

ProASIC®3 Handbook

Table of Contents

Low-Power Flash Device Handbooks Introduction
Section I – ProASIC3 Datasheet
ProASIC3 Flash Family FPGAs
ProASIC3 Device Family Overview1-1
ProASIC3 DC and Switching Characteristics
Package Pin Assignments
Section II – User's Guide
Low-Power Flash Technology and Flash*Freeze Mode
FPGA Array Architecture in Low-Power Flash Devices1-1
Low-Power Modes in Actel ProASIC3/E and ProASIC3 nano FPGAs
Global Resources and Clock Conditioning
Global Resources in Actel Low-Power Flash Devices
Clock Conditioning Circuits in Low-Power Flash Devices and Mixed-Signal FPGAs
Embedded Memories
FlashROM in Actel's Low-Power Flash Devices
SRAM and FIFO Memories in Actel's Low-Power Flash Devices
I/O Descriptions and Usage
I/O Structures in IGLOO and ProASIC3 Devices7-1
I/O Software Control in Low-Power Flash Devices
DDR for Actel's Low-Power Flash Devices9-1
Packaging and Pin Descriptions
Pin Descriptions
Packaging11-1
Design Migration
Migrating Designs in ProASIC3 Devices from Higher-Density to Mid-Density Devices
Migrating Designs from A3P250 to Lower-Logic-Density Devices
Programming and Security
Programming Flash Devices
Security in Low-Power Flash Devices

Table of Contents

In-System Programming (ISP) of Actel's Low-Power Flash Devices Using FlashPro3	16-1
Microprocessor Programming of Actel's Low-Power Flash Devices	17-1
Boundary Scan and UJTAG	
Boundary Scan in Low-Power Flash Devices	18-1
UJTAG Applications in Actel's Low-Power Flash Devices	19-1
Board-Level Requirements	
Power-Up/-Down Behavior of Low-Power Flash Devices	20-1
ProASIC3/E SSO and Pin Placement Guidelines	21-1
Metastability Characterization Report for Actel Flash FPGAs	22-1

Low-Power Flash Device Handbooks Introduction

Device Handbooks contain all the information available to help designers understand and use Actel's devices. Handbook chapters are grouped into sections on the website to simplify navigation. Each chapter of the handbook can be viewed as an individual PDF file.

At the top of the handbook web page, you will see a PDF file for each product family. This file contains the complete device handbook. Please register for product updates to be notified when a section of the handbook changes.

Table 1 • Differences between Former Datasheets and Device Handbooks

Description of Change	Comparison between Handbook and Datasheet
The silicon datasheet in the handbook does not contain the same chapters as the previous versions of the datasheets.	The former version of the silicon datasheet contained the following:
The General Description section no longer exists in datasheets.	with relevant application note content to provide one location for information on each architectural feature. The Device Architecture section still exists in the Fusion Handbook only.
Change tables were carried forward through this process; they contain information from the old datasheets and the new datasheets.	are listed so customers can determine if any of the changes affect
Version numbers were restarted.	The version numbers were restarted when the handbooks were created. For example, a datasheet may have been v2.1 and is now v1.0. The category (i.e., advance or production) of the datasheet did not change. The only change occurred to the actual numbering of the datasheet. All version numbers are located in the footer of the page.
Publication date	The publication date indicates when the document was published and posted to the Actel website.
The former datasheets were two columns and the current datasheets and handbooks are formatted with one column.	

v1.2

Table 1 • Differences between Former Datasheets and Device Handbooks (continued)

Description of Change	Comparison between Handbook and Datasheet
Each chapter within a handbook can have a different version number.	Each chapter in the handbook has its own version number. Since the chapters are independent documents and can be updated at different times, the version numbers for each chapter increment only when a change is made to that chapter. For example, in the ProASIC3L handbook, the DC and Switching section is Advance v0.2, the Packaging Pin Assignments section is v1.0, and the Global Resources section is v1.1. The DC and Switching section is advance because the data has not been fully characterized. The Packaging and Global Resources chapters are both production versions because the data is final. They have different version numbers because they were updated at different times.
Chapters can be numbered differently in each of the handbooks, but the version number for a chapter should be consistent throughout all handbooks. Chapters are also published individually without chapter numbers.	content, so the Pin Descriptions chapter could be chapter 7 in one
There are multiple versions of the I/O Structures chapter.	There are several major differences between the families regarding I/O structures, so the information has been grouped by similar families. As a result, we have multiple I/O Structures chapters to describe the features for each group of families in detail.
The part number of the datasheet has changed.	Part numbers are used internally to track documents. Each document has its own unique part number. The number after the second dash indicates the revision of the document. For example, in the part number 51700094-006-1, 51700094-006 is the part number and 1 is the revision of the document. We start with 0 for all new documents. There is a part number for the current version of the datasheet on the back page with the addresses. In addition, all chapters in the datasheet and handbooks have their own unique part numbers. When we implemented the current handbook format, existing documents were assigned new part numbers.
The information contained in the Core Architecture section of the silicon handbook includes information previously found in application notes.	, ,

ii v1.2

Table 1 • Differences between	Former Datash	neets and Device	Handbooks	(continued)
-------------------------------	---------------	------------------	-----------	-------------

Description of Change	Comparison between Handbook and Datasheet								
The location of the following information has changed in the current handbook format:									
Former Datasheet Location Current Handbook Location									
CCC/PLL Specification Table	Core Architecture	DC and Switching section > Clock Conditioning Circuits							
Peak-to-Peak Jitter Waveform	Core Architecture	DC and Switching section > Clock Conditioning Circuits							

Versions

Device handbook chapters may have different version numbers. Actel's goal is to provide customers with the latest information in a timely matter. As a result, the handbook chapters will be updated independently of the handbook.

Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advance," "Preliminary," and "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

v1.2 iii

Part Number and Revision Date

Part Number 51700094-001-2 Revised December 2008

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.2)							
v1.1 (November 2008)	Table 1 · Differences between Former Datasheets and Device Handbooks was revised to indicate that only the Fusion Handbook retains a Device Architecture section. The information on the I/O Structures chapters was revised, as an I/O Structures chapter has been added for nano devices.	i						
v1.0 (January 2008)	This document was rewritten to address the differences between the former datasheets and new device handbooks.	N/A						

iv v1.2

Section I – ProASIC3 Datasheet

ProASIC3 Flash Family FPGAs with Optional Soft ARM® Support

Features and Benefits

High Capacity

- 15 k to 1 M System Gates
- Up to 144 kbits of True Dual-Port SRAM
- Up to 300 User I/Os

Reprogrammable Flash Technology

- 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS Process
- Live at Power-Up (LAPU) Level 0 Support
- Single-Chip Solution
- Retains Programmed Design when Powered Off

High Performance

- 350 MHz System Performance
- 3.3 V, 66 MHz 64-Bit PCI

In-System Programming (ISP) and Security

- Secure ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption (except ARM-enabled ProASIC®3 devices) via JTAG (IEEE 1532–compliant)[†]
 • FlashLock[®] to Secure FPGA Contents

Low Power

- Core Voltage for Low Power Support for 1.5 V-Only Systems
- Low-Impedance Flash Switches

High-Performance Routing Hierarchy

- Segmented, Hierarchical Routing and Clock Structure
- 700 Mbps DDR, LVDS-Capable I/Os (A3P250 and above)
- 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation

- Wide Range Power Supply Voltage Support per JESD8-B, Allowing I/Os to Operate from 2.7 V to 3.6 V
- Bank-Selectable I/O Voltages—up to 4 Banks per Chip
 - Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V / 2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X † and LVCMOS 2.5 V / 5.0 V Input
 - Differential I/O Standards: LVPECL, LVDS, B-LVDS, and M-LVDS (A3P250 and above)

- I/O Registers on Input, Output, and Enable Paths Hot-Swappable and Cold Sparing I/Os[‡] Programmable Output Slew Rate[†] and Drive Strength
- Weak Pull-Up/-Down
- IEEE 1149.1 (JTAG) Boundary Scan Test
- Pin-Compatible Packages across the ProASIC3 Family
 Clock Conditioning Circuit (CCC) and PLL[†]

- Six CCC Blocks, One with an Integrated PLL
- Configurable Phase-Shift, Multiply/Divide, Delay Capabilities and External Feedback
- Wide Input Frequency Range (1.5 MHz to 350 MHz)

Embedded Memory

- 1 kbit of FlashROM User Nonvolatile Memory
- SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM Blocks (\times 1, \times 2, \times 4, \times 9, and \times 18 organizations)
- True Dual-Port SRAM (except ×18)

ARM Processor Support in ProaSIC3 FPGAs

 M1 ProASIC3 Devices—ARM[®]Cortex™-M1 Soft Processor Available with or without Debug

Table 1 • ProASIC3 Product Family

ProASIC3 Devices	A3P015	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Cortex-M1 Devices ¹					M1A3P250	M1A3P400	M1A3P600	M1A3P1000
System Gates	15 k	30 k	60 k	125 k	250 k	400 k	600 k	1 M
Typical Equivalent Macrocells	128	256	512	1,024	2,048	_	-	-
VersaTiles (D-flip-flops)	384	768	1,536	3,072	6,144	9,216	13,824	24,576
RAM kbits (1,024 bits)	-	_	18	36	36	54	108	144
4,608-Bit Blocks	-	-	4	8	8	12	24	32
FlashROM Bits	1 k	1 k	1 k	1 k	1 k	1 k	1 k	1 k
Secure (AES) ISP ²	-	-	Yes	Yes	Yes	Yes	Yes	Yes
Integrated PLL in CCCs	-	=	1	1	1	1	1	1
VersaNet Globals ³	6	6	18	18	18	18	18	18
I/O Banks	2	2	2	2	4	4	4	4
Maximum User I/Os	49	81	96	133	157	194	235	300
Package Pins QFN	QN68	QN48, QN68, QN132	QN132	QN132	QN132 ⁵			
CS VQFP TQFP PQFP FBGA		VQ100	CS121 VQ100 TQ144 FG144	VQ100 TQ144 PQ208 FG144	VQ100 PQ208 FG144/256 ⁵	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484

Notes:

- 1. Refer to the Cortex-M1 product brief for more information.
- AES is not available for ARM-enabled ProASIC3 devices.
- Six chip (main) and three quadrant global networks are available for A3P060 and above.
- For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs handbook.
- The M1A3P250 device does not support this package.

‡ Supported only by A3P015 and A3P030 devices.

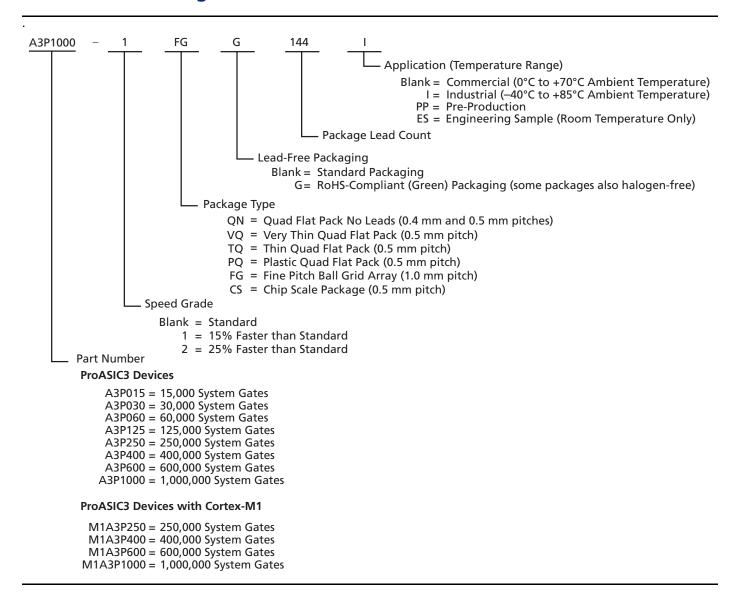
[†] A3P015 and A3P030 devices do not support this feature.

I/Os Per Package ¹

ProASIC3 Devices	A3P015	A3P030	A3P060	A3P125	A3P2	250 ³	A3P4	400 ³	A3P600		A3P	1000
Cortex-M1 Devices					M1A3F	250 ^{3,6}	M1A3	P400 ³	M1A	3P600	M1A3P1000	
					1/0	Э Туре						
Package	Single-Ended I/O ²	Differential I/O Pairs										
QN48		34										
QN68	49	49	_	_	-	-	-	-		-	-	-
QN132	_	81	80	84	87	19	_	-		_	_	-
CS121	_	_	96	_	_	_	_	-	_	_	_	-
VQ100	_	77	71	71	68	13	_	-		_	_	-
TQ144	_	_	91	100	-	_	-	_	-	_	_	-
PQ208	_	_	_	133	151	34	151	34	154	35	154	35
FG144	_	_	96	97	97	24	97	25	97	25	97	25
FG256	_	_	_	_	157	38	178	38	177	43	177	44
FG484	_	_	_	_	-	-	194	38	235	60	300	74

Notes:

- 1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3 Flash Family FPGAs handbook to ensure complying with design and board migration requirements.
- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For A3P250 and A3P400 devices, the maximum number of LVPECL pairs in east and west banks cannot exceed 15. Refer to the ProASIC3 Flash Family FPGAs handbook for position assignments of the 15 LVPECL pairs.
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. "G" indicates RoHS-compliant packages. Refer to "ProASIC3 Ordering Information" on page III for the location of the "G" in the part number.
- 6. The M1A3P250 device does not support FG256 or QN132 packages.


Table 2 • ProASIC3 FPGAs Package Sizes Dimensions

Package	QN48	CS121	QN68	QN132	VQ100	TQ144	PQ208	FG144	FG256	FG484
Length × Width (mm\mm)	6 × 6	6 × 6	8 × 8	8 × 8	14 × 14	20 × 20	28 × 28	13 × 13	17 × 17	23 × 23
Nominal Area (mm²)	36	36	64	64	196	400	784	169	289	529
Pitch (mm)	0.4	0.5	0.4	0.5	0.5	0.5	0.5	1.0	1.0	1.0
Height (mm)	0.90	0.99	0.90	0.75	1.00	1.40	3.40	1.45	1.60	2.23

l v1.3

ProASIC3 Ordering Information

v1.3

Temperature Grade Offerings

Package	A3P015	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Cortex-M1 Devices					M1A3P250	M1A3P400	M1A3P600	M1A3P1000
QN48	-	С, І	-	-	_	-	-	-
QN68	С, І	С, І	-	-	-	-	-	-
QN132	_	С, І	С, І	С, І	С, І	-	_	-
CS121	_	-	С, І	-	_	-	_	-
VQ100	_	С, І	С, І	С, І	С, І	_	_	-
TQ144	_	-	С, І	С, І	_	-	_	-
PQ208	-	-	-	С, І	С, І	C, I	С, І	С, І
FG144	_	-	С, І	С, І	С, І	C, I	С, І	С, І
FG256	_	-	-	-	С, І	C, I	С, І	С, І
FG484	-	-	-	-	_	C, I	C, I	С, І

Notes:

- 1. C = Commercial temperature range: 0°C to 70°C ambient temperature
- 2. I = Industrial temperature range: -40°C to 85°C ambient temperature

Speed Grade and Temperature Grade Matrix

Temperature Grade	Std.	-1	-2
C 1	✓	✓	✓
12	✓	✓	✓

Notes:

- 1. C = Commercial temperature range: 0°C to 70°C ambient temperature
- 2. I = Industrial temperature range: -40°C to 85°C ambient temperature

References made to ProASIC3 devices also apply to ARM-enabled ProASIC3 devices. The ARM-enabled part numbers start with M1 (Cortex-M1).

 $Contact\ your\ local\ Actel\ representative\ for\ device\ availability:\ http://www.actel.com/contact/default.aspx.$

A3P015 and A3P030

The A3P015 and A3P030 are architecturally compatible; there are no RAM or PLL features.

V v1.3

1 - ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Actel flash FPGAs, offers performance, density, and features beyond those of the ProASICPLUS® family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low-power, single-chip solution that is live at power-up (LAPU). ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Actel ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, flash-based ProASIC3 devices allow all functionality to be live at power-up; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to secure programmed intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security allow for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. The contents of a programmed ProASIC3 device cannot be read back, although secure design verification is possible.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

v1.3 1-1

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected and secure, making remote ISP possible. A ProASIC3 device provides the most impenetrable security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3 FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Live at Power-Up

The Actel flash-based ProASIC3 devices support Level 0 of the LAPU classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The LAPU feature of flash-based ProASIC3 devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3 devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

Firm Errors

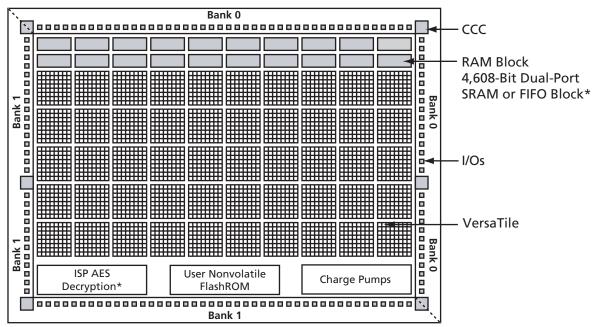
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3 flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power

Flash-based ProASIC3 devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3 devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

ProASIC3 devices also have low dynamic power consumption to further maximize power savings.

1-2 v1.3


Advanced Flash Technology

The ProASIC3 family offers many benefits, including nonvolatility and reprogrammability through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

Advanced Architecture

The proprietary ProASIC3 architecture provides granularity comparable to standard-cell ASICs. The ProASIC3 device consists of five distinct and programmable architectural features (Figure 1-1 and Figure 1-2 on page 1-4):

- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

^{*} Not supported by A3P015 and A3P030 devices

Figure 1-1 • ProASIC3 Device Architecture Overview with Two I/O Banks (A3P015, A3P030, A3P060, and A3P125)

v1.3 1-3

[†] The A3P015 and A3P030 do not support PLL or SRAM.

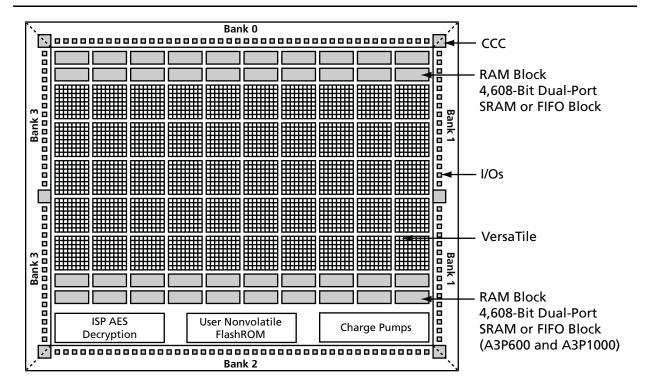


Figure 1-2 • ProASIC3 Device Architecture Overview with Four I/O Banks (A3P250, A3P600, and A3P1000)

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3 core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the Actel ProASIC family of third-generation architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of ProASIC3 devices via an IEEE 1532 JTAG interface.

VersaTiles

The ProASIC3 core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core tiles. The ProASIC3 VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

1-4 v1.3

Refer to Figure 1-3 for VersaTile configurations.

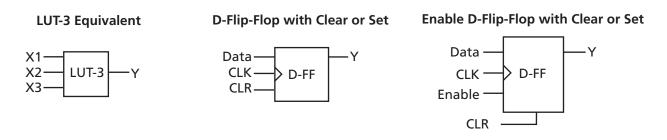


Figure 1-3 • VersaTile Configurations

User Nonvolatile FlashROM

Actel ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The Actel ProASIC3 development software solutions, Libero[®] Integrated Design Environment (IDE) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Actel Libero IDE and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in A3P015 and A3P030 devices).

v1.3 1-5

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz to 350 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz to 350 MHz
- Clock delay adjustment via programmable and fixed delays from –7.56 ns to +11.12 ns
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis (for PLL only)

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only).
- Output duty cycle = 50% ± 1.5% or better (for PLL only)
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only)
- Maximum acquisition time = 300 μs (for PLL only)
- Low power consumption of 5 mW
- Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL only)
- Four precise phases; maximum misalignment between adjacent phases of 40 ps x (350 MHz / f_{OUT CCC}) (for PLL only)

Global Clocking

ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets.

1-6 v1.3

I/Os with Advanced I/O Standards

The ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3 FPGAs support many different I/O standards—single-ended and differential.

The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1).

Table 1-1 • I/O Standards Supported

		I/O Standards Supported		
I/O Bank Type	Device and Bank Location	LVTTL/ LVCMOS	PCI/PCI-X	LVPECL, LVDS, B-LVDS, M-LVDS
Advanced	East and west Banks of A3P250 and larger devices	✓	✓	✓
Standard Plus	North and south banks of A3P250 and larger devices All banks of A3P060 and A3P125	1	✓	Not supported
Standard	All banks of A3P015 and A3P030	✓	Not supported	Not supported

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications
- Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications

ProASIC3 banks for the A3P250 device and above support LVPECL, LVDS, B-LVDS and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

Actel ProASIC3 devices support JEDEC-defined wide range I/O operation. ProASIC3 supports the JESD8-B specification, covering both 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

v1.3 1-7

Part Number and Revision Date

Part Number 51700097-001-4 Revised October 2009

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v1.3)	Page
v1.2 (August 2009)	The CS121 package was added to Table 1 · ProASIC3 Product Family, the "I/Os Per Package 1" table, Table 2 · ProASIC3 FPGAs Package Sizes Dimensions, "ProASIC3 Ordering Information", and the "Temperature Grade Offerings" table.	I – IV
	"ProASIC3 Ordering Information" was revised to include the face that some RoHS compliant packages are halogen-free.	III
v1.1 (February 2009)	All references to M7 devices (CoreMP7) and speed grade –F were removed from this document.	N/A
	Table 1-1 · I/O Standards Supported is new.	1-7
	The "I/Os with Advanced I/O Standards" section was revised to add definitions of hot-swap and cold-sparing.	1-7
v1.0 (February 2008)	The "Advanced I/O" section was revised to add a bullet regarding wide range power supply voltage support.	I
	The Table 1 · ProASIC3 Product Family was updated to include a value for typical equivalent macrocells for A3P250.	I
	The QN48 package was added to the following tables:	N/A
	"ProASIC3 Product Family"	
	"I/Os Per Package 1"	
	"ProASIC3 FPGAs Package Sizes Dimensions"	
	"Temperature Grade Offerings"	
	The number of singled-ended I/Os for QN68 was added to the "I/Os Per Package 1" table.	
	The "Wide Range I/O Support" section is new.	1-7
51700097-001-1	This document was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.	N/A
51700097-001-0 (January 2008)	This document was updated to include A3P015 device information. QN68 is a new package that was added because it is offered in the A3P015. The following sections were updated:	N/A
	"Features and Benefits"	
	"ProASIC3 Ordering Information"	
	"Temperature Grade Offerings"	
	"ProASIC3 Product Family"	
	"A3P015 and A3P030" note	
	"Introduction and Overview"	
	The "ProASIC3 FPGAs Package Sizes Dimensions" table is new.	Ш

1-8 v1.3

Previous Version	Changes in Current Version (v1.3)	Page		
51700097-001-0 (continued)	In the "ProASIC3 Ordering Information", the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	III		
	In the "General Description" section, the number of I/Os was updated from 288 to 300.	1-1		
v2.2 (July 2007)	This document was previously in datasheet v2.2. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is 51700097-001-0.	N/A		
v2.1 (May 2007)	The M7 and M1 device part numbers have been updated in Table 1 • ProASIC3 Product Family, "I/Os Per Package", "Automotive ProASIC3 Ordering Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix".	i, ii, iii, iii, iv		
	The words "ambient temperature" were added to the temperature range in the "Automotive ProASIC3 Ordering Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix" sections.	iii, iv		
v2.0 (April 2007)	In the "Clock Conditioning Circuit (CCC) and PLL" section, the Wide Input Frequency Range (1.5 MHz to 200 MHz) was changed to (1.5 MHz to 350 MHz).	i		
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.			
	In the "I/Os Per Package" section, the A3P030, A3P060, A3P125, ACP250, and A3P600 device I/Os were updated.	ii		
Advance v0.7	In the "Packaging Tables", Ambient was deleted.	ii		
(January 2007)	Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".			
Advance v0.6 (April 2006)	In the "I/Os Per Package" table, the I/O numbers were added for A3P060, A3P125, and A3P250. The A3P030-VQ100 I/O was changed from 79 to 77.	ii		
Advance v0.5	B-LVDS and M-LDVS are new I/O standards added to the datasheet.	N/A		
(January 2006)	The term flow-through was changed to pass-through.	N/A		
	Table 1 was updated to include the QN132.	ii		
	The "I/Os Per Package" table was updated with the QN132. The footnotes were also updated. The A3P400-FG144 I/O count was updated.	ii		
	"Automotive ProASIC3 Ordering Information" was updated with the QN132.	iii		
	"Temperature Grade Offerings" was updated with the QN132.	iii		
Advance v0.4 (November 2005)	The "I/Os Per Package" table was updated for the following devices and packages:	ii		
	Device Package A3P250/M7ACP250 VQ100 A3P250/M7ACP250 FG144 A3P1000 FG256			
Advance v0.3	M7 device information is new.	N/A		
	The I/O counts in the "I/Os Per Package" table were updated.			
Advance v0.2	The "I/Os Per Package" table was updated.	ii		

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advance," "Preliminary," and "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Actel Safety Critical, Life Support, and High-Reliability Applications Policy

The Actel products described in this advance status document may not have completed Actel's qualification process. Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Actel's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of Actel's products is available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.

1-10 v1.3

2 - ProASIC3 DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 • Absolute Maximum Ratings

Symbol	Parameter	Limits	Units	
V _{CC}	DC core supply voltage	–0.3 to 1.65	V	
V_{JTAG}	JTAG DC voltage	-0.3 to 3.75	V	
V _{PUMP}	Programming voltage	-0.3 to 3.75	V	
V_{CCPLL}	Analog power supply (PLL)	−0.3 to 1.65		
V _{CCI}	DC I/O output buffer supply voltage	–0.3 to 3.75		
VMV	DC I/O input buffer supply voltage	nput buffer supply voltage –0.3 to 3.75		
VI	I/O input voltage	–0.3 V to 3.6 V	V	
		(when I/O hot insertion mode is enabled)		
		–0.3 V to (V _{CCI} + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)		
T _{STG} ²	Storage temperature	-65 to +150	°C	
T_J^2	Junction temperature	+125	°C	

Notes:

- 1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.
- 2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Table 2-2 • Recommended Operating Conditions 1,2

Symbol	Para	meter	Commercial	Industrial	Units
T _A	Ambient temperature	Ambient temperature		-40 to +85	°C
T _J	Junction temperature		0 to 85	-40 to 100	
V _{CC} ³	1.5 V DC core supply volt	tage	1.425 to 1.575	1.425 to 1.575	V
V_{JTAG}	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
V _{PUMP}	Programming voltage	Programming voltage Programming Mode		3.0 to 3.6	V
		Operation ⁴	0 to 3.6	0 to 3.6	V
V _{CCPLL}	Analog power supply (Pl	L)	1.4 to 1.6	1.4 to 1.6	V
V _{CCI} and VMV	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		2.7 to 3.6	2.7 to 3.6	V
	3.3 V wide range DC supply voltage ⁵		3.0 to 3.6	3.0 to 3.6	V
	LVDS/B-LVDS/M-LVDS dif	LVDS/B-LVDS/M-LVDS differential I/O		2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

- 1. All parameters representing voltages are measured with respect to GND unless otherwise specified.
- 2. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Actel recommends that the user follow best design practices using Actel's timing and power simulation tools.
- 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-18 on page 2-18. VMV and V_{CCI} should be at the same voltage within a given I/O bank.
- 4. V_{PUMP} can be left floating during operation (not programming mode).
- 5. 3.3 V wide range is compliant to the JDEC8b specification and supports 3.0 V V_{CCI} operation.

Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature¹

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Notes:

- 1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.
- 2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

2-2 v1.4

Table 2-4 •	Overshoot	and Unde	rshoot	l imits ¹
I able 2-4	Oversilout	and Onde	ISHOUL	LIIIILS

V _{CCI} and VMV	Average V _{CCI} –GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

- 1. Based on reliability requirements at 85°C.
- 2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.
- 3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

ProASIC3 I/Os are activated only if ALL of the following three conditions are met:

- 1. V_{CC} and V_{CCI} are above the minimum specified trip points (Figure 2-1 on page 2-4).
- 2. $V_{CCI} > V_{CC} 0.75 \text{ V (typical)}$
- 3. Chip is in the operating mode.

V_{CCI} Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

V_{CC} Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

 V_{CC} and V_{CCI} ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to V_{CCI}.
- JTAG supply, PLL power supplies, and charge pump V_{PUMP} supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Actel recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until V_{CC} and V_{CCPLLX} exceed brownout activation levels. The V_{CC} activation level is specified as 1.1 V worst-case (see Figure 2-1 on page 2-4 for more details).

When PLL power supply voltage and/or V_{CC} levels drop below the V_{CC} brownout levels (0.75 V \pm 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the

v1.4 2-3

Power-Up/-Down Behavior of Low-Power Flash Devices chapter of the handbook for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- Core
- 2. Input buffers

Output buffers, after 200 ns delay from input buffer activation

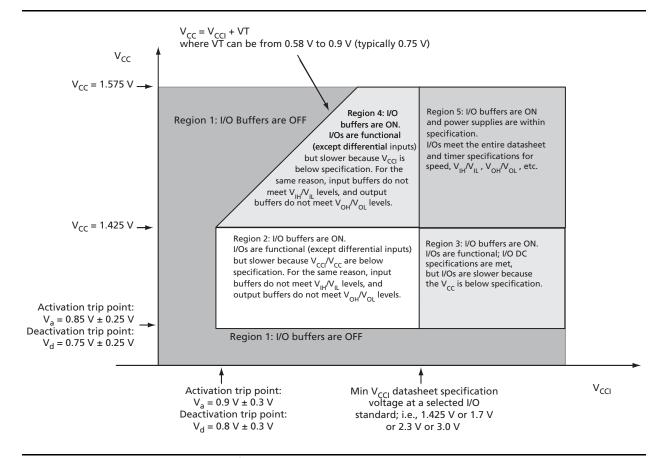


Figure 2-1 • I/O State as a Function of V_{CCI} and V_{CC} Voltage Levels

2-4 v1.4

Thermal Characteristics

Introduction

The temperature variable in the Actel Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ 2-1 can be used to calculate junction temperature.

$$T_J$$
 = Junction Temperature = $\Delta T + T_A$

EQ 2-1

where:

 T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ja} * P

 θ_{ia} = Junction-to-ambient of the package. θ_{ia} numbers are located in Table 2-5.

P = Power dissipation

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The absolute maximum junction temperature is 100°C. EQ 2-2 shows a sample calculation of the absolute maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air.

$$\text{Maximum Power Allowed = } \frac{\text{Max. junction temp. (°C) - Max. ambient temp. (°C)}}{\theta_{ja}(°\text{C/W})} = \frac{100°\text{C} - 70°\text{C}}{20.5°\text{C/W}} = 1.463 \text{ } \dot{\text{W}}$$

EQ 2-2

Table 2-5 ● Package Thermal Resistivities

				$ heta_{\sf ja}$			
Package Type	Device	Pin Count	$\theta_{ extsf{jc}}$	Still Air	200 ft./min.	500 ft./min.	Units
Quad Flat No Lead	A3P030	132	0.4	21.4	16.8	15.3	C/W
	A3P060	132	0.3	21.2	16.6	15.0	C/W
	A3P125	132	0.2	21.1	16.5	14.9	C/W
	A3P250	132	0.1	21.0	16.4	14.8	C/W
Very Thin Quad Flat Pack (VQFP)	All devices	100	10.0	35.3	29.4	27.1	C/W
Thin Quad Flat Pack (TQFP)	All devices	144	11.0	33.5	28.0	25.7	C/W
Plastic Quad Flat Pack (PQFP)	All devices	208	8.0	26.1	22.5	20.8	C/W
PQFP with embedded heatspreader	All devices	208	3.8	16.2	13.3	11.9	C/W
Fine Pitch Ball Grid Array (FBGA)	See note*	144	3.8	26.9	22.9	21.5	C/W
	See note*	256	3.8	26.6	22.8	21.5	C/W
	See note*	484	3.2	20.5	17.0	15.9	C/W
	A3P1000	144	6.3	31.6	26.2	24.2	C/W
	A3P1000	256	6.6	28.1	24.4	22.7	C/W
	A3P1000	484	8.0	23.3	19.0	16.7	C/W

^{*} This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package thermal information will be available in future revisions of the datasheet.

v1.4 2-5

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $T_J = 70^{\circ}\text{C}$, $V_{CC} = 1.425 \text{ V}$)

		Junction Temperature (°C)				
Array Voltage V _{CC} (V)	–40°C	0°C	25°C	70°C	85°C	100°C
1.425	0.88	0.93	0.95	1.00	1.02	1.04
1.500	0.83	0.88	0.90	0.95	0.96	0.98
1.575	0.80	0.84	0.87	0.91	0.93	0.94

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3P015	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Typical (25°C)	2 mA	2 mA	2 mA	2 mA	3 mA	3 mA	5 mA	8 mA
Max. (Commercial)	10 mA	10 mA	10 mA	10 mA	20 mA	20 mA	30 mA	50 mA
Max. (Industrial)	15 mA	15 mA	15 mA	15 mA	30 mA	30 mA	45 mA	75 mA

Note: I_{DD} Includes V_{CC} , V_{PUMP} , V_{CCI} , and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-11 and Table 2-12 on page 2-8.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Advanced I/O Banks

	VMV (V)	Static Power P _{DC2} (mW) ¹	Dynamic Power P _{AC9} (μW/MHz) ²
Single-Ended		·	
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.22
3.3 V LVCMOS Wide Range ³	3.3	_	16.22
2.5 V LVCMOS	2.5	_	5.12
1.8 V LVCMOS	1.8	_	2.13
1.5 V LVCMOS (JESD8-11)	1.5	_	1.45
3.3 V PCI	3.3	_	18.11
3.3 V PCI-X	3.3	_	18.11
Differential		•	•
LVDS	2.5	2.26	1.20
LVPECL	3.3	5.72	1.87

Notes:

- 1. P_{DC2} is the static power (where applicable) measured on VMV.
- 2. P_{AC9} is the total dynamic power measured on V_{CC} and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

2-6 v1.4

Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

	VMV (V)	Static Power P _{DC2} (mW) ¹	Dynamic Power P _{AC9} (μW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	_	16.23
3.3 V LVCMOS Wide Range ³	3.3	_	16.23
2.5 V LVCMOS	2.5	_	5.14
1.8 V LVCMOS	1.8	_	2.13
1.5 V LVCMOS (JESD8-11)	1.5	_	1.48
3.3 V PCI	3.3	_	18.13
3.3 V PCI-X	3.3	_	18.13

- 1. P_{DC2} is the static power (where applicable) measured on VMV.
- 2. P_{AC9} is the total dynamic power measured on V_{CC} and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-10 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard I/O Banks

	VMV (V)	Static Power P _{DC2} (mW) ¹	Dynamic Power P _{AC9} (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	17.24
3.3 V LVCMOS Wide Range ³	3.3	-	17.24
2.5 V LVCMOS	2.5	-	5.19
1.8 V LVCMOS	1.8	_	2.18
1.5 V LVCMOS (JESD8-11)	1.5	_	1.52

Notes:

- 1. P_{DC2} is the static power (where applicable) measured on VMV.
- 2. P_{AC9} is the total dynamic power measured on V_{CC} and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

v1.4 2-7

Table 2-11 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹
Applicable to Advanced I/O Banks

	C _{LOAD} (pF)	V _{CCI} (V)	Static Power P _{DC3} (mW) ²	Dynamic Power P _{AC10} (μW/MHz) ³
Single-Ended		•		
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	_	468.67
3.3 V LVCMOS Wide Range ⁴	35	3.3	_	468.67
2.5 V LVCMOS	35	2.5	_	267.48
1.8 V LVCMOS	35	1.8	_	149.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	103.12
3.3 V PCI	10	3.3	_	201.02
3.3 V PCI-X	10	3.3	-	201.02
Differential				
LVDS	_	2.5	7.74	88.92
LVPECL	_	3.3	19.54	166.52

- 1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
- 2. P_{DC3} is the static power (where applicable) measured on V_{CCI} .
- 3. P_{AC10} is the total dynamic power measured on V_{CC} and V_{CCI} .
- 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-12 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings¹
Applicable to Standard Plus I/O Banks

	C _{LOAD} (pF)	V _{CCI} (V)	Static Power P _{DC3} (mW) ²	Dynamic Power P _{AC10} (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	452.67
3.3 V LVCMOS Wide Range ⁴	35	3.3	-	452.67
2.5 V LVCMOS	35	2.5	-	258.32
1.8 V LVCMOS	35	1.8	-	133.59
1.5 V LVCMOS (JESD8-11)	35	1.5	-	92.84
3.3 V PCI	10	3.3	-	184.92
3.3 V PCI-X	10	3.3	-	184.92

Notes:

- 1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
- 2. P_{DC3} is the static power (where applicable) measured on VMV.
- 3. P_{AC10} is the total dynamic power measured on V_{CC} and VMV.
- 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

2-8 v1.4

Table 2-13 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings ¹
Applicable to Standard I/O Banks

	C _{LOAD} (pF)	V _{CCI} (V)	Static Power P _{DC3} (mW) ²	Dynamic Power P _{AC10} (μW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	431.08
3.3 V LVCMOS Wide Range ⁴	35	3.3	-	431.08
2.5 V LVCMOS	35	2.5	-	247.36
1.8 V LVCMOS	35	1.8	-	128.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	89.46

- 1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
- 2. P_{DC3} is the static power (where applicable) measured on V_{CCI} .
- 3. P_{AC10} is the total dynamic power measured on V_{CC} and V_{CCI} .
- 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

v1.4 2-9

Power Consumption of Various Internal Resources

Table 2-14 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices

		Device Specific Dynamic Contributions (μW/MHz)							
Parameter	Definition	A3P1000	A3P600	A3P400	A3P250	A3P125	A3P060	A3P030	A3P015
P _{AC1}	Clock contribution of a Global Rib	14.50	12.80	12.80	11.00	11.00	9.30	9.30	9.30
P _{AC2}	Clock contribution of a Global Spine	2.48	1.85	1.35	1.58	0.81	0.81	0.41	0.41
P _{AC3}	Clock contribution of a VersaTile row				0.8	1			
P _{AC4}	Clock contribution of a VersaTile used as a sequential module				0.12	2			
P _{AC5}	First contribution of a VersaTile used as a sequential module	0.07							
P _{AC6}	Second contribution of a VersaTile used as a sequential module	0.29							
P _{AC7}	Contribution of a VersaTile used as a combinatorial Module				0.29	9			
P _{AC8}	Average contribution of a routing net				0.70	0			
P _{AC9}	Contribution of an I/O input pin (standard dependent)	See Table 2-8 on page 2-6 through Table 2-10 on page 2-7.							
P _{AC10}	Contribution of an I/O output pin (standard dependent)	See Table 2-11 on page 2-8 through Table 2-13 on page 2-9.							
P _{AC11}	Average contribution of a RAM block during a read operation	25.00							
P _{AC12}	Average contribution of a RAM block during a write operation	30.00							
P _{AC13}	Dynamic contribution for PLL		2.60						

Note: *For a different output load, drive strength, or slew rate, Actel recommends using the Actel Power spreadsheet calculator or SmartPower tool in Libero[®] Integrated Design Environment (IDE) software.

Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices

	Definition	Device Specific Static Power (mW)							
Parameter		A3P1000	A3P600	A3P400	A3P250	A3P125	A3P060	A3P030	A3P015
P _{DC1}	Array static power in Active mode	See Table 2-7 on page 2-6.							
P _{DC2}	I/O input pin static power (standard-dependent)	See Table 2-8 on page 2-6 through Table 2-10 on page 2-7.							
P _{DC3}	I/O output pin static power (standard-dependent)	See Table 2-11 on page 2-8 through Table 2-13 on page 2-9.							
P _{DC4}	Static PLL contribution	2.55 mW							
P _{DC5}	Bank quiescent power (V _{CCI} -dependent)	See Table 2-7 on page 2-6.							

Note: *For a different output load, drive strength, or slew rate, Actel recommends using the Actel

2-10 v1.4

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Actel Libero IDE software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-16 on page 2-13.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-17 on page 2-13.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-17 on page 2-13. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—P_{TOTAL}

$$P_{TOTAL} = P_{STAT} + P_{DYN}$$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

$$P_{STAT} = P_{DC1} + N_{INPUTS} P_{DC2} + N_{OUTPUTS} P_{DC3}$$

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

Total Dynamic Power Consumption—P_{DYN}

$$P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}$$

Global Clock Contribution—PCLOCK

$$P_{CLOCK} = (P_{AC1} + N_{SPINE} * P_{AC2} + N_{ROW} * P_{AC3} + N_{S-CELL} * P_{AC4}) * F_{CLK}$$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in Table 2-16 on page 2-13.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in Table 2-16 on page 2-13.

F_{CLK} is the global clock signal frequency.

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design.

P_{AC1}, P_{AC2}, P_{AC3}, and P_{AC4} are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

$$P_{S-CELL} = N_{S-CELL} * (P_{AC5} + \alpha_1 / 2 * P_{AC6}) * F_{CLK}$$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-13. F_{CLK} is the global clock signal frequency.

v1.4 2-11

Combinatorial Cells Contribution—P_{C-CELL}

$$P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * P_{AC7} * F_{CLK}$$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 $lpha_{1}$ is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-13.

 F_{CLK} is the global clock signal frequency.

Routing Net Contribution—P_{NET}

$$P_{NET} = (N_{S-CELL} + N_{C-CELL}) * \alpha_1 / 2 * P_{AC8} * F_{CLK}$$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-13.

F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

$$P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * P_{AC9} * F_{CLK}$$

N_{INPLITS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-13.

F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

$$P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * P_{AC10} * F_{CLK}$$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-13.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-17 on page 2-13.

F_{CLK} is the global clock signal frequency.

RAM Contribution—P_{MEMORY}

$$P_{MEMORY} = P_{AC11} * N_{BLOCKS} * F_{READ-CLOCK} * \beta_2 + P_{AC12} * N_{BLOCK} * F_{WRITE-CLOCK} * \beta_3$$

N_{BLOCKS} is the number of RAM blocks used in the design.

F_{READ-CLOCK} is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-17 on page 2-13.

PLL Contribution—Pp. 1

$$P_{PLL} = P_{DC4} + P_{AC13} * F_{CLKOUT}$$

F_{CLKOUT} is the output clock frequency.¹

2-12 v1.4

The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P_{AC14} * F_{CLKOUT} product) to the total PLL contribution.

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 2-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α_2	I/O buffer toggle rate	10%

Table 2-17 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β_1	I/O output buffer enable rate	100%
β_2	RAM enable rate for read operations	12.5%
β_3	RAM enable rate for write operations	12.5%

User I/O Characteristics

Timing Model

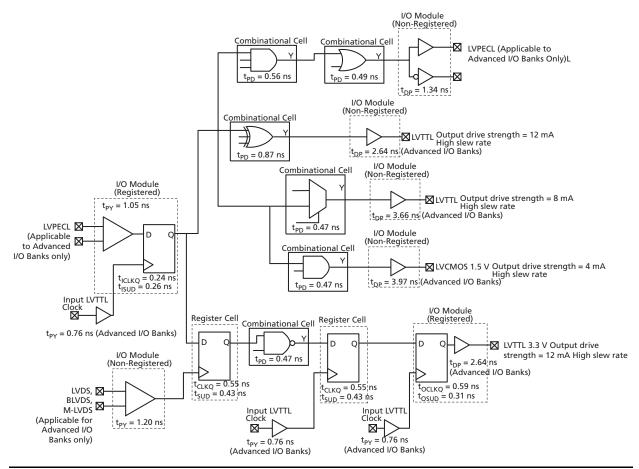


Figure 2-2 • Timing Model Operating Conditions: –2 Speed, Commercial Temperature Range ($T_J = 70^{\circ}$ C), Worst Case $V_{CC} = 1.425 \text{ V}$

2-14 v1.4

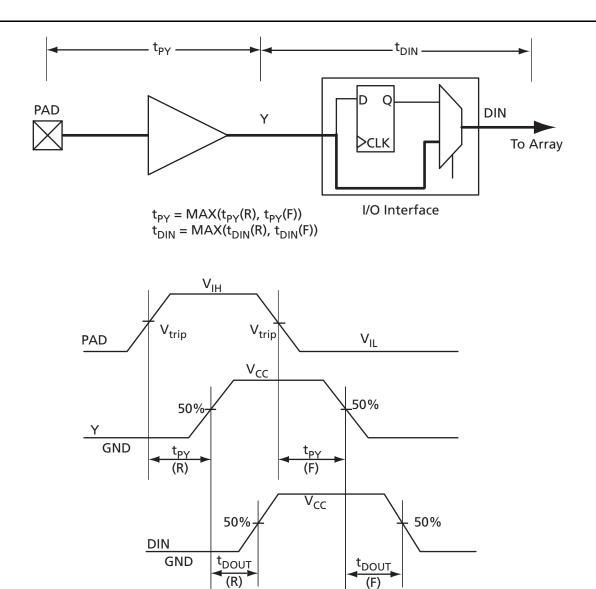


Figure 2-3 • Input Buffer Timing Model and Delays (example)

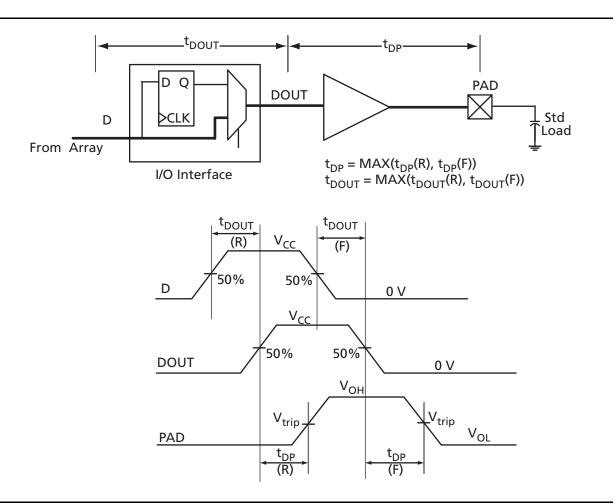


Figure 2-4 • Output Buffer Model and Delays (example)

2-16 v1.4

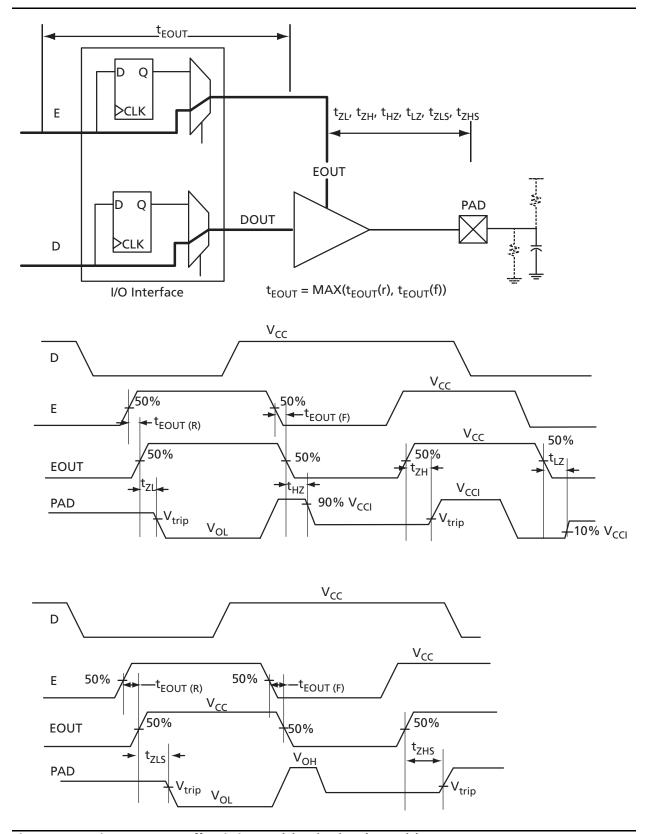


Figure 2-5 • Tristate Output Buffer Timing Model and Delays (example)

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-18 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings
Applicable to Advanced I/O Banks

		Equiv.		V	IL	V _I	Н	V _{OL}	V _{OH}	I _{OL} ¹	I _{OH} ¹
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min, V	Max, V	Min, V	Max, V	Max, V	Min, V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ³	100 μΑ	12 mA	High	-0.3	0.8	2	3.6	0.2	V _{CCI} – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	V _{CCI} – 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.6	0.25 * V _{CCI}	0.75 * V _{CCI}	12	12
3.3 V PCI	Per PCI specifications										
3.3 V PCI-X	Per PCI-X specifications										

Notes:

- 1. Currents are measured at 85°C junction temperature.
- 2. Please note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

2-18 v1.4

Table 2-19 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings
Applicable to Standard Plus I/O Banks

		Equiv.		'	V _{IL}	VI	Н	V _{OL}	V _{OH}	I _{OL} ¹	I _{OH} ¹	
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min, V	Max, V	Min, V	Max, V	Max, V	Min, V	mA	mA	
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12	
3.3 V LVCMOS Wide Range ³	100 μΑ	12 mA	High	-0.3	0.8	2	3.6	0.2	V _{CCI} -0.2	0.1	0.1	
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	
1.8 V LVCMOS	8 mA	8 mA	High	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.9	0.45	V _{CCI} – 0.45	8	8	
1.5 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.6	0.25 * V _{CCI}	0.75 * V _{CCI}	4	4	
3.3 V PCI		Per PCI specifications										
3.3 V PCI-X		Per PCI-X specifications										

- 1. Currents are measured at 85°C junction temperature.
- 2. Please note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-20 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings
Applicable to Standard I/O Banks

		Equiv.		1	V _{IL}	V _I	Н	V _{OL}	V _{OH}	I _{OL} ¹	I _{OH} ¹
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min, V	Max, V	Min, V	Max, V	Max, V	Min, V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
3.3 V LVCMOS Wide Range ³	100 μΑ	8 mA	High	-0.3	0.8	2	3.6	0.2	V _{CCI} -0.2	0.1	0.1
2.5 V LVCMOS	8 mA	8 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	4	4
1.5 V LVCMOS	2 mA	2 mA	High	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	2	2

- 1. Currents are measured at 85°C junction temperature.
- 2. Please note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-21 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions

	Comn	nercial ¹	Indus	strial ²
	I _{IL} ³	l _{IH} ⁴	I _{IL} 3	I _{IH} ⁴
DC I/O Standards	μΑ	μΑ	μΑ	μΑ
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15
3.3 V LVCMOS Wide Range	10	10	15	15
2.5 V LVCMOS	10	10	15	15
1.8 V LVCMOS	10	10	15	15
1.5 V LVCMOS	10	10	15	15
3.3 V PCI	10	10	15	15
3.3 V PCI-X	10	10	15	15

Notes:

- 1. Commercial range (0°C < T_A < 70°C)
- 2. Industrial range (-40°C < T_A < 85°C)
- 3. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where $-0.3V < V_{IN} < V_{IL}$.
- 4. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{CCI}$. Input current is larger when operating outside recommended ranges.

2-20 v1.4

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-22 • Summary of AC Measuring Points

Standard	Measuring Trip Point (V _{trip})
3.3 V LVTTL / 3.3 V LVCMOS	1.4 V
3.3 V LVCMOS Wide Range	1.4 V
2.5 V LVCMOS	1.2 V
1.8 V LVCMOS	0.90 V
1.5 V LVCMOS	0.75 V
3.3 V PCI	0.285 * V _{CCI} (RR)
	0.615 * V _{CCI} (FF)
3.3 V PCI-X	0.285 * V _{CCI} (RR)
	0.615 * V _{CCI} (FF)

Table 2-23 • I/O AC Parameter Definitions

Parameter	Parameter Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{HZ}	Enable to Pad delay through the Output Buffer—HIGH to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to HIGH
t _{LZ}	Enable to Pad delay through the Output Buffer—LOW to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to LOW
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW

Table 2-24 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst Case V_{CC} = 1.425 V,

Worst-Case V_{CCI} (per standard)

Advanced I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{DOUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	35	1	0.45	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
3.3 V LVCMOS Wide Range ²	100 μΑ	12 mA	High	35	_	0.45	4.08	0.03	0.76	0.32	4.08	3.20	3.71	4.14	6.61	5.74	ns
2.5 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
1.8 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns
1.5 V LVCMOS	12 mA	12 mA	High	35	-	0.45	3.05	0.03	1.07	0.32	3.10	2.67	2.95	3.14	4.77	4.34	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ⁴	0.45	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ⁴	0.45	2.00	0.03	0.62	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
LVDS	24 mA	-	High	-	_	0.45	1.37	0.03	1.20	-	-	-	-	-	_	-	ns
LVPECL	24 mA	-	High	-	-	0.45	1.34	0.03	1.05	-	-	-	-	-	_	-	ns

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 μ A drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.
- 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values
- 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-10 on page 2-66 for connectivity. This resistor is not required during normal operation.

