCIO }}$	Output supply voltage		-0.5	4.6	V
$\begin{aligned} & \mathrm{V}_{\mathrm{CCA} A \mathrm{PLL}} \\ & {[1 . .4]} \end{aligned}$	PLL supply voltage		-0.5	1.8	V
$\mathrm{V}_{\text {IN }}$	DC input voltage (3)		-0.5	4.6	V
lout	DC output current, per pin		-25	40	mA
$\mathrm{T}_{\text {STG }}$	Storage temperature	No bias	-65	150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature	BGA packages under bias		125	${ }^{\circ} \mathrm{C}$

Notes to Table 5-1:
(1) Conditions beyond those listed in this table cause permanent damage to a device. These are stress ratings only. Functional operation at these levels or any other conditions beyond those specified in this chapter is not implied. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device reliability.
(2) See the Operating Requirements for Altera Devices Data Sheet for more information.
(3) During transitions, the inputs may over shoot to the voltage shown in Table 5-4 based upon the input duty cycle. The DC case is equivalent to 100% duty cycle. During transition, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns .

Table 5-2 specifies the recommended operating conditions for Cyclone II devices. It shows the allowed voltage ranges for $\mathrm{V}_{\mathrm{CCINT}}, \mathrm{V}_{\mathrm{CCIO}}$, and the operating junction temperature (T_{J}). The LVTTL and LVCMOS inputs are powered by $\mathrm{V}_{\mathrm{CCIO}}$ only. The LVDS and LVPECL input buffers on dedicated clock pins are powered by $\mathrm{V}_{\text {CCINT }}$. The SSTL, HSTL, LVDS input buffers are powered by both $\mathrm{V}_{\text {CCINT }}$ and $\mathrm{V}_{\text {CCIO }}$.

Table 5-2. Recommended Operating Conditions

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
$\mathrm{V}_{\text {CIINT }}$	Supply voltage for internal logic and input buffers	(1)	1.15	1.25	V
$\mathrm{V}_{\text {CCIO (}}$ (2)	Supply voltage for output buffers, 3.3-V operation	(1)	3.135 (3.00)	$\begin{gathered} 3.465(3.60) \\ \text { (3) } \end{gathered}$	V
	Supply voltage for output buffers, 2.5-V operation	(1)	2.375	2.625	V
	Supply voltage for output buffers, 1.8-V operation	(1)	1.71	1.89	V
	Supply voltage for output buffers, $1.5-\mathrm{V}$ operation	(1)	1.425	1.575	V
T_{J}	Operating junction temperature	For commercial use	0	85	${ }^{\circ} \mathrm{C}$
		For industrial use	-40	100	${ }^{\circ} \mathrm{C}$
		For extended temperature use	-40	125	${ }^{\circ} \mathrm{C}$

Notes to Table 5-2:
(1) The V_{CC} must rise monotonically. The maximum V_{CC} (both $\mathrm{V}_{\mathrm{CCIO}}$ and $\mathrm{V}_{\mathrm{CCINT}}$) rise time is 100 ms for non-A devices and 2 ms for A devices.
(2) The $\mathrm{V}_{\mathrm{CCIO}}$ range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended $\mathrm{V}_{\text {CCIO }}$ range specific to each of the single-ended I/O standards is given in Table 5-6, and those specific to the differential standards is given in Table 5-8.
(3) The minimum and maximum values of 3.0 V and 3.6 V , respectively, for $\mathrm{V}_{\mathrm{CCIO}}$ only applies to the PCI and PCI- X I/O standards. See Table 5-6 for the voltage range of other I/O standards.

Table 5-3. DC Characteristics for User I/O, Dual-Purpose, \& Dedicated Pins (Part 1 of 2)

Symbol	Parameter	Conditions		Minimum	Typical	Maximum	Unit
$\mathrm{V}_{\text {IN }}$	Input voltage	(1), (2)		-0.5		4.0	V
I_{i}	Input pin leakage current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CCIOmax }}$ to 0 V (3)		-10		10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT }}$	Output voltage			0		$\mathrm{V}_{\text {clio }}$	V
$\mathrm{I}_{\text {Oz }}$	Tri-stated I/O pin leakage current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CCIOmax }}$ to 0 V (3)		-10		10	$\mu \mathrm{A}$
ICcinto	$\mathrm{V}_{\mathrm{CIINT}}$ supply current (standby)	$\mathrm{V}_{\mathrm{IN}}=$ ground, no load, no toggling inputs $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ Nominal $\mathrm{V}_{\text {CCINT }}$	EP2C5		0.010	(4)	A
			EP2C8		0.017	(4)	A
			EP2C15		0.037	(4)	A
			EP2C20		0.037	(4)	A
			EP2C35		0.066	(4)	A
			EP2C50		0.101	(4)	A
			EP2C70		0.141	(4)	A
ICcıoo	$\mathrm{V}_{\text {CCIO }}$ supply current (standby)	$\mathrm{V}_{\mathrm{IN}}=$ ground, no load, no toggling inputs $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{CCIO}}=2.5 \mathrm{~V}$	EP2C5		0.7	(4)	mA
			EP2C8		0.8	(4)	mA
			EP2C15		0.9	(4)	mA
			EP2C20		0.9	(4)	mA
			EP2C35		1.3	(4)	mA
			EP2C50		1.3	(4)	mA
			EP2C70		1.7	(4)	mA

Table 5-3. DC Characteristics for User I/O, Dual-Purpose, \& Dedicated Pins (Part 2 of 2)

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
$\mathrm{R}_{\text {CONF }}$ (5) (6)	Value of I/O pin pullup resistor before and during configuration	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} ; \mathrm{V}_{\text {CCIO }}=3.3 \mathrm{~V}$	10	25	50	$\mathrm{k} \Omega$
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} ; \mathrm{V}_{\text {CCIO }}=2.5 \mathrm{~V}$	15	35	70	$\mathrm{k} \Omega$
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} ; \mathrm{V}_{\text {CCIO }}=1.8 \mathrm{~V}$	30	50	100	$\mathrm{k} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{V}_{\text {CCIO }}=1.5 \mathrm{~V}$	40	75	150	$\mathrm{k} \Omega$
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} ; \mathrm{V}_{\text {CCIO }}=1.2 \mathrm{~V}$	50	90	170	$\mathrm{k} \Omega$
	Recommended value of I/O pin external pull-down resistor before and during configuration	(7)		1	2	$\mathrm{k} \Omega$

Notes to Table 5-3:
(1) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before $\mathrm{V}_{\mathrm{CCINT}}$ and $\mathrm{V}_{\mathrm{CCIO}}$ are powered.
(2) The minimum DC input is -0.5 V . During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltages shown in Table 5-4, based on input duty cycle for input currents less than 100 mA . The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.
(3) This value is specified for normal device operation. The value may vary during power-up. This applies for all $\mathrm{V}_{\text {CCIO }}$ settings (3.3, 2.5, 1.8, and 1.5 V).
(4) Maximum values depend on the actual T_{J} and design utilization. See the Excel-based PowerPlay Early Power Estimator (www.altera.com) or the Quartus II PowerPlay Power Analyzer feature for maximum values. See the section "Power Consumption" on page 5-13 for more information.
(5) $\quad \mathrm{R}_{\mathrm{CONF}}$ values are based on characterization. $\mathrm{R}_{\mathrm{CONF}}=\mathrm{V}_{\mathrm{CCIO}} / \mathrm{I}_{\text {RCONF }}$. $\mathrm{R}_{\mathrm{CONF}}$ values may be different if $\mathrm{V}_{\text {IN }}$ value is not 0 V . Pin pull-up resistance values will be lower if an external source drives the pin higher than $\mathrm{V}_{\text {CCIO }}$.
(6) Minimum condition at $-40^{\circ} \mathrm{C}$ and high V_{CC}, typical condition at $25^{\circ} \mathrm{C}$ and nominal V_{CC} and maximum condition at $125^{\circ} \mathrm{C}$ and low V_{CC} for $\mathrm{R}_{\mathrm{CONF}}$ values.
(7) These values apply to all $\mathrm{V}_{\text {CCIO }}$ settings.

Table 5-4 shows the maximum $\mathrm{V}_{\text {IN }}$ overshoot voltage and the dependency on the duty cycle of the input signal. See Table 5-3 for more information.

Table 5-4. $\boldsymbol{V}_{\text {IN }}$ Overshoot Voltage for AII Input Buffers	
Maximum $\mathbf{V}_{\text {IN }}$ (V)	Input Signal Duty Cycle
4.0	100% (DC)
4.1	90%
4.2	50%
4.3	30%
4.4	17%
4.5	10%

Single-Ended I/O Standards

Tables 5-6 and 5-7 provide operating condition information when using single-ended I/O standards with Cyclone II devices. Table 5-5 provides descriptions for the voltage and current symbols used in Tables 5-6 and 5-7.

Table 5-5. Voltage \& Current Symbol Definitions

Symbol	Definition
$\mathrm{V}_{\mathrm{CCIO}}$	Supply voltage for single-ended inputs and for output drivers
$\mathrm{V}_{\mathrm{REF}}$	Reference voltage for setting the input switching threshold
V_{IL}	Input voltage that indicates a low logic level
V_{IH}	Input voltage that indicates a high logic level
V_{OL}	Output voltage that indicates a low logic level
V_{OH}	Output voltage that indicates a high logic level
I_{OL}	Output current condition under which V_{OL} is tested
I_{OH}	Output current condition under which V_{OH} is tested
V_{TT}	Voltage applied to a resistor termination as specified by HSTL and SSTL standards

Table 5-6. Recommended Operating Conditions for User I/O Pins Using Single-Ended I/O Standards (Part 1 of 2) Note (1)								
I/O Standard	$\mathrm{V}_{\text {ccio }}$ (V)			$\mathrm{V}_{\text {REF }}$ (V)			$\mathrm{V}_{\text {IL }}$ (V)	$\mathrm{V}_{\text {IH }}(\mathrm{V})$
	Min	Typ	Max	Min	Typ	Max	Max	Min
3.3-V LVTTL and LVCMOS	3.135	3.3	3.465				0.8	1.7
2.5-V LVTTL and LVCMOS	2.375	2.5	2.625				0.7	1.7
1.8-V LVTTL and LVCMOS	1.710	1.8	1.890				$0.35 \times \mathrm{V}_{\text {Clıo }}$	$0.65 \times \mathrm{V}_{\text {Clıo }}$
$\begin{aligned} & 1.5-\mathrm{V} \\ & \text { LVCMOS } \end{aligned}$	1.425	1.5	1.575				$0.35 \times \mathrm{V}_{\text {Clı }}$	$0.65 \times \mathrm{V}_{\text {Clı }}$
PCl and $\mathrm{PCl}-\mathrm{X}$	3.000	3.3	3.600				$0.3 \times \mathrm{V}_{\text {CCIO }}$	$0.5 \times \mathrm{V}_{\text {CCIO }}$
SSTL-2 class I	2.375	2.5	2.625	1.19	1.25	1.31	$\begin{aligned} & \hline V_{\text {REF }}-0.18 \text { (DC) } \\ & V_{\text {REF }}-0.35(A C) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {REF }}+0.18(\mathrm{DC}) \\ & \mathrm{V}_{\mathrm{REF}}+0.35(\mathrm{AC}) \end{aligned}$
SSTL-2 class II	2.375	2.5	2.625	1.19	1.25	1.31	$\begin{aligned} & \hline \mathrm{V}_{\text {REF }}-0.18(\mathrm{DC}) \\ & \mathrm{V}_{\text {REF }}-0.35(\mathrm{AC}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}+0.18(\mathrm{DC}) \\ & \mathrm{V}_{\mathrm{REF}}+0.35(\mathrm{AC}) \end{aligned}$

Table 5-6. Recommended Operating Conditions for User I/O Pins Using Single-Ended I/O Standards (Part 2 of 2) Note (1)

I/O Standard	$\mathrm{V}_{\text {clio }}(\mathrm{V})$			$V_{\text {REF }}(\mathrm{V})$			V IL (V)	$V_{\text {IH }}(\mathrm{V})$
	Min	Typ	Max	Min	Typ	Max	Max	Min
$\begin{aligned} & \text { SSTL-18 class } \\ & \text { I } \end{aligned}$	1.7	1.8	1.9	0.833	0.9	0.969	$\begin{aligned} & \mathrm{V}_{\text {REF }}-0.125(\mathrm{DC}) \\ & \mathrm{V}_{\text {REF }}-0.25(\mathrm{AC}) \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{V}_{\text {REF }}+0.125(\mathrm{DC}) \\ \mathrm{V}_{\text {REF }}+0.25(\mathrm{AC}) \end{array}$
$\begin{aligned} & \text { SSTL-18 class } \\ & \text { II } \end{aligned}$	1.7	1.8	1.9	0.833	0.9	0.969	$\begin{aligned} & \mathrm{V}_{\text {REF }}-0.125(\mathrm{DC}) \\ & \mathrm{V}_{\text {REF }}-0.25(\mathrm{AC}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {REF }}+0.125(\mathrm{DC}) \\ & \mathrm{V}_{\text {REF }}+0.25(\mathrm{AC}) \end{aligned}$
$\begin{aligned} & \text { 1.8-V HSTL } \\ & \text { class I } \end{aligned}$	1.71	1.8	1.89	0.85	0.9	0.95	$\begin{aligned} & \hline V_{\text {REF }}-0.1(\mathrm{DC}) \\ & \mathrm{V}_{\text {REF }}-0.2(\mathrm{AC}) \end{aligned}$	$\begin{aligned} & \hline V_{\text {REF }}+0.1 \text { (DC) } \\ & V_{\text {REF }}+0.2 \text { (AC) } \end{aligned}$
$\begin{array}{\|l} \hline 1.8-\mathrm{V} \text { HSTL } \\ \text { class II } \end{array}$	1.71	1.8	1.89	0.85	0.9	0.95	$\begin{aligned} & \mathrm{V}_{\text {REF }}-0.1(\mathrm{DC}) \\ & \mathrm{V}_{\text {REF }}-0.2(\mathrm{AC}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {REF }}+0.1(\mathrm{DC}) \\ & \mathrm{V}_{\text {REF }}+0.2(\mathrm{AC}) \end{aligned}$
$1.5-\mathrm{V} \text { HSTL }$ class I	1.425	1.5	1.575	0.71	0.75	0.79	$\begin{aligned} & \mathrm{V}_{\text {REF }}-0.1(\mathrm{DC}) \\ & \mathrm{V}_{\text {REF }}-0.2(\mathrm{AC}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}+0.1(\mathrm{DC}) \\ & \mathrm{V}_{\mathrm{REF}}+0.2(\mathrm{AC}) \end{aligned}$
$\begin{aligned} & \text { 1.5-V HSTL } \\ & \text { class II } \end{aligned}$	1.425	1.5	1.575	0.71	0.75	0.79	$\begin{aligned} & V_{\text {REF }}-0.1(\mathrm{DC}) \\ & \mathrm{V}_{\text {REF }}-0.2(\mathrm{AC}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {REF }}+0.1(\mathrm{DC}) \\ & \mathrm{V}_{\text {REF }}+0.2(\mathrm{AC}) \end{aligned}$

Note to Table 5-6:
(1) Nominal values (Nom) are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCINT}}=1.2 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{CCIO}}=1.5,1.8,2.5$, and 3.3 V .

Table 5-7. DC Characteristics of User I/O Pins Using Single-Ended Standards (Part 1 of 2)

Notes (1), (2)

I/O Standard	Test Conditions		Voltage Thresholds	
	$\mathrm{I}_{0 \mathrm{~L}}(\mathrm{~mA})$	$\mathrm{I}_{\mathrm{OH}}(\mathrm{mA})$	Maximum $\mathbf{V O L}_{\text {(}}(\mathrm{V})$	Minimum $\mathrm{V}_{\mathbf{O H}}(\mathrm{V})$
3.3-V LVTTL	4	-4	0.45	2.4
3.3-V LVCMOS	0.1	-0.1	0.2	$\mathrm{V}_{\text {CCIO }}-0.2$
2.5-V LVTTL and LVCMOS	1	-1	0.4	2.0
1.8-V LVTTL and LVCMOS	2	-2	0.45	$\mathrm{V}_{\text {CIIO }}-0.45$
1.5-V LVTTL and LVCMOS	2	-2	$0.25 \times \mathrm{V}_{\text {CCIO }}$	$0.75 \times \mathrm{V}_{\text {ClıO }}$
PCI and PCI-X	1.5	-0.5	$0.1 \times \mathrm{V}_{\text {CCIO }}$	$0.9 \times \mathrm{V}_{\text {CCIO }}$
SSTL-2 class I	8.1	-8.1	$\mathrm{V}_{\mathrm{TT}}-0.57$	$\mathrm{V}_{\mathrm{TT}}+0.57$
SSTL-2 class II	16.4	-16.4	$\mathrm{V}_{\mathrm{TT}}-0.76$	$\mathrm{V}_{\mathrm{TT}}+0.76$
SSTL-18 class I	6.7	-6.7	$\mathrm{V}_{T T}-0.475$	$\mathrm{V}_{\mathrm{TT}}+0.475$
SSTL-18 class II	13.4	-13.4	0.28	$\mathrm{V}_{\text {CCIO }}-0.28$
1.8-V HSTL class I	8	-8	0.4	$\mathrm{V}_{\text {CCIO }}-0.4$

Table 5-7. DC Characteristics of User I/O Pins Using Single-Ended Standards (Part 2 of 2)
Notes (1), (2)

I/O Standard	Test Conditions		Voltage Thresholds	
	$\mathrm{I}_{0 \mathrm{~L}}(\mathrm{~mA})$	$\mathrm{I}_{\mathrm{OH}}(\mathrm{mA})$	Maximum $\mathrm{V}_{0 \mathrm{~L}}(\mathrm{~V})$	Minimum $\mathrm{V}_{\text {OH }}(\mathrm{V})$
1.8-V HSTL class II	16	-16	0.4	$\mathrm{V}_{\text {clıO }}-0.4$
1.5-V HSTL class I	8	-8	0.4	$\mathrm{V}_{\text {ClıO }}-0.4$
1.5V HSTL class II	16	-16	0.4	$\mathrm{V}_{\text {ClıO }}-0.4$

Notes to Table 5-7:
(1) The values in this table are based on the conditions listed in Tables 5-2 and 5-6.
(2) This specification is supported across all the programmable drive settings available as shown in the Cyclone II Architecture chapter of the Cyclone II Device Handbook.

Differential I/O Standards

The RSDS and mini-LVDS I/O standards are only supported on output pins. The LVDS I/O standard is supported on both receiver input pins and transmitter output pins.
[1/ For more information on how these differential I/O standards are implemented, see the High-Speed Differential Interfaces in Cyclone II Devices chapter in Volume 1 of the Cyclone II Device Handbook.

Figure 5-1 shows the receiver input waveforms for all differential I/O standards (LVDS, LVPECL, differential 1.5-V HSTL class I and II, differential 1.8-V HSTL class I and II, differential SSTL-2 class I and II, and differential SSTL-18 class I and II).

Figure 5-1. Receiver Input Waveforms for Differential I/O Standards
Single-Ended Waveform

Differential Waveform (Mathematical Function of Positive \& Negative Channel)

Notes to Figure 5-1:
(1) V_{ID} is the differential input voltage. $\mathrm{V}_{\mathrm{ID}}=|\mathrm{p}-\mathrm{n}|$.
(2) $\mathrm{V}_{\text {ICM }}$ is the input common mode voltage. $\mathrm{V}_{\mathrm{ICM}}=(\mathrm{p}+\mathrm{n}) / 2$.
(3) The $\mathrm{p}-\mathrm{n}$ waveform is a function of the positive channel (p) and the negative channel (n).

Table 5-8 shows the recommended operating conditions for user I/O pins with differential I/O standards.

Table 5-8. Recommended Operating Conditions for User I/O Pins Using Differential Signal I/O Standards

$\mathrm{I} / 0$ Standard	$\mathrm{V}_{\text {ClıO }}(\mathrm{V})$			$V_{\text {ID }}(\mathrm{V})$ (1)			$V_{\text {ICm }}(\mathrm{V})$			$V_{\text {IL }}(\mathrm{V})$		$\mathrm{V}_{\text {IH }}(\mathrm{V})$	
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Min	Max	Min	Max
LVDS	2.375	2.5	2.625	0.1		0.65	0.1		2.0				
Mini-LVDS (2)	2.375	2.5	2.625										
RSDS (2)	2.375	2.5	2.625										
LVPECL (3) (6)	3.135	3.3	3.465	0.1	0.6	0.95				0	2.2	2.1	2.88
Differential 1.5-V HSTL class I and II (4)	1.425	1.5	1.575	0.2		$\begin{aligned} & \mathrm{V}_{\mathrm{CCIO}} \\ & +0.6 \end{aligned}$	0.68		0.9		$\begin{array}{\|c\|} \hline V_{\text {REF }} \\ -0.20 \end{array}$	$\begin{aligned} & \hline \mathrm{V}_{\text {REF }} \\ & +0.20 \end{aligned}$	
Differential 1.8-V HSTL class I and II (4)	1.71	1.8	1.89								$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{REF}} \\ -0.20 \end{array}$	$\begin{aligned} & \hline \mathrm{V}_{\text {REF }} \\ & +0.20 \end{aligned}$	
Differential SSTL-2 class I and II (5)	2.375	2.5	2.625	0.36		$\begin{aligned} & \mathrm{V}_{\text {CCIO }} \\ & +0.6 \end{aligned}$	$\begin{gathered} 0.5 \times \\ \mathrm{V}_{\mathrm{CCIO}} \\ -0.2 \end{gathered}$	$\begin{gathered} 0.5 \times \\ \mathrm{V}_{\mathrm{CCIO}} \end{gathered}$	$\begin{gathered} 0.5 \times \\ \mathrm{V}_{\mathrm{CCIO}} \\ +0.2 \end{gathered}$		$\begin{gathered} \mathrm{V}_{\text {REF }} \\ -0.35 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\text {REF }} \\ & +0.35 \end{aligned}$	
Differential SSTL-18 class I and II (5)	1.7	1.8	1.9	0.25		$\begin{aligned} & \mathrm{V}_{\mathrm{CCIO}} \\ & +0.6 \end{aligned}$	$\begin{gathered} 0.5 \times \\ \mathrm{V}_{\mathrm{CCIO}} \\ -0.2 \end{gathered}$	$\begin{gathered} 0.5 \times \\ \mathrm{V}_{\mathrm{CCIO}} \end{gathered}$	$\begin{gathered} 0.5 \times \\ V_{\mathrm{CcIO}} \\ +0.2 \end{gathered}$		$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{REF}} \\ -0.25 \end{array}$	$\begin{aligned} & \hline \mathrm{V}_{\text {REF }} \\ & +0.25 \end{aligned}$	

Notes to Table 5-8:
(1) Refer to the High-Speed Differential Interfaces in Cyclone II Devices chapter in Volume 1 of the Cyclone II Device Handbook for measurement conditions on $V_{\text {ID }}$.
(2) The RSDS and mini-LVDS I/O standards are only supported on output pins.
(3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
(4) The differential $1.8-\mathrm{V}$ and $1.5-\mathrm{V}$ HSTL I/O standards are only supported on clock input pins and PLL output clock pins.
(5) The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock pins.
(6) The LVPECL clock inputs are powered by $\mathrm{V}_{\mathrm{CCINT}}$ and support all $\mathrm{V}_{\mathrm{CCIO}}$ settings. However, it is recommended to connect $\mathrm{V}_{\text {Ccio }}$ to typical value of 3.3 V .

Figure 5-2 shows the transmitter output waveforms for all supported differential output standards (LVDS, mini-LVDS, RSDS, differential 1.5-V HSTL class I and II, differential 1.8-V HSTL class I and II, differential SSTL-2 class I and II, and differential SSTL-18 class I and II).

Figure 5-2. Transmitter Output Waveforms for Differential I/O Standards
Single-Ended Waveform

Differential Waveform (Mathematical Function of Positive \& Negative Channel)

Notes to Figure 5-2:
(1) V_{OD} is the output differential voltage. $\mathrm{V}_{\mathrm{OD}}=|\mathrm{p}-\mathrm{n}|$.
(2) $\mathrm{V}_{\mathrm{OCM}}$ is the output common mode voltage. $\mathrm{V}_{\mathrm{OCM}}=(\mathrm{p}+\mathrm{n}) / 2$.
(3) The $\mathrm{p}-\mathrm{n}$ waveform is a function of the positive channel (p) and the negative channel (n).

Table 5-9 shows the DC characteristics for user I/O pins with differential I/O standards.

Table 5-9. DC Characteristics for User I/O Pins Using Differential I/O Standards (Part 1 of 2) Note (1)												
I/O Standard	$\mathrm{V}_{0 \mathrm{D}}(\mathrm{mV})$			$\Delta V_{0 D}(\mathrm{mV})$		$V_{\text {OCm }}(\mathrm{V})$			$\mathrm{V}_{\text {OH }}(\mathrm{V})$		$\mathrm{V}_{\text {OL }}(\mathrm{V})$	
	Min	Typ	Max	Min	Max	Min	Typ	Max	Min	Max	Min	Max
LVDS	250		600		50	1.125	1.25	1.375				
mini-LVDS (2)	300		600		50	1.125	1.25	1.375				
RSDS (2)	100		600			1.125	1.25	1.375				
Differential 1.5-V HSTL class and II (3)									$\begin{gathered} \mathrm{V}_{\mathrm{CCIO}} \\ -0.4 \end{gathered}$			0.4
$\begin{aligned} & \hline \text { Differential 1.8-V } \\ & \text { HSTL class I } \\ & \text { and II (3) } \\ & \hline \end{aligned}$									$\begin{gathered} V_{\mathrm{CCIO}} \\ -0.4 \end{gathered}$			0.4

Table 5-9. DC Characteristics for User I/O Pins Using Differential I/O Standards (Part 2 of 2) Note (1)

I/O Standard	$\mathrm{V}_{0 \mathrm{D}}(\mathrm{mV})$			$\Delta V_{00}(\mathrm{mV})$		$\mathrm{V}_{\text {осм }}(\mathrm{V})$			$\mathrm{V}_{\text {OH }}(\mathrm{V})$		$\mathrm{V}_{0 \mathrm{~L}}$ (V)	
	Min	Typ	Max	Min	Max	Min	Typ	Max	Min	Max	Min	Max
Differential SSTL-2 class I (4)									$\begin{gathered} \hline \mathrm{V}_{\mathrm{TT}}+ \\ 0.57 \end{gathered}$			$\begin{gathered} \hline \mathrm{V}_{\mathrm{TT}}- \\ 0.57 \end{gathered}$
Differential SSTL-2 class II (4)									$\begin{gathered} \mathrm{V}_{\mathrm{TT}}+ \\ 0.76 \end{gathered}$			$\begin{gathered} \mathrm{V}_{\mathrm{TT}}- \\ 0.76 \end{gathered}$
Differential SSTL-18 class I (4)						$\begin{gathered} 0.5 \times \\ \mathrm{V}_{\mathrm{CCIO}} \\ - \\ 0.125 \end{gathered}$	$\begin{gathered} \hline 0.5 \times \\ \mathrm{V}_{\mathrm{Cc} 1 \mathrm{O}} \end{gathered}$	$\begin{gathered} 0.5 \times \\ \mathrm{V}_{\mathrm{CCIO}} \\ + \\ 0.125 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{TT}}+ \\ & 0.475 \end{aligned}$			$\begin{aligned} & \hline \mathrm{V}_{\mathrm{TT}-}- \\ & 0.475 \end{aligned}$
Differential SSTL-18 class II (4)						$\begin{gathered} 0.5 \times \\ \mathrm{V}_{\text {CCIO }} \\ - \\ 0.125 \end{gathered}$	$\begin{gathered} 0.5 \times \\ \mathrm{V}_{\mathrm{CcIO}} \end{gathered}$	$\begin{gathered} 0.5 \times \\ \mathrm{V}_{\text {Ccıo }} \\ + \\ 0.125 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CCIO}} \\ & -0.28 \end{aligned}$			0.28

Notes to Table 5-9:
(1) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
(2) The RSDS and mini-LVDS I/O standards are only supported on output pins.
(3) The differential 1.8-V HSTL and differential 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock pins.
(4) The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock pins.

DC Characteristics for Different Pin Types

Table 5-10 shows which types of pins that support bus hold circuitry.

Table 5-10. Bus Hold Support

Pin Type	Bus Hold
I/O pins using single-ended I/O standards	Yes
I/O pins using differential I/O standards	No
Dedicated clock pins	No
JTAG	No
Configuration pins	No

Table 5-11 specifies the bus hold parameters for general I/O pins.

Table 5-11. Bus Hold Parameters Note (1)

Parameter	Conditions	$\mathrm{V}_{\text {ccio }}$ Level						Unit
		1.8 V		2.5 V		3.3 V		
		Min	Max	Min	Max	Min	Max	
Bus-hold low, sustaining current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}> \\ & \mathrm{V}_{\mathrm{IL}} \text { (maximum) } \end{aligned}$	30		50		70		$\mu \mathrm{A}$
Bus-hold high, sustaining current	$\begin{array}{\|l} \mathrm{V}_{I N}< \\ \mathrm{V}_{\mathrm{IL}}(\text { minimum }) \end{array}$	-30		-50		-70		$\mu \mathrm{A}$
Bus-hold low, overdrive current	$0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CCIO }}$		200		300		500	$\mu \mathrm{A}$
Bus-hold high, overdrive current	$0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CCIO }}$		-200		-300		-500	$\mu \mathrm{A}$
Bus-hold trip point (2)		0.68	1.07	0.7	1.7	0.8	2.0	V

Notes to Table 5-11:
(1) There is no specification for bus-hold at $\mathrm{V}_{\mathrm{CCIO}}=1.5 \mathrm{~V}$ for the HSTL I/O standard.
(2) The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

On-Chip Termination Specifications

Table 5-12 defines the specifications for internal termination resistance tolerance when using series or differential on-chip termination.

Table 5-12. Series On-Chip Termination Specifications

Symbol	Description	Conditions	Resistance Tolerance			
			Commercial Max	Industrial Max	Extended Temp Max	Unit
$25-\Omega \mathrm{R}_{\text {S }}$	Internal series termination without calibration ($25-\Omega$ setting)	$\mathrm{V}_{\text {CCIO }}=3.3 \mathrm{~V}$	± 30	± 30	± 40	\%
$50-\Omega \mathrm{R}_{\text {S }}$	Internal series termination without calibration ($50-\Omega$ setting)	$\mathrm{V}_{\text {CCIO }}=2.5 \mathrm{~V}$	± 30	± 30	± 40	\%
$50-\Omega \mathrm{R}_{S}$	Internal series termination without calibration ($50-\Omega$ setting)	$\mathrm{V}_{\text {CCIO }}=1.8 \mathrm{~V}$	± 30 (1)	± 30 (1)	± 50	\%

Note to Table 5-12:
(1) For commercial, industrial, and extended -8 devices, the tolerance is $\pm 40 \%$.

Table 5-13 shows the Cyclone II device pin capacitance for different I/O pin types.

Table 5-13. Device Capacitance Note (1)			
Symbol	Parameter	Typical	Unit
$\mathrm{C}_{\text {IO }}$	Input capacitance for user I/O pin	6	pF
$\mathrm{C}_{\text {LVDS }}$	Input capacitance for dual-purpose LVDS/user I/O pin	6	pF
C VREF	Input capacitance for dual-purpose VREF pin when used as VREF or user I/O pin	21	pF
$\mathrm{C}_{\text {CLK }}$	Input capacitance for clock pin.	5	pF

Note to Table 5-13:
(1) Capacitance is sample-tested only. Capacitance is measured using time-domain reflectometry (TDR). Measurement accuracy is within $\pm 0.5 \mathrm{pF}$.

Power Consumption

You can calculate the power usage for your design using the PowerPlay Early Power Estimator and the PowerPlay Power Analyzer feature in the Quartus ${ }^{\circledR}$ II software.

The interactive PowerPlay Early Power Estimator is typically used during the early stages of FPGA design, prior to finalizing the project, in order to get a magnitude estimate of the device power. The Quartus II software PowerPlay Power Analyzer feature is typically used during the later stages of FPGA design. The PowerPlay Power Analyzer also allows you to apply test vectors against your design for more accurate power consumption modeling.

In both cases, only use these calculations as an estimation of power, not as a specification. For more information on PowerPlay tools, refer to the PowerPlay Early Power Estimator User Guide and the PowerPlay Early Power Estimator and PowerPlay Power Analyzer chapters in volume 3 of the Quartus II Handbook.
[You can obtain the Excel-based PowerPlay Early Power Estimator at www.altera.com. See Table 5-3 on page 5-3 for typical I_{CC} standby specifications.

The power-up current required by Cyclone II devices does not exceed the maximum static current. The rate at which the current increases is a function of the system power supply. The exact amount of current

Timing Specifications

consumed varies according to the process, temperature, and power ramp rate. The duration of the $\mathrm{I}_{\text {CCINT }}$ power-up requirement depends on the $\mathrm{V}_{\text {CCINT }}$ voltage supply rise time.

You should select power supplies and regulators that can supply the amount of current required when designing with Cyclone II devices.

Altera recommends using the Cyclone II PowerPlay Early Power Estimator to estimate the user-mode $\mathrm{I}_{\mathrm{CCINT}}$ consumption and then select power supplies or regulators based on the values obtained.

The DirectDrive ${ }^{\mathrm{TM}}$ technology and MultiTrack ${ }^{\mathrm{TM}}$ interconnect ensure predictable performance, accurate simulation, and accurate timing analysis across all Cyclone II device densities and speed grades. This section describes and specifies the performance, internal, external, high-speed I/O, JTAG, and PLL timing specifications.

This section shows the timing models for Cyclone II devices. Commercial devices meet this timing over the commercial temperature range. Industrial devices meet this timing over the industrial temperature range. Extended devices meet this timing over the extended temperature range. All specifications are representative of worst-case supply voltage and junction temperature conditions.
[T The timing numbers listed in the tables of this section are extracted from the Quartus ${ }^{\circledR}$ II software version 6.0.

Preliminary \& Final Timing Specifications

Timing models can have either preliminary or final status. The Quartus II software issues an informational message during the design compilation if the timing models are preliminary. Table 5-14 shows the status of the Cyclone II device timing models.

Preliminary status means the timing model is subject to change. Initially, timing numbers are created using simulation results, process data, and other known parameters. These tests are used to make the preliminary numbers as close to the actual timing parameters as possible.

Final timing numbers are based on actual device operation and testing. These numbers reflect the actual performance of the device under worst-case voltage and junction temperature conditions.

Table 5-14. Cyclone II Device Timing Model Status

Device	Preliminary	Final
EP2C5		\checkmark
EP2C8		\checkmark
EP2C15		\checkmark
EP2C20		\checkmark
EP2C35		\checkmark
EP2C50		\checkmark
EP2C70		\checkmark

Performance

Table 5-15 shows Cyclone II performance for some common designs. All performance values were obtained with Quartus II software compilation of LPM, or MegaCore functions for the FIR and FFT designs.