2-22 v1.4

Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings
-2 Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst Case V_{CC} = 1.425 V, Worst-Case V_{CCI} (per standard)
Standard Plus I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Capacitive Load (pF)	External Resistor	t _{DOUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	35	_	0.45	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	ns
3.3 V LVCMOS Wide Range ²	100 μΑ	12 mA	High	35		0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	3.78
2.5 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	ns
1.8 V LVCMOS	8 mA	8 mA	High	35	1	0.45	3.03	0.03	0.90	0.32	2.87	3.03	2.19	2.32	4.54	ns
1.5 V LVCMOS	4 mA	4 mA	High	35	_	0.45	3.61	0.03	1.06	0.32	3.35	3.61	2.26	2.34	5.02	ns
3.3 V PCI	Per PCI spec	1	High	10	25 ⁴	0.45	1.72	0.03	0.64	0.32	1.76	1.27	2.08	2.41	3.42	ns
3.3 V PCI-X	Per PCI-X spec	ı	High	10	25 ⁴	0.45	1.72	0.03	0.62	0.32	1.76	1.27	2.08	2.41	3.42	ns

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 μ A drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.
- 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
- 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-10 on page 2-66 for connectivity. This resistor is not required during normal operation.

Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst Case V_{CC} = 1.425 V,

Worst-Case V_{CCI} (per standard)

Standard I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor	^t DOUT (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	35	-	0.45	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
3.3 V LVCMOS Wide Range ²	100 μΑ	8 mA	High	35	-	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	4.36
2.5 V LVCMOS	8 mA	8 mA	High	35	ı	0.45	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
1.8 V LVCMOS	4 mA	4 mA	High	35	ı	0.45	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns
1.5 V LVCMOS	2 mA	2 mA	High	35	-	0.45	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Notes:

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.
- 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-24 v1.4

Detailed I/O DC Characteristics

Table 2-27 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	V _{IN} = 0, f = 1.0 MHz		8	pF
C _{INCLK}	Input capacitance on the clock pin	$V_{IN} = 0$, $f = 1.0 \text{ MHz}$		8	рF

Table 2-28 • I/O Output Buffer Maximum Resistances¹
Applicable to Advanced I/O Banks

Standard	Drive Strength	$R_{PULL-DOWN}$ $(\Omega)^2$	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
3.3 V LVCMOS Wide Range ⁴	100 μΑ	TBD	TBD
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

- 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on V_{CC} , drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx.
- 2. $R_{(PULL-DOWN-MAX)} = (V_{OLspec}) / I_{OLspec}$
- 3. $R_{(PULL-UP-MAX)} = (V_{CCImax} V_{OHspec}) / I_{OHspec}$
- 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-29 • I/O Output Buffer Maximum Resistances ¹
Applicable to Standard Plus I/O Banks

Standard	Drive Strength	$R_{PULL-DOWN} (\Omega)^2$	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	25	75
3.3 V LVCMOS Wide Range ⁴	100 μΑ	TBD	TBD
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

- 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on V_{CCI}, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx.
- 2. $R_{(PULL-DOWN-MAX)} = (V_{OLspec}) / I_{OLspec}$
- 3. $R_{(PULL-UP-MAX)} = (V_{CCImax} V_{OHspec}) / I_{OHspec}$
- 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

2-26 v1.4

Table 2-30 • I/O Output Buffer Maximum Resistances¹
Applicable to Standard I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
3.3 V LVCMOS Wide Range ⁴	100 μΑ	TBD	TBD
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224

- 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on V_{CC} , drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx.
- 2. $R_{(PULL-DOWN-MAX)} = (V_{OLspec}) / I_{OLspec}$
- 3. $R_{(PULL-UP-MAX)} = (V_{CCImax} V_{OHspec}) / I_{OHspec}$
- 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-31 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK})	PULL-UP) ¹	$R_{(WEAK\ PULL-DOWN)}^2 \ (\Omega)$				
v _{ccı}	Min.	Max.	Min.	Max.			
3.3 V	10 k	45 k	10 k	45 k			
3.3 V (wide range I/Os)	10 k	45 k	10 k	45 k			
2.5 V	11 k	55 k	12 k	74 k			
1.8 V	18 k	70 k	17 k	110 k			
1.5 V	19 k	90 k	19 k	140 k			

Notes:

- 1. $R_{(WEAK\ PULL-UP-MAX)} = (V_{OLspec}) / I_{(WEAK\ PULL-UP-MIN)}$
- 2. $R_{(WEAK\ PULL-UP-MAX)} = (V_{CCImax} V_{OHspec}) / I_{(WEAK\ PULL-UP-MIN)}$

Table 2-32 • I/O Short Currents I_{OSH}/I_{OSL}
Applicable to Advanced I/O Banks

	Drive Strength	I _{OSL} (mA) ¹	I _{OSH} (mA) ¹
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
	12 mA	109	103
	16 mA	127	132
	24 mA	181	268
3.3 V LVCMOS Wide Range ²	100 μΑ	TBD	TBD
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
	12 mA	74	65
	16 mA	87	83
	24 mA	124	169
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
	6 mA	44	35
	8 mA	51	45
	12 mA	74	91
	16 mA	74	91
1.5 V LVCMOS	2 mA	16	13
	4 mA	33	25
	6 mA	39	32
	8 mA	55	66
	12 mA	55	66
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	109	103

- 1. $T_J = 100$ °C
- 2. Applicable to 3.3 V LVCMOS Wide Range. I_{OSL}/I_{OSH} dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

2-28 v1.4

Table 2-33 • I/O Short Currents I_{OSH}/I_{OSL}
Applicable to Standard Plus I/O Banks

	Drive Strength	I _{OSL} (mA)*	I _{OSH} (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
	12 mA	109	103
	16 mA	109	103
3.3 V LVCMOS Wide Range ²	100 μΑ	TBD	TBD
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
	12 mA	74	65
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
	6 mA	44	35
	8 mA	44	35
1.5 V LVCMOS	2 mA	16	13
	4 mA	33	25
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	109	103

- 1. $T_J = 100$ °C
- 2. Applicable to 3.3 V LVCMOS Wide Range. I_{OSL}/I_{OSH} dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

Table 2-34 • I/O Short Currents I_{OSH}/I_{OSL}
Applicable to Standard I/O Banks

	Drive Strength	I _{OSL} (mA)*	I _{OSH} (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
3.3 V LVCMOS Wide Range ²	100 μΑ	TBD	TBD
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
1.5 V LVCMOS	2 mA	16	13

- 1. $T_1 = 100$ °C
- 2. Applicable to 3.3 V LVCMOS Wide Range. I_{OSL}/I_{OSH} dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

The length of time an I/O can withstand I_{OSH}/I_{OSL} events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 110°C, the short current condition would have to be sustained for more than three months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-35 • Duration of Short Circuit Event before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	6 months
110°C	3 months

Table 2-36 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS	No requirement	10 ns *	20 years (110°C)
LVDS/B-LVDS/ M-LVDS/LVPECL	No requirement	10 ns *	10 years (100°C)

^{*} The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Actel recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

2-30 v1.4

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

Table 2-37 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	V	/IL	v	′ін	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ³	Max., mA ³	μA ⁴	μΑ ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10

Notes:

- 1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-38 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	lL	v	′ін	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} ¹	I _{IH} ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ³	Max., mA ³	μA ⁴	μA^4
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	109	103	10	10

Notes:

- 1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-39 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	\	/ _{IL}	V	′ін	V _{OL}	V _{OH}	I _{OL}	I _{ОН}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ³	Max., mA ³	μA ⁴	μA^4
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10

- 1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

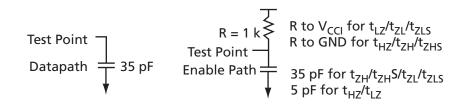


Figure 2-6 • AC Loading

Table 2-40 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	35

^{*} Measuring point = $V_{trip.}$ See Table 2-22 on page 2-21 for a complete table of trip points.

2-32 v1.4

Timing Characteristics

Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V
Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
7 117 (0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
6 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
8 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.02	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	0.86	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.02	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	0.86	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.76	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.02	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	-1	0.56	2.62	0.04	0.86	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.76	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Advanced I/O Banks

Drive	Speed												
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	10.26	0.04	1.02	0.43	10.45	8.90	2.64	2.46	12.68	11.13	ns
	-1	0.56	8.72	0.04	0.86	0.36	8.89	7.57	2.25	2.09	10.79	9.47	ns
	-2	0.49	7.66	0.03	0.76	0.32	7.80	6.64	1.98	1.83	9.47	8.31	ns
6 mA	Std.	0.66	7.27	0.04	1.02	0.43	7.41	6.28	2.98	3.04	9.65	8.52	ns
	-1	0.56	6.19	0.04	0.86	0.36	6.30	5.35	2.54	2.59	8.20	7.25	ns
	-2	0.49	5.43	0.03	0.76	0.32	5.53	4.69	2.23	2.27	7.20	6.36	ns
8 mA	Std.	0.66	7.27	0.04	1.02	0.43	7.41	6.28	2.98	3.04	9.65	8.52	ns
	-1	0.56	6.19	0.04	0.86	0.36	6.30	5.35	2.54	2.59	8.20	7.25	ns
	-2	0.49	5.43	0.03	0.76	0.32	5.53	4.69	2.23	2.27	7.20	6.36	ns
12 mA	Std.	0.66	5.58	0.04	1.02	0.43	5.68	4.87	3.21	3.42	7.92	7.11	ns
	-1	0.56	4.75	0.04	0.86	0.36	4.84	4.14	2.73	2.91	6.74	6.05	ns
	-2	0.49	4.17	0.03	0.76	0.32	4.24	3.64	2.39	2.55	5.91	5.31	ns
16 mA	Std.	0.66	5.21	0.04	1.02	0.43	5.30	4.56	3.26	3.51	7.54	6.80	ns
	-1	0.56	4.43	0.04	0.86	0.36	4.51	3.88	2.77	2.99	6.41	5.79	ns
	-2	0.49	3.89	0.03	0.76	0.32	3.96	3.41	2.43	2.62	5.63	5.08	ns
24 mA	Std.	0.66	4.85	0.04	1.02	0.43	4.94	4.54	3.32	3.88	7.18	6.78	ns
	-1	0.56	4.13	0.04	0.86	0.36	4.20	3.87	2.82	3.30	6.10	5.77	ns
	-2	0.49	3.62	0.03	0.76	0.32	3.69	3.39	2.48	2.90	5.36	5.06	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-34 v1.4

Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	7.20	0.04	1.00	0.43	7.34	6.29	2.27	2.34	9.57	8.52	ns
	-1	0.56	6.13	0.04	0.85	0.36	6.24	5.35	1.93	1.99	8.14	7.25	ns
	-2	0.49	5.38	0.03	0.75	0.32	5.48	4.69	1.70	1.75	7.15	6.36	ns
6 mA	Std.	0.66	4.50	0.04	1.00	0.43	4.58	3.82	2.58	2.88	6.82	6.05	ns
	-1	0.56	3.83	0.04	0.85	0.36	3.90	3.25	2.19	2.45	5.80	5.15	ns
	-2	0.49	3.36	0.03	0.75	0.32	3.42	2.85	1.92	2.15	5.09	4.52	ns
8 mA	Std.	0.66	4.50	0.04	1.00	0.43	4.58	3.82	2.58	2.88	6.82	6.05	ns
	-1	0.56	3.83	0.04	0.85	0.36	3.90	3.25	2.19	2.45	5.80	5.15	ns
	-2	0.49	3.36	0.03	0.75	0.32	3.42	2.85	1.92	2.15	5.09	4.52	ns
12 mA	Std.	0.66	3.16	0.04	1.00	0.43	3.22	2.58	2.79	3.22	5.45	4.82	ns
	-1	0.56	2.69	0.04	0.85	0.36	2.74	2.20	2.37	2.74	4.64	4.10	ns
	-2	0.49	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns
16 mA	Std.	0.66	3.16	0.04	1.00	0.43	3.22	2.58	2.79	3.22	5.45	4.82	ns
	-1	0.56	2.69	0.04	0.85	0.36	2.74	2.20	2.37	2.74	4.64	4.10	ns
	-2	0.49	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
6 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
8 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
12 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns
16 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 3.0$ V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	-1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
4 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	-1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
6 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
8 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns

Notes

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-36 v1.4

Table 2-46 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Standard I/O Banks

Drive	Speed										l lusida
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
4 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
6 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns
8 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3.3 V LVCMOS Wide Range

Table 2-47 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software	V	/IL	v	′ін	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 2	I _{IH} 3
Drive Strength	Default Drive Strength Option ¹	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	μ Α	μ Α	Max., mA ⁴	Max., mA ⁴	μΑ ⁵	μΑ ⁵
100 μΑ	2 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	4 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	6 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	8 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	12 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	16 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	24 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10

Notes:

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 μ A drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.
- 2. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 4. Currents are measured at 85°C junction temperature.
- 5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8a specification.
- 6. Software default selection highlighted in gray.

2-38 v1.4

Table 2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software	V	/ _{IL}	V	′ін	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 2	I _{IH} 3
Drive Strength	Default Drive Strength Option ¹	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	μ Α	μ Α	Max., mA ⁴	Max., mA ⁴	μ Α 5	μ Α 5
100 μΑ	2 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	4 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	6 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	8 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	12 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	16 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.
- 2. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 4. Currents are measured at 85°C junction temperature.
- 5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8a specification.
- 6. Software default selection highlighted in gray.

Table 2-49 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software	V	/IL	v	ин	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 2	I _{IH} 3
Drive Strength	Default Drive Strength Option ¹	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	μ Α	μ Α	Max., mA ⁴	Max., mA ⁴	μ Α 5	μ Α 5
100 μΑ	2 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	4 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	6 mA	-0.3	0.8	2	3.6	0.2	V _{DD} – 0.2	100	100	TBD	TBD	10	10
100 μΑ	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	TBD	TBD	10	10

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 μ A drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.
- 2. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 4. Currents are measured at 85°C junction temperature.
- 5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JDEC8a specification.
- 6. Software default selection highlighted in gray.

2-40 v1.4

Timing Characteristics

Table 2-50 • 3.3 V LVTTL / 3.3 V LVCMOS HIgh Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V
Applicable to Advanced I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 μΑ	4 mA	Std.	0.60	11.84	0.04	1.02	0.43	11.84	10.00	4.10	4.04	15.23	13.40	ns
		-1	0.51	10.07	0.04	0.86	0.36	10.07	8.51	3.48	3.44	12.96	11.40	ns
		-2	0.45	8.84	0.03	0.76	0.32	8.84	7.47	3.06	3.02	11.38	10.00	ns
100 μΑ	6 mA	Std.	0.60	7.59	0.04	1.02	0.43	7.59	6.18	4.62	4.95	10.98	9.57	ns
		-1	0.51	6.45	0.04	0.86	0.36	6.45	5.25	3.93	4.21	9.34	8.14	ns
		-2	0.45	5.67	0.03	0.76	0.32	5.67	4.61	3.45	3.70	8.20	7.15	ns
100 μΑ	8 mA	Std.	0.60	7.59	0.04	1.02	0.43	7.59	6.18	4.62	4.95	10.98	9.57	ns
		-1	0.51	6.45	0.04	0.86	0.36	6.45	5.25	3.93	4.21	9.34	8.14	ns
		-2	0.45	5.67	0.03	0.76	0.32	5.67	4.61	3.45	3.70	8.20	7.15	ns
100 μΑ	12 mA	Std.	0.60	5.46	0.04	1.02	0.43	5.46	4.29	4.97	5.54	8.86	7.68	ns
		-1	0.51	4.65	0.04	0.86	0.36	4.65	3.65	4.22	4.71	7.53	6.54	ns
		-2	0.45	4.08	0.03	0.76	0.32	4.08	3.20	3.71	4.14	6.61	5.74	ns
100 μΑ	16 mA	Std.	0.60	5.15	0.04	1.02	0.43	5.15	3.89	5.04	5.69	8.55	7.29	ns
		-1	0.51	4.38	0.04	0.86	0.36	4.38	3.31	4.29	4.84	7.27	6.20	ns
		-2	0.45	3.85	0.03	0.76	0.32	3.85	2.91	3.77	4.25	6.38	5.44	ns
100 μΑ	24 mA	Std.	0.60	4.75	0.04	1.02	0.43	4.75	3.22	5.14	6.28	8.15	6.61	ns
		-1	0.51	4.04	0.04	0.86	0.36	4.04	2.74	4.37	5.34	6.93	5.62	ns
		-2	0.45	3.55	0.03	0.76	0.32	3.55	2.40	3.84	4.69	6.09	4.94	ns

Notes:

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for normal ranges ONLY.
- 2. Software default selection highlighted in gray.
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zh}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zhs}	Units
100 μΑ	2 mA	Std.	0.60	15.86	0.04	1.54	0.43	15.86	13.51	4.09	3.80	19.25	16.90	ns
		-1	0.51	13.49	0.04	1.31	0.36	13.49	11.49	3.48	3.23	16.38	14.38	ns
		-2	0.45	11.84	0.03	1.15	0.32	11.84	10.09	3.05	2.84	14.38	12.62	ns
100 μΑ	4 mA	Std.	0.60	11.25	0.04	1.54	0.43	11.25	9.54	4.61	4.70	14.64	12.93	ns
		-1	0.51	9.57	0.04	1.31	0.36	9.57	8.11	3.92	4.00	12.46	11.00	ns
		-2	0.45	8.40	0.03	1.15	0.32	8.40	7.12	3.44	3.51	10.93	9.66	ns
100 μΑ	6 mA	Std.	0.60	11.25	0.04	1.54	0.43	11.25	9.54	4.61	4.70	14.64	12.93	ns
		-1	0.51	9.57	0.04	1.31	0.36	9.57	8.11	3.92	4.00	12.46	11.00	ns
		-2	0.45	8.40	0.03	1.15	0.32	8.40	7.12	3.44	3.51	10.93	9.66	ns
100 μΑ	8 mA	Std.	0.60	8.63	0.04	1.54	0.43	8.63	7.39	4.96	5.28	12.02	10.79	ns
		-1	0.51	7.34	0.04	1.31	0.36	7.34	6.29	4.22	4.49	10.23	9.18	ns
		-2	0.45	6.44	0.03	1.15	0.32	6.44	5.52	3.70	3.94	8.98	8.06	ns
100 μΑ	16 mA	Std.	0.60	8.05	0.04	1.54	0.43	8.05	6.93	5.03	5.43	11.44	10.32	ns
		-1	0.51	6.85	0.04	1.31	0.36	6.85	5.90	4.28	4.62	9.74	8.78	ns
		-2	0.45	6.01	0.03	1.15	0.32	6.01	5.18	3.76	4.06	8.55	7.71	ns
100 μΑ	24 mA	Std.	0.60	7.50	0.04	1.54	0.43	7.50	6.90	5.13	6.00	10.89	10.29	ns
		-1	0.51	6.38	0.04	1.31	0.36	6.38	5.87	4.36	5.11	9.27	8.76	ns
		-2	0.45	5.60	0.03	1.15	0.32	5.60	5.15	3.83	4.48	8.13	7.69	ns

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 μ A drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for normal ranges ONLY.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-42 v1.4

Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS HIgh Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Standard Plus I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zh}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zhs}	Units
100 μΑ	2 mA	Std.	0.60	11.14	0.04	1.52	0.43	11.14	9.54	3.51	3.61	14.53	12.94	ns
		-1	0.51	9.48	0.04	1.29	0.36	9.48	8.12	2.99	3.07	12.36	11.00	ns
		-2	0.45	8.32	0.03	1.14	0.32	8.32	7.13	2.62	2.70	10.85	9.66	ns
100 μΑ	4 mA	Std.	0.60	6.96	0.04	1.52	0.43	6.96	5.79	3.99	4.45	10.35	9.19	ns
		-1	0.51	5.92	0.04	1.29	0.36	5.92	4.93	3.39	3.78	8.81	7.82	ns
		-2	0.45	5.20	0.03	1.14	0.32	5.20	4.33	2.98	3.32	7.73	6.86	ns
100 μΑ	6 mA	Std.	0.60	6.96	0.04	1.52	0.43	6.96	5.79	3.99	4.45	10.35	9.19	ns
		-1	0.51	5.92	0.04	1.29	0.36	5.92	4.93	3.39	3.78	8.81	7.82	ns
		-2	0.45	5.20	0.03	1.14	0.32	5.20	4.33	2.98	3.32	7.73	6.86	ns
100 μΑ	8 mA	Std.	0.60	4.89	0.04	1.52	0.43	4.89	3.92	4.31	4.98	8.28	7.32	ns
		-1	0.51	4.16	0.04	1.29	0.36	4.16	3.34	3.67	4.24	7.04	6.22	ns
		-2	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns
100 μΑ	16 mA	Std.	0.60	4.89	0.04	1.52	0.43	4.89	3.92	4.31	4.98	8.28	7.32	ns
		-1	0.51	4.16	0.04	1.29	0.36	4.16	3.34	3.67	4.24	7.04	6.22	ns
		-2	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for normal ranges ONLY.
- 2. Software default selection highlighted in gray.
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 3.0$ V Applicable to Standard Plus I/O Banks

Drive	Equiv. Software Default Drive Strength	Speed												
Strength	Option ¹	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 μΑ	2 mA	Std.	0.60	14.97	0.04	1.52	0.43	14.97	12.79	3.52	3.41	18.36	16.18	ns
		-1	0.51	12.73	0.04	1.29	0.36	12.73	10.88	2.99	2.90	15.62	13.77	ns
		-2	0.45	11.18	0.03	1.14	0.32	11.18	9.55	2.63	2.55	13.71	12.08	ns
100 μΑ	4 mA	Std.	0.60	10.36	0.04	1.52	0.43	10.36	8.93	3.99	4.24	13.75	12.33	ns
		-1	0.51	8.81	0.04	1.29	0.36	8.81	7.60	3.39	3.60	11.70	10.49	ns
		-2	0.45	7.74	0.03	1.14	0.32	7.74	6.67	2.98	3.16	10.27	9.21	ns
100 μΑ	6 mA	Std.	0.60	10.36	0.04	1.52	0.43	10.36	8.93	3.99	4.24	13.75	12.33	ns
		-1	0.51	8.81	0.04	1.29	0.36	8.81	7.60	3.39	3.60	11.70	10.49	ns
		-2	0.45	7.74	0.03	1.14	0.32	7.74	6.67	2.98	3.16	10.27	9.21	ns
100 μΑ	8 mA	Std.	0.60	7.81	0.04	1.52	0.43	7.81	6.85	4.32	4.76	11.20	10.24	ns
		-1	0.51	6.64	0.04	1.29	0.36	6.64	5.82	3.67	4.05	9.53	8.71	ns
		-2	0.45	5.83	0.03	1.14	0.32	5.83	5.11	3.22	3.56	8.36	7.65	ns
100 μΑ	16 mA	Std.	0.60	7.81	0.04	1.52	0.43	7.81	6.85	4.32	4.76	11.20	10.24	ns
		-1	0.51	6.64	0.04	1.29	0.36	6.64	5.82	3.67	4.05	9.53	8.71	ns
		-2	0.45	5.83	0.03	1.14	0.32	5.83	5.11	3.22	3.56	8.36	7.65	ns

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for normal ranges ONLY.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-44 v1.4

Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS HIgh Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zh}	t _{LZ}	t _{HZ}	Units
100 μΑ	2 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns
100 μΑ	4 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns
100 μΑ	6 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns
100 μΑ	8 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 μ A drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for normal ranges ONLY.
- 2. Software default selection highlighted in gray.
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 μΑ	2 mA	Std.	0.60	14.64	0.04	1.52	0.43	14.64	12.97	3.21	3.15	ns
		-1	0.51	12.45	0.04	1.29	0.36	12.45	11.04	2.73	2.68	ns
		-2	0.45	10.93	0.03	1.13	0.32	10.93	9.69	2.39	2.35	ns
100 μΑ	4 mA	Std.	0.60	14.64	0.04	1.52	0.43	14.64	12.97	3.21	3.15	ns
		-1	0.51	12.45	0.04	1.29	0.36	12.45	11.04	2.73	2.68	ns
		-2	0.45	10.93	0.03	1.13	0.32	10.93	9.69	2.39	2.35	ns
100 μΑ	6 mA	Std.	0.60	10.16	0.04	1.52	0.43	10.16	9.08	3.71	3.98	ns
		-1	0.51	8.64	0.04	1.29	0.36	8.64	7.73	3.15	3.39	ns
		-2	0.45	7.58	0.03	1.13	0.32	7.58	6.78	2.77	2.97	ns
100 μΑ	8 mA	Std.	0.60	10.16	0.04	1.52	0.43	10.16	9.08	3.71	3.98	ns
		-1	0.51	8.64	0.04	1.29	0.36	8.64	7.73	3.15	3.39	ns
		-2	0.45	7.58	0.03	1.13	0.32	7.58	6.78	2.77	2.97	ns

- 1. Please note that 3.3 V LVCMOS wide range is applicable to 100 μ A drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for normal ranges ONLY.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-46 v1.4

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications. It uses a 5 V-tolerant input buffer and push-pull output buffer.

Table 2-56 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks

2.5 V LVCMOS	٧	'IL	٧	'IH	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ³	Max., mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	124	169	10	10

Notes:

- 1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-57 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

2.5 V LVCMOS	V	/IL	٧	'IH	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mΑ	Max., mA ³	Max., mA ³	μΑ ⁴	μΑ ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10

Notes:

- 1. $I_{|L|}$ is the input leakage current per I/O pin over recommended operation conditions where $-0.3 \text{ V} < V_{|L|} < V_{|L|}$
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-58 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks

2.5 V LVCMOS	٧	'IL	٧	ÏН	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ³	Max., mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	32	37	10	10

- 1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL}
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-7 • AC Loading

Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	2.5	1.2	35

^{*} Measuring point = $V_{trip.}$ See Table 2-22 on page 2-21 for a complete table of trip points.