Table 5-15. Cyclone II Performance (Part 1 of 4) Note (1)

			sources U			Perform	ance	
	Applications	LEs	$\begin{gathered} \text { M4K } \\ \text { Memory } \\ \text { Blocks } \end{gathered}$	DSP Blocks	-6Speed Grade	-7 Speed Grade	-8Speed Grade	Units
LE	16-to-1 multiplexer (2)	21	0	0	385.35	313.97	286.04	MHz
	32-to-1 multiplexer (2)	38	0	0	294.2	260.75	191.02	MHz
	16-bit counter	16	0	0	401.6	349.4	310.65	MHz
	64-bit counter	64	0	0	157.15	137.98	126.27	MHz

Table 5-15. Cyclone II Performance (Part 2 of 4) Note (1)

Applications		Resources Used			Performance			
		LEs	M4K Memory Blocks	DSP Blocks	-6Speed Grade	-7 Speed Grade	-8Speed Grade	Units
Memory M4K block	Simple dual-port RAM 128×36 bit (4), (6)	0	1	0	235.29	194.93	163.13	MHz
	True dual-port RAM 128×18 bit (4), (6)	0	1	0	235.29	194.93	163.13	MHz
	FIFO 128x16 bit (6)	32	1	0	235.29	194.93	163.13	MHz
	Simple dual-port RAM 128×36 bit (5), (6)	0	1	0	210.08	195.0	163.02	MHz
	True dual-port RAM 128x18 bit (5), (6)	0	1	0	163.02	163.02	163.02	MHz
DSP block	9x9-bit multiplier (3)	0	0	1	260.01	216.73	180.57	MHz
	18x18-bit multiplier (3)	0	0	1	260.01	216.73	180.57	MHz
	18-bit, 4 tap FIR filter	113	0	8	182.74	147.47	122.98	MHz
Larger Designs	8-bit, 16 tap parallel FIR filter	52	0	4	153.56	131.25	110.57	MHz
	8-bit, 1024pt, Streaming, 3Mults/5 Adders FFT function	3191	22	9	235.07	195.0	163.02	MHz
	8-bit, 1024pt, Streaming, 4Mults/2 Adders FFT function	3041	22	12	235.07	195.0	163.02	MHz
	8-bit, 1024pt, Single Output, 1 Parallel FFT Engine, Burst, 3 Mults/5 Adders FFT function	1056	5	3	235.07	195.0	163.02	MHz
	8-bit, 1024pt, Single Output, 1 Parallel FFT Engine, Burst, 4 Mults/2 Adders FFT function	1006	5	4	235.07	195.0	163.02	MHz
	8-bit, 1024 pt, Single Output, 2 Parallel FFT Engines, Burst, 3 Mults/5 Adders FFT function	1857	10	6	200.0	195.0	163.02	MHz
	8 -bit, 1024 pt, Single Output, 2 Parallel FFT Engines, Burst, 4 Mults/2 Adders FFT function	1757	10	8	200.0	195.0	163.02	MHz
	8-bit, 1024pt, Quad Output, 1 Parallel FFT Engine, Burst, 3 Mults/5 Adders FFT function	2550	10	9	235.07	195.0	163.02	MHz

Table 5-15. Cyclone II Performance (Part 3 of 4) Note (1)

Applications		Resources Used			Performance			
		LEs	M4K Memory Blocks	DSP Blocks	-6Speed Grade	-7 Speed Grade	-8Speed Grade	Units
Larger Designs	8-bit, 1024 pt, Quad Output, 1 Parallel FFT Engine, Burst, 4 Mults/2 Adders FFT function	2400	10	12	235.07	195.0	163.02	MHz
	8-bit, 1024 pt, Quad Output, 2 Parallel FFT Engines, Burst, 3 Mults/5 Adders FFT function	4343	14	18	200.0	195.0	163.02	MHz
	8-bit, 1024 pt, Quad Output, 2 Parallel FFT Engines, Burst, 4 Mults/2 Adders FFT function	4043	14	24	200.0	195.0	163.02	MHz
	8-bit, 1024 pt, Quad Output, 4 Parallel FFT Engines, Burst, 3 Mults/5 Adders FFT function	7496	28	36	200.0	195.0	163.02	MHz
	8-bit, 1024 pt, Quad Output, 4 Parallel FFT Engines, Burst, 4 Mults/2 Adders FFT function	6896	28	48	200.0	195.0	163.02	MHz
	8-bit, 1024 pt, Quad Output, 1 Parallel FFT Engine, Buffered Burst, 3 Mults/5 Adders FFT function	2934	18	9	235.07	195.0	163.02	MHz
	8-bit, 1024 pt, Quad Output, 1 Parallel FFT Engines, Buffered Burst, 4 Mults/2 Adders FFT function	2784	18	12	235.07	195.0	163.02	MHz
	8-bit, 1024 pt, Quad Output, 2 Parallel FFT Engines, Buffered Burst, 3 Mults/5 Adders FFT function	4720	30	18	200.0	195.0	163.02	MHz
	8-bit, 1024 pt, Quad Output, 2 Parallel FFT Engines, Buffered Burst, 4 Mults/2 Adders FFT function	4420	30	24	200.0	195.0	163.02	MHz

Table 5-15. Cyclone II Performance (Part 4 of 4) Note (1)

Applications		Resources Used			Performance			
		LEs	M4K Memory Blocks	DSP Blocks	-6Speed Grade	-7 Speed Grade	-8Speed Grade	Units
Larger Designs	8-bit, 1024 pt, Quad Output, 4 Parallel FFT Engines, Buffered Burst, 3 Mults/ 5 Adders FFT function	8053	60	36	200.0	195.0	163.02	MHz
	8-bit, 1024 pt, Quad Output, 4 Parallel FFT Engines, Buffered Burst, 4 Mults/2 Adders FFT function	7453	60	48	200.0	195.0	163.02	MHz

Notes to Table 5-15 :
(1) These design performance numbers were obtained using the Quartus II software version 6.0.
(2) This application uses registered inputs and outputs.
(3) This application uses registered multiplier input and output stages within the DSP block.
(4) This application uses the same clock source for both A and B ports.
(5) This application uses independent clock sources for A and B ports.
(6) This application uses PLL clock outputs that are globally routed to connect and drive M4K clock ports. Use of non-PLL clock sources or local routing to drive M4K clock ports may result in lower performance numbers than shown here. Refer to the Quartus II timing report for actual performance numbers.

Internal Timing

See Tables 5-16 through 5-19 for the internal timing parameters.

Table 5-16. LE_FF Internal Timing Microparameters (Part 1 of 2)

Parameter	-6 Speed Grade (1)		-7 Speed Grade (2)		-8 Speed Grade (2)		Unit
	Min	Max	Min	Max	Min	Max	
TSU	-36		-38		-40		ps
					-40		ps
TH	266		286		306		ps
					306		ps
TCO	141	250	141	277	135	304	ps
					141		ps
TCLR	191		217		244		ps
					244		ps
TPRE	191		217		244		ps
					244		ps

Table 5-16. LE_FF Internal Timing Microparameters (Part 2 of 2)

Parameter	-6 Speed Grade (1)		-7 Speed Grade (2)		-8 Speed Grade (2)		Unit
	Min	Max	Min	Max	Min	Max	
TCLKL	1000		1111		1242		ps
					1242		ps
TCLKH	1000		1111		1242		ps
					1242		ps
tLUT	180	438	180	545	172	651	ps
					180		ps

Notes to Table 5-16:
(1) For the -6 and -7 speed grades, the minimum timing is for the commercial temperature grade. Only -8 speed grade devices offer the industrial temperature grade.
(2) For the -8 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices.

Table 5-17. IOE Internal Timing Microparameters (Part 1 of 2)

Parameter	-6 Speed Grade (1)		-7 Speed Grade (2)		-8 Speed Grade (2)		Unit
	Min	Max	Min	Max	Min	Max	
TSU	76		89		101		ps
					101		ps
TH	88		97		106		ps
					106		ps
TCO	99	155	99	171	95	187	ps
					99		ps
TPIN2COMBOUT_R	384	762	384	784	366	855	ps
					384		ps
TPIN2COMBOUT_C	385	760	385	783	367	854	ps
					385		ps
TCOMBIN2PIN_R	1344	2490	1344	2689	1280	2887	ps
					1344		ps
TCOMBIN2PIN_C	1418	2622	1418	2831	1352	3041	ps
					1418		ps
TCLR	137		151		165		ps
					165		ps
TPRE	192		212		233		ps
					233		ps

Table 5-17. IOE Internal Timing Microparameters (Part 2 of 2)

Parameter	$\mathbf{- 6}$ Speed Grade (1)		$\mathbf{- 7}$ Speed Grade (2)		$\mathbf{- 8}$ Speed Grade (2)		Unit
	Min	Max	Min	Max	Min	Max	
TCLKL	1000		1111		1242		ps
					1242		ps
	1000		1111		1242		ps
					1242		ps

Notes to Table 5-17:
(1) For the -6 and -7 speed grades, the minimum timing is for the commercial temperature grade. Only -8 speed grade devices offer the industrial temperature grade.
(2) For the -8 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices.

Table 5-18. DSP Block Internal Timing Microparameters (Part 1 of 2)

Parameter	-6 Speed Grade (1)		-7 Speed Grade (1)		-8 Speed Grade (2)		Unit
	Min	Max	Min	Max	Min	Max	
TSU	47		54		62		ps
					62		ps
TH	110		111		113		ps
					113		ps
TCO	0	0	0	0	0	0	ps
					0		ps
TINREG2PIPE9	652	1379	652	1872	621	2441	ps
					652		ps
TINREG2PIPE18	652	1379	652	1872	621	2441	ps
					652		ps
TPIPE2OUTREG	47	104	47	142	45	185	ps
					47		ps
TPD9	529	2470	529	3353	505	4370	ps
					529		ps
TPD18	425	2903	425	3941	406	5136	ps
					425		ps
TCLR	2686		3129		3572		ps
					3572		ps
TCLKL	1923		2307		2769		ps
					2769		ps

Table 5-18. DSP Block Internal Timing Microparameters (Part 2 of 2)

Parameter	$\mathbf{- 6}$ Speed Grade (1)			$\mathbf{- 7}$ Speed Grade (1)		$\mathbf{- 8}$ Speed Grade (2)	
	Min	Max	Min	Max	Min	Max	
TCLKH	1923		2307		2769		ps
					2769		ps

Notes to Table 5-18:
(1) For the -6 and -7 speed grades, the minimum timing is for the commercial temperature grade. Only -8 speed grade devices offer the industrial temperature grade.
(2) For the -8 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices.

Table 5-19. M4K Block Internal Timing Microparameters (Part 1 of 2)

Parameter	-6 Speed Grade (1)		-7 Speed Grade (1)		-8 Speed Grade (2)		Unit
	Min	Max	Min	Max	Min	Max	
TM4KRC	2387	3764	2387	4248	2275	4736	ps
					2387		ps
TM4KWERESU	35		40		46		ps
					46		ps
TM4KWEREH	234		250		267		ps
					267		ps
TM4KBESU	35		40		46		ps
					46		ps
TM4KBEH	234		250		267		ps
					267		ps
TM4KDATAASU	35		40		46		ps
					46		ps
TM4KDATAAH	234		250		267		ps
					267		ps
TM4KADDRASU	35		40		46		ps
					46		ps
TM4KADDRAH	234		250		267		ps
					267		ps
TM4KDATABSU	35		40		46		ps
					46		ps
TM4KDATABH	234		250		267		ps
					267		ps

Table 5-19. M4K Block Internal Timing Microparameters (Part 2 of 2)

Parameter	-6 Speed Grade (1)		-7 Speed Grade (1)		-8 Speed Grade (2)		Unit
	Min	Max	Min	Max	Min	Max	
TM4KRADDRBSU	35		40		46		ps
					46		ps
TM4KRADDRBH	234		250		267		ps
					267		ps
TM4KDATACO1	466	724	466	826	445	930	ps
					466		ps
TM4KDATACO2	2345	3680	2345	4157	2234	4636	ps
					2345		ps
TM4KCLKH	1923		2307		2769		ps
					2769		ps
TM4KCLKL	1923		2307		2769		ps
					2769		ps
TM4KCLR	191		217		244		ps
					244		ps

Notes to Table 5-19:
(1) For the -6 and -7 speed grades, the minimum timing is for the commercial temperature grade. Only -8 speed grade devices offer the industrial temperature grade.
(2) For the -8 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices.

Cyclone II Clock Timing Parameters

See Tables 5-20 through 5-34 for Cyclone II clock timing parameters.

Table 5-20. Cyclone II Clock Timing Parameters	
Symbol	Parameter
$\mathrm{t}_{\text {CIN }}$	Delay from clock pad to I/O input register
$\mathrm{t}_{\text {COUT }}$	Delay from clock pad to I/O output register
$\mathrm{t}_{\text {PLLCIN }}$	Delay from PLL inclk pad to I/O input register
$\mathrm{t}_{\text {PLLCOUT }}$	Delay from PLL inclk pad to I/O output register

EP2C5 Clock Timing Parameters

Tables 5-21 and 5-22 show the clock timing parameters for EP2C5 devices.

Table 5-21. EP2C5 Column Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial		2.329	2.484	
tcin	1.297	1.358	2.363	2.516	2.717	ns
tcout	-0.188	-0.201	0.076	0.038	0.052	ns
tpllcin	-0.174	-0.186	0.11	0.07	0.081	ns
tpllcout						

Table 5-22. EP2C5 Row Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial		2.210	2.351	2.540
tcin	1.212	1.214	1.269	2.226	2.364	2.548
tcout	-0.259	-0.277	-0.043	-0.095	-0.096	ns
tpllcin	-0.257	-0.275	-0.027	-0.082	-0.088	ns
tpllcout						

EP2C8 Clock Timing Parameters

Tables 5-23 and 5-24 show the clock timing parameters for EP2C8 devices.

Table 5-23. EP2C8 Column Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial		2.405	2.565	2.774
tcin	1.339	1.453	1.419	2.439	2.597	2.803
tcout	1.353	ns				
tpllcin	-0.193	-0.204	0.055	0.015	0.026	ns
tpllcout	-0.179	-0.189	0.089	0.047	0.055	ns

Table 5-24. EP2C8 Row Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial				
tcin	1.256	1.314	2.270	2.416	2.606	ns
tcout	1.258	1.316	2.286	2.429	2.614	ns
tpllcin	-0.276	-0.294	-0.08	-0.134	-0.142	ns
tpllcout	-0.274	-0.292	-0.064	-0.121	-0.134	ns

EP2C15 Clock Timing Parameters

Tables 5-25 and 5-26 show the clock timing parameters for EP2C15 devices.

Table 5-25. EP2C15 Column Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial		2.766	2.989	ns
tcin	1.621	1.698	2.590	2.798	3.018	ns
tcout	1.635	1.713	2.624	0.008	0.016	ns
tpllcin	-0.351	-0.372	0.045	0.04	0.045	ns
tpllcout	-0.337	-0.357	0.079	0.04		

Table 5-26. EP2C15 Row Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial		2.490	2.651	2.866
tcin	1.542	1.617	2.506	2.664	2.874	ns
tcout	1.544	1.617				
tpllcin	-0.424	-0.448	-0.057	-0.107	-0.107	ns
tpllcout	-0.422	-0.446	-0.041	-0.094	-0.099	ns

EP2C20 Clock Timing Parameters

Tables 5-27 and 5-28 show the clock timing parameters for EP2C20 devices.

Table 5-27. EP2C20 Column Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial		2.590	2.766	
tcin	1.621	1.713	2.624	2.798	3.018	ns
tcout	1.635	-0.372	0.045	0.008	0.016	ns
tpllcin	-0.351	-0.357	0.079	0.04	0.045	ns
tpllcout	-0.337					

Table 5-28. EP2C20 Row Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial		2.490	2.651	
tcin	1.542	1.547	2.506	2.664	2.874	ns
tcout	1.544	1.617	-0.057	-0.107	-0.107	ns
tpllcin	-0.424	-0.448	-0.07			
tpllcout	-0.422	-0.446	-0.041	-0.094	-0.099	ns

EP2C35 Clock Timing Parameters

Tables 5-29 and 5-30 show the clock timing parameters for EP2C35 devices.

Table 5-29. EP2C35 Column Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial		1.569	2.652	
tcin	1.513	1.584	2.686	2.910	3.185	ns
tcout	-0.026	-0.032	0.272	0.316	0.41	ns
tpllcin	-0.012	-0.017	0.306	0.348	0.439	ns
tpllcout						

Table 5-30. EP2C35 Row Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial		2.514	2.724	2.986
tcin	1.410	1.412	1.478	2.530	2.737	2.994
tcout	-0.117	-0.127	0.134	0.162	0.241	ns
tpllcin	-0.115	-0.125	0.15	0.175	0.249	ns
tpllcout						

EP2C50 Clock Timing Parameters

Tables 5-31 and 5-32 show the clock timing parameters for EP2C50 devices.

Table 5-31. EP2C50 Column Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial		2.940	3.174	ns
tcin	1.575	1.651	2.666	2.793	2.972	3.203
tcout	1.589	-0.158	0.113	0.075	0.089	ns
tpllcin	-0.149	-0.143	0.147	0.107	0.118	ns
tpllcout	-0.135					

Table 5-32. EP2C50 Row Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial				
tcin	1.463	1.533	2.624	2.791	3.010	ns
tcout	1.465	1.535	2.640	2.804	3.018	ns
tpllcin	-0.261	-0.276	-0.022	-0.074	-0.075	ns
tpllcout	-0.259	-0.274	-0.006	-0.061	-0.067	ns

EP2C70 Clock Timing Parameters

Tables 5-33 and 5-34 show the clock timing parameters for EP2C70 devices.

Table 5-33. EP2C70 Column Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial				
tcin	1.575	1.651	2.914	3.105	3.174	ns
tcout	1.589	1.666	2.948	3.137	3.203	ns
tpllcin	-0.149	-0.158	0.27	0.268	0.089	ns
tpllcout	-0.135	-0.143	0.304	0.3	0.118	ns

Table 5-34. EP2C70 Row Pins Global Clock Timing Parameters

Parameter	Fast Corner		-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
	Industrial	Commercial				
tcin	1.463	1.533	2.753	2.927	3.010	ns
tcout	1.465	1.535	2.769	2.940	3.018	ns
tpllcin	-0.261	-0.276	0.109	0.09	-0.075	ns
tpllcout	-0.259	-0.274	0.125	0.103	-0.067	ns

Clock Network Skew Adders

Table 5-35 shows the clock network specifications.