2-48 v1.4

Timing Characteristics

Table 2-60 • 2.5 V LVCMOS High Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 2.3$ V Applicable to Advanced I/O Banks

Drive	Speed	_					_						l lmita
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.60	8.66	0.04	1.31	0.43	7.83	8.66	2.68	2.30	10.07	10.90	ns
	-1	0.51	7.37	0.04	1.11	0.36	6.66	7.37	2.28	1.96	8.56	9.27	ns
	-2	0.45	6.47	0.03	0.98	0.32	5.85	6.47	2.00	1.72	7.52	8.14	ns
6 mA	Std.	0.60	5.17	0.04	1.31	0.43	5.04	5.17	3.05	3.00	7.27	7.40	ns
	-1	0.51	4.39	0.04	1.11	0.36	4.28	4.39	2.59	2.55	6.19	6.30	ns
	-2	0.45	3.86	0.03	0.98	0.32	3.76	3.86	2.28	2.24	5.43	5.53	ns
8 mA	Std.	0.60	5.17	0.04	1.31	0.43	5.04	5.17	3.05	3.00	7.27	7.40	ns
	-1	0.51	4.39	0.04	1.11	0.36	4.28	4.39	2.59	2.55	6.19	6.30	ns
	-2	0.45	3.86	0.03	0.98	0.32	3.76	3.86	2.28	2.24	5.43	5.53	ns
12 mA	Std.	0.60	3.56	0.04	1.31	0.43	3.63	3.43	3.30	3.44	5.86	5.67	ns
	-1	0.51	3.03	0.04	1.11	0.36	3.08	2.92	2.81	2.92	4.99	4.82	ns
	-2	0.45	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
16 mA	Std.	0.60	3.35	0.04	1.31	0.43	3.41	3.06	3.36	3.55	5.65	5.30	ns
	-1	0.51	2.85	0.04	1.11	0.36	2.90	2.60	2.86	3.02	4.81	4.51	ns
	-2	0.45	2.50	0.03	0.98	0.32	2.55	2.29	2.51	2.65	4.22	3.96	ns
24 mA	Std.	0.60	3.09	0.04	1.31	0.43	3.15	2.44	3.44	4.00	5.38	4.68	ns
	-1	0.51	2.63	0.04	1.11	0.36	2.68	2.08	2.92	3.40	4.58	3.98	ns
	-2	0.45	2.31	0.03	0.98	0.32	2.35	1.82	2.57	2.98	4.02	3.49	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-61 • 2.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 2.3 V

Applicable to Advanced I/O Banks

Drive	Speed												
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t_ZL	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.60	11.40	0.04	1.31	0.43	11.22	11.40	2.68	2.20	13.45	13.63	ns
	-1	0.51	9.69	0.04	1.11	0.36	9.54	9.69	2.28	1.88	11.44	11.60	ns
	-2	0.45	8.51	0.03	0.98	0.32	8.38	8.51	2.00	1.65	10.05	10.18	ns
6 mA	Std.	0.60	7.96	0.04	1.31	0.43	8.11	7.81	3.05	2.89	10.34	10.05	ns
	-1	0.51	6.77	0.04	1.11	0.36	6.90	6.65	2.59	2.46	8.80	8.55	ns
	-2	0.45	5.94	0.03	0.98	0.32	6.05	5.84	2.28	2.16	7.72	7.50	ns
8 mA	Std.	0.60	7.96	0.04	1.31	0.43	8.11	7.81	3.05	2.89	10.34	10.05	ns
	-1	0.51	6.77	0.04	1.11	0.36	6.90	6.65	2.59	2.46	8.80	8.55	ns
	-2	0.45	5.94	0.03	0.98	0.32	6.05	5.84	2.28	2.16	7.72	7.50	ns
12 mA	Std.	0.60	6.18	0.04	1.31	0.43	6.29	5.92	3.30	3.32	8.53	8.15	ns
	-1	0.51	5.26	0.04	1.11	0.36	5.35	5.03	2.81	2.83	7.26	6.94	ns
	-2	0.45	4.61	0.03	0.98	0.32	4.70	4.42	2.47	2.48	6.37	6.09	ns
16 mA	Std.	0.60	5.76	0.04	1.31	0.43	5.87	5.53	3.36	3.44	8.11	7.76	ns
	-1	0.51	4.90	0.04	1.11	0.36	4.99	4.70	2.86	2.92	6.90	6.60	ns
	-2	0.45	4.30	0.03	0.98	0.32	4.38	4.13	2.51	2.57	6.05	5.80	ns
24 mA	Std.	0.60	5.51	0.04	1.31	0.43	5.50	5.51	3.43	3.87	7.74	7.74	ns
	-1	0.51	4.68	0.04	1.11	0.36	4.68	4.68	2.92	3.29	6.58	6.59	ns
	-2	0.45	4.11	0.03	0.98	0.32	4.11	4.11	2.56	2.89	5.78	5.78	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-50 v1.4

Table 2-62 • 2.5 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 2.3 V
Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	8.28	0.04	1.30	0.43	7.41	8.28	2.25	2.07	9.64	10.51	ns
	-1	0.56	7.04	0.04	1.10	0.36	6.30	7.04	1.92	1.76	8.20	8.94	ns
	-2	0.49	6.18	0.03	0.97	0.32	5.53	6.18	1.68	1.55	7.20	7.85	ns
6 mA	Std.	0.66	4.85	0.04	1.30	0.43	4.65	4.85	2.59	2.71	6.88	7.09	ns
	-1	0.56	4.13	0.04	1.10	0.36	3.95	4.13	2.20	2.31	5.85	6.03	ns
	-2	0.49	3.62	0.03	0.97	0.32	3.47	3.62	1.93	2.02	5.14	5.29	ns
8 mA	Std.	0.66	4.85	0.04	1.30	0.43	4.65	4.85	2.59	2.71	6.88	7.09	ns
	-1	0.56	4.13	0.04	1.10	0.36	3.95	4.13	2.20	2.31	5.85	6.03	ns
	-2	0.49	3.62	0.03	0.97	0.32	3.47	3.62	1.93	2.02	5.14	5.29	ns
12 mA	Std.	0.66	3.21	0.04	1.30	0.43	3.27	3.14	2.82	3.11	5.50	5.38	ns
	-1	0.56	2.73	0.04	1.10	0.36	2.78	2.67	2.40	2.65	4.68	4.57	ns
	-2	0.49	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	4.02	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-63 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 2.3$ V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	10.84	0.04	1.30	0.43	10.64	10.84	2.26	1.99	12.87	13.08	ns
	-1	0.56	9.22	0.04	1.10	0.36	9.05	9.22	1.92	1.69	10.95	11.12	ns
	-2	0.49	8.10	0.03	0.97	0.32	7.94	8.10	1.68	1.49	9.61	9.77	ns
6 mA	Std.	0.66	7.37	0.04	1.30	0.43	7.50	7.36	2.59	2.61	9.74	9.60	ns
	-1	0.56	6.27	0.04	1.10	0.36	6.38	6.26	2.20	2.22	8.29	8.16	ns
	-2	0.49	5.50	0.03	0.97	0.32	5.60	5.50	1.93	1.95	7.27	7.17	ns
8 mA	Std.	0.66	7.37	0.04	1.30	0.43	7.50	7.36	2.59	2.61	9.74	9.60	ns
	-1	0.56	6.27	0.04	1.10	0.36	6.38	6.26	2.20	2.22	8.29	8.16	ns
	-2	0.49	5.50	0.03	0.97	0.32	5.60	5.50	1.93	1.95	7.27	7.17	ns
12 mA	Std.	0.66	5.63	0.04	1.30	0.43	5.73	5.51	2.83	3.01	7.97	7.74	ns
	-1	0.56	4.79	0.04	1.10	0.36	4.88	4.68	2.41	2.56	6.78	6.59	ns
	-2	0.49	4.20	0.03	0.97	0.32	4.28	4.11	2.11	2.25	5.95	5.78	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-64 • 2.5 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V
Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
4 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
6 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
8 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-65 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case $V_{CC} = 1.425 \text{ V}$, Worst-Case $V_{CCI} = 3.0 \text{ V}$ Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.00	0.04	1.29	0.43	10.37	11.00	2.03	1.83	ns
	-1	0.56	9.35	0.04	1.10	0.36	8.83	9.35	1.73	1.56	ns
	-2	0.49	8.21	0.03	0.96	0.32	7.75	8.21	1.52	1.37	ns
4 mA	Std.	0.66	11.00	0.04	1.29	0.43	10.37	11.00	2.03	1.83	ns
	-1	0.56	9.35	0.04	1.10	0.36	8.83	9.35	1.73	1.56	ns
	-2	0.49	8.21	0.03	0.96	0.32	7.75	8.21	1.52	1.37	ns
6 mA	Std.	0.66	7.50	0.04	1.29	0.43	7.36	7.50	2.39	2.46	ns
	-1	0.56	6.38	0.04	1.10	0.36	6.26	6.38	2.03	2.10	ns
	-2	0.49	5.60	0.03	0.96	0.32	5.49	5.60	1.78	1.84	ns
8 mA	Std.	0.66	7.50	0.04	1.29	0.43	7.36	7.50	2.39	2.46	ns
	-1	0.56	6.38	0.04	1.10	0.36	6.26	6.38	2.03	2.10	ns
	-2	0.49	5.60	0.03	0.96	0.32	5.49	5.60	1.78	1.84	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-52 v1.4

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

Table 2-66 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks

1.8 V LVCMOS		V _{IL}	V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	l _{IH} ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ³	Max., mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.9	0.45	V _{CCI} – 0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.9	0.45	V _{CCI} – 0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.9	0.45	V _{CCI} – 0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.9	0.45	V _{CCI} – 0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.9	0.45	V _{CCI} – 0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.9	0.45	V _{CCI} – 0.45	16	16	74	91	10	10

Notes:

- 1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-67 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O I/O Banks

1.8 V LVCMOS		V _{IL}			V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	l _{IH} ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ³	Max., mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	8	8	44	35	10	10

Notes:

- 1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-68 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

1.8 V LVCMOS		V_{IL}	V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} ¹	I _{IH} ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ³	Max., mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	4	4	17	22	10	10

Notes:

- 1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-8 • AC Loading

Table 2-69 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	35

^{*} Measuring point = $V_{trip.}$ See Table 2-22 on page 2-21 for a complete table of trip points.

2-54 v1.4

Timing Characteristics

Table 2-70 • 1.8 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.7 V
Applicable to Advanced I/O Banks

Drive	Speed												
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	11.86	0.04	1.22	0.43	9.14	11.86	2.77	1.66	11.37	14.10	ns
	-1	0.56	10.09	0.04	1.04	0.36	7.77	10.09	2.36	1.41	9.67	11.99	ns
	-2	0.49	8.86	0.03	0.91	0.32	6.82	8.86	2.07	1.24	8.49	10.53	ns
4 mA	Std.	0.66	6.91	0.04	1.22	0.43	5.86	6.91	3.22	2.84	8.10	9.15	ns
	-1	0.56	5.88	0.04	1.04	0.36	4.99	5.88	2.74	2.41	6.89	7.78	ns
	-2	0.49	5.16	0.03	0.91	0.32	4.38	5.16	2.41	2.12	6.05	6.83	ns
6 mA	Std.	0.66	4.45	0.04	1.22	0.43	4.18	4.45	3.53	3.38	6.42	6.68	ns
	-1	0.56	3.78	0.04	1.04	0.36	3.56	3.78	3.00	2.88	5.46	5.69	ns
	-2	0.49	3.32	0.03	0.91	0.32	3.12	3.32	2.64	2.53	4.79	4.99	ns
8 mA	Std.	0.66	3.92	0.04	1.22	0.43	3.93	3.92	3.60	3.52	6.16	6.16	ns
	-1	0.56	3.34	0.04	1.04	0.36	3.34	3.34	3.06	3.00	5.24	5.24	ns
	-2	0.49	2.93	0.03	0.91	0.32	2.93	2.93	2.69	2.63	4.60	4.60	ns
12 mA	Std.	0.66	3.53	0.04	1.22	0.43	3.60	3.04	3.70	4.08	5.84	5.28	ns
	-1	0.56	3.01	0.04	1.04	0.36	3.06	2.59	3.15	3.47	4.96	4.49	ns
	-2	0.49	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns
16 mA	Std.	0.66	3.53	0.04	1.22	0.43	3.60	3.04	3.70	4.08	5.84	5.28	ns
	-1	0.56	3.01	0.04	1.04	0.36	3.06	2.59	3.15	3.47	4.96	4.49	ns
	-2	0.49	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-71 • 1.8 V LVCMOS Low Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.7 V
Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	15.53	0.04	1.22	0.43	14.11	15.53	2.78	1.60	16.35	17.77	ns
	-1	0.56	13.21	0.04	1.04	0.36	12.01	13.21	2.36	1.36	13.91	15.11	ns
	-2	0.49	11.60	0.03	0.91	0.32	10.54	11.60	2.07	1.19	12.21	13.27	ns
4 mA	Std.	0.66	10.48	0.04	1.22	0.43	10.41	10.48	3.23	2.73	12.65	12.71	ns
	-1	0.56	8.91	0.04	1.04	0.36	8.86	8.91	2.75	2.33	10.76	10.81	ns
	-2	0.49	7.82	0.03	0.91	0.32	7.77	7.82	2.41	2.04	9.44	9.49	ns
6 mA	Std.	0.66	8.05	0.04	1.22	0.43	8.20	7.84	3.54	3.27	10.43	10.08	ns
	-1	0.56	6.85	0.04	1.04	0.36	6.97	6.67	3.01	2.78	8.88	8.57	ns
	-2	0.49	6.01	0.03	0.91	0.32	6.12	5.86	2.64	2.44	7.79	7.53	ns
8 mA	Std.	0.66	7.50	0.04	1.22	0.43	7.64	7.30	3.61	3.41	9.88	9.53	ns
	-1	0.56	6.38	0.04	1.04	0.36	6.50	6.21	3.07	2.90	8.40	8.11	ns
	-2	0.49	5.60	0.03	0.91	0.32	5.71	5.45	2.69	2.55	7.38	7.12	ns
12 mA	Std.	0.66	7.29	0.04	1.22	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.04	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.91	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns
16 mA	Std.	0.66	7.29	0.04	1.22	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.04	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.91	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-56 v1.4

Table 2-72 • 1.8 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.7 V
Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	11.33	0.04	1.20	0.43	8.72	11.33	2.24	1.52	10.96	13.57	ns
	-1	0.56	9.64	0.04	1.02	0.36	7.42	9.64	1.91	1.29	9.32	11.54	ns
	-2	0.49	8.46	0.03	0.90	0.32	6.51	8.46	1.68	1.14	8.18	10.13	ns
4 mA	Std.	0.66	6.48	0.04	1.20	0.43	5.48	6.48	2.65	2.60	7.72	8.72	ns
	-1	0.56	5.51	0.04	1.02	0.36	4.66	5.51	2.25	2.21	6.56	7.42	ns
	-2	0.49	4.84	0.03	0.90	0.32	4.09	4.84	1.98	1.94	5.76	6.51	ns
6 mA	Std.	0.66	4.06	0.04	1.20	0.43	3.84	4.06	2.93	3.10	6.07	6.30	ns
	-1	0.56	3.45	0.04	1.02	0.36	3.27	3.45	2.49	2.64	5.17	5.36	ns
	-2	0.49	3.03	0.03	0.90	0.32	2.87	3.03	2.19	2.32	4.54	4.70	ns
8 mA	Std.	0.66	4.06	0.04	1.20	0.43	3.84	4.06	2.93	3.10	6.07	6.30	ns
	-1	0.56	3.45	0.04	1.02	0.36	3.27	3.45	2.49	2.64	5.17	5.36	ns
	-2	0.49	3.03	0.03	0.90	0.32	2.87	3.03	2.19	2.32	4.54	4.70	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-73 • 1.8 V LVCMOS Low Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 1.7$ V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	14.80	0.04	1.20	0.43	13.49	14.80	2.25	1.46	15.73	17.04	ns
	-1	0.56	12.59	0.04	1.02	0.36	11.48	12.59	1.91	1.25	13.38	14.49	ns
	-2	0.49	11.05	0.03	0.90	0.32	10.08	11.05	1.68	1.09	11.75	12.72	ns
4 mA	Std.	0.66	9.90	0.04	1.20	0.43	9.73	9.90	2.65	2.50	11.97	12.13	ns
	-1	0.56	8.42	0.04	1.02	0.36	8.28	8.42	2.26	2.12	10.18	10.32	ns
	-2	0.49	7.39	0.03	0.90	0.32	7.27	7.39	1.98	1.86	8.94	9.06	ns
6 mA	Std.	0.66	7.44	0.04	1.20	0.43	7.58	7.32	2.94	2.99	9.81	9.56	ns
	-1	0.56	6.33	0.04	1.02	0.36	6.44	6.23	2.50	2.54	8.35	8.13	ns
	-2	0.49	5.55	0.03	0.90	0.32	5.66	5.47	2.19	2.23	7.33	7.14	ns
8 mA	Std.	0.66	7.44	0.04	1.20	0.43	7.58	7.32	2.94	2.99	9.81	9.56	ns
	-1	0.56	6.33	0.04	1.02	0.36	6.44	6.23	2.50	2.54	8.35	8.13	ns
	-2	0.49	5.55	0.03	0.90	0.32	5.66	5.47	2.19	2.23	7.33	7.14	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-74 • 1.8 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.7 V
Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.21	0.04	1.20	0.43	8.53	11.21	1.99	1.21	ns
	-1	0.56	9.54	0.04	1.02	0.36	7.26	9.54	1.69	1.03	ns
	-2	0.49	8.37	0.03	0.90	0.32	6.37	8.37	1.49	0.90	ns
4 mA	Std.	0.66	6.34	0.04	1.20	0.43	5.38	6.34	2.41	2.48	ns
	-1	0.56	5.40	0.04	1.02	0.36	4.58	5.40	2.05	2.11	ns
	-2	0.49	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns

Notes

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-58 v1.4

Table 2-75 • 1.8 V LVCMOS Low Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V
Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	15.01	0.04	1.20	0.43	13.15	15.01	1.99	1.99	ns
	-1	0.56	12.77	0.04	1.02	0.36	11.19	12.77	1.70	1.70	ns
	-2	0.49	11.21	0.03	0.90	0.32	9.82	11.21	1.49	1.49	ns
4 mA	Std.	0.66	10.10	0.04	1.20	0.43	9.55	10.10	2.41	2.37	ns
	-1	0.56	8.59	0.04	1.02	0.36	8.13	8.59	2.05	2.02	ns
	-2	0.49	7.54	0.03	0.90	0.32	7.13	7.54	1.80	1.77	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

Table 2-76 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks

1.5 V LVCMOS		V _{IL}	V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{ОН}	I _{OSL}	I _{OSH}	I _{IL} 1	l _{IH} 2
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ³	Max., mA ³	μ Α 4	μ Α 4
2 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.575	0.25 * V _{CCI}	0.75 * V _{CCI}	2	2	16	13	10	10
4 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.575	0.25 * V _{CCI}	0.75 * V _{CCI}	4	4	33	25	10	10
6 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.575	0.25 * V _{CCI}	0.75 * V _{CCI}	6	6	39	32	10	10
8 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.575	0.25 * V _{CCI}	0.75 * V _{CCI}	8	8	55	66	10	10
12 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.575	0.25 * V _{CCI}	0.75 * V _{CCI}	12	12	55	66	10	10

Notes:

- 1. I_{II} is the input leakage current per I/O pin over recommended operation conditions where $-0.3 \text{ V} < V_{IN} < V_{II}$.
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-77 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks

1.5 V LVCMOS		V_{IL}	V_{IH}		V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ³	Max., mA ³	μΑ ⁴	μ Α ⁴
2 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.575	0.25 * V _{CCI}	0.75 * V _{CCI}	2	2	16	13	10	10
4 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	1.575	0.25 * V _{CCI}	0.75 * V _{CCI}	4	4	33	25	10	10

Notes:

- 1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

2-60 v1.4

Table 2-78 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

1.5 V LVCMOS	V _{IL}		V _{II}	-1	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL} 1	I _{IH} ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ³	Max., mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.35 * V_{CCI}	0.65 * V_{CCI}	3.6	0.25 * V_{CCI}	0.75 * V_{CCI}	2	2	13	16	10	10

Notes:

- 1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < V_{IN} < V_{IL} .
- 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions $V_{IH} < V_{IN} < V_{CCI}$. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.



Figure 2-9 • AC Loading

Table 2-79 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.5	0.75	35

^{*} Measuring point = $V_{trip.}$ See Table 2-22 on page 2-21 for a complete table of trip points.

Timing Characteristics

Table 2-80 • 1.5 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.4 V
Applicable to Advanced I/O Banks

Drive	Speed												
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	8.36	0.04	1.44	0.43	6.82	8.36	3.39	2.77	9.06	10.60	ns
	-1	0.56	7.11	0.04	1.22	0.36	5.80	7.11	2.88	2.35	7.71	9.02	ns
	-2	0.49	6.24	0.03	1.07	0.32	5.10	6.24	2.53	2.06	6.76	7.91	ns
4 mA	Std.	0.66	5.31	0.04	1.44	0.43	4.85	5.31	3.74	3.40	7.09	7.55	ns
	-1	0.56	4.52	0.04	1.22	0.36	4.13	4.52	3.18	2.89	6.03	6.42	ns
	-2	0.49	3.97	0.03	1.07	0.32	3.62	3.97	2.79	2.54	5.29	5.64	ns
6 mA	Std.	0.66	4.67	0.04	1.44	0.43	4.55	4.67	3.82	3.56	6.78	6.90	ns
	-1	0.56	3.97	0.04	1.22	0.36	3.87	3.97	3.25	3.03	5.77	5.87	ns
	-2	0.49	3.49	0.03	1.07	0.32	3.40	3.49	2.85	2.66	5.07	5.16	ns
8 mA	Std.	0.66	4.08	0.04	1.44	0.43	4.15	3.58	3.94	4.20	6.39	5.81	ns
	-1	0.56	3.47	0.04	1.22	0.36	3.53	3.04	3.36	3.58	5.44	4.95	ns
	-2	0.49	3.05	0.03	1.07	0.32	3.10	2.67	2.95	3.14	4.77	4.34	ns
12 mA	Std.	0.66	4.08	0.04	1.44	0.43	4.15	3.58	3.94	4.20	6.39	5.81	ns
	-1	0.56	3.47	0.04	1.22	0.36	3.53	3.04	3.36	3.58	5.44	4.95	ns
	-2	0.49	3.05	0.03	1.07	0.32	3.10	2.67	2.95	3.14	4.77	4.34	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-62 v1.4

Table 2-81 • 1.5 V LVCMOS Low Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.4 V
Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	12.78	0.04	1.44	0.43	12.81	12.78	3.40	2.64	15.05	15.02	ns
	-1	0.56	10.87	0.04	1.22	0.36	10.90	10.87	2.89	2.25	12.80	12.78	ns
	-2	0.49	9.55	0.03	1.07	0.32	9.57	9.55	2.54	1.97	11.24	11.22	ns
4 mA	Std.	0.66	10.01	0.04	1.44	0.43	10.19	9.55	3.75	3.27	12.43	11.78	ns
	-1	0.56	8.51	0.04	1.22	0.36	8.67	8.12	3.19	2.78	10.57	10.02	ns
	-2	0.49	7.47	0.03	1.07	0.32	7.61	7.13	2.80	2.44	9.28	8.80	ns
6 mA	Std.	0.66	9.33	0.04	1.44	0.43	9.51	8.89	3.83	3.43	11.74	11.13	ns
	-1	0.56	7.94	0.04	1.22	0.36	8.09	7.56	3.26	2.92	9.99	9.47	ns
	-2	0.49	6.97	0.03	1.07	0.32	7.10	6.64	2.86	2.56	8.77	8.31	ns
8 mA	Std.	0.66	8.91	0.04	1.44	0.43	9.07	8.89	3.95	4.05	11.31	11.13	ns
	-1	0.56	7.58	0.04	1.22	0.36	7.72	7.57	3.36	3.44	9.62	9.47	ns
	-2	0.49	6.65	0.03	1.07	0.32	6.78	6.64	2.95	3.02	8.45	8.31	ns
12 mA	Std.	0.66	8.91	0.04	1.44	0.43	9.07	8.89	3.95	4.05	11.31	11.13	ns
	-1	0.56	7.58	0.04	1.22	0.36	7.72	7.57	3.36	3.44	9.62	9.47	ns
	-2	0.49	6.65	0.03	1.07	0.32	6.78	6.64	2.95	3.02	8.45	8.31	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-82 • 1.5 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.4 V
Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	7.83	0.04	1.42	0.43	6.42	7.83	2.71	2.55	8.65	10.07	ns
	-1	0.56	6.66	0.04	1.21	0.36	5.46	6.66	2.31	2.17	7.36	8.56	ns
	-2	0.49	5.85	0.03	1.06	0.32	4.79	5.85	2.02	1.90	6.46	7.52	ns
4 mA	Std.	0.66	4.84	0.04	1.42	0.43	4.49	4.84	3.03	3.13	6.72	7.08	ns
	-1	0.56	4.12	0.04	1.21	0.36	3.82	4.12	2.58	2.66	5.72	6.02	ns
	-2	0.49	3.61	0.03	1.06	0.32	3.35	3.61	2.26	2.34	5.02	5.28	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-83 • 1.5 V LVCMOS Low Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 1.4$ V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	12.08	0.04	1.42	0.43	12.01	12.08	2.72	2.43	14.24	14.31	ns
	-1	0.56	10.27	0.04	1.21	0.36	10.21	10.27	2.31	2.06	12.12	12.18	ns
	-2	0.49	9.02	0.03	1.06	0.32	8.97	9.02	2.03	1.81	10.64	10.69	ns
4 mA	Std.	0.66	9.28	0.04	1.42	0.43	9.45	8.91	3.04	3.00	11.69	11.15	ns
	-1	0.56	7.89	0.04	1.21	0.36	8.04	7.58	2.58	2.55	9.94	9.49	ns
	-2	0.49	6.93	0.03	1.06	0.32	7.06	6.66	2.27	2.24	8.73	8.33	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-84 • 1.5 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V
Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.65	0.04	1.42	0.43	6.31	7.65	2.45	2.45	ns
	-1	0.56	6.50	0.04	1.21	0.36	5.37	6.50	2.08	2.08	ns
	-2	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-64 v1.4

Table 2-85 • 1.5 V LVCMOS Low Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V
Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	12.33	0.04	1.42	0.43	11.79	12.33	2.45	2.32	ns
	-1	0.56	10.49	0.04	1.21	0.36	10.03	10.49	2.08	1.98	ns
	-2	0.49	9.21	0.03	1.06	0.32	8.81	9.21	1.83	1.73	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-86 • Minimum and Maximum DC Input and Output Levels

3.3 V PCI/PCI-X	\	/ _{IL}	٧	/ _{ІН}	V _{OL}	V _{OH}	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min, V	Max, V	Min, V	Max, V	Max, V	Min, V	mΑ	mΑ	Max, mA ¹	Max, mA ¹	μA ²	μA ²
Per PCI specification		Per PCI curves						10	10			

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Actel loadings for enable path characterization are described in Figure 2-10.

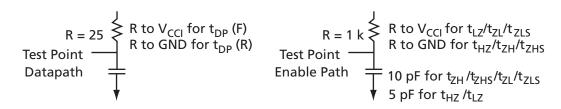


Figure 2-10 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Actel loading for tristate is described in Table 2-87.

Table 2-87 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	0.285 * V _{CCI} for t _{DP(R)}	10
		0.615 * V_{CCI} for $t_{DP(F)}$	

^{*} Measuring point = $V_{trip.}$ See Table 2-22 on page 2-21 for a complete table of trip points.