Table 5-35. Clock Network Specifications				
Name	Description	Max	Unit	
Clock skew adder EP2C5, EP2C8(1)	Inter-clock network, same bank	± 88	ps	
	Inter-clock network, same side and entire chip	± 88	ps	
Clock skew adder EP2C15, EP2C20, EP2C35, EP2C50, EP2C70 (1)	Inter-clock network, same bank	± 118	ps	
	Inter-clock network, same side and entire chip	± 138	ps	

Note to Table 5-35:
(1) This is in addition to intra-clock network skew, which is modeled in the Quartus II software.

IOE Programmable Delay

See Table 5-36 and 5-37 for IOE programmable delay.

Table 5-36. Cyclone II IOE Programmable Delay on Column Pins Notes (1), (2)

Parameter	Paths Affected	Number of Settings	Fast Corner (3)		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit
			Min Offset	Max Offset							
Input Delay from Pin to Internal Cells	Pad -> I/O dataout to core	7	0	2233	0	3827	0	4088	0	4349	ps
			0	2344							ps
Input Delay from Pin to Input Register	Pad -> I/O input register	8	0	2656	0	4555	0	4748	0	4940	ps
			0	2788							ps
Delay from Output Register to Output Pin	I/O output register -> Pad	2	0	303	0	563	0	617	0	670	ps
			0	318							ps

Notes to Table 5-36:
(1) The incremental values for the settings are generally linear. For exact values of each setting, please use the latest version of Quartus II software.
(2) The minimum and maximum offset timing numbers are in reference to setting " 0 " as available in the Quartus II software.
(3) The first number is the fast corner timing parameter for industrial devices. The second number is the fast corner timing parameter for commercial devices.

Table 5-37. Cyclone II IOE Programmable Delay on Row Pins (Part 1 of 2) Notes (1), (2)

Parameter	Paths Affected	Number of Settings	Fast Corner (3)		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit
			Min Offset	Max Offset	Min Offset	Max Offset	$\begin{gathered} \text { Min } \\ \text { Offset } \end{gathered}$	Max Offset	Min Offset	Max Offset	
Input Delay from Pin to Internal Cells	Pad -> I/O dataout to core	7	0	2240	0	3776	0	4033	0	4290	ps
			0	2352							ps
Input Delay from Pin to Input Register	Pad -> I/O input register	8	0	2669	0	4482	0	4671	0	4859	ps
			0	2802							ps

Table 5-37. Cyclone II IOE Programmable Delay on Row Pins (Part 2 of 2) Notes (1), (2)

Parameter	Paths Affected	Number of Settings	Fast Corner (3)		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit
			$\begin{aligned} & \text { Min } \\ & \text { Offset } \end{aligned}$	Max Offset	$\underset{\text { Offset }}{\text { Min }}$	Max Offset	$\begin{gathered} \text { Min } \\ \text { Offset } \end{gathered}$	Max Offset	$\begin{aligned} & \text { Min } \\ & \text { Offset } \end{aligned}$	Max Offset	
Delay from	I/O	2	0	308	0	572	0	626	0	682	ps
Output Register to Output Pin	output register $>$ Pad		0	324							ps

Notes to Table 5-37:
(1) The incremental values for the settings are generally linear. For exact values of each setting, please use the latest version of Quartus II software.
(2) The minimum and maximum offset timing numbers are in reference to setting " 0 " as available in the Quartus II software.
(3) The first number is the fast corner timing parameter for industrial devices. The second number is the fast corner timing parameter for commercial devices.

Default Capacitive Loading of Different I/O Standards

See Table 5-38 for default capacitive loading of different I/O standards.

Table 5-38. Default Loading of Different I/O Standards for Cyclone II (Part 1 of 2)

I/O Standard	Capacitive Load	Unit
LVTTL	0	pF
LVCMOS	0	pF
2.5V	0	pF
1.8V	0	pF
1.5V	0	pF
PCI	10	pF
PCI-X	10	pF
SSTL_2_CLASS_I	0	pF
SSTL_2_CLASS_II	0	pF
SSTL_18_CLASS_I	0	pF
SSTL_18_CLASS_II	0	pF
1.5V_HSTL_CLASS_I	0	pF
1.5V_HSTL_CLASS_II	pF	
1.8V_HSTL_CLASS_I	0	pF
1.8V_HSTL_CLASS_II	pF	
DIFFERENTIAL_SSTL_2_CLASS_I	pF	

Table 5-38. Default Loading of Different I/O Standards for Cyclone II (Part 2 of 2)

I/O Standard	Capacitive Load	Unit
DIFFERENTIAL_SSTL_2_CLASS_II	0	pF
DIFFERENTIAL_SSTL_18_CLASS_I	0	pF
DIFFERENTIAL_SSTL_18_CLASS_II	0	pF
1.5V_DIFFERENTIAL_HSTL_CLASS_I	0	pF
1.5V_DIFFERENTIAL_HSTL_CLASS_II	0	pF
1.8V_DIFFERENTIAL_HSTL_CLASS_I	0	pF
1.8V_DIFFERENTIAL_HSTL_CLASS_II	0	pF
LVDS	0	pF
1.2V_HSTL	0	pF
1.2V_DIFFERENTIAL_HSTL	0	pF

I/O Delays

See Tables 5-39 through 5-43 for I/O delays.

Table 5-39. I/O Delay Parameters	
Symbol	\quad Parameter
$\mathrm{t}_{\text {DIP }}$	Delay from I/O datain to output pad
$\mathrm{t}_{\text {PP }}$	Delay from I/O output register to output pad
$\mathrm{t}_{\text {PCout }}$	Delay from input pad to I/O dataout to core
$\mathrm{t}_{\text {PI }}$	Delay from input pad to I/O input register

Table 5-40. Cyclone II I/O Input Delay for Column Pins (Part 1 of 3)

I/O Standard	Parameter	Fast Corner		-6 Speed Grade			Units
		Industrial	Commercial				
LVTTL	tpi	581	609	1222	1228	1282	ps
	tpcout	367	385	760	783	854	ps
2.5 V	tpi	624	654	1192	1238	1283	ps
	tpcout	410	430	730	793	855	ps
1.8V	tpi	725	760	1372	1428	1484	ps
	tpcout	511	536	910	983	1056	ps

Table 5-40. Cyclone II I/O Input Delay for Column Pins (Part 2 of 3)

I/O Standard	Parameter	Fast Corner			-7 Speed Grade	-8 Speed Grade	Units
		Industrial	Commercial				
1.5V	tpi	790	828	1439	1497	1556	ps
	tpcout	576	604	977	1052	1128	ps
LVCMOS	tpi	581	609	1222	1228	1282	ps
	tpcout	367	385	760	783	854	ps
SSTL_2_CLASS_I	tpi	533	558	990	1015	1040	ps
	tpcout	319	334	528	570	612	ps
SSTL_2_CLASS_II	tpi	533	558	990	1015	1040	ps
	tpcout	319	334	528	570	612	ps
SSTL_18_CLASS_I	tpi	577	605	1027	1035	1045	ps
	tpcout	363	381	565	590	617	ps
SSTL_18_CLASS_II	tpi	577	605	1027	1035	1045	ps
	tpcout	363	381	565	590	617	ps
1.5V_HSTL_CLASS_I	tpi	589	617	1145	1176	1208	ps
	tpcout	375	393	683	731	780	ps
1.5V_HSTL_CLASS_II	tpi	589	617	1145	1176	1208	ps
	tpcout	375	393	683	731	780	ps
1.8V_HSTL_CLASS_I	tpi	577	605	1027	1035	1045	ps
	tpcout	363	381	565	590	617	ps
1.8V_HSTL_CLASS_II	tpi	577	605	1027	1035	1045	ps
	tpcout	363	381	565	590	617	ps
DIFFERENTIAL_SSTL_2_CLASS_I	tpi	533	558	990	1015	1040	ps
	tpcout	319	334	528	570	612	ps
DIFFERENTIAL_SSTL_2_CLASS_II	tpi	533	558	990	1015	1040	ps
	tpcout	319	334	528	570	612	ps
DIFFERENTIAL_SSTL_18_CLASS_I	tpi	577	605	1027	1035	1045	ps
	tpcout	363	381	565	590	617	ps
DIFFERENTIAL_SSTL_18_CLASS_II	tpi	577	605	1027	1035	1045	ps
	tpcout	363	381	565	590	617	ps
1.8V_DIFFERENTIAL_HSTL_CLASS_ I	tpi	577	605	1027	1035	1045	ps
	tpcout	363	381	565	590	617	ps
1.8V_DIFFERENTIAL_HSTL_CLASS_ II	tpi	577	605	1027	1035	1045	ps
	tpcout	363	381	565	590	617	ps

Table 5-40. Cyclone II I/O Input Delay for Column Pins (Part 3 of 3)

I/O Standard	Parameter	Fast Corner				-8 Speed Grade	Units
		Industrial	Commercial				
1.5V_DIFFERENTIAL_HSTL_CLASS_ I	tpi	589	617	1145	1176	1208	ps
	tpcout	375	393	683	731	780	ps
1.5V_DIFFERENTIAL_HSTL_CLASS_ II	tpi	589	617	1145	1176	1208	ps
	tpcout	375	393	683	731	780	ps
LVDS	tpi	623	653	1072	1075	1078	ps
	tpcout	409	429	610	630	650	ps
1.2V_HSTL	tpi	570	597	1263	1324	1385	ps
	tpcout	356	373	801	879	957	ps
1.2V_DIFFERENTIAL_HSTL	tpi	570	597	1263	1324	1385	ps
	tpcout	356	373	801	879	957	ps

Table 5-41. Cyclone II I/O Input Delay for Row Pins (Part 1 of 2)

I/O Standard	Parameter	Fast Corner		-6 Speed Grade	Speed Grade		Units
		Industrial	Commercial				
LVTTL	tpi	583	611	1129	1160	1240	ps
	tpcout	366	384	762	784	855	ps
2.5 V	tpi	629	659	1099	1171	1244	ps
	tpcout	412	432	732	795	859	ps
1.8 V	tpi	729	764	1278	1360	1443	ps
	tpcout	512	537	911	984	1058	ps
1.5V	tpi	794	832	1345	1429	1513	ps
	tpcout	577	605	978	1053	1128	ps
LVCMOS	tpi	583	611	1129	1160	1240	ps
	tpcout	366	384	762	784	855	ps
SSTL_2_CLASS_I	tpi	536	561	896	947	998	ps
	tpcout	319	334	529	571	613	ps
SSTL_2_CLASS_II	tpi	536	561	896	947	998	ps
	tpcout	319	334	529	571	613	ps
SSTL_18_CLASS_I	tpi	581	609	933	967	1004	ps
	tpcout	364	382	566	591	619	ps

Table 5-41. Cyclone II I/O Input Delay for Row Pins (Part 2 of 2)