Timing Characteristics

Table 2-88 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V

Applicable to Advanced I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	2.68	0.04	0.86	0.43	2.73	1.95	3.21	3.58	4.97	4.19	ns
-1	0.56	2.28	0.04	0.73	0.36	2.32	1.66	2.73	3.05	4.22	3.56	ns
-2	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-89 • 3.3 V PCI/PCI-X Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 3.0$ V Applicable to Standard Plus I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	2.31	0.04	0.85	0.43	2.35	1.70	2.79	3.22	4.59	3.94	ns
-1	0.56	1.96	0.04	0.72	0.36	2.00	1.45	2.37	2.74	3.90	3.35	ns
-2	0.49	1.72	0.03	0.64	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-66 v1.4

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by Actel Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-11. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

Figure 2-11 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels

DC Parameter	Description	Min.	Тур.	Max.	Units
V _{CCI}	Supply Voltage ¹	2.375	2.5	2.625	V
V _{OL}	Output Low Voltage	0.9	1.075	1.25	V
V _{OH}	Output High Voltage	1.25	1.425	1.6	V
I _{OL} ⁴	Output Lower Current	0.65	0.91	1.16	mA
I _{OH} ⁴	Output High Current	0.65	0.91	1.16	mA
V _I	Input Voltage	0		2.925	V
I _{IH} ³	Input High Leakage Current			10	μΑ
I _{IL} ³	Input Low Leakage Current			10	μΑ
V _{ODIFF}	Differential Output Voltage	250	350	450	mV
V _{OCM}	Output Common Mode Voltage	1.125	1.25	1.375	V
V _{ICM}	Input Common Mode Voltage	0.05	1.25	2.35	V
V _{IDIFF}	Input Differential Voltage ²	100	350		mV

Notes:

- 1. ±5%
- 2. Differential input voltage = ± 350 mV.
- 3. Currents are measured at 85°C junction temperature.
- 4. I_{OL}/I_{OH} defined by V_{ODIFF}/(Resistor Network).

Table 2-91 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)
1.075	1.325	Cross point

^{*} Measuring point = $V_{trip.}$ See Table 2-22 on page 2-21 for a complete table of trip points.

Timing Characteristics

Table 2-92 • LVDS

Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.83	0.04	1.60	ns
-1	0.56	1.56	0.04	1.36	ns
-2	0.49	1.37	0.03	1.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-68 v1.4

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Actel LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Actel LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-12. The input and output buffer delays are available in the LVDS section in Table 2-92.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60~\Omega$ and $R_T = 70~\Omega$, given $Z_0 = 50~\Omega$ (2") and $Z_{stub} = 50~\Omega$ (~1.5").

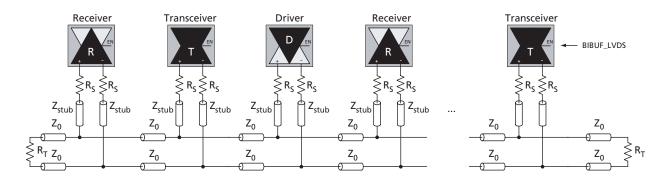


Figure 2-12 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-13. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

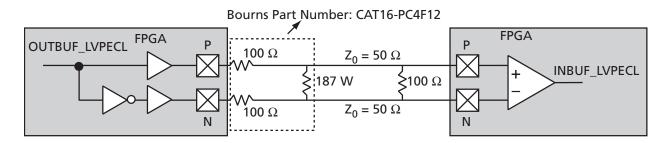


Figure 2-13 • LVPECL Circuit Diagram and Board-Level Implementation

Table 2-93 • Minimum and Maximum DC Input and Output Levels

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
V _{CCI}	Supply Voltage	3.0		3.3		3.6		V
V _{OL}	Output LOW Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
V _{OH}	Output HIGH Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
V _{IL} , V _{IH}	Input LOW, Input HIGH Voltages	0	3.3	0	3.6	0	3.9	V
V _{ODIFF}	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
V _{OCM}	Output Common-Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
V _{ICM}	Input Common-Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
V _{IDIFF}	Input Differential Voltage	300		300		300		mV

Table 2-94 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)
1.64	1.94	Cross point

^{*} Measuring point = $V_{trip.}$ See Table 2-22 on page 2-21 for a complete table of trip points.

Timing Characteristics

Table 2-95 • LVPECL Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.80	0.04	1.40	ns
-1	0.56	1.53	0.04	1.19	ns
-2	0.49	1.34	0.03	1.05	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-70 v1.4

I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

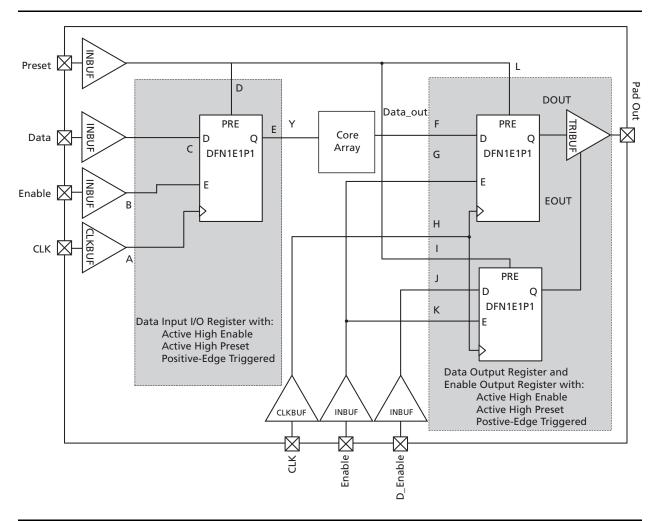


Figure 2-14 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Table 2-96 • Parameter Definition and Measuring Nodes

		(from, to)*
t _{OCLKQ}	Clock-to-Q of the Output Data Register	H, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	H, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	K, H
t _{OEHE}	Enable Hold Time for the Output Enable Register	K, H
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

^{*} See Figure 2-14 on page 2-71 for more information.

2-72 v1.4

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

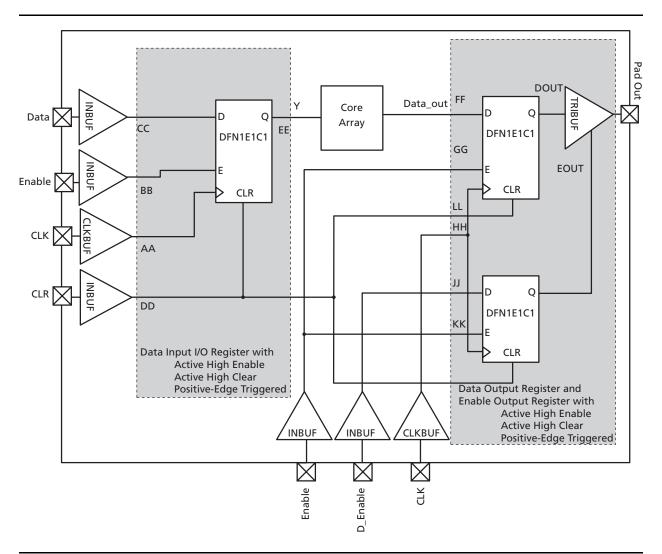


Figure 2-15 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Table 2-97 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{OCLKQ}	Clock-to-Q of the Output Data Register	HH, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OSUE}	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

^{*} See Figure 2-15 on page 2-73 for more information.

2-74 v1.4

Input Register

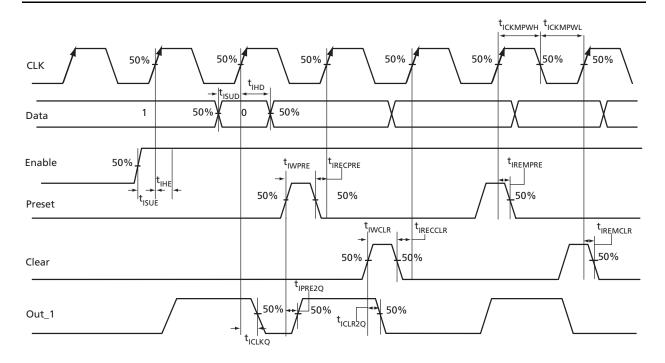


Figure 2-16 • Input Register Timing Diagram

Timing Characteristics

Table 2-98 ● Input Data Register Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.27	0.32	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.26	0.30	0.35	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.37	0.42	0.50	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width HIGH for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width LOW for the Input Data Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Output Register

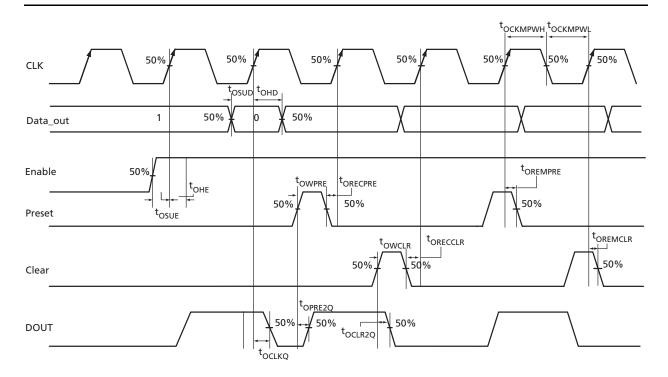


Figure 2-17 • Output Register Timing Diagram

Timing Characteristics

Table 2-99 ● Output Data Register Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.59	0.67	0.79	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.31	0.36	0.42	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.44	0.50	0.59	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.36	0.41	0.48	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-76 v1.4

Output Enable Register

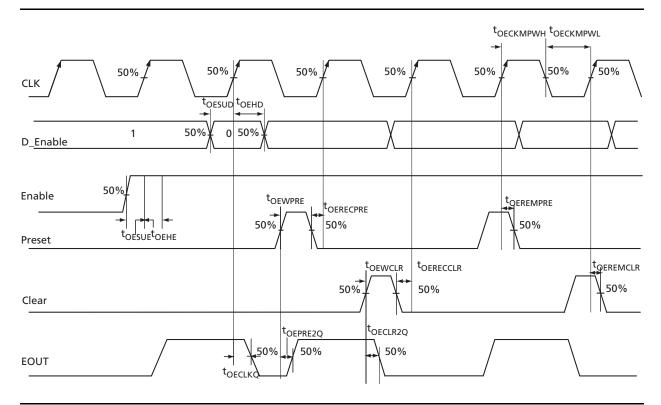


Figure 2-18 • Output Enable Register Timing Diagram

Timing Characteristics

Table 2-100 • Output Enable Register Propagation Delays Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.59	0.67	0.79	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.31	0.36	0.42	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.50	0.58	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OECKMPWH}	Clock Minimum Pulse Width HIGH for the Output Enable Register	0.36	0.41	0.48	ns
t _{OECKMPWL}	Clock Minimum Pulse Width LOW for the Output Enable Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-78 v1.4

DDR Module Specifications

Input DDR Module

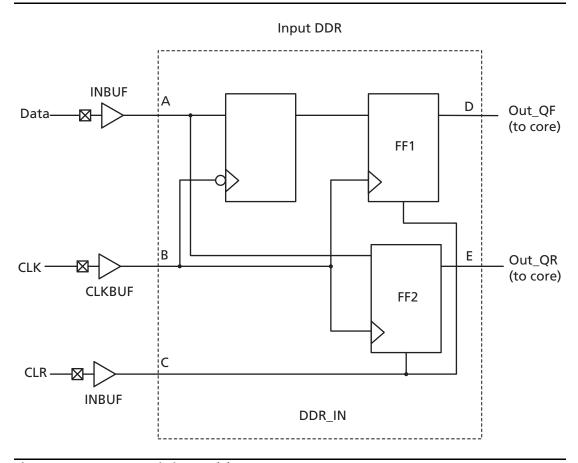


Figure 2-19 • Input DDR Timing Model

Table 2-101 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	A, B
t _{DDRIHD}	Data Hold Time of DDR input	A, B
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	C, B
t _{DDRIRECCLR}	Clear Recovery	С, В

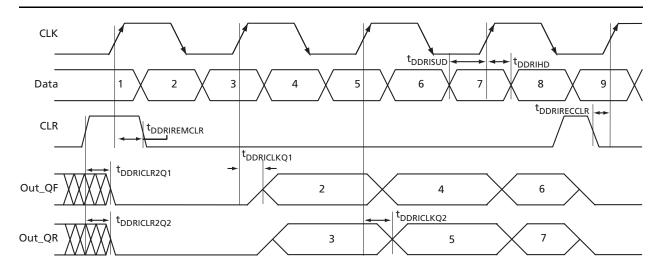


Figure 2-20 • Input DDR Timing Diagram

Timing Characteristics

Table 2-102 • Input DDR Propagation Delays Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst Case $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.27	0.31	0.37	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.39	0.44	0.52	ns
t _{DDRISUD}	Data Setup for Input DDR (Fall)	0.25	0.28	0.33	ns
	Data Setup for Input DDR (Rise)	0.25	0.28	0.33	ns
t _{DDRIHD}	Data Hold for Input DDR (Fall)	0.00	0.00	0.00	ns
	Data Hold for Input DDR (Rise)	0.00	0.00	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.46	0.53	0.62	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.57	0.65	0.76	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal time for Input DDR	0.00	0.00	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery time for Input DDR	0.22	0.25	0.30	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.22	0.25	0.30	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR	0.36	0.41	0.48	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.32	0.37	0.43	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	TBD	TBD	TBD	MHz

Note: For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-80 v1.4

Output DDR Module

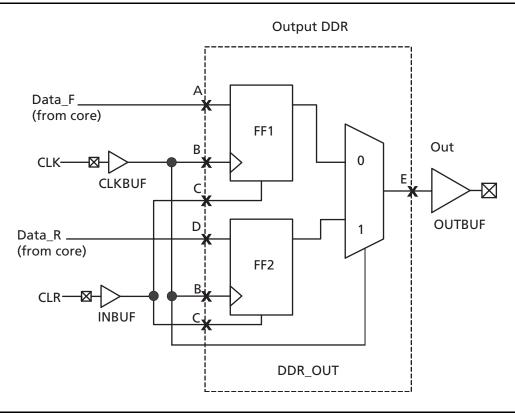


Figure 2-21 • Output DDR Timing Model

Table 2-103 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	C, B
t _{DDRORECCLR}	Clear Recovery	C, B
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	A, B
t _{DDROHD2}	Data Hold Data_R	D, B

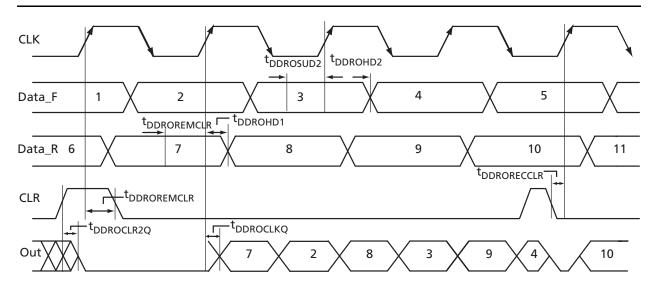


Figure 2-22 • Output DDR Timing Diagram

Timing Characteristics

Table 2-104 • Output DDR Propagation Delays Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.70	0.80	0.94	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	0.80	0.91	1.07	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	0.00	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.22	0.25	0.30	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.22	0.25	0.30	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.36	0.41	0.48	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.32	0.37	0.43	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	TBD	TBD	TBD	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-82 v1.4

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the Fusion, IGLOO®/e, and ProASIC3/E Macro Library Guide.

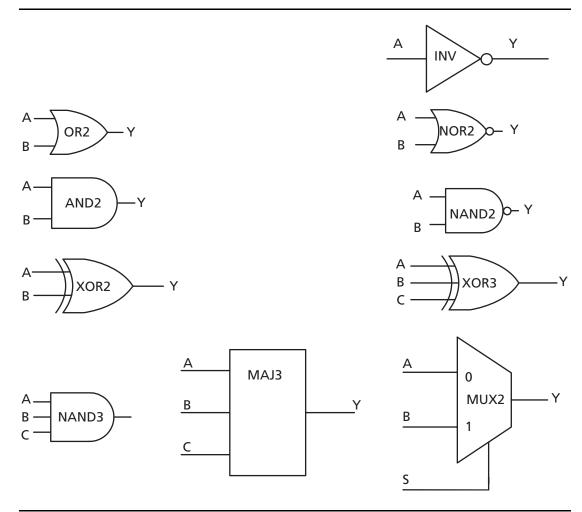


Figure 2-23 • Sample of Combinatorial Cells

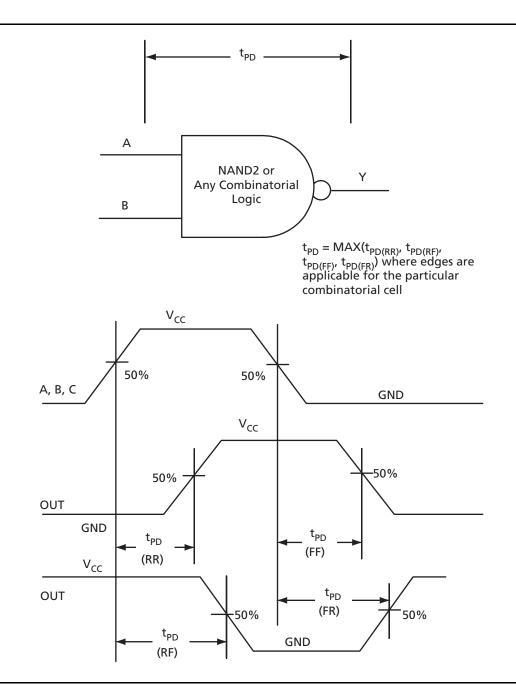


Figure 2-24 • Timing Model and Waveforms

2-84 v1.4

Timing Characteristics

Table 2-105 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: T₁ = 70°C, Worst-Case V_{CC} = 1.425 V

Combinatorial Cell	Equation	Parameter	-2	-1	Std.	Units
INV	Y = !A	t _{PD}	0.40	0.46	0.54	ns
AND2	$Y = A \cdot B$	t _{PD}	0.47	0.54	0.63	ns
NAND2	Y = !(A · B)	t _{PD}	0.47	0.54	0.63	ns
OR2	Y = A + B	t _{PD}	0.49	0.55	0.65	ns
NOR2	Y = !(A + B)	t _{PD}	0.49	0.55	0.65	ns
XOR2	Y = A ⊕ B	t _{PD}	0.74	0.84	0.99	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	0.70	0.79	0.93	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	0.87	1.00	1.17	ns
MUX2	Y = A !S + B S	t _{PD}	0.51	0.58	0.68	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.56	0.64	0.75	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

VersaTile Specifications as a Sequential Module

The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide.

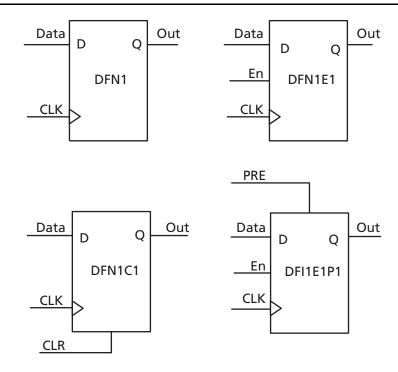


Figure 2-25 • Sample of Sequential Cells

Figure 2-26 • Timing Model and Waveforms

Timing Characteristics

Table 2-106 • Register Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.55	0.63	0.74	ns
t _{SUD}	Data Setup Time for the Core Register	0.43	0.49	0.57	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.45	0.52	0.61	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.32	0.37	0.43	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.36	0.41	0.48	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-86 v1.4

Global Resource Characteristics

A3P250 Clock Tree Topology

Clock delays are device-specific. Figure 2-27 is an example of a global tree used for clock routing. The global tree presented in Figure 2-27 is driven by a CCC located on the west side of the A3P250 device. It is used to drive all D-flip-flops in the device.

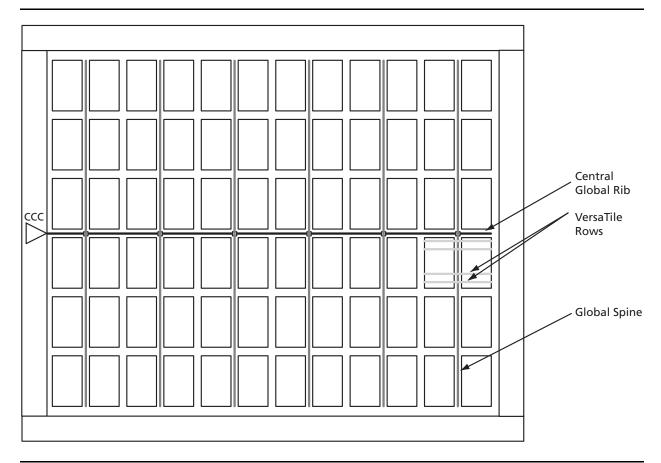


Figure 2-27 • Example of Global Tree Use in an A3P250 Device for Clock Routing

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-92. Table 2-108 to Table 2-114 on page 2-91 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

Table 2-107 • A3P015 Global Resource Commercial-Case Conditions: $T_1 = 70$ °C, $V_{CC} = 1.425$ V

		-	-2 -1		S			
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.66	0.81	0.75	0.92	0.88	1.08	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.67	0.84	0.76	0.96	0.89	1.13	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.25	ns
F _{RMAX}	Maximum Frequency for Global Clock							MHz

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-108 • A3P030 Global Resource Commercial-Case Conditions: $T_J = 70$ °C, $V_{CC} = 1.425$ V

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.67	0.81	0.76	0.92	0.89	1.09	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.68	0.85	0.77	0.97	0.91	1.14	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.24	ns
F _{RMAX}	Maximum Frequency for Global Clock							MHz

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-88 v1.4

Table 2-109 • A3P060 Global Resource Commercial-Case Conditions: $T_J = 70$ °C, $V_{CC} = 1.425$ V

		-	-2		-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.71	0.93	0.81	1.05	0.95	1.24	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.70	0.96	0.80	1.09	0.94	1.28	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns
F _{RMAX}	Maximum Frequency for Global Clock							MHz

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-110 • A3P125 Global Resource Commercial-Case Conditions: $T_J = 70$ °C, $V_{CC} = 1.425$ V

		-	-2		-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.77	0.99	0.87	1.12	1.03	1.32	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.76	1.02	0.87	1.16	1.02	1.37	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns
F _{RMAX}	Maximum Frequency for Global Clock							MHz

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-111 • A3P250 Global Resource Commercial-Case Conditions: T₁ = 70°C, V_{CC} = 1.425 V

		-	-2		-1	Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.80	1.01	0.91	1.15	1.07	1.36	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.78	1.04	0.89	1.18	1.04	1.39	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns
F _{RMAX}	Maximum Frequency for Global Clock							MHz

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-112 • A3P400 Global Resource Commercial-Case Conditions: $T_J = 70$ °C, $V_{CC} = 1.425$ V

		-	-2		-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns
F _{RMAX}	Maximum Frequency for Global Clock							Mhz

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-90 v1.4

Table 2-113 • A3P600 Global Resource Commercial-Case Conditions: T_J = 70°C, V_{CC} = 1.425 V

		-	-2		-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns
F _{RMAX}	Maximum Frequency for Global Clock							MHz

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-114 • A3P1000 Global Resource Commercial-Case Conditions: T_J = 70°C, V_{CC} = 1.425 V

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.94	1.16	1.07	1.32	1.26	1.55	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.93	1.19	1.06	1.35	1.24	1.59	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.35	ns
F _{RMAX}	Maximum Frequency for Global Clock							MHz

Notes:

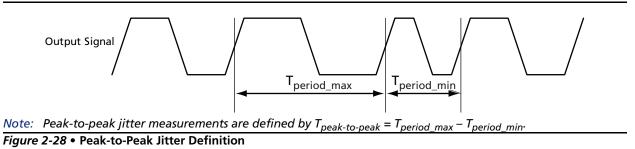
- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-115 • ProASIC3 CCC/PLL Specification


Parameter		Minimum	Typical	Maximum	Units
Clock Conditioning Circuitry Input Free	quency f _{IN_CCC}	1.5		350	MHz
Clock Conditioning Circuitry Output Fr	equency f _{OUT_CCC}	0.75		350	MHz
Serial Clock (SCLK) for Dynamic PLL ¹	_			125	MHz
Delay Increments in Programmable De	elay Blocks ^{2, 3}		200		ps
Number of Programmable Values in E Delay Block	ach Programmable			32	
Input Period Jitter				1.5	ns
CCC Output Peak-to-Peak Period Jitter	F _{CCC_OUT}	Ma	ax Peak-to-F	Peak Period Jitt	er
		1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz		0.50%		0.70%	
24 MHz to 100 MHz		1.00%		1.20%	
100 MHz to 250 MHz		1.75%		2.00%	
250 MHz to 350 MHz		2.50%		5.60%	
Acquisition Time					
(A3P250 and A3P1000 only)	LockControl = 0			300	μs
	LockControl = 1			300	μs
(all other dies)	LockControl = 0			300	μs
	LockControl = 1			6.0	ms
Tracking Jitter ⁵					
(A3P250 and A3P1000 only)	LockControl = 0			1.6	ns
	LockControl = 1			1.6	ns
(all other dies)	LockControl = 0			1.6	ns
	LockControl = 1			0.8	ns
Output Duty Cycle		48.5		51.5	%
Delay Range in Block: Programmable I		0.6		5.56	ns
Delay Range in Block: Programmable I	Delay 2 ^{2, 3}	0.225		5.56	ns
Delay Range in Block: Fixed Delay ^{2, 3}			2.2		ns

Notes:

- 1. Maximum value obtained for a -2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
- 2. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 for deratings.
- 3. $T_J = 25$ °C, $V_{CC} = 1.5 V$
- 4. The A3P030 device does not contain a PLL.
- 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