I/O Standard	Parameter	Fast Corner					Units
		Industrial	Commercial				
SSTL_18_CLASS_II	tpi	581	609	933	967	1004	ps
	tpcout	364	382	566	591	619	ps
1.5 V _HSTL_CLASS_I	tpi	593	621	1051	1109	1167	ps
	tpcout	376	394	684	733	782	ps
1.5V_HSTL_CLASS_II	tpi	593	621	1051	1109	1167	ps
	tpcout	376	394	684	733	782	ps
1.8V_HSTL_CLASS_I	tpi	581	609	933	967	1004	ps
	tpcout	364	382	566	591	619	ps
1.8V_HSTL_CLASS_II	tpi	581	609	933	967	1004	ps
	tpcout	364	382	566	591	619	ps
DIFFERENTIAL_SSTL_2_CLASS_I	tpi	536	561	896	947	998	ps
	tpcout	319	334	529	571	613	ps
DIFFERENTIAL_SSTL_2_CLASS_II	tpi	536	561	896	947	998	ps
	tpcout	319	334	529	571	613	ps
DIFFERENTIAL_SSTL_18_CLASS_I	tpi	581	609	933	967	1004	ps
	tpcout	364	382	566	591	619	ps
DIFFERENTIAL_SSTL_18_CLASS_II	tpi	581	609	933	967	1004	ps
	tpcout	364	382	566	591	619	ps
1.8V_DIFFERENTIAL_HSTL_CLASS_I	tpi	581	609	933	967	1004	ps
	tpcout	364	382	566	591	619	ps
```1.8V_DIFFERENTIAL_HSTL_CLASS_I I```	tpi	581	609	933	967	1004	ps
	tpcout	364	382	566	591	619	ps
1.5V_DIFFERENTIAL_HSTL_CLASS_I	tpi	593	621	1051	1109	1167	ps
	tpcout	376	394	684	733	782	ps
1.5V_DIFFERENTIAL_HSTL_CLASS_I I	tpi	593	621	1051	1109	1167	ps
	tpcout	376	394	684	733	782	ps
LVDS	tpi	651	682	1036	1075	1113	ps
	tpcout	434	455	669	699	728	ps
PCl	tpi	595	623	1113	1156	1232	ps
	tpcout	378	396	746	780	847	ps
PCI-X	tpi	595	623	1113	1156	1232	ps
	tpcout	378	396	746	780	847	ps

Table 5-42. Cyclone II I/O Output Delay for Column Pins (Part 1 of 5)

I/O Standard	Drive Strength	Parameter	Fast Corner				-8   Speed   Grade	Units
			Industrial	Commercial				
LVTTL	4 mA	top	1524	1599	2903	3125	3348	ps
		tdip	1656	1738	3073	3319	3567	ps
	8mA	top	1343	1409	2670	2866	3061	ps
		tdip	1475	1548	2840	3060	3280	ps
	12 mA	top	1287	1350	2547	2735	2924	ps
		tdip	1419	1489	2717	2929	3143	ps
	16 mA	top	1239	1299	2478	2665	2851	ps
		tdip	1371	1438	2648	2859	3070	ps
	20 mA	top	1228	1288	2456	2641	2827	ps
		tdip	1360	1427	2626	2835	3046	ps
	24mA(1)	top	1220	1279	2452	2637	2822	ps
		tdip	1352	1418	2622	2831	3041	ps
LVCMOS	4 mA	top	1346	1412	2509	2695	2880	ps
		tdip	1478	1551	2679	2889	3099	ps
	8 mA	top	1240	1300	2473	2660	2847	ps
		tdip	1372	1439	2643	2854	3066	ps
	12 mA	top	1221	1280	2428	2613	2797	ps
		tdip	1353	1419	2598	2807	3016	ps
	16 mA	top	1203	1262	2403	2587	2772	ps
		tdip	1335	1401	2573	2781	2991	ps
	20 mA	top	1194	1252	2378	2562	2745	ps
		tdip	1326	1391	2548	2756	2964	ps
	24mA(1)	top	1192	1250	2382	2566	2749	ps
		tdip	1324	1389	2552	2760	2968	ps
2.5 V	4 mA	top	1208	1267	2478	2614	2750	ps
		tdip	1340	1406	2648	2808	2969	ps
	8 mA	top	1190	1248	2307	2434	2561	ps
		tdip	1322	1387	2477	2628	2780	ps
	12mA	top	1154	1210	2192	2314	2437	ps
		tdip	1286	1349	2362	2508	2656	ps
	$16 \mathrm{~mA}(1)$	top	1140	1195	2152	2263	2382	ps
		tdip	1272	1334	2322	2457	2601	ps

Table 5-42. Cyclone II I/O Output Delay for Column Pins (Part 2 of 5)

I/O Standard	Drive Strength	Parameter	Fast Corner					Units
			Industrial	Commercial				
1.8V	2 mA	top	1682	1765	3988	4279	4570	ps
		tdip	1814	1904	4158	4473	4789	ps
	4 mA	top	1567	1644	3301	3538	3775	ps
		tdip	1699	1783	3471	3732	3994	ps
	6 mA	top	1475	1547	2993	3195	3398	ps
		tdip	1607	1686	3163	3389	3617	ps
	8 mA	top	1451	1522	2882	3074	3266	ps
		tdip	1583	1661	3052	3268	3485	ps
	10mA	top	1438	1508	2853	3041	3230	ps
		tdip	1570	1647	3023	3235	3449	ps
	12mA(1)	top	1438	1508	2853	3041	3230	ps
		tdip	1570	1647	3023	3235	3449	ps
1.5V	2 mA	top	2083	2186	4477	4870	5263	ps
		tdip	2215	2325	4647	5064	5482	ps
	4 mA	top	1793	1881	3649	3965	4281	ps
		tdip	1925	2020	3819	4159	4500	ps
	6 mA	top	1770	1857	3527	3823	4119	ps
		tdip	1902	1996	3697	4017	4338	ps
	8mA(1)	top	1703	1787	3537	3827	4118	ps
		tdip	1835	1926	3707	4021	4337	ps
SSTL_2_CLASS_I	8 mA	top	1196	1254	2388	2516	2645	ps
		tdip	1328	1393	2558	2710	2864	ps
	12mA(1)	top	1174	1231	2277	2401	2525	ps
		tdip	1306	1370	2447	2595	2744	ps
SSTL_2_CLASS_II	16 mA	top	1158	1214	2245	2365	2486	ps
		tdip	1290	1353	2415	2559	2705	ps
	20 mA	top	1152	1208	2231	2351	2471	ps
		tdip	1284	1347	2401	2545	2690	ps
	24mA(1)	top	1152	1208	2225	2345	2465	ps
		tdip	1284	1347	2395	2539	2684	ps

Table 5-42. Cyclone II I/O Output Delay for Column Pins (Part 3 of 5)

I/O Standard	Drive Strength	Parameter	Fast Corner				$-8$   Speed Grade	Units
			Industrial	Commercial				
SSTL_18_CLASS_I	6 mA	top	1472	1544	3140	3345	3549	ps
		tdip	1604	1683	3310	3539	3768	ps
	8mA	top	1469	1541	3086	3287	3489	ps
		tdip	1601	1680	3256	3481	3708	ps
	10mA	top	1466	1538	2980	3171	3361	ps
		tdip	1598	1677	3150	3365	3580	ps
	12mA(1)	top	1466	1538	2980	3171	3361	ps
		tdip	1598	1677	3150	3365	3580	ps
SSTL_18_CLASS_II	16 mA	top	1454	1525	2905	3088	3270	ps
		tdip	1586	1664	3075	3282	3489	ps
	18mA(1)	top	1453	1524	2900	3082	3264	ps
		tdip	1585	1663	3070	3276	3483	ps
1.8V_HSTL_CLASS_I	8 mA	top	1460	1531	3222	3424	3625	ps
		tdip	1592	1670	3392	3618	3844	ps
	10 mA	top	1462	1534	3090	3279	3469	ps
		tdip	1594	1673	3260	3473	3688	ps
	12mA(1)	top	1462	1534	3090	3279	3469	ps
		tdip	1594	1673	3260	3473	3688	ps
1.8V_HSTL_CLASS_II	16 mA	top	1449	1520	2936	3107	3278	ps
		tdip	1581	1659	3106	3301	3497	ps
	18 mA	top	1450	1521	2924	3101	3279	ps
		tdip	1582	1660	3094	3295	3498	ps
	20 mA (1)	top	1452	1523	2926	3096	3266	ps
		tdip	1584	1662	3096	3290	3485	ps
1.5V_HSTL_CLASS_I	8 mA	top	1779	1866	4292	4637	4981	ps
		tdip	1911	2005	4462	4831	5200	ps
	10 mA	top	1784	1872	4031	4355	4680	ps
		tdip	1916	2011	4201	4549	4899	ps
	12mA(1)	top	1784	1872	4031	4355	4680	ps
		tdip	1916	2011	4201	4549	4899	ps
1.5V_HSTL_CLASS_II	16 mA (1)	top	1750	1836	3844	4125	4406	ps
		tdip	1882	1975	4014	4319	4625	ps

Table 5-42. Cyclone II I/O Output Delay for Column Pins (Part 4 of 5)

I/O Standard	Drive Strength	Parameter	Fast Corner		-6   Speed   Grade	-7   Speed   Grade	-8   Speed   Grade	Units
			Industrial	Commercial				
DIFFERENTIAL_SSTL_2_C LASS_I	8mA	top	1196	1254	2388	2516	2645	ps
		tdip	1328	1393	2558	2710	2864	ps
	12mA(1)	top	1174	1231	2277	2401	2525	ps
		tdip	1306	1370	2447	2595	2744	ps
DIFFERENTIAL_SSTL_2_C LASS_II	16 mA	top	1158	1214	2245	2365	2486	ps
		tdip	1290	1353	2415	2559	2705	ps
	20 mA	top	1152	1208	2231	2351	2471	ps
		tdip	1284	1347	2401	2545	2690	ps
	24mA(1)	top	1152	1208	2225	2345	2465	ps
		tdip	1284	1347	2395	2539	2684	ps
DIFFERENTIAL_SSTL_18_ CLASS_I	6 mA	top	1472	1544	3140	3345	3549	ps
		tdip	1604	1683	3310	3539	3768	ps
	8mA	top	1469	1541	3086	3287	3489	ps
		tdip	1601	1680	3256	3481	3708	ps
	10mA	top	1466	1538	2980	3171	3361	ps
		tdip	1598	1677	3150	3365	3580	ps
	12mA(1)	top	1466	1538	2980	3171	3361	ps
		tdip	1598	1677	3150	3365	3580	ps
DIFFERENTIAL_SSTL_18_ CLASS_II	16 mA	top	1454	1525	2905	3088	3270	ps
		tdip	1586	1664	3075	3282	3489	ps
	18 mA (1)	top	1453	1524	2900	3082	3264	ps
		tdip	1585	1663	3070	3276	3483	ps
1.8V_DIFFERENTIAL_HSTL _CLASS_I	8 mA	top	1460	1531	3222	3424	3625	ps
		tdip	1592	1670	3392	3618	3844	ps
	10 mA	top	1462	1534	3090	3279	3469	ps
		tdip	1594	1673	3260	3473	3688	ps
	12mA(1)	top	1462	1534	3090	3279	3469	ps
		tdip	1594	1673	3260	3473	3688	ps

Table 5-42. Cyclone II I/O Output Delay for Column Pins (Part 5 of 5)

I/O Standard	Drive Strength	Parameter	Fast Corner			$-7$   Speed Grade	-8   Speed   Grade	Units
			Industrial	Commercial				
1.8V_DIFFERENTIAL_HSTL _CLASS_II	16 mA	top	1449	1520	2936	3107	3278	ps
		tdip	1581	1659	3106	3301	3497	ps
	18 mA	top	1450	1521	2924	3101	3279	ps
		tdip	1582	1660	3094	3295	3498	ps
	20 mA (1)	top	1452	1523	2926	3096	3266	ps
		tdip	1584	1662	3096	3290	3485	ps
$\begin{aligned} & \text { 1.5V_DIFFERENTIAL_HSTL } \\ & \text { _CLASS_I } \end{aligned}$	8 mA	top	1779	1866	4292	4637	4981	ps
		tdip	1911	2005	4462	4831	5200	ps
	10 mA	top	1784	1872	4031	4355	4680	ps
		tdip	1916	2011	4201	4549	4899	ps
	$12 \mathrm{~mA}(1)$	top	1784	1872	4031	4355	4680	ps
		tdip	1916	2011	4201	4549	4899	ps
1.5V_DIFFERENTIAL_HSTL _CLASS_II	16mA(1)	top	1750	1836	3844	4125	4406	ps
		tdip	1882	1975	4014	4319	4625	ps
LVDS	-	top	1258	1319	2243	2344	2445	ps
		tdip	1390	1458	2413	2538	2664	ps
RSDS	-	top	1258	1319	2243	2344	2445	ps
		tdip	1390	1458	2413	2538	2664	ps
MINI_LVDS	-	top	1258	1319	2243	2344	2445	ps
		tdip	1390	1458	2413	2538	2664	ps
SIMPLE_RSDS	-	top	1221	1280	2258	2435	2612	ps
		tdip	1353	1419	2428	2629	2831	ps
1.2V_HSTL	-	top	2403	2522	4635	5344	6053	ps
		tdip	2535	2661	4805	5538	6272	ps
1.2V_DIFFERENTIAL_HSTL	-	top	2403	2522	4635	5344	6053	ps
		tdip	2535	2661	4805	5538	6272	ps

Note to Table 5-42:
(1) This is the default setting in Quartus II software.

Table 5-43. Cyclone II I/O Output Delay for Row Pins (Part 1 of 4)

I/O Standard	Drive Strength	Parameter	Fast Corner		$\begin{gathered} -6 \\ \text { Speed } \end{gathered}$Grade		-8 Speed   Grade	Units
			Industrial	Commercial				
LVTTL	4 mA	top	1343	1408	2539	2694	2891	ps
		tdip	1467	1540	2747	2931	3158	ps
	8 mA	top	1198	1256	2411	2587	2762	ps
		tdip	1322	1388	2619	2824	3029	ps
	12 mA	top	1156	1212	2282	2452	2620	ps
		tdip	1280	1344	2490	2689	2887	ps
	16 mA	top	1124	1178	2286	2455	2624	ps
		tdip	1248	1310	2494	2692	2891	ps
	20 mA	top	1112	1165	2245	2413	2580	ps
		tdip	1236	1297	2453	2650	2847	ps
	24mA(1)	top	1105	1158	2253	2422	2589	ps
		tdip	1229	1290	2461	2659	2856	ps
LVCMOS	4mA	top	1200	1258	2231	2396	2561	ps
		tdip	1324	1390	2439	2633	2828	ps
	8mA	top	1125	1179	2260	2429	2597	ps
		tdip	1249	1311	2468	2666	2864	ps
	12mA(1)	top	1106	1159	2217	2383	2549	ps
		tdip	1230	1291	2425	2620	2816	ps
2.5 V	4 mA	top	1126	1180	2350	2477	2604	ps
		tdip	1250	1312	2558	2714	2871	ps
	8mA(1)	top	1105	1158	2177	2296	2415	ps
		tdip	1229	1290	2385	2533	2682	ps

Table 5-43. Cyclone II I/O Output Delay for Row Pins (Part 2 of 4)

I/O Standard	Drive Strength	Parameter	Fast Corner					Units
			Industrial	Commercial				
1.8 V	2 mA	top	1503	1576	3657	3927	4196	ps
		tdip	1627	1708	3865	4164	4463	ps
	4mA	top	1400	1468	3010	3226	3440	ps
		tdip	1524	1600	3218	3463	3707	ps
	6 mA	top	1388	1455	2857	3050	3242	ps
		tdip	1512	1587	3065	3287	3509	ps
	8 mA	top	1347	1412	2714	2897	3078	ps
		tdip	1471	1544	2922	3134	3345	ps
	10 mA	top	1347	1412	2714	2897	3078	ps
		tdip	1471	1544	2922	3134	3345	ps
	12mA(1)	top	1332	1396	2678	2856	3034	ps
		tdip	1456	1528	2886	3093	3301	ps
1.5 V	2 mA	top	1853	1943	4127	4492	4855	ps
		tdip	1977	2075	4335	4729	5122	ps
	4 mA	top	1694	1776	3452	3747	4042	ps
		tdip	1818	1908	3660	3984	4309	ps
	6mA(1)	top	1694	1776	3452	3747	4042	ps
		tdip	1818	1908	3660	3984	4309	ps
$\begin{aligned} & \text { SSTL_2_CLASS } \\ & \text { _I } \end{aligned}$	8 mA	top	1090	1142	2152	2268	2382	ps
		tdip	1214	1274	2360	2505	2649	ps
	12mA(1)	top	1097	1150	2131	2246	2360	ps
		tdip	1221	1282	2339	2483	2627	ps
$\begin{aligned} & \text { SSTL_2_CLASS } \\ & \text { _II } \end{aligned}$	$16 \mathrm{~mA}(1)$	top	1068	1119	2067	2177	2287	ps
		tdip	1192	1251	2275	2414	2554	ps
$\begin{aligned} & \text { SSTL_18_CLAS } \\ & \text { S_I } \end{aligned}$	6 mA	top	1371	1437	2828	3018	3206	ps
		tdip	1495	1569	3036	3255	3473	ps
	8 mA	top	1365	1431	2832	3024	3215	ps
		tdip	1489	1563	3040	3261	3482	ps
	10mA(1)	top	1374	1440	2806	2990	3173	ps
		tdip	1498	1572	3014	3227	3440	ps

Table 5-43. Cyclone II I/O Output Delay for Row Pins (Part 3 of 4)

I/O Standard	Drive Strength	Parameter	Fast Corner		$\begin{gathered} -6 \\ \text { Speed } \end{gathered}$Grade	$-7$   Speed Grade	-8Speed Grade	Units
			Industrial	Commercial				
$\begin{aligned} & \hline 1.8 \mathrm{~V} \text { _HSTL_CLA } \\ & \text { SS_I } \end{aligned}$	8 mA	top	1364	1430	2853	3017	3184	ps
		tdip	1488	1562	3061	3254	3451	ps
	10 mA	top	1332	1396	2842	3011	3179	ps
		tdip	1456	1528	3050	3248	3446	ps
	12mA(1)	top	1332	1396	2842	3011	3179	ps
		tdip	1456	1528	3050	3248	3446	ps
$\begin{array}{\|l} \text { 1.5V_HSTL_CLA } \\ \text { SS_I } \end{array}$	8mA(1)	top	1657	1738	3642	3917	4191	ps
		tdip	1781	1870	3850	4154	4458	ps
DIFFERENTIAL SSTL_2_CLASS _I	8 mA	top	1090	1142	2152	2268	2382	ps
		tdip	1214	1274	2360	2505	2649	ps
	12mA(1)	top	1097	1150	2131	2246	2360	ps
		tdip	1221	1282	2339	2483	2627	ps
DIFFERENTIAL SSTL_2_CLASS _II	16 mA (1)	top	1068	1119	2067	2177	2287	ps
		tdip	1192	1251	2275	2414	2554	ps
DIFFERENTIAL SSTL_18_CLAS S_I	6 mA	top	1371	1437	2828	3018	3206	ps
		tdip	1495	1569	3036	3255	3473	ps
	8 mA	top	1365	1431	2832	3024	3215	ps
		tdip	1489	1563	3040	3261	3482	ps
	10mA(1)	top	1374	1440	2806	2990	3173	ps
		tdip	1498	1572	3014	3227	3440	ps
1.8V_DIFFEREN TIAL_HSTL_CLA SS_I	8 mA	top	1364	1430	2853	3017	3184	ps
		tdip	1488	1562	3061	3254	3451	ps
	10mA	top	1332	1396	2842	3011	3179	ps
		tdip	1456	1528	3050	3248	3446	ps
	12mA(1)	top	1332	1396	2842	3011	3179	ps
		tdip	1456	1528	3050	3248	3446	ps
1.5V_DIFFEREN TIAL_HSTL_CLA SS_I	8mA(1)	top	1657	1738	3642	3917	4191	ps
		tdip	1781	1870	3850	4154	4458	ps
LVDS	-	top	1216	1275	2089	2184	2278	ps
		tdip	1340	1407	2297	2421	2545	ps
RSDS	-	top	1216	1275	2089	2184	2278	ps
		tdip	1340	1407	2297	2421	2545	ps

Table 5-43. Cyclone II I/O Output Delay for Row Pins (Part 4 of 4)

I/O Standard	Drive Strength	Parameter	Fast Corner			$-7$   Speed Grade	$-8$   Speed Grade	Units
			Industrial	Commercial				
MINI_LVDS	-	top	1216	1275	2089	2184	2278	ps
		tdip	1340	1407	2297	2421	2545	ps
PCI	-	top	989	1036	2070	2214	2358	ps
		tdip	1113	1168	2278	2451	2625	ps
$\mathrm{PCI}-X$	-	top	989	1036	2070	2214	2358	ps
		tdip	1113	1168	2278	2451	2625	ps

Note to Table 5-43:
(1) This is the default setting in Quartus II software.

## Maximum Input \& Output Clock Rate

Maximum clock toggle rate is defined as the maximum frequency achievable for a clock type signal at an I/O pin. The I/O pin can be a regular I/O pin or a dedicated clock I/O pin.

The maximum clock toggle rate is different from the maximum data bit rate. If the maximum clock toggle rate on a regular I/O pin is 300 MHz , the maximum data bit rate for dual data rate (DDR) could be potentially as high as 600 Mbps on the same I/O pin.

Table 5-44 specifies the maximum input clock toggle rates. Table 5-45 specifies the maximum output clock toggle rates at default load. Table 5-46 specifies the derating factors for the output clock toggle rate for non default load.

To calculate the output toggle rate for a non default load, use this formula:

The toggle rate for a non default load
$=1000 /(1000 /$ toggle rate at default load + derating factor * load value in $\mathrm{pF} / 1000$ )

For example, the output toggle rate at 0 pF (default) load for SSTL-18 Class II 18 mA I/O standard is 270 MHz on a -6 device column I/O pin. The derating factor is $29 \mathrm{ps} / \mathrm{pF}$. For a 10 pF load, the toggle rate is calculated as:

$$
1000 /(1000 / 270+29 \times 10 / 1000)=250(\mathrm{MHz})
$$

Tables 5-44 through 5-46 show the I/O toggle rates for Cyclone II devices.

Table 5-44. Maximum Input Clock Toggle Rate on Cyclone II Devices (Part 1 of 2)

I/O Standard	Maximum Input Clock Toggle Rate on Cyclone II Devices (MHz)								
	Column I/O Pins			Row I/O Pins			Dedicated Clock Inputs		
	-6   Speed   Grade		-8   Speed   Grade	-6   Speed   Grade		-8   Speed   Grade	-6   Speed   Grade	-7   Speed   Grade	-8   Speed   Grade
LVTTL	450	405	360	450	405	360	420	380	340
2.5 V	450	405	360	450	405	360	450	405	360
1.8 V	450	405	360	450	405	360	450	405	360
1.5 V	300	270	240	300	270	240	300	270	240
LVCMOS	450	405	360	450	405	360	420	380	340
SSTL_2_CLASS_I	500	500	500	500	500	500	500	500	500
SSTL_2_CLASS_II	500	500	500	500	500	500	500	500	500
SSTL_18_CLASS_I	500	500	500	500	500	500	500	500	500
SSTL_18_CLASS_II	500	500	500	500	500	500	500	500	500
1.5V_HSTL_CLASS_I	500	500	500	500	500	500	500	500	500
1.5 V _HSTL_CLASS_II	500	500	500	500	500	500	500	500	500
1.8V_HSTL_CLASS_I	500	500	500	500	500	500	500	500	500
1.8V_HSTL_CLASS_II	500	500	500	500	500	500	500	500	500
PCl	-	-	-	350	315	280	350	315	280
$\mathrm{PCI}-X$	-	-	-	350	315	280	350	315	280
DIFFERENTIAL_SSTL_2_CLASS_I	500	500	500	500	500	500	500	500	500
DIFFERENTIAL_SSTL_2_CLASS_ II	500	500	500	500	500	500	500	500	500
$\begin{array}{\|l} \hline \text { DIFFERENTIAL_SSTL_18_CLASS } \\ \text { _I } \end{array}$	500	500	500	500	500	500	500	500	500
DIFFERENTIAL_SSTL_18_CLASS _II	500	500	500	500	500	500	500	500	500
1.8V_DIFFERENTIAL_HSTL_ CLASS_I	500	500	500	500	500	500	500	500	500
1.8V_DIFFERENTIAL_HSTL_ CLASS_II	500	500	500	500	500	500	500	500	500
1.5V_DIFFERENTIAL_HSTL_ CLASS_I	500	500	500	500	500	500	500	500	500

Table 5-44. Maximum Input Clock Toggle Rate on Cyclone II Devices (Part 2 of 2)

I/O Standard	Maximum Input Clock Toggle Rate on Cyclone II Devices (MHz)								
	Column I/O Pins			Row I/O Pins			Dedicated Clock Inputs		
	-6   Speed   Grade		-8   Speed   Grade	-6   Speed   Grade		-8   Speed   Grade	-6   Speed   Grade		-8   Speed   Grade
1.5V_DIFFERENTIAL_HSTL_ CLASS_II	500	500	500	500	500	500	500	500	500
LVPECL	-	-	-	-	-	-	402	402	402
LVDS	402	402	402	402	402	402	402	402	402
1.2V_HSTL	110	90	80	-	-	-	110	90	80
1.2V_DIFFERENTIAL_HSTL	110	90	80	-	-	-	110	90	80

Table 5-45. Maximum Output Clock Toggle Rate on Cyclone II Devices (Part 1 of 4)

I/O Standard	Drive Strength	Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)								
		Column I/O Pins (1)			Row I/O Pins (1)			Dedicated Clock Outputs		
		$-6$   Speed Grade	$-7$   Speed Grade	$-8$   Speed Grade		$-7$   Speed Grade				$-8$   Speed Grade
LVTTL	4mA	120	100	80	120	100	80	120	100	80
	8 mA	200	170	140	200	170	140	200	170	140
	12 mA	280	230	190	280	230	190	280	230	190
	16 mA	290	240	200	290	240	200	290	240	200
	20 mA	330	280	230	330	280	230	330	280	230
	24 mA	360	300	250	360	300	250	360	300	250
LVCMOS	4 mA	250	210	170	250	210	170	250	210	170
	8 mA	280	230	190	280	230	190	280	230	190
	12 mA	310	260	210	310	260	210	310	260	210
	16 mA	320	270	220	-	-	-	-	-	-
	20 mA	350	290	240	-	-	-	-	-	-
	24 mA	370	310	250	-	-	-	-	-	-

Table 5-45. Maximum Output Clock Toggle Rate on Cyclone II Devices (Part 2 of 4)

I/0 Standard	Drive Strength	Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)								
		Column I/O Pins (1)			Row I/O Pins (1)			Dedicated Clock Outputs		
		-6   Speed   Grade								
2.5 V	4 mA	180	150	120	180	150	120	180	150	120
	8 mA	280	230	190	280	230	190	280	230	190
	12 mA	440	370	300	-	-	-	-	-	-
	16 mA	450	405	350	-	-	-	-	-	-
1.8 V	2 mA	120	100	80	120	100	80	120	100	80
	4 mA	180	150	120	180	150	120	180	150	120
	6 mA	220	180	150	220	180	150	220	180	150
	8 mA	240	200	160	240	200	160	240	200	160
	10 mA	300	250	210	300	250	210	300	250	210
	12 mA	350	290	240	350	290	240	350	290	240
1.5V	2 mA	80	60	50	80	60	50	80	60	50
	4 mA	130	110	90	130	110	90	130	110	90
	6 mA	180	150	120	180	150	120	180	150	120
	8 mA	230	190	160	-	-	-	-	-	-
$\begin{aligned} & \text { SSTL_2_CLASS_ } \\ & 1 \end{aligned}$	8 mA	400	340	280	400	340	280	400	340	280
	12 mA	400	340	280	400	340	280	400	340	280
$\begin{aligned} & \text { SSTL_2_CLASS_ } \\ & \text { II } \end{aligned}$	16 mA	350	290	240	350	290	240	350	290	240
	20 mA	400	340	280	-	-	-	-	-	-
	24 mA	400	340	280	-	-	-	-	-	-
$\begin{array}{\|l} \hline \text { SSTL_18_ } \\ \text { CLASS_I } \end{array}$	6 mA	260	220	180	260	220	180	260	220	180
	8 mA	260	220	180	260	220	180	260	220	180
	10 mA	270	220	180	270	220	180	270	220	180
	12 mA	280	230	190	-	-	-	-	-	-
$\begin{aligned} & \hline \text { SSTL_18_ } \\ & \text { CLASS_II } \end{aligned}$	16 mA	260	220	180	-	-	-	-	-	-
	18 mA	270	220	180	-	-	-	-	-	-
1.8V_HSTL_ CLASS_I	8 mA	260	220	180	260	220	180	260	220	180
	10 mA	300	250	210	300	250	210	300	250	210
	12 mA	320	270	220	320	270	220	320	270	220

Table 5-45. Maximum Output Clock Toggle Rate on Cyclone II Devices (Part 3 of 4)

I/O Standard	Drive Strength	Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)								
		Column I/O Pins (1)			Row I/O Pins (1)			Dedicated Clock Outputs		
		-6   Speed   Grade	Speed   Grade	-8   Speed   Grade	-6   Speed   Grade		-8   Speed   Grade	-6   Speed   Grade		-8   Speed   Grade
$\begin{aligned} & \text { 1.8V_HSTL_ } \\ & \text { CLASS_II } \end{aligned}$	16 mA	230	190	160	-	-	-	-	-	-
	18 mA	240	200	160	-	-	-	-	-	-
	20 mA	250	210	170	-	-	-	-	-	-
$\begin{aligned} & 1.5 \mathrm{~V} \text { _HSTL_ } \\ & \text { CLASS_I } \end{aligned}$	8 mA	210	170	140	210	170	140	210	170	140
	10 mA	220	180	150	-	-	-	-	-	-
	12 mA	230	190	160	-	-	-	-	-	-
$\begin{aligned} & \text { 1.5V_HSTL_ } \\ & \text { CLASS_II } \end{aligned}$	16 mA	210	170	140	-	-	-	-	-	-
DIFFERENTIAL SSTL_2_CLASS_ I	8 mA	400	340	280	400	340	280	400	340	280
	12 mA	400	340	280	400	340	280	400	340	280
DIFFERENTIAL SSTL_2_CLASS_ II	16 mA	350	290	240	350	290	240	350	290	240
	20 mA	400	340	280	-	-	-	-	-	-
	24 mA	400	340	280	-	-	-	-	-	-
DIFFERENTIAL SSTL_18_CLASS _I	6 mA	260	220	180	260	220	180	260	220	180
	8 mA	260	220	180	260	220	180	260	220	180
	10 mA	270	220	180	270	220	180	270	220	180
	12 mA	280	230	190	-	-	-	-	-	-
DIFFERENTIAL SSTL_18_CLASS _II	16 mA	260	220	180	-	-	-	-	-	-
	18 mA	270	220	180	-	-	-	-	-	-
$1.8 \mathrm{~V}_{-}$   DIFFERENTIAL_   HSTL_CLASS_I	8 mA	260	220	180	260	220	180	260	220	180
	10mA	300	250	210	300	250	210	300	250	210
	12 mA	320	270	220	320	270	220	320	270	220
$1.8 \mathrm{~V}_{-}$   DIFFERENTIAL_   HSTL_CLASS_II	16 mA	230	190	160	-	-	-	-	-	-
	18 mA	240	200	160	-	-	-	-	-	-
	20 mA	250	210	170	-	-	-	-	-	-
$1.5 \mathrm{~V}_{-}$   DIFFERENTIAL_   HSTL_CLASS_I	8 mA	210	170	140	210	170	140	210	170	140
	10 mA	220	180	150	-	-	-	-	-	-
	12 mA	230	190	160	-	-	-	-	-	-

Table 5-45. Maximum Output Clock Toggle Rate on Cyclone II Devices (Part 4 of 4)

I/O Standard	Drive Strength	Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)								
		Column I/O Pins (1)			Row I/O Pins (1)			Dedicated Clock Outputs		
		-6   Speed   Grade	Speed   Grade	-8   Speed   Grade	-6   Speed   Grade	Speed   Grade	-8   Speed   Grade	Speed   Grade	Speed   Grade	Speed   Grade
$1.5 \mathrm{~V}_{-}$   DIFFERENTIAL_   HSTL_CLASS_II	16 mA	210	170	140	-	-	-	-	-	-
LVDS	-	400	340	280	400	340	280	400	340	280
RSDS	-	400	340	280	400	340	280	400	340	280
MINI_LVDS	-	400	340	280	400	340	280	400	340	280
SIMPLE_RSDS	-	380	320	260	380	320	260	380	320	260
1.2V_HSTL	-	80	80	80	-	-	-	-	-	-
$1.2 \mathrm{~V}_{-}$   DIFFERENTIAL_ HSTL	-	80	80	80	-	-	-	-	-	-
PCl	-	-	-	-	350	315	280	350	315	280
PCI-X	-	-	-	-	350	315	280	350	315	280
LVTTL	OCT_25_OHMS	360	300	250	360	300	250	360	300	250
LVCMOS	OCT_25_OHMS	360	300	250	360	300	250	360	300	250
2.5 V	OCT_50_OHMS	240	200	160	240	200	160	240	200	160
1.8 V	OCT_50_OHMS	290	240	200	290	240	200	290	240	200
$\begin{aligned} & \text { SSTL_2_CLASS_ } \\ & \text { I } \end{aligned}$	OCT_50_OHMS	240	200	160	240	200	160	-	-	-
$\begin{array}{\|l} \text { SSTL_18_CLASS } \\ \text { _I } \end{array}$	OCT_50_OHMS	290	240	200	290	240	200	-	-	-

Note to Table 5-45:
(1) This is based on single data rate I/Os.

Table 5-46. Maximum Output Clock Toggle Rate Derating Factors (Part 1 of 4)

I/O Standard	Drive Strength	Maximum Output Clock Toggle Rate Derating Factors (ps/pF)								
		Column I/O Pins			Row I/O Pins			Dedicated Clock Outputs		
		-6   Speed   Grade		-8   Speed   Grade	-6   Speed   Grade		-8   Speed   Grade	-6   Speed   Grade	Speed   Grade	-8   Speed   Grade
LVTTL	4mA	438	439	439	338	362	387	338	362	387
	8 mA	306	321	336	267	283	299	267	283	299
	12 mA	139	179	220	193	198	202	193	198	202
	16 mA	145	158	172	139	147	156	139	147	156
	20 mA	65	77	90	74	79	84	74	79	84
	24 mA	19	20	21	14	18	22	14	18	22
LVCMOS	4 mA	298	305	313	197	205	214	197	205	214
	8 mA	190	205	219	112	118	125	112	118	125
	12 mA	43	72	101	27	31	35	27	31	35
	16 mA	87	99	110	-	-	-	-	-	-
	20 mA	36	46	56	-	-	-	-	-	-
	24 mA	24	25	27	-	-	-	-	-	-
2.5 V	4 mA	228	233	237	270	306	343	270	306	343
	8 mA	173	177	180	191	199	208	191	199	208
	12 mA	119	121	123	-	-	-	-	-	-
	16 mA	64	65	66	-	-	-	-	-	-
1.8 V	2 mA	452	457	461	332	367	403	332	367	403
	4 mA	321	347	373	244	291	337	244	291	337
	6 mA	227	255	283	178	222	266	178	222	266
	8 mA	37	118	199	58	133	207	58	133	207
	10 mA	41	72	103	46	85	123	46	85	123
	12 mA	7	8	10	13	28	44	13	28	44
1.5 V	2 mA	738	764	789	540	604	669	540	604	669
	4 mA	499	518	536	300	354	408	300	354	408
	6 mA	261	271	282	60	103	146	60	103	146
	8 mA	22	25	29	-	-	-	-	-	-
$\begin{aligned} & \text { SSTL_2_CLASS_ } \\ & \text { I } \end{aligned}$	8mA	46	47	49	25	40	56	25	40	56
	12 mA	67	69	70	23	42	60	23	42	60

Table 5-46. Maximum Output Clock Toggle Rate Derating Factors (Part 2 of 4)

I/O Standard	Drive Strength	Maximum Output Clock Toggle Rate Derating Factors (ps/pF)								
		Column I/O Pins			Row I/O Pins			Dedicated Clock Outputs		
		-6 Speed Grade		-8 Speed Grade			$\begin{gathered} -8 \\ \text { Speed } \\ \text { Grade } \end{gathered}$	-6 Speed Grade	$\begin{gathered} -7 \\ \text { Speed } \\ \text { Grade } \end{gathered}$	
$\begin{aligned} & \text { SSTL_2_CLASS_ } \\ & \text { II } \end{aligned}$	16 mA	42	43	45	15	29	42	15	29	42
	20 mA	41	42	44	-	-	-	-	-	-
	24 mA	40	42	43	-	-	-	-	-	-
$\begin{aligned} & \begin{array}{l} \text { SSTL_18_ } \\ \text { CLASS_I } \end{array} \end{aligned}$	6 mA	20	22	24	46	47	49	46	47	49
	8 mA	20	22	24	47	49	51	47	49	51
	10 mA	20	22	25	23	25	27	23	25	27
	12 mA	19	23	26	-	-	-	-	-	-
$\begin{aligned} & \text { SSTL_18_ } \\ & \text { CLASS_II } \end{aligned}$	16 mA	30	33	36	-	-	-	-	-	-
	18 mA	29	29	29	-	-	-	-	-	-
$\begin{aligned} & \text { 1.8V_HSTL_ } \\ & \text { CLASS_I } \end{aligned}$	8 mA	26	28	29	59	61	63	59	61	63
	10 mA	46	47	48	65	66	68	65	66	68
	12 mA	67	67	67	71	71	72	71	71	72
$\begin{aligned} & \hline 1.8 \mathrm{~V} \text { _HSTL_ } \\ & \text { CLASS_II } \end{aligned}$	16 mA	62	65	68	-	-	-	-	-	-
	18 mA	59	62	65	-	-	-	-	-	-
	20 mA	57	59	62	-	-	-	-	-	-
$\begin{aligned} & \text { 1.5V_HSTL_ } \\ & \text { CLASS_I } \end{aligned}$	8 mA	40	40	41	28	32	36	28	32	36
	10 mA	41	42	42	-	-	-	-	-	-
	12 mA	43	43	43	-	-	-	-	-	-
$\begin{aligned} & \text { 1.5V_HSTL_ } \\ & \text { CLASS_II } \end{aligned}$	16 mA	18	20	21	-	-	-	-	-	-
DIFFERENTIAL SSTL_2_CLASS_ 1	8 mA	46	47	49	25	40	56	25	40	56
	12 mA	67	69	70	23	42	60	23	42	60
DIFFERENTIAL SSTL_2_CLASS II	16 mA	42	43	45	15	29	42	15	29	42
	20 mA	41	42	44	-	-	-	-	-	-
	24 mA	40	42	43	-	-	-	-	-	-

Table 5-46. Maximum Output Clock Toggle Rate Derating Factors (Part 3 of 4)

I/O Standard	Drive Strength	Maximum Output Clock Toggle Rate Derating Factors (ps/pF)								
		Column I/O Pins			Row I/O Pins			Dedicated Clock Outputs		
		-6   Speed   Grade		-8   Speed   Grade	-6   Speed   Grade		-8   Speed   Grade	-6   Speed   Grade		-8   Speed   Grade
DIFFERENTIAL SSTL_18_CLASS _I	6 mA	20	22	24	46	47	49	46	47	49
	8 mA	20	22	24	47	49	51	47	49	51
	10 mA	20	22	25	23	25	27	23	25	27
	12 mA	19	23	26	-	-	-	-	-	-
DIFFERENTIAL SSTL_18_CLASS _II	16 mA	30	33	36	-	-	-	-	-	-
	18 mA	29	29	29	-	-	-	-	-	-
$1.8 \mathrm{~V}_{-}$   DIFFERENTIAL_   HSTL_CLASS_I	8mA	26	28	29	59	61	63	59	61	63
	10 mA	46	47	48	65	66	68	65	66	68
	12 mA	67	67	67	71	71	72	71	71	72
$1.8 \mathrm{~V}_{-}$   DIFFERENTIAL_   HSTL_CLASS_II	16 mA	62	65	68	-	-	-	-	-	-
	18 mA	59	62	65	-	-	-	-	-	-
	20 mA	57	59	62	-	-	-	-	-	-
$\begin{aligned} & \text { 1.5V_- } \\ & \text { DIFFERENTIAL_ } \\ & \text { HSTL_CLASS_I } \end{aligned}$	8 mA	40	40	41	28	32	36	28	32	36
	10 mA	41	42	42	-	-	-	-	-	-
	12 mA	43	43	43	-	-	-	-	-	-
$1.5 \mathrm{~V}_{-}$   DIFFERENTIAL_   HSTL_CLASS_II	16 mA	18	20	21	-	-	-	-	-	-
LVDS	-	11	13	16	11	13	15	11	13	15
RSDS	-	11	13	16	11	13	15	11	13	15
MINI_LVDS	-	11	13	16	11	13	15	11	13	15
SIMPLE_RSDS	-	15	19	23	15	19	23	15	19	23
1.2V_HSTL	-	130	132	133	-	-	-	-	-	-
$1.2 \mathrm{~V}_{-}$   DIFFERENTIAL_ HSTL	-	130	132	133	-	-	-	-	-	-
PCI	-	-	-	-	99	120	142	99	120	142
$\mathrm{PCI}-\mathrm{X}$	-	-	-	-	99	121	143	99	121	143
LVTTL	OCT_25_OHMS	13	14	14	21	27	33	21	27	33

Table 5-46. Maximum Output Clock Toggle Rate Derating Factors (Part 4 of 4)

I/O Standard	Drive Strength	Maximum Output Clock Toggle Rate Derating Factors (ps/pF)								
		Column I/O Pins			Row I/O Pins			Dedicated Clock Outputs		
		-6 Speed Grade	$\begin{gathered} -7 \\ \text { Speed } \\ \text { Grade } \end{gathered}$	-8 Speed Grade	$\begin{gathered} -6 \\ \text { Speed } \end{gathered}$ Grade	$\begin{array}{\|c} -7 \\ \text { Speed } \\ \text { Grade } \end{array}$		-6 Speed Grade		$\begin{gathered} -8 \\ \text { Speed } \\ \text { Grade } \end{gathered}$
LVCMOS	OCT_25_OHMS	13	14	14	21	27	33	21	27	33
2.5 V	OCT_50_OHMS	346	369	392	324	326	327	324	326	327
1.8 V	OCT_50_OHMS	198	203	209	202	203	204	202	203	204
SSTL_2_CLASS_   I	OCT_50_OHMS	67	69	70	25	42	60	25	42	60
$\begin{array}{\|l} \hline \text { SSTL_18_CLASS } \\ \text { _। } \end{array}$	OCT_50_OHMS	30	33	36	47	49	51	47	49	51

## High Speed I/O Timing Specifications

The timing analysis for LVDS, mini-LVDS, and RSDS is different compared to other I/O standards because the data communication is source-synchronous.

You should also consider board skew, cable skew, and clock jitter in your calculation. This section provides details on the timing parameters for high-speed I/O standards in Cyclone II devices.

Table 5-47 defines the parameters of the timing diagram shown in Figure 5-3.

Table 5-47. High-Speed I/O Timing Definitions (Part 1 of 2)

Parameter	Symbol	Description
High-speed clock	$\mathrm{f}_{\text {HSCKLK }}$	High-speed receiver and transmitter input and output clock frequency.
Duty cycle	$\mathrm{t}_{\text {DUTY }}$	Duty cycle on high-speed transmitter output clock.
High-speed I/O data rate	HSIODR	High-speed receiver and transmitter input and output data rate.
Time Unit Interval	TUI	TUI = 1/HSIODR.
Channel-to-channel skew	TCCS	The timing difference between the fastest and slowest output edges,   including tco variation and clock skew. The clock is included in the   TCCS measurement.   TCCS $=$ TUI - SW $-(2 \times$ RSKM $)$