2-92 v1.4

Embedded SRAM and FIFO Characteristics

SRAM

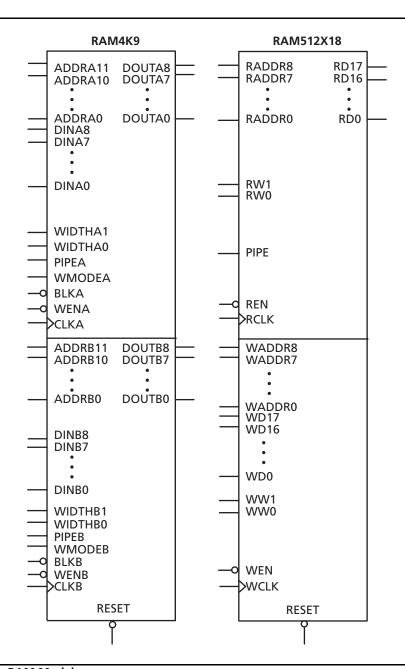


Figure 2-29 • RAM Models

2-94 v1.4

Timing Waveforms

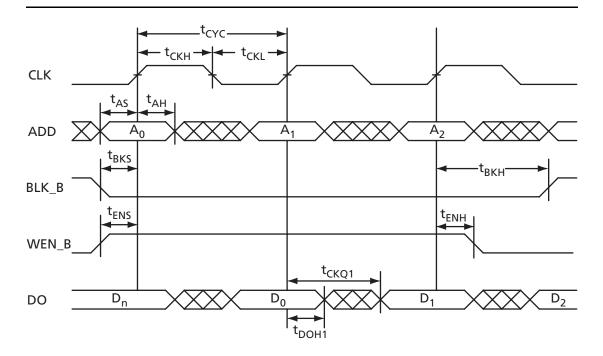


Figure 2-30 • RAM Read for Pass-Through Output

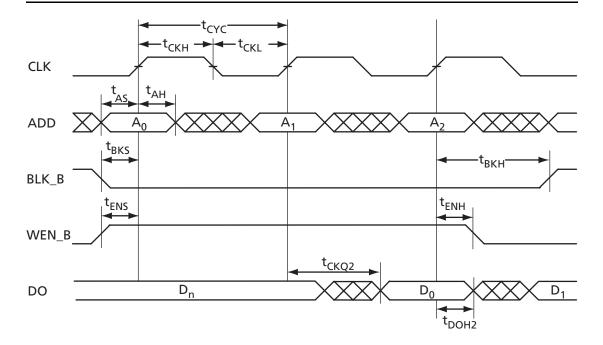


Figure 2-31 • RAM Read for Pipelined Output

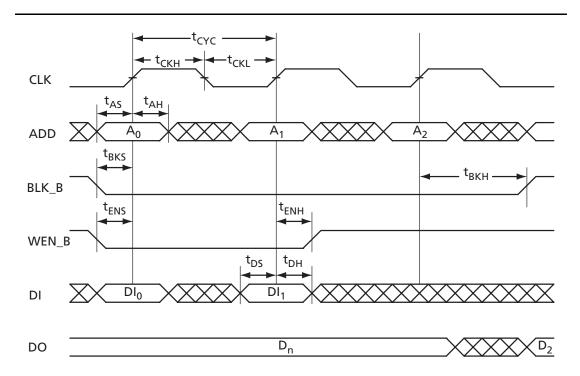


Figure 2-32 • RAM Write, Output Retained (WMODE = 0)

Figure 2-33 • RAM Write, Output as Write Data (WMODE = 1)

2-96 v1.4

Figure 2-34 • Write Access after Write onto Same Address

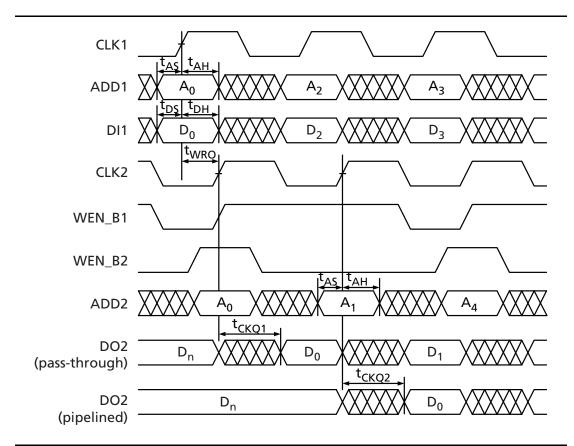


Figure 2-35 • Read Access after Write onto Same Address

2-98 v1.4

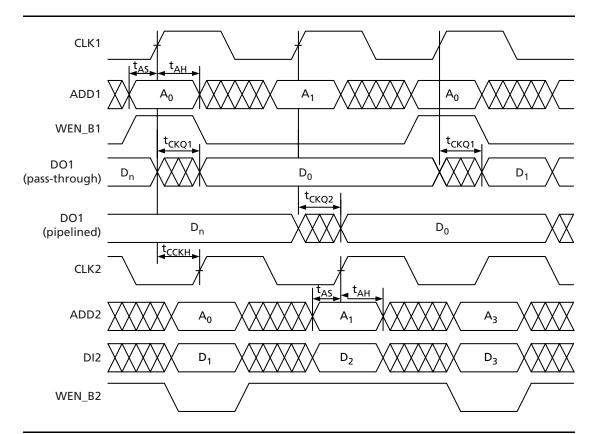


Figure 2-36 • Write Access after Read onto Same Address

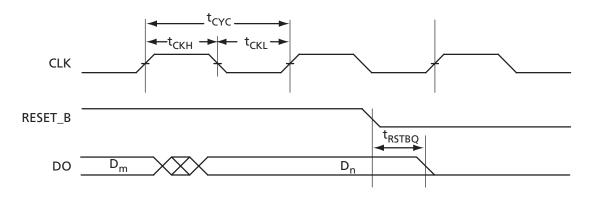


Figure 2-37 • RAM Reset

Timing Characteristics

Table 2-116 • RAM4K9 Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN_B, WEN_B setup time	0.14	0.16	0.19	ns
t _{ENH}	REN_B, WEN_B hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK_B setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK_B hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DI) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DI) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock HIGH to new data valid on DO (output retained, WMODE = 0)	2.36	2.68	3.15	ns
	Clock HIGH to new data valid on DO (flow-through, WMODE = 1)	1.79	2.03	2.39	ns
t _{CKQ2}	Clock HIGH to new data valid on DO (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL}	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH}	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH}	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH}	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET_B LOW to data out LOW on DO (flow-through)	0.92	1.05	1.23	ns
	RESET_B LOW to Data Out LOW on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET_B removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET_B recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET_B minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-100 v1.4

Table 2-117 • RAM512X18 Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN_B, WEN_B setup time	0.13	0.15	0.17	ns
t _{ENH}	REN_B, WEN_B hold time	0.10	0.11	0.13	ns
t _{DS}	Input data (DI) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DI) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock HIGH to new data valid on DO (output retained, WMODE = 0)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock HIGH to new data valid on DO (pipelined)	0.90	1.02	1.20	ns
t _{C2CRWH}	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.50	0.43	0.38	ns
t _{C2CWRH}	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.59	0.50	0.44	ns
t _{RSTBQ}	RESET_B LOW to data out LOW on DO (flow-through)	0.92	1.05	1.23	ns
	RESET_B LOW to data out LOW on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET_B removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET_B recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET_B minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

FIFO

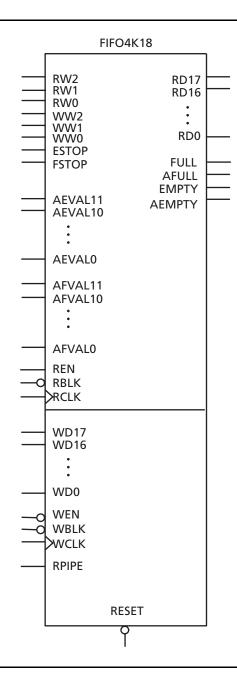


Figure 2-38 • FIFO Model

2-102 v1.4

Timing Waveforms

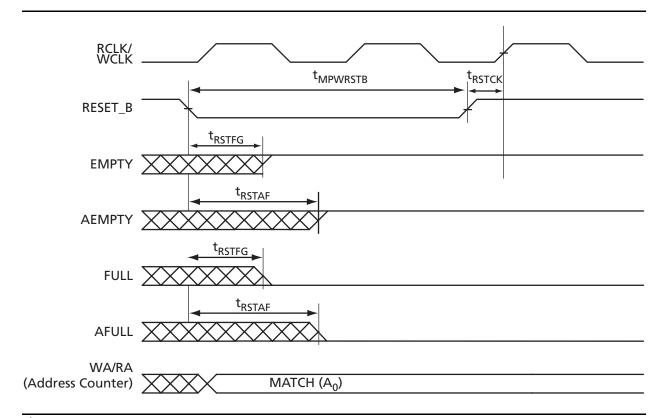


Figure 2-39 • FIFO Reset

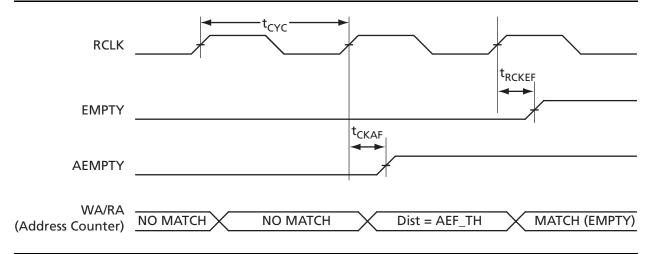


Figure 2-40 • FIFO EMPTY Flag and AEMPTY Flag Assertion

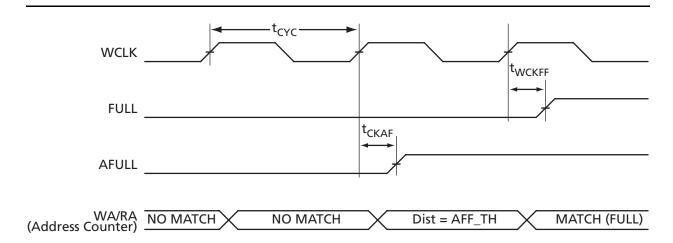


Figure 2-41 • FIFO FULL Flag and AFULL Flag Assertion

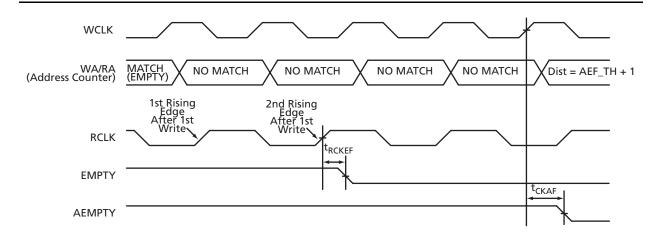


Figure 2-42 • FIFO EMPTY Flag and AEMPTY Flag Deassertion

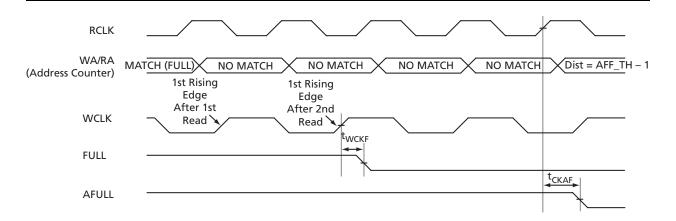


Figure 2-43 • FIFO FULL Flag and AFULL Flag Deassertion

2-104 v1.4

Timing Characteristics

Table 2-118 • FIFO (for all dies except A3P250) Worst Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN_B, WEN_B Setup Time	1.34	1.52	1.79	ns
t _{ENH}	REN_B, WEN_B Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK_B Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK_B Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (DI) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (DI) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock HIGH to New Data Valid on DO (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock HIGH to New Data Valid on DO (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET_B LOW to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET_B LOW to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET_B LOW to Data Out LOW on DO (flow-through)	0.92	1.05	1.23	ns
	RESET_B LOW to Data Out LOW on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET_B Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET_B Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET_B Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-119 • FIFO (for A3P250 only, aspect-ratio-dependent) Worst Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN_B, WEN_B Setup Time	3.26	3.71	4.36	ns
t _{ENH}	REN_B, WEN_B Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK_B Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK_B Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (DI) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (DI) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock HIGH to New Data Valid on DO (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock HIGH to New Data Valid on DO (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET_B LOW to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET_B LOW to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET_B LOW to Data Out LOW on DO (flow-through)	0.92	1.05	1.23	ns
	RESET_B LOW to Data Out LOW on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET_B Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET_B Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET_B Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

2-106 v1.4

Table 2-120 • A3P250 FIFO 512×8 Worst Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN_B, WEN_B Setup Time	3.75	4.27	5.02	ns
t _{ENH}	REN_B, WEN_B Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK_B Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK_B Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (DI) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (DI) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock HIGH to New Data Valid on DO (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock HIGH to New Data Valid on DO (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET_B LOW to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET_B LOW to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET_B LOW to Data Out LOW on DO (flow-through)	0.92	1.05	1.23	ns
	RESET_B LOW to Data Out LOW on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET_B Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET_B Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET_B Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

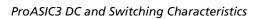


Table 2-121 • A3P250 FIFO 1k×4 Worst Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN_B, WEN_B Setup Time	4.05	4.61	5.42	ns
t _{ENH}	REN_B, WEN_B Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK_B Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK_B Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (DI) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (DI) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock HIGH to New Data Valid on DO (flow-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock HIGH to New Data Valid on DO (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET_B LOW to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET_B LOW to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET_B LOW to Data Out LOW on DO (flow-through)	0.92	1.05	1.23	ns
	RESET_B LOW to Data Out LOW on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET_B Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET_B Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET_B Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

2-108 v1.4

Table 2-122 • A3P250 FIFO 2k×2 Worst Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN_B, WEN_B Setup Time	4.39	5.00	5.88	ns
t _{ENH}	REN_B, WEN_B Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK_B Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK_B Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (DI) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (DI) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock HIGH to New Data Valid on DO (flow-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock HIGH to New Data Valid on DO (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET_B LOW to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET_B LOW to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET_B LOW to Data Out LOW on DO (flow-through)	0.92	1.05	1.23	ns
	RESET_B LOW to Data Out LOW on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET_B Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET_B Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET_B Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

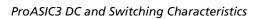


Table 2-123 • A3P250 FIFO 4k×1 Worst Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN_B, WEN_B Setup Time	4.86	5.53	6.50	ns
t _{ENH}	REN_B, WEN_B Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK_B Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK_B Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (DI) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (DI) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock HIGH to New Data Valid on DO (flow-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock HIGH to New Data Valid on DO (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET_B LOW to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET_B LOW to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET_B LOW to Data Out LOW on DO (pass-through)	0.92	1.05	1.23	ns
	RESET_B LOW to Data Out LOW on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET_B Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET_B Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET_B Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency	310	272	231	MHz

2-110 v1.4

Embedded FlashROM Characteristics

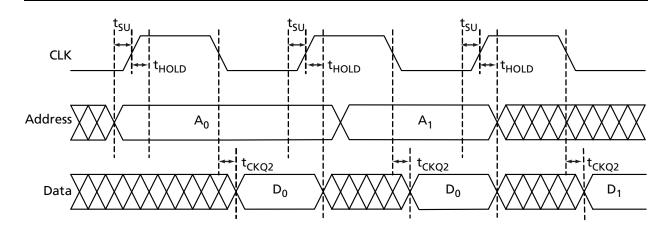


Figure 2-44 • Timing Diagram

Timing Characteristics

Table 2-124 • Embedded FlashROM Access Time

Parameter	Description	-2	-1	Std.	Units
t _{SU}	Address Setup Time	0.53	0.61	0.71	ns
t _{HOLD}	Address Hold Time	0.00	0.00	0.00	ns
t _{CK2Q}	Clock to Out	21.42	24.40	28.68	ns
F _{MAX}	Maximum Clock Frequency	15	15	15	MHz

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-14 for more details.

Timing Characteristics

Table 2-125 • JTAG 1532 Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{DISU}	Test Data Input Setup Time	0.50	0.57	0.67	ns
t _{DIHD}	Test Data Input Hold Time	1.00	1.13	1.33	ns
t _{TMSSU}	Test Mode Select Setup Time	0.50	0.57	0.67	ns
t _{TMDHD}	Test Mode Select Hold Time	1.00	1.13	1.33	ns
t _{TCK2Q}	Clock to Q (data out)	6.00	6.80	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	20.00	22.67	26.67	ns
F _{TCKMAX}	TCK Maximum Frequency	25.00	22.00	19.00	MHz
t _{TRSTREM}	ResetB Removal Time	0.00	0.00	0.00	ns
t _{TRSTREC}	ResetB Recovery Time	0.20	0.23	0.27	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	TBD	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-112 v1.4

Part Number and Revision Date

Part Number 51700097-002-4 Revised August 2009

List of Changes

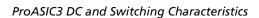
The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.4)	Page
v1.3 (August 2008)	3.3 V LVCMOS and 1.2 V LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained 3.3 V LVCMOS and 1.2 V LVCMOS data.	N/A
	I _{IL} and I _{IH} input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	
	–F was removed from the datasheet. The speed grade is no longer supported.	N/A
l	The notes in Table 2-2 · Recommended Operating Conditions ^{1,2} were updated.	2-2
	Table 2-4 · Overshoot and Undershoot Limits ¹ was updated.	2-3
	Table 2-6 · Temperature and Voltage Derating Factors for Timing Delays was updated.	2-6
	In Table 2-116 · RAM4K9, the following specifications were removed: two tcckh	2-100
	In Table 2-117 · RAM512X18, the following specifications were removed:	2-101
	t _{WRO}	
	In the title of Table 2-74 \cdot 1.8 V LVCMOS High Slew, V _{CCI} had a typo. It was changed from 3.0 V to 1.7 V.	2-58
v1.2 (June 2008)	TJ, Maximum Junction Temperature, was changed to 100° from 110° in the "Thermal Characteristics" section and EQ 2-2. The calculated result of Maximum Power Allowed has thus changed to 1.463 W from 1.951 W.	2-5
	Values for the A3P015 device were added to Table 2-7 · Quiescent Supply Current Characteristics.	2-6
	Values for the A3P015 device were added to Table 2-14 · Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices. P _{AC14} was removed. Table 2-15 · Different Components Contributing to the Static Power Consumption in ProASIC3 Devices is new.	2-10, 2-10
	The "PLL Contribution—PPLL" section was updated to change the P_{PLL} formula from $P_{AC13} + P_{AC14} * F_{CLKOUT}$ to $P_{DC4} + P_{AC13} * F_{CLKOUT}$.	2-12
	Both fall and rise values were included for t_{DDRISUD} and t_{DDRIHD} in Table 2-102 · Input DDR Propagation Delays.	2-80
	Table 2-107 · A3P015 Global Resource is new.	2-88
	The typical value for Delay Increments in Programmable Delay Blocks was changed from 160 to 200 in Table 2-115 · ProASIC3 CCC/PLL Specification.	2-92

Previous Version	Changes in Current Version (v1.4)	Page
v1.1 (January 2008)	Table note references were added to Table 2-2 · Recommended Operating Conditions ^{1,2} , and the order of the table notes was changed.	2-2
	The title for Table 2-4 · Overshoot and Undershoot Limits ¹ was modified to remove "as measured on quiet I/Os." Table note 1 was revised to remove "estimated SSO density over cycles." Table note 2 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os."	2-3
	The "Power per I/O Pin" section was updated to include 3 additional tables pertaining to input buffer power and output buffer power.	2-6
	Table 2-29 · I/O Output Buffer Maximum Resistances ¹ was revised to include values for 3.3 V PCI/PCI-X.	2-26
	Table 2-90 · LVDS Minimum and Maximum DC Input and Output Levels was updated.	2-68
v1.0 (January 2008)	In Table 2-2 · Recommended Operating Conditions 1,2 , T_J was listed in the symbol column and was incorrect. It was corrected and changed to T_A .	2-2
	In Table 2-3 · Flash Programming Limits – Retention, Storage and Operating Temperature1, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades.	2-2
	The "PLL Behavior at Brownout Condition" section is new.	2-3
	In the "PLL Contribution—PPLL" section, the following was deleted: FCLKIN is the input clock frequency.	2-12
	In Table 2-21 · Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said T_J and it was corrected and changed to T_A .	2-20
v1.0 (continued)	In Table 2-115 · ProASIC3 CCC/PLL Specification, the SCLK parameter and note 1 are new.	2-92
	Table 2-125 · JTAG 1532 was populated with the parameter data, which was not in the previous version of the document.	2-112
v2.2 (July 2007)	This document was previously in datasheet v2.2. As a result of moving to the handbook format, Actel restarted the version numbers so the new version number is v1.0.	N/A
v2.1 (May 2007)	The T_J parameter in Table 3-2 • Recommended Operating Conditions was changed to T_A , ambient temperature, and table notes 4–6 were added.	3-2
v2.0 (April 2007)	Table 3-5 • Package Thermal Resistivities was updated with A3P1000 information. The note below the table is also new.	3-5
Advance v0.7 (January 2007)	The timing characteristics tables were updated.	N/A
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15
	The "PLL Macro" section was updated to include power-up information.	2-15
	Table 2-11 • ProASIC3 CCC/PLL Specification was updated.	2-29
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21
	The "RESET" section was updated with read and write information.	2-25
	The "RESET" section was updated with read and write information.	2-25

2-114 v1.4

Previous Version	Changes in Current Version (v1.4)	Page
Advance v0.7 (continued)	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28
	PCI-X 3.3 V was added to Table 2-11 • VCCI Voltages and Compatible Standards.	2-29
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34
	Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64
	Notes 3, 4, and 5 were added to Table 2-17 • Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50
	The "VPUMP Programming Supply Voltage" section was updated.	2-50
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51
	V _{JTAG} was deleted from the "TCK Test Clock" section.	2-51
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os)1.	3-2
	In EQ 3-2, 150 was changed to 110 and the result changed from 3.9 to 1.951.	3-5
	Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	3-6
	Table 3-5 • Package Thermal Resistivities was updated.	3-5
	Table 3-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings (Advanced) and Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions (Standard Plus) were updated.	3-17 to 3-17
	Table 3-20 • Summary of I/O Timing Characteristics—Software Default Settings (Advanced) and Table 3-21 • Summary of I/O Timing Characteristics—Software Default Settings (Standard Plus) were updated.	3-20 to 3-20
	Table 3-11 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices was updated.	3-9
	Table 3-24 • I/O Output Buffer Maximum Resistances1 (Advanced) and Table 3-25 • I/O Output Buffer Maximum Resistances1 (Standard Plus) were updated.	3-22 to 3-22
	Table 3-17 ◆ Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions was updated.	3-18
	Table 3-28 • I/O Short Currents IOSH/IOSL (Advanced) and Table 3-29 • I/O Short Currents IOSH/IOSL (Standard Plus) were updated.	3-24 to 3-26
	The note in Table 3-32 • I/O Input Rise Time, Fall Time, and Related I/O Reliability was updated.	3-27



Previous Version	Changes in Current Version (v1.4)		
Advance v0.7 (continued)	Figure 3-33 • Write Access After Write onto Same Address, Figure 3-34 • Read Access After Write onto Same Address, and Figure 3-35 • Write Access After Read onto Same Address are new.		
	Figure 3-43 • Timing Diagram was updated.		
Advance v0.5 (January 2006)	B-LVDS and M-LDVS are new I/O standards added to the datasheet.		
	The term flow-through was changed to pass-through.		
	Figure 2-7 • Efficient Long-Line Resources was updated.		
	The footnotes in Figure 2-15 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT were updated.	2-16	
	The Delay Increments in the Programmable Delay Blocks specification in Figure 2-24 • ProASIC3E CCC Options.	2-24	
	The "SRAM and FIFO" section was updated.	2-21	
	The "RESET" section was updated.	2-25	
	The "WCLK and RCLK" section was updated.	2-25	
	The "RESET" section was updated.	2-25	
	The "RESET" section was updated.	2-27	
	The "Introduction" of the "Advanced I/Os" section was updated.	2-28	
	The "I/O Banks" section is new. This section explains the following types of I/Os: Advanced Standard+ Standard Table 2-12 • Automotive ProASIC3 Bank Types Definition and Differences is new. This table describes the standards listed above.	2-29	
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	2-29	
	Table 2-13 • ProASIC3 I/O Features was updated.	2-30	
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	2-32	
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35	
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64	
	The notes in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices were updated.	2-64	
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41	
	A footnote was added to Table 2-14 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in Automotive ProASIC3 Devices (maximum drive strength and high slew selected).	2-30	
	Table 2-18 • Automotive ProASIC3 I/O Attributes vs. I/O Standard Applications	2-45	
	Table 2-50 • ProASIC3 Output Drive (OUT_DRIVE) for Standard I/O Bank Type (A3P030 device)	2-83	

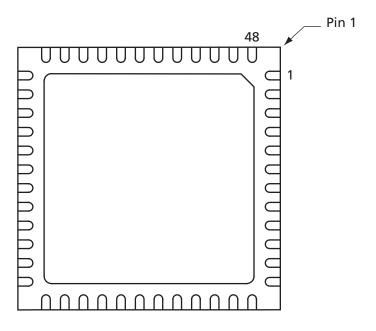
2-116 v1.4

Previous Version	Changes in Current Version (v1.4)		
Advance v0.5 (continued)	Table 2-51 • ProASIC3 Output Drive for Standard+ I/O Bank Type was updated.		
	Table 2-54 • ProASIC3 Output Drive for Advanced I/O Bank Type was updated.		
	The "x" was updated in the "User I/O Naming Convention" section.		
	The "V _{CC} Core Supply Voltage" pin description was updated.		
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.		
	The "V _{JTAG} JTAG Supply Voltage" pin description was updated.		
	The "V _{PUMP} Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.		
	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.	2-50	
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.		
	The "Programming" section was updated to include information concerning serialization.	2-53	
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54	
	"DC and Switching Characteristics" chapter was updated with new information.	3-1	
Advance v0.3	M7 device information is new.	N/A	
	Table 2-4 • ProASIC3 Globals/Spines/Rows by Device was updated to include the number or rows in each top or bottom spine.		
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24	
	The "PLL Macro" section was updated. EXTFB information was removed from this section.	2-15	
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2-11 • ProASIC3 CCC/PLL Specification	2-29	
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28	
	Table 2-13 • ProASIC3 I/O Features was updated.	2-30	
	The "Hot-Swap Support" section was updated.	2-33	
	The "Cold-Sparing Support" section was updated.	2-34	
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35	
	The LVPECL specification in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64	
	In the Bank 1 area of Figure 2-72, VMV2 was changed to VMV1 and $V_{CCI}B2$ was changed to $V_{CCI}B1$.	2-97	
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50	
	The "JTAG Pins" section was updated.	2-51	
	"128-Bit AES Decryption" section was updated to include M7 device information.	2-53	
	Table 3-6 was updated.	3-6	

Previous Version	Changes in Current Version (v1.4)			
Advance v0.3 (continued)	Table 3-7 was updated.			
	In Table 3-11, PAC4 was updated.			
	Table 3-20 was updated.	3-20		
	The note in Table 3-32 was updated.			
	All Timing Characteristics tables were updated from LVTTL to Register Delays			
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.			
	F _{TCKMAX} was updated in Table 3-110.	3-97		
Advance v0.2	Figure 2-11 was updated.			
	The "Clock Resources (VersaNets)" section was updated.			
	The "VersaNet Global Networks and Spine Access" section was updated.			
	The "PLL Macro" section was updated.			
	Figure 2-27 was updated.	2-28		
	Figure 2-20 was updated.	2-19		
	Table 2-5 was updated.	2-25		
	Table 2-6 was updated.	2-25		
	The "FIFO Flag Usage Considerations" section was updated.	2-27		
	Table 2-13 was updated.	2-30		
	Figure 2-24 was updated.	2-31		
	The "Cold-Sparing Support" section is new.	2-34		
	Table 2-43 was updated.	2-64		
	Table 2-18 was updated.	2-45		
	Pin descriptions in the "JTAG Pins" section were updated.	2-51		
	The "User I/O Naming Convention" section was updated.	2-48		
	Table 3-7 was updated.	3-6		
	The "Methodology" section was updated.	3-10		
	Table 3-40 and Table 3-39 were updated.	3-33, 3-32		

2-118 v1.4

Actel Safety Critical, Life Support, and High-Reliability Applications Policy


The Actel products described in this advance status datasheet may not have completed Actel's qualification process. Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Actel's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of Actel's products is available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.