Table 5-47. High-Speed I/O Timing Definitions (Part 2 of 2)

Parameter	Symbol	$\quad$ Description
Sampling window	SW	The period of time during which the data must be valid in order for you   to capture it correctly. Sampling window is the sum of the setup time,   hold time, and jitter. The window of $t_{\text {SU }}+t_{H}$ is expected to be centered   in the sampling window.   SW $=$ TUI - TCCS $-(2 \times$ RSKM $)$
Receiver input skew   margin	RSKM	RSKM is defined by the total margin left after accounting for the   sampling window and TCCS.   RSKM $=$ (TUI - SW - TCCS $) ~ / ~ 2 ~$
Input jitter (peak to peak)		Peak-to-peak input jitter on high-speed PLLs.
Output jitter (peak to peak)		Peak-to-peak output jitter on high-speed PLLs.
Signal rise time	t RISE	Low-to-high transmission time.
Signal fall time	t $_{\text {FALL }}$	High-to-low transmission time.
Lock time	t LOCK	Lock time for high-speed transmitter and receiver PLLs.

Figure 5-3. High-Speed I/O Timing Diagram


Figure 5-4 shows the high-speed I/O timing budget.

Figure 5-4. High-Speed I/O Timing Budget Note (1)


Note to Figure 5-4:
(1) The equation for the high-speed I/O timing budget is: period $=$ TCCS + RSKM + SW + RSKM.

Table 5-48 shows the RSDS timing budget for Cyclone II devices at 311 Mbps . RSDS is supported for transmitting from Cyclone II devices. Cyclone II devices cannot receive RSDS data because the devices are intended for applications where they will be driving display drivers. Cyclone II devices support a maximum RSDS data rate of 311 Mbps using DDIO registers. Cyclone II devices support RSDS only in the commercial temperature range.

Table 5-48. RSDS Transmitter Timing Specification (Part 1 of 2)

Symbol	Conditions	-6 Speed Grade			-7 Speed Grade			-8 Speed Grade			Unit
		Min	Typ	$\operatorname{Max}(1)$	Min	Typ	$\operatorname{Max}(1)$	Min	Typ	$\operatorname{Max}(1)$	
$\mathrm{f}_{\mathrm{HSCLK}}$   (input   clock frequency)	$\times 10$	10		155.5	10		155.5	10		155.5	Mhz
	$\times 8$	10		155.5	10		155.5	10		155.5	Mhz
	$\times 7$	10		155.5	10		155.5	10		155.5	Mhz
	$\times 4$	10		155.5	10		155.5	10		155.5	Mhz
	$\times 2$	10		155.5	10		155.5	10		155.5	Mhz
	$\times 1$	10		311	10		311	10		311	Mhz
Device operation in Mbps	$\times 10$	100		311	100		311	100		311	Mbps
	$\times 8$	80		311	80		311	80		311	Mbps
	$\times 7$	70		311	70		311	70		311	Mbps
	$\times 4$	40		311	40		311	40		311	Mbps
	$\times 2$	20		311	20		311	20		311	Mbps
	$\times 1$	10		311	10		311	10		311	Mbps
t ${ }_{\text {DUTY }}$		45		55	45		55	45		55	\%

Table 5-48. RSDS Transmitter Timing Specification (Part 2 of 2)

Symbol	Conditions	-6 Speed Grade			-7 Speed Grade			-8 Speed Grade			Unit
		Min	Typ	Max (1)	Min	Typ	$\operatorname{Max}(1)$	Min	Typ	$\operatorname{Max}(1)$	
TCCS				200			200			200	ps
Output jitter (peak to peak)				500			500			500	ps
$\mathrm{t}_{\text {RISE }}$	$\begin{aligned} & 20-80 \%, \\ & \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF} \end{aligned}$		500			500			500		ps
$\mathrm{t}_{\text {FALL }}$	$\begin{aligned} & 80-20 \%, \\ & \mathrm{C}_{\mathrm{LOAD}}=5 \mathrm{pF} \end{aligned}$		500			500			500		ps
t Lock				100			100			100	$\mu \mathrm{s}$

Note to Table 5-48:
(1) These specifications are for a three-resistor RSDS implementation. For single-resistor RSDS in $\times 10$ through $\times 2$ modes, the maximum data rate is 170 Mbps and the corresponding maximum input clock frequency is 85 MHz . For single-resistor RSDS in $\times 1$ mode, the maximum data rate is 170 Mbps and the maximum input clock frequency is 170 MHz . See Chapter 11 for more information on the different RSDS implementations.

In order to determine the transmitter timing requirements, RSDS receiver timing requirements on the other end of the link must be taken into consideration. RSDS receiver timing parameters are typically defined as $t_{\mathrm{SU}}$ and $\mathrm{t}_{\mathrm{H}}$ requirements. Therefore, the transmitter timing parameter specifications are $\mathrm{t}_{\mathrm{CO}}$ (minimum) and $\mathrm{t}_{\mathrm{CO}}$ (maximum). Refer to Figure 5-4 for the timing budget.

The AC timing requirements for RSDS are shown in Figure 5-5.

Figure 5-5. RSDS Transmitter Clock to Data Relationship


Table 5-49 shows the mini-LVDS transmitter timing budget for Cyclone II devices at 311 Mbps . Cyclone II devices can not receive mini-LVDS data because the devices are intended for applications where they will be driving display drivers. A maximum mini-LVDS data rate of 311 Mbps is supported for Cyclone II devices using DDIO registers. Cyclone II devices support mini-LVDS only in the commercial temperature range.

Table 5-49. Mini-LVDS Transmitter Timing Specification (Part 1 of 2)

Symbol	Conditions	-6 Speed Grade			-7 Speed Grade			-8 Speed Grade			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\mathrm{HSCLK}}$ (input clock frequency)	$\times 10$	10		155.5	10		155.5	10		155.5	Mhz
	$\times 8$	10		155.5	10		155.5	10		155.5	Mhz
	$\times 7$	10		155.5	10		155.5	10		155.5	Mhz
	$\times 4$	10		155.5	10		155.5	10		155.5	Mhz
	$\times 2$	10		155.5	10		155.5	10		155.5	Mhz
	$\times 1$	10		311	10		311	10		311	Mhz

Table 5-49. Mini-LVDS Transmitter Timing Specification (Part 2 of 2)

Symbol	Conditions	-6 Speed Grade			-7 Speed Grade			-8 Speed Grade			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Device operation in Mbps	$\times 10$	100		311	100		311	100		311	Mbps
	$\times 8$	80		311	80		311	80		311	Mbps
	$\times 7$	70		311	70		311	70		311	Mbps
	$\times 4$	40		311	40		311	40		311	Mbps
	$\times 2$	20		311	20		311	20		311	Mbps
	$\times 1$	10		311	10		311	10		311	Mbps
$\mathrm{t}_{\text {DUTY }}$		45		55	45		55	45		55	\%
TCCS				200			200			200	ps
Output jitter (peak to peak)				500			500			500	ps
$\mathrm{t}_{\text {RISE }}$	20-80\%			500			500			500	ps
$\mathrm{t}_{\text {FALL }}$	80-20\%			500			500			500	ps
tock				100			100			100	$\mu \mathrm{s}$

In order to determine the transmitter timing requirements, mini-LVDS receiver timing requirements on the other end of the link must be taken into consideration. mini-LVDS receiver timing parameters are typically defined as $\mathrm{t}_{\mathrm{SU}}$ and $\mathrm{t}_{\mathrm{H}}$ requirements. Therefore, the transmitter timing parameter specifications are $\mathrm{t}_{\mathrm{CO}}$ (minimum) and $\mathrm{t}_{\mathrm{CO}}$ (maximum). Refer to Figure 5-4 for the timing budget.

The AC timing requirements for mini-LVDS are shown in Figure 5-6.

Figure 5-6. mini-LVDS Transmitter AC Timing Specification


Notes to Figure 5-6:
(1) The data setup time, $\mathrm{t}_{\mathrm{SU}}$, is $0.225 \times$ TUI.
(2) The data hold time, $t_{\mathrm{H}}$, is $0.225 \times$ TUI.

Tables 5-50 and 5-51 show the LVDS timing budget for Cyclone II devices. Cyclone II devices support LVDS receivers at data rates up to 805 Mbps and LVDS transmitters at data rates up to 640 Mbps .

Table 5-50. LVDS Transmitter Timing Specification (Part 1 of 2)

Symbol	Conditions	-6 Speed Grade				-7 Speed Grade				-8 Speed Grade				Unit
		Min	Typ	Max   (1)	Max   (2)	Min	Typ	Max   (1)	Max   (2)	Min	Typ	Max   (1)	Max   (2)	
$\mathrm{f}_{\mathrm{HSCLK}}$ (input clock frequency)	$\times 10$	10		320	320	10		275	320	10		$155.5$   (4)	$\begin{gathered} 320 \\ (6) \end{gathered}$	Mhz
	$\times 8$	10		320	320	10		275	320	10		$155.5$   (4)	$320$   (6)	Mhz
	$\times 7$	10		320	320	10		275	320	10		$155.5$   (4)	$\begin{gathered} 320 \\ (6) \end{gathered}$	Mhz
	$\times 4$	10		320	320	10		275	320	10		$\begin{gathered} 155.5 \\ \text { (4) } \end{gathered}$	$\begin{gathered} 320 \\ (6) \end{gathered}$	Mhz
	$\times 2$	10		320	320	10		275	320	10		$\begin{gathered} 155.5 \\ (4) \end{gathered}$	$\begin{gathered} 320 \\ (6) \end{gathered}$	Mhz
	$\times 1$	10		402.5	402.5	10		402.5	402.5	10		$402.5$   (8)	$402.5$   (8)	Mhz
HSIODR	$\times 10$	100		640	640	100		550	640	100		311   (5)	550   (7)	Mbps
	$\times 8$	80		640	640	80		550	640	80		311   (5)	550   (7)	Mbps
	$\times 7$	70		640	640	70		550	640	70		$\begin{gathered} 311 \\ (5) \end{gathered}$	550   (7)	Mbps
	$\times 4$	40		640	640	40		550	640	40		$\begin{gathered} 311 \\ (5) \end{gathered}$	550   (7)	Mbps
	$\times 2$	20		640	640	20		550	640	20		311   (5)	550   (7)	Mbps
	$\times 1$	10		402.5	402.5	10		402.5	402.5	10		$\begin{gathered} 402.5 \\ \text { (9) } \end{gathered}$	$\begin{gathered} 402.5 \\ \text { (9) } \end{gathered}$	Mbps
$t_{\text {DUTY }}$		45		55		45		55		45		55		\%
					160				312.5				363.6	ps
TCCS   (3)				200				200				200		ps
Output jitter (peak to peak)				500				500				550 (10)		ps
$\mathrm{t}_{\text {RISE }}$	20-80\%	150	200	250		150	200	250		150	200	250 (11)		ps

Table 5-50. LVDS Transmitter Timing Specification (Part 2 of 2)

Symbol	Conditions	-6 Speed Grade				-7 Speed Grade				-8 Speed Grade				Unit
		Min	Typ	Max   (1)	Max   (2)	Min	Typ	Max   (1)	Max   (2)	Min	Typ	Max   (1)	Max   (2)	
$\mathrm{t}_{\text {FALL }}$	80-20\%	150	200	250		150	200	250		150	200	250 (11)		ps
$\mathrm{t}_{\text {LOCK }}$				100				100				100 (12)		$\mu \mathrm{s}$

Notes to Table 5-50:
(1) The maximum data rate that complies with duty cycle distortion of 45-55\%.
(2) The maximum data rate when taking duty cycle in absolute ps into consideration that may not comply with 45-55\% duty cycle distortion. If the downstream receiver can handle duty cycle distortion beyond the $45-55 \%$ range, you may use the higher data rate values from this column. You can calculate the duty cycle distortion as a percentage using the absolute ps value. For example, for a data rate of $640 \mathrm{Mbps}(\mathrm{UI}=1562.5 \mathrm{ps})$ and a $t_{\text {DUTY }}$ of 250 ps , the duty cycle distortion is $\pm \mathrm{t}_{\mathrm{DUTY}} /\left(\mathrm{UI}^{*} 2\right) * 100 \%= \pm 250 \mathrm{ps} /(1562.5 * 2) * 100 \%= \pm 8 \%$, which gives you a duty cycle distortion of 42-58\%.
(3) The TCCS specification applies to the entire bank of LVDS as long as the SERDES logic is placed within the LAB adjacent to the output pins.
(4) For extended temperature devices, the maximum input clock frequency for $\times 10$ through $\times 2$ modes is 137.5 MHz .
(5) For extended temperature devices, the maximum data rate for $\times 10$ through $\times 2$ modes is 275 Mbps .
(6) For extended temperature devices, the maximum input clock frequency for $\times 10$ through $\times 2$ modes is 200 MHz .
(7) For extended temperature devices, the maximum data rate for $\times 10$ through $\times 2$ modes is 400 Mbps .
(8) For extended temperature devices, the maximum input clock frequency for $\times 1$ mode is 340 MHz .
(9) For extended temperature devices, the maximum data rate for $\times 1$ mode is 340 Mbps .
(10) For extended temperature devices, the maximum output jitter (peak to peak) is 600 ps .
(11) For extended temperature devices, the maximum $t_{\text {RISE }}$ and $t_{\text {FALL }}$ are 300 ps .
(12) For extended temperature devices, the maximum lock time is 500 us.

Table 5-51. LVDS Receiver Timing Specification

Symbol	Conditions	-6 Speed Grade			-7 Speed Grade			-8 Speed Grade			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\mathrm{HSCLK}}$ (input clock frequency)	$\times 10$	10		402.5	10		320	10		320 (1)	Mhz
	$\times 8$	10		402.5	10		320	10		320 (1)	Mhz
	$\times 7$	10		402.5	10		320	10		320 (1)	Mhz
	$\times 4$	10		402.5	10		320	10		320 (1)	Mhz
	$\times 2$	10		402.5	10		320	10		320 (1)	Mhz
	$\times 1$	10		402.5	10		402.5	10		402.5 (3)	Mhz
HSIODR	$\times 10$	100		805	100		640	100		640 (2)	Mbps
	$\times 8$	80		805	80		640	80		640 (2)	Mbps
	$\times 7$	70		805	70		640	70		640 (2)	Mbps
	$\times 4$	40		805	40		640	40		640 (2)	Mbps
	$\times 2$	20		805	20		640	20		640 (2)	Mbps
	$\times 1$	10		402.5	10		402.5	10		402.5 (4)	Mbps
SW				300			400			400	ps
Input jitter tolerance				500			500			550	ps
tıock				100			100			100 (5)	ps

Notes to Table 5-51:
(1) For extended temperature devices, the maximum input clock frequency for x 10 through x 2 modes is 275 MHz .
(2) For extended temperature devices, the maximum data rate for $x 10$ through $x 2$ modes is 550 Mbps .
(3) For extended temperature devices, the maximum input clock frequency for x 1 mode is 340 MHz .
(4) For extended temperature devices, the maximum data rate for $x 1$ mode is 340 Mbps .
(5) For extended temperature devices, the maximum lock time is 500 us.

## External Memory Interface Specifications

Table 5-52 shows the DQS bus clock skew adder specifications.

Table 5-52. DQS Bus Clock Skew Adder Specifications		
Mode	DaS Clock Skew Adder	Unit
$\times 9$	155	ps
$\times 18$	190	ps

Note to Table 5-52:
(1) This skew specification is the absolute maximum and minimum skew. For example, skew on a $\times 9$ DQ group is 155 ps or $\pm 77.5 \mathrm{ps}$.

## JTAG Timing Specifications

Figure 5-7 shows the timing requirements for the JTAG signals.

Figure 5-7. Cyclone II JTAG Waveform


Table 5-53 shows the JTAG timing parameters and values for Cyclone II devices.

Table 5-53. Cyclone II JTAG Timing Parameters \& Values

Symbol	Parameter	Min	Max	Unit
$t_{\text {JCP }}$	TCK clock period	40		ns
$\mathrm{t}_{\text {JCH }}$	TCK clock high time	20		ns
$\mathrm{t}_{\text {JCL }}$	TCK clock low time	20		ns
$\mathrm{t}_{\text {JPSU }}$	JTAG port setup time (2)	5		ns
$\mathrm{t}_{\text {JPH }}$	JTAG port hold time	10		ns
$\mathrm{t}_{\text {JPCO }}$	JTAG port clock to output (2)		13	ns
$\mathrm{t}_{\text {JPZX }}$	JTAG port high impedance to valid output (2)		13	ns
$\mathrm{t}_{\text {JPXZ }}$	JTAG port valid output to high impedance (2)		ns	
$\mathrm{t}_{\text {JSSU }}$	Capture register setup time (2)		ns	
$\mathrm{t}_{\text {JSH }}$	Capture register hold time	10	25	ns
$\mathrm{t}_{\text {JSCO }}$	Update register clock to output		25	ns
$\mathrm{t}_{\text {JSZx }}$	Update register high impedance to valid output		25	ns
$\mathrm{t}_{\text {JSxZ }}$	Update register valid output to high impedance			

Notes to Table 5-53:
(1) This information is preliminary.
(2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the JTAG port and capture register clock setup time is 3 ns and port clock to output time is 15 ns .
[1) Cyclone II devices must be within the first 17 devices in a JTAG chain. All of these devices have the same JTAG controller. If any of the Cyclone II devices are in the 18th or after they will fail configuration. This does not affect the SignalTap ${ }^{\circledR}$ II logic analyzer.

For more information on JTAG, see the IEEE 1149.1 (JTAG) BoundaryScan Testing for Cyclone II Devices chapter in the Cyclone II Handbook and Jam Programming $\mathcal{E}$ Test Language Specification.

## PLL Timing Specifications

Table 5-54 describes the Cyclone II PLL specifications when operating in the commercial junction temperature range ( $0^{\circ}$ to $85^{\circ} \mathrm{C}$ ), the industrial junction temperature range ( $-40^{\circ}$ to $100^{\circ} \mathrm{C}$ ), and the extended temperature range $\left(-40^{\circ}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$. Follow the PLL specifications for -8 speed grade devices when operating in the industrial or extended temperature range.

Table 5-54. PLL Specifications (Part 1 of 2) Note (1)					
Symbol	Parameter	Min	Typ	Max	Unit
fin	Input clock frequency (-6 speed grade)	10		(4)	MHz
	Input clock frequency (-7 speed grade)	10		(4)	MHz
	Input clock frequency (-8 speed grade)	10		(4)	MHz
$\mathrm{f}_{\text {INPFD }}$	PFD input frequency (-6 speed grade)	10		402.5	MHz
	PFD input frequency ( -7 speed grade)	10		402.5	MHz
	PFD input frequency (-8 speed grade)	10		402.5	MHz
finduty	Input clock duty cycle	40		60	\%
$\mathrm{tinaitter}^{\text {( }}$ )	Input clock period jitter		200		ps
fout_Ext (external clock output)	PLL output frequency (-6 speed grade)	10		(4)	MHz
	PLL output frequency (-7 speed grade)	10		(4)	MHz
	PLL output frequency (-8 speed grade)	10		(4)	MHz
$\mathrm{f}_{\text {OUT }}$ (to global clock)	PLL output frequency (-6 speed grade)	10		500	MHz
	PLL output frequency (-7 speed grade)	10		450	MHz
	PLL output frequency (-8 speed grade)	10		402.5	MHz
toutduty	Duty cycle for external clock output (when set to $50 \%$ )	45		55	\%
$\mathrm{t}_{\text {JITTER }}(\mathrm{p}-\mathrm{p})(2)$	Period jitter for external clock output $\mathrm{f}_{\text {OUt_EXt }}>100 \mathrm{Mhz}$			300	ps
	$\mathrm{f}_{\text {OUt_Ext }} \leq 100 \mathrm{Mhz}$			30	mUI
tıock	Time required to lock from end of device configuration			100 (6)	$\mu \mathrm{s}$
trlL_PSERR	Accuracy of PLL phase shift			$\pm 60$	ps

Table 5-54. PLL Specifications (Part 2 of 2) Note (1)

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{f}_{\mathrm{VCO}}(3)$	PLL internal VCO operating range	300		1,000	MHz
$\mathrm{t}_{\text {ARESET }}$	Minimum pulse width on areset signal.	10			ns

Notes to Table 5-54:
(1) These numbers are preliminary and pending silicon characterization.
(2) The $\mathrm{t}_{\text {IITTER }}$ specification for the PLL [ 4 . . 1] _OUT pins are dependent on the I/O pins in its VCCIO bank, how many of them are switching outputs, how much they toggle, and whether or not they use programmable current strength.
(3) If the VCO post-scale counter $=2$, a $300-$ to $500-\mathrm{MHz}$ internal VCO frequency is available.
(4) This parameter is limited in Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
(5) Cyclone II PLLs can track a spread-spectrum input clock that has an input jitter within $\pm 200 \mathrm{ps}$.
(6) For extended temperature devices, the maximum lock time is 500 us.

Duty cycle distortion (DCD) describes how much the falling edge of a clock is off from its ideal position. The ideal position is when both the clock high time (CLKH) and the clock low time (CLKL) equal half of the clock period (T), as shown in Figure 5-8. DCD is the deviation of the non-ideal falling edge from the ideal falling edge, such as D1 for the falling edge A and D2 for the falling edge B (Figure 5-8). The maximum DCD for a clock is the larger value of D1 and D2.

Figure 5-8. Duty Cycle Distortion


DCD expressed in absolution derivation, for example, D1 or D2 in Figure 5-8, is clock-period independent. DCD can also be expressed as a percentage, and the percentage number is clock-period dependent. DCD as a percentage is defined as:
(T/2 - D1) / T (the low percentage boundary)
(T/2 + D2) / T (the high percentage boundary)

## DCD Measurement Techniques

DCD is measured at an FPGA output pin driven by registers inside the corresponding I/O element (IOE) block. When the output is a single data rate signal (non-DDIO), only one edge of the register input clock (positive or negative) triggers output transitions (Figure 5-9). Therefore, any DCD present on the input clock signal or caused by the clock input buffer or different input I/O standard does not transfer to the output signal.

Figure 5-9. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs


However, when the output is a double data rate input/output (DDIO) signal, both edges of the input clock signal (positive and negative) trigger output transitions (Figure 5-10). Therefore, any distortion on the input clock and the input clock buffer affect the output DCD.

Figure 5-10. DCD Measurement Technique for DDIO (Double-Data Rate) Outputs


When an FPGA PLL generates the internal clock, the PLL output clocks the IOE block. As the PLL only monitors the positive edge of the reference clock input and internally re-creates the output clock signal, any DCD present on the reference clock is filtered out. Therefore, the DCD for a DDIO output with PLL in the clock path is better than the DCD for a DDIO output without PLL in the clock path.

Tables 5-55 through 5-58 give the maximum DCD in absolution derivation for different I/O standards on Stratix II devices. Examples are also provided that show how to calculate DCD as a percentage.

Table 5-55. Maximum DCD for Single Data Outputs (SDR) on Row I/O Pins (Part 1 of 2) Notes (1), (2)

Row I/O Output Standard	C6	C7	C8	Unit
LVCMOS	165	230	230	ps
LVTTL	195	255	255	ps
2.5-V	120	120	135	ps
1.8-V	115	115	175	ps
1.5-V	130	130	135	ps
SSTL-2 Class I	60	90	90	ps
SSTL-2 Class II	65	75	75	ps
SSTL-18 Class I	90	165	165	ps
HSTL-15 Class I	145	145	205	ps
HSTL-18 Class I	85	155	155	ps

Table 5-55. Maximum DCD for Single Data Outputs (SDR) on Row I/O Pins (Part 2 of 2) Notes (1), (2)

Row I/O Output Standard	C6	C7	C8	Unit
Differential SSTL-2 Class I	60	90	90	ps
Differential SSTL-2 Class II	65	75	75	ps
Differential SSTL-18 Class I	90	165	165	ps
Differential HSTL-18 Class I	85	155	155	ps
Differential HSTL-15 Class I	145	145	205	ps
LVDS	60	60	60	ps
Simple RSDS	60	60	60	ps
Mini LVDS	60	60	60	ps
PCI	195	255	255	ps
PCI-X	195	255	255	ps

Notes to Table 5-55:
(1) The DCD specification is characterized using the maximum drive strength available for each I/O standard.
(2) Numbers are applicable for both commercial and industrial devices.

Here is an example for calculating the DCD as a percentage for a SDR output on a row I/O on a -6 device:

If the SDR output I/O standard is SSTL-2 Class II, the maximum DCD is 65 ps (see Table X-X1). If the clock frequency is 167 MHz , the clock period T is:

$$
\mathrm{T}=1 / \mathrm{f}=1 / 167 \mathrm{MHz}=6 \mathrm{~ns}=6000 \mathrm{ps}
$$

To calculate the DCD as a percentage:
(T/2 - DCD) $/ \mathrm{T}=(6000 \mathrm{ps} / 2-65 \mathrm{ps}) / 6000 \mathrm{ps}=48.91 \%$ (for low boundary)
$(\mathrm{T} / 2+\mathrm{DCD}) / \mathrm{T}=(6000 \mathrm{ps} / 2+65 \mathrm{ps}) / 6000 \mathrm{ps}=51.08 \%$ (for high boundary

Table 5-56. Maximum DCD for SDR Output on Column I/O (Part 1   of 2)   Notes (1), (2)				
Column I/O Output Standard	C6	C7	C8	Unit
LVCMOS	195	285	285	ps
LVTTL	210	305	305	ps

Table 5-56. Maximum DCD for SDR Output on Column I/O (Part 2
of 2) $\quad N o t e s ~(1), ~(2) ~$

Column I/O Output Standard	C6	C7	C8	Unit
2.5-V	140	140	155	ps
1.8-V	115	115	165	ps
1.5-V	745	745	770	ps
SSTL-2 Class I	60	60	75	ps
SSTL-2 Class II	60	60	80	ps
SSTL-18 Class I	60	130	130	ps
SSTL-18 Class II	60	135	135	ps
HSTL-18 Class I	60	115	115	ps
HSTL-18 Class II	75	75	100	ps
HSTL-15 Class I	130	150	150	ps
HSTL-15 Class II	60	60	75	ps
Differential SSTL-2 Class I	60	60	80	ps
Differential SSTL-2 Class II	60	130	130	ps
Differential SSTL-18 Class I	60	135	135	ps
Differential SSTL-18 Class II	60	115	115	ps
Differential HSTL-18 Class I	75	75	100	ps
Differential HSTL-18 Class II	150	150	150	ps
Differential HSTL-15 Class I	135	135	155	ps
Differential HSTL-15 Class II	60	60	60	ps
LVDS	60	70	70	ps
Simple RSDS	60	60	ps	
Mini-LVDS				

Notes to Table 5-56:
(1) The DCD specification is characterized using the maximum drive strength available for each I/O standard.
(2) Numbers are applicable for both commercial and industrial devices.

Table 5-57. Maximum for DDIO Output on Row Pins with PLL in the Clock Path (Part 1 of 2) Notes (1), (2)

Row Pins with PLL in the Clock Path	C6	C7	C8	Unit
LVCMOS	270	310	310	ps
LVTTL	285	305	335	ps
$2.5-\mathrm{V}$	180	180	220	ps
$1.8-V$	165	175	205	ps

Table 5-57. Maximum for DDIO Output on Row Pins with PLL in the Clock Path (Part 2 of 2) Notes (1), (2)

Row Pins with PLL in the Clock Path	C6	C7	C8	Unit
1.5-V	280	280	280	ps
SSTL-2 Class I	150	190	230	ps
SSTL-2 Class II	155	200	230	ps
SSTL-18 Class I	180	240	260	ps
HSTL-18 Class I	180	235	235	ps
HSTL-15 Class I	205	220	220	ps
Differential SSTL-2 Class I	150	190	230	ps
Differential SSTL-2 Class II	155	200	230	ps
Differential SSTL-18 Class I	180	240	260	ps
Differential HSTL-18 Class I	180	235	235	ps
Differential HSTL-15 Class I	205	220	220	ps
LVDS	95	110	120	ps
Simple RSDS	100	155	155	ps
Mini LVDS	95	110	120	ps
PCI	285	305	335	ps
PCI-X	285	305	335	ps

Notes to Table 5-57:
(1) The DCD specification is characterized using the maximum drive strength available for each I/O standard.
(2) Numbers are applicable for both commercial and industrial devices.

For DDIO outputs, you can calculate actual half period from the following equation:

$$
\text { Actual half period }=\text { ideal half period }- \text { maximum } \mathrm{DCD}
$$

For example, if the DDR output I/O standard is SSTL-2 Class II, the maximum DCD for a -5 device is 155 ps (see Table X-X3). If the clock frequency is 167 MHz , the half-clock period $\mathrm{T} / 2$ is:

$$
\mathrm{T} / 2=1 /\left(2^{*} \mathrm{f}\right)=1 /\left(2^{*} 167 \mathrm{MHz}\right)=3 \mathrm{~ns}=3000 \mathrm{ps}
$$

The actual half period is then $=3000 \mathrm{ps}-155 \mathrm{ps}=2845 \mathrm{ps}$

Table 5-58. Maximum DCD for DDIO Output on Column I/O Pins with PLL in
the Clock Path Notes (1), (2)

Column I/O Pins in the Clock Path	C6	C7	C8	Unit
LVCMOS	285	400	445	ps
LVTTL	305	405	460	ps
2.5-V	175	195	285	ps
1.8-V	190	205	260	ps
1.5-V	605	645	645	ps
SSTL-2 Class I	125	210	245	ps
SSTL-2 Class II	195	195	195	ps
SSTL-18 Class I	130	240	245	ps
SSTL-18 Class II	135	270	330	ps
HSTL-18 Class I	135	240	240	ps
HSTL-18 Class II	165	240	285	ps
HSTL-15 Class I	220	335	335	ps
HSTL-15 Class II	190	210	375	ps
Differential SSTL-2 Class I	125	210	245	ps
Differential SSTL-2 Class II	195	195	195	ps
Differential SSTL-18 Class I	130	240	245	ps
Differential SSTL-18 Class II	132	270	330	ps
Differential HSTL-18 Class I	135	240	240	ps
Differential HSTL-18 Class II	165	240	285	ps
Differential HSTL-15 Class I	220	335	335	ps
Differential HSTL-15 Class II	190	210	375	ps
LVDS	110	120	125	ps
Simple RSDS	125	125	275	ps
Mini-LVDS	110	120	125	ps

Notes to Table 5-58:
(1) The DCD specification is characterized using the maximum drive strength available for each I/O standard.
(2) Numbers are applicable for both commercial and industrial devices.

## Document

Table 5-59 shows the revision history for this document.

## Revision History

Table 5-59. Document Revision History

Date \& Document Version	Changes Made	Summary of Changes
April 2007 v3.2	- Updated Table 5-3.	- Updated $\mathrm{R}_{\text {Conf }}$ typical and maximum values in Table 5-3.
February 2007 v3. 1	- Added document revision history.   - Added new row in Table 5-1.   - Deleted a sentence from Note (1) in Table 5-2.   - Updated Table 5-3.   - Added new Note (6) to Table 5-8.   - Updated Note (1) to Table 5-12.   - Updated Table 5-13.   - Updated "Timing Specifications" section.   - Updated Table 5-45.   - Added Table 5-46.   - Updated Note (2) to Table 5-50.   - Updated "PLL Timing Specifications" section.   - Updated Note (3) to Table 5-54.	- Added $\mathrm{V}_{\mathrm{CCA}}$ minimum and maximum limitations in Table 5-1.   - Updated the maximum $\mathrm{V}_{\mathrm{CC}}$ rise time for Cyclone II "A" devices in Table 5-2.   - Updated $\mathrm{R}_{\mathrm{CONF}}$ information in Table 5-3.   - Changed $V_{1}$ to $I_{i}$ in Table 5-3.   - Updated LVPECL clock inputs in Note (6) to Table 5-8.   - Clarified CVref capacitance description in Table 5-13.   - Information on toggle rate derating factors added in Table 5-46.   - Corrected calculation of the period based on a 640 Mbps data rate as 1562.5 ps in Note (2) to Table 5-50.   - Updated chapter with extended temperature information.   - Clarified $\mathrm{V}_{\mathrm{CO}}$ range of $300-500 \mathrm{MHz}$ usage in Note (3) to Table 5-54.
December 2005 v2.2	Updated PLL Timing Specifications	
November 2005 v2.1	Updated technical content throughout.	
July 2005 v2.0	Updated technical content throughout.	
November 2004 v1.1	Updated the "Differential I/O Standards" section.   Updated Table 5-54.	
June 2004 v1.0	Added document to the Cyclone II Device Handbook.	

## 6. Reference \& Ordering Information

## Software

Cyclone ${ }^{\circledR}$ II devices are supported by the Altera ${ }^{\circledR}$ Quartus ${ }^{\circledR}$ II design software, which provides a comprehensive environment for system-on-a-programmable-chip (SOPC) design. The Quartus II software includes HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, SignalTap ${ }^{\circledR}$ II logic analyzer, and device configuration. See the Quartus II Handbook for more information on the Quartus II software features.

The free Quartus II Web Edition software, available at www.Altera.com, supports Microsoft Windows XP and Windows 2000. The full version of Quartus II software is available through the Altera subscription program. The full version of Quartus II software supports all Altera devices, is available for Windows XP, Windows 2000, Sun Solaris, and Red Hat Linux operating systems, and includes a free suite of popular IP MegaCore ${ }^{\circledR}$ functions for DSP applications and interfacing to external memory devices. Quartus II software and Quartus II Web Edition software support seamless integration with your favorite third party EDA tools.

## Device Pin-Outs

## Ordering Information

Device pin-outs for Cyclone II devices are available on the Altera web site (www.altera.com). For more information contact Altera Applications.

Figure 6-1 describes the ordering codes for Cyclone II devices. For more information on a specific package, contact Altera Applications.

Figure 6-1. Cyclone II Device Packaging Ordering Information


## Document

Table 6-1 shows the revision history for this document.

## Revision History

Table 6-1. Document Revision History		
  Document   Version	Changes Made	Summary of Changes
February 2007   v1.5	• Added document revision history.   Updated Figure 6-1.	- Added Ultra FineLine BGA   detail in UBGA Package   information in Figure 6-1.
November 2005   v1.2	Updated software introduction.	
November 2004   v1.1	Updated Figure 6-1.	
June 2004 v1.0	Added document to the Cyclone II Device Handbook.	