3 – Package Pin Assignments

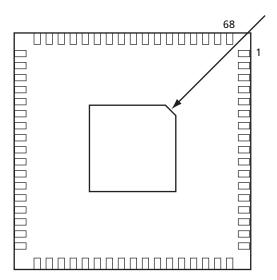
48-Pin QFN

Notes:

- 1. This is the bottom view of the package.
- 2. The die attach paddle center of the package is tied to ground (GND).

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.



48-Pin QFP	
Pin Number	A3P030 Function
1	IO82RSB1
2	GEC0/IO73RSB1
3	GEA0/IO72RSB1
4	GEB0/IO71RSB1
5	GND
6	V _{CCI} B1
7	IO68RSB1
8	IO67RSB1
9	IO66RSB1
10	IO65RSB1
11	IO64RSB1
12	IO62RSB1
13	IO61RSB1
14	IO60RSB1
15	IO57RSB1
16	IO55RSB1
17	IO53RSB1
18	V _{CC}
19	V _{CCI} B1
20	IO46RSB1
21	IO42RSB1
22	TCK
23	TDI
24	TMS
25	V_{PUMP}
26	TDO
27	TRST
28	V_{JTAG}
29	IO38RSB0
30	GDB0/IO34RSB0
31	GDA0/IO33RSB0
32	GDC0/IO32RSB0
33	V _{CCI} B0
34	GND
35	V _{CC}
36	IO25RSB0

48-Pin QFP	
Pin Number	A3P030 Function
37	IO24RSB0
38	IO22RSB0
39	IO20RSB0
40	IO18RSB0
41	IO16RSB0
42	IO14RSB0
43	IO10RSB0
44	IO08RSB0
45	IO06RSB0
46	IO04RSB0
47	IO02RSB0
48	IO00RSB0

3-2 v1.5

68-Pin QFN

Notes:

- 1. This is the bottom view of the package.
- 2. The die attach paddle center of the package is tied to ground (GND).

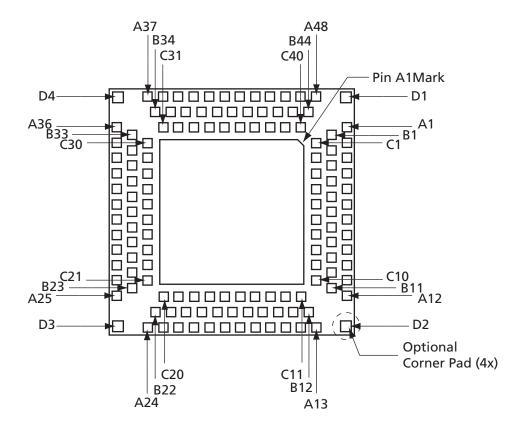
Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

68-Pin QFN	
Pin Number	A3P015 Function
1	IO82RSB1
2	IO80RSB1
3	IO78RSB1
4	IO76RSB1
5	GEC0/IO73RSB1
6	GEA0/IO72RSB1
7	GEB0/IO71RSB1
8	V _{CC}
9	GND
10	V _{CCI} B1
11	IO68RSB1
12	IO67RSB1
13	IO66RSB1
14	IO65RSB1
15	IO64RSB1
16	IO63RSB1
17	IO62RSB1
18	IO60RSB1
19	IO58RSB1
20	IO56RSB1
21	IO54RSB1
22	IO52RSB1
23	IO51RSB1
24	V _{CC}
25	GND
26	V _{CCI} B1
27	IO50RSB1
28	IO48RSB1
29	IO46RSB1
30	IO44RSB1
31	IO42RSB1
32	TCK
33	TDI
34	TMS
35	V _{PUMP}
36	TDO

68-Pin QFN	
Pin Number	A3P015 Function
37	TRST
38	V_{JTAG}
39	IO40RSB0
40	IO37RSB0
41	GDB0/IO34RSB0
42	GDA0/IO33RSB0
43	GDC0/IO32RSB0
44	V _{CCI} B0
45	GND
46	V _{CC}
47	IO31RSB0
48	IO29RSB0
49	IO28RSB0
50	IO27RSB0
51	IO25RSB0
52	IO24RSB0
53	IO22RSB0
54	IO21RSB0
55	IO19RSB0
56	IO17RSB0
57	IO15RSB0
58	IO14RSB0
59	V _{CCI} B0
60	GND
61	V _{CC}
62	IO12RSB0
63	IO10RSB0
64	IO08RSB0
65	IO06RSB0
66	IO04RSB0
67	IO02RSB0
68	IO00RSB0

3-4 v1.5



CO Div. OTN	
68-Pin QFN	
Pin Number	A3P030 Function
1	IO82RSB1
2	IO80RSB1
3	IO78RSB1
4	IO76RSB1
5	GEC0/IO73RSB1
6	GEA0/IO72RSB1
7	GEB0/IO71RSB1
8	V _{CC}
9	GND
10	V _{CCI} B1
11	IO68RSB1
12	IO67RSB1
13	IO66RSB1
14	IO65RSB1
15	IO64RSB1
16	IO63RSB1
17	IO62RSB1
18	IO60RSB1
19	IO58RSB1
20	IO56RSB1
21	IO54RSB1
22	IO52RSB1
23	IO51RSB1
24	V _{CC}
25	GND
26	VCCIB1
27	IO50RSB1
28	IO48RSB1
29	IO46RSB1
30	IO44RSB1
31	IO42RSB1
32	TCK
33	TDI
34	TMS
35	V _{PUMP}
36	TDO

68-Pin QFN	
Pin Number	A3P030 Function
37	TRST
38	V_{JTAG}
39	IO40RSB0
40	IO37RSB0
41	GDB0/IO34RSB0
42	GDA0/IO33RSB0
43	GDC0/IO32RSB0
44	V _{CCI} B0
45	GND
46	V _{CC}
47	IO31RSB0
48	IO29RSB0
49	IO28RSB0
50	IO27RSB0
51	IO25RSB0
52	IO24RSB0
53	IO22RSB0
54	IO21RSB0
55	IO19RSB0
56	IO17RSB0
57	IO15RSB0
58	IO14RSB0
59	V _{CCI} B0
60	GND
61	V _{CC}
62	IO12RSB0
63	IO10RSB0
64	IO08RSB0
65	IO06RSB0
66	IO04RSB0
67	IO02RSB0
68	IO00RSB0

132-Pin QFN

Notes:

- 1. This is the bottom view of the package.
- 2. The die attach paddle center of the package is tied to ground (GND).

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

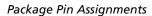
3-6 v1.5

13	2-Pin QFN
Pin Number	A3P030 Function
A1	IO01RSB1
A2	IO81RSB1
A3	NC
A4	IO80RSB1
A5	GEC0/IO77RSB1
A6	NC
A7	GEB0/IO75RSB1
A8	IO73RSB1
A9	NC
A10	V _{CC}
A11	IO71RSB1
A12	IO68RSB1
A13	IO63RSB1
A14	IO60RSB1
A15	NC
A16	IO59RSB1
A17	IO57RSB1
A18	V _{CC}
A19	IO54RSB1
A20	IO52RSB1
A21	IO49RSB1
A22	IO48RSB1
A23	IO47RSB1
A24	TDI
A25	TRST
A26	IO44RSB0
A27	NC
A28	IO43RSB0
A29	IO42RSB0
A30	IO40RSB0
A31	IO39RSB0
A32	GDC0/IO36RSB0
A33	NC
A34	V _{CC}
A35	IO34RSB0
A36	IO31RSB0

132-Pin QFN	
Pin Number	A3P030 Function
A37	IO26RSB0
A38	IO23RSB0
A39	NC
A40	IO22RSB0
A41	IO20RSB0
A42	IO18RSB0
A43	V _{CC}
A44	IO15RSB0
A45	IO12RSB0
A46	IO10RSB0
A47	IO09RSB0
A48	IO06RSB0
B1	IO02RSB1
B2	IO82RSB1
В3	GND
В4	IO79RSB1
B5	NC
В6	GND
В7	IO74RSB1
B8	NC
В9	GND
B10	IO70RSB1
B11	IO67RSB1
B12	IO64RSB1
B13	IO61RSB1
B14	GND
B15	IO58RSB1
B16	IO56RSB1
B17	GND
B18	IO53RSB1
B19	IO50RSB1
B20	GND
B21	IO46RSB1
B22	TMS
B23	TDO
B24	IO45RSB0

132-Pin QFN	
Pin Number	A3P030 Function
B25	GND
B26	NC
B27	IO41RSB0
B28	GND
B29	GDA0/IO37RSB0
B30	NC
B31	GND
B32	IO33RSB0
B33	IO30RSB0
B34	IO27RSB0
B35	IO24RSB0
B36	GND
B37	IO21RSB0
B38	IO19RSB0
B39	GND
B40	IO16RSB0
B41	IO13RSB0
B42	GND
B43	IO08RSB0
B44	IO05RSB0
C1	IO03RSB1
C2	IO00RSB1
C3	NC
C4	IO78RSB1
C5	GEA0/IO76RSB1
C6	NC
C7	NC
C8	V _{CCI} B1
C9	IO69RSB1
C10	IO66RSB1
C11	IO65RSB1
C12	IO62RSB1
C13	NC
C14	NC
C15	IO55RSB1
C16	V _{CCI} B1

132-Pin QFN	
Pin Number	A3P030 Function
C17	IO51RSB1
C18	NC
C19	TCK
C20	NC
C21	V _{PUMP}
C22	V_{JTAG}
C23	NC
C24	NC
C25	NC
C26	GDB0/IO38RSB0
C27	NC
C28	V _{CCI} B0
C29	IO32RSB0
C30	IO29RSB0
C31	IO28RSB0
C32	IO25RSB0
C33	NC
C34	NC
C35	V _{CCI} B0
C36	IO17RSB0
C37	IO14RSB0
C38	IO11RSB0
C39	IO07RSB0
C40	IO04RSB0
D1	GND
D2	GND
D3	GND
D4	GND

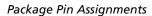

3-8 v1.5

132	-Pin QFN
Pin Number	A3P060 Function
A1	GAB2/IO00RSB1
A2	IO93RSB1
A3	V _{CCI} B1
A4	GFC1/IO89RSB1
A5	GFB0/IO86RSB1
A6	V_{CCPLF}
A7	GFA1/IO84RSB1
A8	GFC2/IO81RSB1
A9	IO78RSB1
A10	V _{CC}
A11	GEB1/IO75RSB1
A12	GEA0/IO72RSB1
A13	GEC2/IO69RSB1
A14	IO65RSB1
A15	V _{CC}
A16	IO64RSB1
A17	IO63RSB1
A18	IO62RSB1
A19	IO61RSB1
A20	IO58RSB1
A21	GDB2/IO55RSB1
A22	NC
A23	GDA2/IO54RSB1
A24	TDI
A25	TRST
A26	GDC1/IO48RSB0
A27	V _{CC}
A28	IO47RSB0
A29	GCC2/IO46RSB0
A30	GCA2/IO44RSB0
A31	GCA0/IO43RSB0
A32	GCB1/IO40RSB0
A33	IO36RSB0
A34	V _{CC}
A35	IO31RSB0
A36	GBA2/IO28RSB0

132	-Pin QFN
Pin Number	A3P060 Function
A37	GBB1/IO25RSB0
A38	GBC0/IO22RSB0
A39	V _{CCI} B0
A40	IO21RSB0
A41	IO18RSB0
A42	IO15RSB0
A43	IO14RSB0
A44	IO11RSB0
A45	GAB1/IO08RSB0
A46	NC
A47	GAB0/IO07RSB0
A48	IO04RSB0
B1	IO01RSB1
B2	GAC2/IO94RSB1
В3	GND
В4	GFC0/IO88RSB1
B5	V_{COMPLF}
В6	GND
В7	GFB2/IO82RSB1
В8	IO79RSB1
В9	GND
B10	GEB0/IO74RSB1
B11	VMV1
B12	GEB2/IO70RSB1
B13	IO67RSB1
B14	GND
B15	NC
B16	NC
B17	GND
B18	IO59RSB1
B19	GDC2/IO56RSB1
B20	GND
B21	GNDQ
B22	TMS
B23	TDO
B24	GDC0/IO49RSB0

132-Pin QFN		
Pin Number	A3P060 Function	
B25	GND	
B25	NC NC	
B27	GCB2/IO45RSB0	
B28	GND	
B20 B29	GCB0/IO41RSB0	
B30	GCC1/IO38RSB0	
B31	GND	
B32	GBB2/IO30RSB0	
B33	VMV0	
B34	GBA0/IO26RSB0	
B35	GBC1/IO23RSB0	
B36	GND	
B37	IO20RSB0	
B38	IO17RSB0	
B39	GND	
B40	IO12RSB0	
B41	GAC0/IO09RSB0	
B42	GND	
B43	GAA1/IO06RSB0	
B44	GNDQ	
C1	GAA2/IO02RSB1	
C2	IO95RSB1	
C3	V _{CC}	
C4	GFB1/IO87RSB1	
C5	GFA0/IO85RSB1	
C6	GFA2/IO83RSB1	
C7	IO80RSB1	
C8	V _{CCI} B1	
C9	GEA1/IO73RSB1	
C10	GNDQ	
C11	GEA2/IO71RSB1	
C12	IO68RSB1	
C13	V _{CCI} B1	
C14	NC	
C15	NC	
C16	IO60RSB1	
T		

132-Pin QFN		
Pin Number	A3P060 Function	
C17	IO57RSB1	
C18	NC	
C19	TCK	
C20	VMV1	
C21	V _{PUMP}	
C22	V_{JTAG}	
C23	V _{CCI} B0	
C24	NC	
C25	NC	
C26	GCA1/IO42RSB0	
C27	GCC0/IO39RSB0	
C28	V _{CCI} B0	
C29	IO29RSB0	
C30	GNDQ	
C31	GBA1/IO27RSB0	
C32	GBB0/IO24RSB0	
C33	V _{CC}	
C34	IO19RSB0	
C35	IO16RSB0	
C36	IO13RSB0	
C37	GAC1/IO10RSB0	
C38	NC	
C39	GAA0/IO05RSB0	
C40	VMV0	
D1	GND	
D2	GND	
D3	GND	
D4	GND	


3-10 v1.5

132-Pin QFN		
Pin Number A3P125 Function		
A1	GAB2/IO69RSB1	
A2	IO130RSB1	
А3	V _{CCI} B1	
A4	GFC1/IO126RSB1	
A5	GFB0/IO123RSB1	
A6	V_{CCPLF}	
A7	GFA1/IO121RSB1	
A8	GFC2/IO118RSB1	
A9	IO115RSB1	
A10	V _{CC}	
A11	GEB1/IO110RSB1	
A12	GEA0/IO107RSB1	
A13	GEC2/IO104RSB1	
A14	IO100RSB1	
A15	V _{CC}	
A16	IO99RSB1	
A17	IO96RSB1	
A18	IO94RSB1	
A19	IO91RSB1	
A20	IO85RSB1	
A21	IO79RSB1	
A22	V _{CC}	
A23	GDB2/IO71RSB1	
A24	TDI	
A25	TRST	
A26	GDC1/IO61RSB0	
A27	V _{CC}	
A28	IO60RSB0	
A29	GCC2/IO59RSB0	
A30	GCA2/IO57RSB0	
A31	GCA0/IO56RSB0	
A32	GCB1/IO53RSB0	
A33	IO49RSB0	
A34	V_{CC}	
A34 A35	V _{CC} IO44RSB0	

132	2-Pin QFN	
Pin Number	A3P125 Function	
A37	GBB1/IO38RSB0	
A38	GBC0/IO35RSB0	
A39	V _{CCI} B0	
A40	IO28RSB0	
A41	IO22RSB0	
A42	IO18RSB0	
A43	IO14RSB0	
A44	IO11RSB0	
A45	IO07RSB0	
A46	V _{CC}	
A47	GAC1/IO05RSB0	
A48	GAB0/IO02RSB0	
B1	IO68RSB1	
B2	GAC2/IO131RSB1	
В3	GND	
В4	GFC0/IO125RSB1	
B5	V _{COMPLF}	
В6	GND	
В7	GFB2/IO119RSB1	
В8	IO116RSB1	
В9	GND	
B10	GEB0/IO109RSB1	
B11	VMV1	
B12	GEB2/IO105RSB1	
B13	IO101RSB1	
B14	GND	
B15	IO98RSB1	
B16	IO95RSB1	
B17	GND	
B18	IO87RSB1	
B19	IO81RSB1	
B20	GND	
B21	GNDQ	
B22	TMS	
B23	TDO	
B24	GDC0/IO62RSB0	

132-Pin QFN		
Pin Number	A3P125 Function	
B25	GND	
B26	NC NC	
B27	GCB2/IO58RSB0	
B28	GND	
B29	GCB0/IO54RSB0	
B30	GCC1/IO51RSB0	
B30	GND	
B31	GBB2/IO43RSB0	
B33	VMV0	
B34	GBA0/IO39RSB0	
B35	GBC1/IO36RSB0	
B36	GND	
B37	IO26RSB0	
B38	IO21RSB0	
B39	GND	
	IO13RSB0	
B40		
B41	IO08RSB0	
B42	GND	
B43	GACO/IO04RSB0	
B44	GNDQ	
C1	GAA2/IO67RSB1	
C2	IO132RSB1	
C3	V _{CC}	
C4	GFB1/IO124RSB1	
C5	GFA0/IO122RSB1	
C6	GFA2/IO120RSB1	
C7	IO117RSB1	
C8	V _{CCI} B1	
C9	GEA1/IO108RSB1	
C10	GNDQ	
C11	GEA2/IO106RSB1	
C12	IO103RSB1	
C13	V _{CCI} B1	
C14	IO97RSB1	
C15	IO93RSB1	
C16	IO89RSB1	

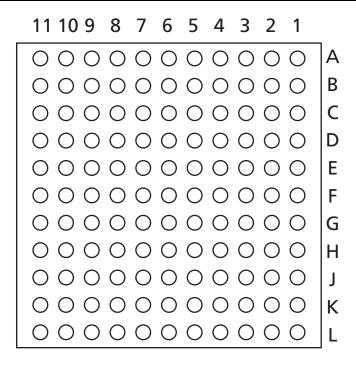
132-Pin QFN		
Pin Number	A3P125 Function	
C17	IO83RSB1	
C18	V _{CCI} B1	
C19	TCK	
C20	VMV1	
C21	V _{PUMP}	
C22	V_{JTAG}	
C23	V _{CCI} B0	
C24	NC	
C25	NC	
C26	GCA1/IO55RSB0	
C27	GCC0/IO52RSB0	
C28	V _{CCI} B0	
C29	IO42RSB0	
C30	GNDQ	
C31	GBA1/IO40RSB0	
C32	GBB0/IO37RSB0	
C33	V _{CC}	
C34	IO24RSB0	
C35	IO19RSB0	
C36	IO16RSB0	
C37	IO10RSB0	
C38	V _{CCI} B0	
C39	GAB1/IO03RSB0	
C40	VMV0	
D1	GND	
D2	GND	
D3	GND	
D4	GND	

3-12 v1.5

132-Pin QFN		
Pin Number	A3P250 Function	
A1	GAB2/IO117UPB3	
A2	IO117VPB3	
A3	V _{CCI} B3	
A4	GFC1/IO110PDB3	
A5	GFB0/IO109NPB3	
A6	V_{CCPLF}	
A7	GFA1/IO108PPB3	
A8	GFC2/IO105PPB3	
A9	IO103NDB3	
A10	V _{CC}	
A11	GEA1/IO98PPB3	
A12	GEA0/IO98NPB3	
A13	GEC2/IO95RSB2	
A14	IO91RSB2	
A15	V _{CC}	
A16	IO90RSB2	
A17	IO87RSB2	
A18	IO85RSB2	
A19	IO82RSB2	
A20	IO76RSB2	
A21	IO70RSB2	
A22	V _{CC}	
A23	GDB2/IO62RSB2	
A24	TDI	
A25	TRST	
A26	GDC1/IO58UDB1	
A27	V _{CC}	
A28	IO54NDB1	
A29	IO52NDB1	
A30	GCA2/IO51PPB1	
A31	GCA0/IO50NPB1	
A32	GCB1/IO49PDB1	
A33	IO47NSB1	
A34	V _{CC}	
A35	IO41NPB1	
A36	GBA2/IO41PPB1	

132-Pin QFN		
Pin Number	A3P250 Function	
A37	GBB1/IO38RSB0	
A38	GBC0/IO35RSB0	
A39	V _{CCI} B0	
A40	IO28RSB0	
A41	IO22RSB0	
A42	IO18RSB0	
A43	IO14RSB0	
A44	IO11RSB0	
A45	IO07RSB0	
A46	V _{CC}	
A47	GAC1/IO05RSB0	
A48	GAB0/IO02RSB0	
B1	IO118VDB3	
B2	GAC2/IO116UDB3	
В3	GND	
В4	GFC0/IO110NDB3	
B5	V _{COMPLF}	
В6	GND	
В7	GFB2/IO106PSB3	
B8	IO103PDB3	
В9	GND	
B10	GEB0/IO99NDB3	
B11	VMV3	
B12	GEB2/IO96RSB2	
B13	IO92RSB2	
B14	GND	
B15	IO89RSB2	
B16	IO86RSB2	
B17	GND	
B18	IO78RSB2	
B19	IO72RSB2	
B20	GND	
B21	GNDQ	
B22	TMS	
B23	TDO	
B24	GDC0/IO58VDB1	

132-Pin QFN			
Pin Number	A3P250 Function		
B25	GND		
B26	IO54PDB1		
B27	GCB2/IO52PDB1		
B28	GND		
B29	GCB0/IO49NDB1		
B30	GCC1/IO48PDB1		
B31	GND		
B32	GBB2/IO42PDB1		
B33	VMV1		
B34	GBA0/IO39RSB0		
B35	GBC1/IO36RSB0		
B36	GND		
B37	IO26RSB0		
B38	IO21RSB0		
B39	GND		
B40	IO13RSB0		
B41	IO08RSB0		
B42	GND		
B43	GAC0/IO04RSB0		
B44	GNDQ		
C1	GAA2/IO118UDB3		
C2	IO116VDB3		
C3	V _{CC}		
C4	GFB1/IO109PPB3		
C5	GFA0/IO108NPB3		
C6	GFA2/IO107PSB3		
C7	IO105NPB3		
C8	V _{CCI} B3		
C9	GEB1/IO99PDB3		
C10	GNDQ		
C11	GEA2/IO97RSB2		
C12	IO94RSB2		
C13	V _{CCI} B2		
C14	IO88RSB2		
C15	IO84RSB2		
C16	IO80RSB2		



132-Pin QFN		
Pin Number	A3P250 Function	
C17	IO74RSB2	
C18	V _{CCI} B2	
C19	TCK	
C20	VMV2	
C21	V _{PUMP}	
C22	V_{JTAG}	
C23	V _{CCI} B1	
C24	IO53NSB1	
C25	IO51NPB1	
C26	GCA1/IO50PPB1	
C27	GCC0/IO48NDB1	
C28	V _{CCI} B1	
C29	IO42NDB1	
C30	GNDQ	
C31	GBA1/IO40RSB0	
C32	GBB0/IO37RSB0	
C33	V _{CC}	
C34	IO24RSB0	
C35	IO19RSB0	
C36	IO16RSB0	
C37	IO10RSB0	
C38	V _{CCI} B0	
C39	GAB1/IO03RSB0	
C40	VMV0	
D1	GND	
D2	GND	
D3	GND	
D4	GND	

3-14 v1.5

121-Pin CSP

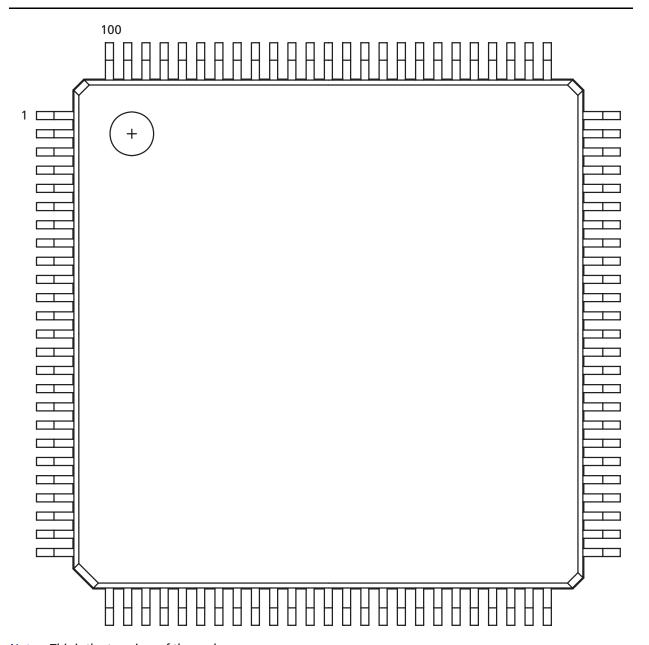
Notes:

- 1. This is the bottom view of the package.
- 2. The die attach paddle center of the package is tied to ground (GND).

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

121-Pin CSP 121-Pin CSP		121-Pin CSP			
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function
A1	GNDQ	D4	IO10RSB0	G7	V _{CC}
A2	IO01RSB0	D5	IO11RSB0	G8	GDC0/IO46RSB0
A3	GAA1/IO03RSB0	D6	IO18RSB0	G9	GDA1/IO49RSB0
A4	GAC1/IO07RSB0	D7	IO32RSB0	G10	GDB0/IO48RSB0
A5	IO15RSB0	D8	IO31RSB0	G11	GCA0/IO40RSB0
A6	IO13RSB0	D9	GCA2/IO41RSB0	H1	IO75RSB1
A7	IO17RSB0	D10	IO30RSB0	H2	IO76RSB1
A8	GBB1/IO22RSB0	D11	IO33RSB0	H3	GFC2/IO78RSB1
A9	GBA1/IO24RSB0	E1	IO87RSB1	H4	GFA2/IO80RSB1
A10	GNDQ	E2	GFC0/IO85RSB1	H5	IO77RSB1
A11	VMV0	E3	IO92RSB1	Н6	GEC2/IO66RSB1
B1	GAA2/IO95RSB1	E4	IO94RSB1	H7	IO54RSB1
B2	IO00RSB0	E5	V _{CC}	H8	GDC2/IO53RSB1
В3	GAA0/IO02RSB0	E6	V _{CCI} B0	H9	V_{JTAG}
B4	GAC0/IO06RSB0	E7	GND	H10	TRST
B5	IO08RSB0	E8	GCC0/IO36RSB0	H11	IO44RSB0
В6	IO12RSB0	E9	IO34RSB0	J1	GEC1/IO74RSB1
В7	IO16RSB0	E10	GCB1/IO37RSB0	J2	GEC0/IO73RSB1
B8	GBC1/IO20RSB0	E11	GCC1/IO35RSB0	J3	GEB1/IO72RSB1
В9	GBB0/IO21RSB0	F1	V _{COMPLF}	J4	GEA0/IO69RSB1
B10	GBB2/IO27RSB0	F2	GFB0/IO83RSB1	J5	GEB2/IO67RSB1
B11	GBA2/IO25RSB0	F3	GFA0/IO82RSB1	J6	IO62RSB1
C1	IO89RSB1	F4	GFC1/IO86RSB1	J7	GDA2/IO51RSB1
C2	GAC2/IO91RSB1	F5	V _{CCI} B1	J8	GDB2/IO52RSB1
C3	GAB1/IO05RSB0	F6	V _{CC}	19	TDI
C4	GAB0/IO04RSB0	F7	V _{CCI} B0	J10	TDO
C5	IO09RSB0	F8	GCB2/IO42RSB0	J11	GDC1/IO45RSB0
C6	IO14RSB0	F9	GCC2/IO43RSB0	K1	GEB0/IO71RSB1
C7	GBA0/IO23RSB0	F10	GCB0/IO38RSB0	K2	GEA1/IO70RSB1
C8	GBC0/IO19RSB0	F11	GCA1/IO39RSB0	K3	GEA2/IO68RSB1
C9	IO26RSB0	G1	V_{CCPLF}	K4	IO64RSB1
C10	IO28RSB0	G2	GFB2/IO79RSB1	K5	IO60RSB1
C11	GBC2/IO29RSB0	G3	GFA1/IO81RSB1	K6	IO59RSB1
D1	IO88RSB1	G4	GFB1/IO84RSB1	K7	IO56RSB1
D2	IO90RSB1	G5	GND	K8	TCK
D3	GAB2/IO93RSB1	G6	V _{CCI} B1	K9	TMS


3-16 v1.5

121-Pin CSP		
Pin Number	A3P060 Function	
K10	V_{PUMP}	
K11	GDB1/IO47RSB0	
L1	VMV1	
L2	GNDQ	
L3	IO65RSB1	
L4	IO63RSB1	
L5	IO61RSB1	
L6	IO58RSB1	
L7	IO57RSB1	
L8	IO55RSB1	
L9	GNDQ	
L10	GDA0/IO50RSB0	
L11	VMV1	

100-Pin VQFP

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

3-18 v1.5

100-Pin VQFP	
Pin Number	A3P030 Function
1	GND
2	IO82RSB1
3	IO81RSB1
4	IO80RSB1
5	IO79RSB1
6	IO78RSB1
7	IO77RSB1
8	IO76RSB1
9	GND
10	IO75RSB1
11	IO74RSB1
12	GEC0/IO73RSB1
13	GEA0/IO72RSB1
14	GEB0/IO71RSB1
15	IO70RSB1
16	IO69RSB1
17	V _{CC}
18	V _{CCI} B1
19	IO68RSB1
20	IO67RSB1
21	IO66RSB1
22	IO65RSB1
23	IO64RSB1
24	IO63RSB1
25	IO62RSB1
26	IO61RSB1
27	IO60RSB1
28	IO59RSB1
29	IO58RSB1
30	IO57RSB1
31	IO56RSB1
32	IO55RSB1
33	IO54RSB1
34	IO53RSB1
35	IO52RSB1
36	IO51RSB1

100-Pin VQFP	
Pin Number	A3P030 Function
37	V _{CC}
38	GND
39	V _{CCI} B1
40	IO49RSB1
41	IO47RSB1
42	IO46RSB1
43	IO45RSB1
44	IO44RSB1
45	IO43RSB1
46	IO42RSB1
47	TCK
48	TDI
49	TMS
50	NC
51	GND
52	V_{PUMP}
53	NC
54	TDO
55	TRST
56	V_{JTAG}
57	IO41RSB0
58	IO40RSB0
59	IO39RSB0
60	IO38RSB0
61	IO37RSB0
62	IO36RSB0
63	GDB0/IO34RSB0
64	GDA0/IO33RSB0
65	GDC0/IO32RSB0
66	V _{CCI} B0
67	GND
68	V _{CC}
69	IO31RSB0
70	IO30RSB0
71	IO29RSB0
72	IO28RSB0

100-Pin VQFP	
Pin Number	A3P030 Function
73	IO27RSB0
74	IO26RSB0
75	IO25RSB0
76	IO24RSB0
77	IO23RSB0
78	IO22RSB0
79	IO21RSB0
80	IO20RSB0
81	IO19RSB0
82	IO18RSB0
83	IO17RSB0
84	IO16RSB0
85	IO15RSB0
86	IO14RSB0
87	V _{CCI} B0
88	GND
89	V _{CC}
90	IO12RSB0
91	IO10RSB0
92	IO08RSB0
93	IO07RSB0
94	IO06RSB0
95	IO05RSB0
96	IO04RSB0
97	IO03RSB0
98	IO02RSB0
99	IO01RSB0
100	IO00RSB0

100-Pin VQFP	
Pin Number	A3P060 Function
1	GND
2	GAA2/IO51RSB1
3	IO52RSB1
4	GAB2/IO53RSB1
5	IO95RSB1
6	GAC2/IO94RSB1
7	IO93RSB1
8	IO92RSB1
9	GND
10	GFB1/IO87RSB1
11	GFB0/IO86RSB1
12	V _{COMPLF}
13	GFA0/IO85RSB1
14	V _{CCPLF}
15	GFA1/IO84RSB1
16	GFA2/IO83RSB1
17	V _{CC}
18	V _{CCI} B1
19	GEC1/IO77RSB1
20	GEB1/IO75RSB1
21	GEB0/IO74RSB1
22	GEA1/IO73RSB1
23	GEA0/IO72RSB1
24	VMV1
25	GNDQ
26	GEA2/IO71RSB1
27	GEB2/IO70RSB1
28	GEC2/IO69RSB1
29	IO68RSB1
30	IO67RSB1
31	IO66RSB1
32	IO65RSB1
33	IO64RSB1
34	IO63RSB1
35	IO62RSB1
36	IO61RSB1

100-Pin VQFP	
Pin Number	A3P060 Function
37	V _{CC}
38	GND
39	V _{CCI} B1
40	IO60RSB1
41	IO59RSB1
42	IO58RSB1
43	IO57RSB1
44	GDC2/IO56RSB1
45	GDB2/IO55RSB1
46	GDA2/IO54RSB1
47	TCK
48	TDI
49	TMS
50	VMV1
51	GND
52	V _{PUMP}
53	NC
54	TDO
55	TRST
56	V_{JTAG}
57	GDA1/IO49RSB0
58	GDC0/IO46RSB0
59	GDC1/IO45RSB0
60	GCC2/IO43RSB0
61	GCB2/IO42RSB0
62	GCA0/IO40RSB0
63	GCA1/IO39RSB0
64	GCC0/IO36RSB0
65	GCC1/IO35RSB0
66	V _{CCI} B0
67	GND
68	V _{CC}
69	IO31RSB0
70	GBC2/IO29RSB0
71	GBB2/IO27RSB0
72	IO26RSB0

100-Pin VQFP	
Pin Number	A3P060 Function
73	GBA2/IO25RSB0
74	VMV0
75	GNDQ
76	GBA1/IO24RSB0
77	GBA0/IO23RSB0
78	GBB1/IO22RSB0
79	GBB0/IO21RSB0
80	GBC1/IO20RSB0
81	GBC0/IO19RSB0
82	IO18RSB0
83	IO17RSB0
84	IO15RSB0
85	IO13RSB0
86	IO11RSB0
87	V _{CCI} B0
88	GND
89	V _{CC}
90	IO10RSB0
91	IO09RSB0
92	IO08RSB0
93	GAC1/IO07RSB0
94	GAC0/IO06RSB0
95	GAB1/IO05RSB0
96	GAB0/IO04RSB0
97	GAA1/IO03RSB0
98	GAA0/IO02RSB0
99	IO01RSB0
100	IO00RSB0

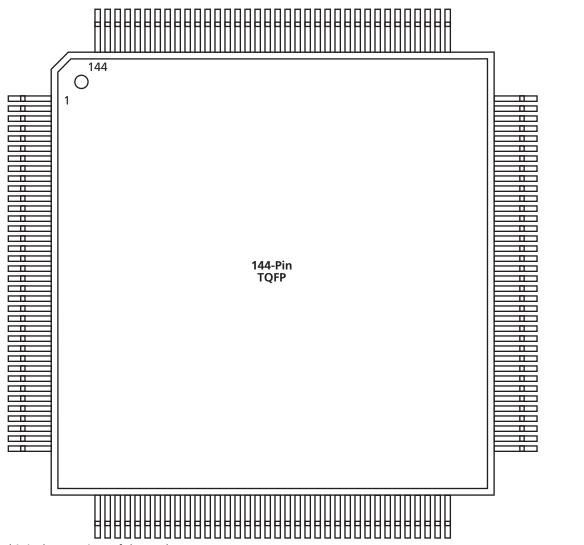
3-20 v1.5

100-Pin VQFP	
Pin Number	A3P125 Function
1	GND
2	GAA2/IO67RSB1
3	IO68RSB1
4	GAB2/IO69RSB1
5	IO132RSB1
6	GAC2/IO131RSB1
7	IO130RSB1
8	IO129RSB1
9	GND
10	GFB1/IO124RSB1
11	GFB0/IO123RSB1
12	V _{COMPLF}
13	GFA0/IO122RSB1
14	V_{CCPLF}
15	GFA1/IO121RSB1
16	GFA2/IO120RSB1
17	V _{CC}
18	V _{CCI} B1
19	GEC0/IO111RSB1
20	GEB1/IO110RSB1
21	GEB0/IO109RSB1
22	GEA1/IO108RSB1
23	GEA0/IO107RSB1
24	VMV1
25	GNDQ
26	GEA2/IO106RSB1
27	GEB2/IO105RSB1
28	GEC2/IO104RSB1
29	IO102RSB1
30	IO100RSB1
31	IO99RSB1
32	IO97RSB1
33	IO96RSB1
34	IO95RSB1
35	IO94RSB1
36	IO93RSB1

100-Pin VQFP	
Pin Number	A3P125 Function
37	V _{CC}
38	GND
39	V _{CCI} B1
40	IO87RSB1
41	IO84RSB1
42	IO81RSB1
43	IO75RSB1
44	GDC2/IO72RSB1
45	GDB2/IO71RSB1
46	GDA2/IO70RSB1
47	TCK
48	TDI
49	TMS
50	VMV1
51	GND
52	V _{PUMP}
53	NC
54	TDO
55	TRST
56	V_{JTAG}
57	GDA1/IO65RSB0
58	GDC0/IO62RSB0
59	GDC1/IO61RSB0
60	GCC2/IO59RSB0
61	GCB2/IO58RSB0
62	GCA0/IO56RSB0
63	GCA1/IO55RSB0
64	GCC0/IO52RSB0
65	GCC1/IO51RSB0
66	V _{CCI} B0
67	GND
68	V _{CC}
69	IO47RSB0
70	GBC2/IO45RSB0
71	GBB2/IO43RSB0
72	IO42RSB0

100-Pin VQFP	
Pin Number	A3P125 Function
73	GBA2/IO41RSB0
74	VMV0
75	GNDQ
76	GBA1/IO40RSB0
77	GBA0/IO39RSB0
78	GBB1/IO38RSB0
79	GBB0/IO37RSB0
80	GBC1/IO36RSB0
81	GBC0/IO35RSB0
82	IO32RSB0
83	IO28RSB0
84	IO25RSB0
85	IO22RSB0
86	IO19RSB0
87	V _{CCI} B0
88	GND
89	V _{CC}
90	IO15RSB0
91	IO13RSB0
92	IO11RSB0
93	IO09RSB0
94	IO07RSB0
95	GAC1/IO05RSB0
96	GAC0/IO04RSB0
97	GAB1/IO03RSB0
98	GAB0/IO02RSB0
99	GAA1/IO01RSB0
100	GAA0/IO00RSB0

100-Pin VQFP	
Pin Number	A3P250 Function
1	GND
2	GAA2/IO118UDB3
3	IO118VDB3
4	GAB2/IO117UDB3
5	IO117VDB3
6	GAC2/IO116UDB3
7	IO116VDB3
8	IO112PSB3
9	GND
10	GFB1/IO109PDB3
11	GFB0/IO109NDB3
12	V_{COMPLF}
13	GFA0/IO108NPB3
14	V _{CCPLF}
15	GFA1/IO108PPB3
16	GFA2/IO107PSB3
17	V _{CC}
18	V _{CCI} B3
19	GFC2/IO105PSB3
20	GEC1/IO100PDB3
21	GEC0/IO100NDB3
22	GEA1/IO98PDB3
23	GEA0/IO98NDB3
24	VMV3
25	GNDQ
26	GEA2/IO97RSB2
27	GEB2/IO96RSB2
28	GEC2/IO95RSB2
29	IO93RSB2
30	IO92RSB2
31	IO91RSB2
32	IO90RSB2
33	IO88RSB2
34	IO86RSB2
35	IO85RSB2
36	IO84RSB2


100-Pin VQFP	
Pin Number	A3P250 Function
37	V _{CC}
38	GND
39	V _{CCI} B2
40	IO77RSB2
41	IO74RSB2
42	IO71RSB2
43	GDC2/IO63RSB2
44	GDB2/IO62RSB2
45	GDA2/IO61RSB2
46	GNDQ
47	TCK
48	TDI
49	TMS
50	VMV2
51	GND
52	V_{PUMP}
53	NC
54	TDO
55	TRST
56	V_{JTAG}
57	GDA1/IO60USB1
58	GDC0/IO58VDB1
59	GDC1/IO58UDB1
60	IO52NDB1
61	GCB2/IO52PDB1
62	GCA1/IO50PDB1
63	GCA0/IO50NDB1
64	GCC0/IO48NDB1
65	GCC1/IO48PDB1
66	V _{CCI} B1
67	GND
68	V _{CC}
69	IO43NDB1
70	GBC2/IO43PDB1
71	GBB2/IO42PSB1
72	IO41NDB1

100-Pin VQFP	
Pin Number	A3P250 Function
73	GBA2/IO41PDB1
74	VMV1
75	GNDQ
76	GBA1/IO40RSB0
77	GBA0/IO39RSB0
78	GBB1/IO38RSB0
79	GBB0/IO37RSB0
80	GBC1/IO36RSB0
81	GBC0/IO35RSB0
82	IO29RSB0
83	IO27RSB0
84	IO25RSB0
85	IO23RSB0
86	IO21RSB0
87	V _{CCI} B0
88	GND
89	V _{CC}
90	IO15RSB0
91	IO13RSB0
92	IO11RSB0
93	GAC1/IO05RSB0
94	GAC0/IO04RSB0
95	GAB1/IO03RSB0
96	GAB0/IO02RSB0
97	GAA1/IO01RSB0
98	GAA0/IO00RSB0
99	GNDQ
100	VMV0

3-22 v1.5

144-Pin TQFP

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

144-Pin TQFP	
Pin Number	A3P060 Function
1	GAA2/IO51RSB1
2	IO52RSB1
3	GAB2/IO53RSB1
4	IO95RSB1
5	GAC2/IO94RSB1
6	IO93RSB1
7	IO92RSB1
8	IO91RSB1
9	V _{CC}
10	GND
11	V _{CCI} B1
12	IO90RSB1
13	GFC1/IO89RSB1
14	GFC0/IO88RSB1
15	GFB1/IO87RSB1
16	GFB0/IO86RSB1
17	V _{COMPLF}
18	GFA0/IO85RSB1
19	V_{CCPLF}
20	GFA1/IO84RSB1
21	GFA2/IO83RSB1
22	GFB2/IO82RSB1
23	GFC2/IO81RSB1
24	IO80RSB1
25	IO79RSB1
26	IO78RSB1
27	GND
28	V _{CCI} B1
29	GEC1/IO77RSB1
30	GEC0/IO76RSB1
31	GEB1/IO75RSB1
32	GEB0/IO74RSB1
33	GEA1/IO73RSB1
34	GEA0/IO72RSB1
35	VMV1
36	GNDQ

144-Pin TQFP	
Pin Number	A3P060 Function
37	NC
38	GEA2/IO71RSB1
39	GEB2/IO70RSB1
40	GEC2/IO69RSB1
41	IO68RSB1
42	IO67RSB1
43	IO66RSB1
44	IO65RSB1
45	V _{CC}
46	GND
47	V _{CCI} B1
48	NC
49	IO64RSB1
50	NC
51	IO63RSB1
52	NC
53	IO62RSB1
54	NC
55	IO61RSB1
56	NC
57	NC
58	IO60RSB1
59	IO59RSB1
60	IO58RSB1
61	IO57RSB1
62	NC
63	GND
64	NC
65	GDC2/IO56RSB1
66	GDB2/IO55RSB1
67	GDA2/IO54RSB1
68	GNDQ
69	TCK
70	TDI
71	TMS
72	VMV1

144-Pin TQFP	
Pin Number	A3P060 Function
73	V _{PUMP}
74	NC
75	TDO
76	TRST
77	V_{JTAG}
78	GDA0/IO50RSB0
79	GDB0/IO48RSB0
80	GDB1/IO47RSB0
81	V _{CCI} B0
82	GND
83	IO44RSB0
84	GCC2/IO43RSB0
85	GCB2/IO42RSB0
86	GCA2/IO41RSB0
87	GCA0/IO40RSB0
88	GCA1/IO39RSB0
89	GCB0/IO38RSB0
90	GCB1/IO37RSB0
91	GCC0/IO36RSB0
92	GCC1/IO35RSB0
93	IO34RSB0
94	IO33RSB0
95	NC
96	NC
97	NC
98	V _{CCI} B0
99	GND
100	V _{CC}
101	IO30RSB0
102	GBC2/IO29RSB0
103	IO28RSB0
104	GBB2/IO27RSB0
105	IO26RSB0
106	GBA2/IO25RSB0
107	VMV0
108	GNDQ

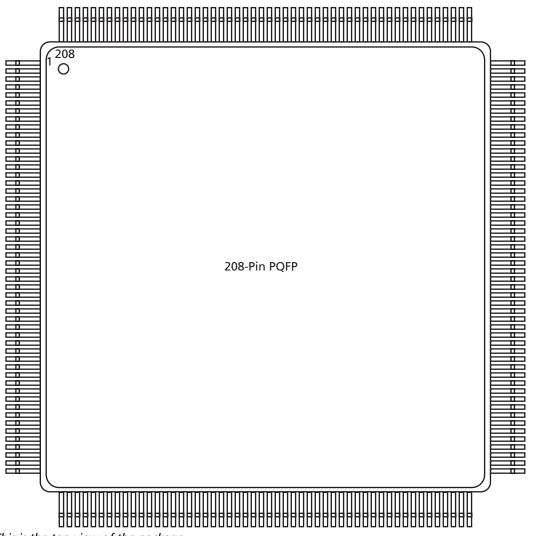
3-24 v1.5

144-Pin TQFP	
Pin Number	A3P060 Function
109	NC
110	NC
111	GBA1/IO24RSB0
112	GBA0/IO23RSB0
113	GBB1/IO22RSB0
114	GBB0/IO21RSB0
115	GBC1/IO20RSB0
116	GBC0/IO19RSB0
117	V _{CCI} B0
118	GND
119	V _{CC}
120	IO18RSB0
121	IO17RSB0
122	IO16RSB0
123	IO15RSB0
124	IO14RSB0
125	IO13RSB0
126	IO12RSB0
127	IO11RSB0
128	NC
129	IO10RSB0
130	IO09RSB0
131	IO08RSB0
132	GAC1/IO07RSB0
133	GAC0/IO06RSB0
134	NC
135	GND
136	NC
137	GAB1/IO05RSB0
138	GAB0/IO04RSB0
139	GAA1/IO03RSB0
140	GAA0/IO02RSB0
141	IO01RSB0
142	IO00RSB0
143	GNDQ
144	VMV0

144-Pin TQFP	
Pin Number	A3P125 Function
1	GAA2/IO67RSB1
2	IO68RSB1
3	GAB2/IO69RSB1
4	IO132RSB1
5	GAC2/IO131RSB1
6	IO130RSB1
7	IO129RSB1
8	IO128RSB1
9	V _{CC}
10	GND
11	V _{CCI} B1
12	IO127RSB1
13	GFC1/IO126RSB1
14	GFC0/IO125RSB1
15	GFB1/IO124RSB1
16	GFB0/IO123RSB1
17	V_{COMPLF}
18	GFA0/IO122RSB1
19	V_{CCPLF}
20	GFA1/IO121RSB1
21	GFA2/IO120RSB1
22	GFB2/IO119RSB1
23	GFC2/IO118RSB1
24	IO117RSB1
25	IO116RSB1
26	IO115RSB1
27	GND
28	V _{CCI} B1
29	GEC1/IO112RSB1
30	GEC0/IO111RSB1
31	GEB1/IO110RSB1
32	GEB0/IO109RSB1
33	GEA1/IO108RSB1
34	GEA0/IO107RSB1
35	VMV1
36	GNDQ

144-Pin TQFP	
Pin Number	A3P125 Function
37	NC
38	GEA2/IO106RSB1
39	GEB2/IO105RSB1
40	GEC2/IO104RSB1
41	IO103RSB1
42	IO102RSB1
43	IO101RSB1
44	IO100RSB1
45	V _{CC}
46	GND
47	V _{CCI} B1
48	IO99RSB1
49	IO97RSB1
50	IO95RSB1
51	IO93RSB1
52	IO92RSB1
53	IO90RSB1
54	IO88RSB1
55	IO86RSB1
56	IO84RSB1
57	IO83RSB1
58	IO82RSB1
59	IO81RSB1
60	IO80RSB1
61	IO79RSB1
62	V _{CC}
63	GND
64	V _{CCI} B1
65	GDC2/IO72RSB1
66	GDB2/IO71RSB1
67	GDA2/IO70RSB1
68	GNDQ
69	TCK
70	TDI
71	TMS
72	VMV1

444 8' TOER	
144-Pin TQFP	
Pin Number	A3P125 Function
73	V _{PUMP}
74	NC
75	TDO
76	TRST
77	V_{JTAG}
78	GDA0/IO66RSB0
79	GDB0/IO64RSB0
80	GDB1/IO63RSB0
81	V _{CCI} B0
82	GND
83	IO60RSB0
84	GCC2/IO59RSB0
85	GCB2/IO58RSB0
86	GCA2/IO57RSB0
87	GCA0/IO56RSB0
88	GCA1/IO55RSB0
89	GCB0/IO54RSB0
90	GCB1/IO53RSB0
91	GCC0/IO52RSB0
92	GCC1/IO51RSB0
93	IO50RSB0
94	IO49RSB0
95	NC
96	NC
97	NC
98	V _{CCI} B0
99	GND
100	V _{CC}
101	IO47RSB0
102	GBC2/IO45RSB0
103	IO44RSB0
104	GBB2/IO43RSB0
105	IO42RSB0
106	GBA2/IO41RSB0
107	VMV0
108	GNDQ


3-26 v1.5

144-Pin TQFP	
Pin Number	A3P125 Function
109	GBA1/IO40RSB0
110	GBA0/IO39RSB0
111	GBB1/IO38RSB0
112	GBB0/IO37RSB0
113	GBC1/IO36RSB0
114	GBC0/IO35RSB0
115	IO34RSB0
116	IO33RSB0
117	V _{CCI} B0
118	GND
119	V _{CC}
120	IO29RSB0
121	IO28RSB0
122	IO27RSB0
123	IO25RSB0
124	IO23RSB0
125	IO21RSB0
126	IO19RSB0
127	IO17RSB0
128	IO16RSB0
129	IO14RSB0
130	IO12RSB0
131	IO10RSB0
132	IO08RSB0
133	IO06RSB0
134	V _{CCI} B0
135	GND
136	V _{CC}
137	GAC1/IO05RSB0
138	GAC0/IO04RSB0
139	GAB1/IO03RSB0
140	GAB0/IO02RSB0
141	GAA1/IO01RSB0
142	GAA0/IO00RSB0
143	GNDQ
144	VMV0

208-Pin PQFP

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

3-28 v1.5

208-Pin PQFP	
Pin Number	A3P125 Function
1	GND
2	GAA2/IO67RSB1
3	IO68RSB1
4	GAB2/IO69RSB1
5	IO132RSB1
6	GAC2/IO131RSB1
7	NC
8	NC
9	IO130RSB1
10	IO129RSB1
11	NC
12	IO128RSB1
13	NC
14	NC
15	NC
16	V _{CC}
17	GND
18	V _{CCI} B1
19	IO127RSB1
20	NC
21	GFC1/IO126RSB1
22	GFC0/IO125RSB1
23	GFB1/IO124RSB1
24	GFB0/IO123RSB1
25	V_{COMPLF}
26	GFA0/IO122RSB1
27	V _{CCPLF}
28	GFA1/IO121RSB1
29	GND
30	GFA2/IO120RSB1
31	NC
32	GFB2/IO119RSB1
33	NC
34	GFC2/IO118RSB1
35	IO117RSB1
36	NC

208-Pin PQFP	
Pin Number	A3P125 Function
37	IO116RSB1
38	IO115RSB1
39	NC
40	V _{CCI} B1
41	GND
42	IO114RSB1
43	IO113RSB1
44	GEC1/IO112RSB1
45	GEC0/IO111RSB1
46	GEB1/IO110RSB1
47	GEB0/IO109RSB1
48	GEA1/IO108RSB1
49	GEA0/IO107RSB1
50	VMV1
51	GNDQ
52	GND
53	NC
54	NC
55	GEA2/IO106RSB1
56	GEB2/IO105RSB1
57	GEC2/IO104RSB1
58	IO103RSB1
59	IO102RSB1
60	IO101RSB1
61	IO100RSB1
62	V _{CCI} B1
63	IO99RSB1
64	IO98RSB1
65	GND
66	IO97RSB1
67	IO96RSB1
68	IO95RSB1
69	IO94RSB1
70	IO93RSB1
71	V _{CC}
72	V _{CCI} B1

208-Pin PQFP	
Pin Number	A3P125 Function
73	IO92RSB1
74	IO91RSB1
75	IO90RSB1
76	IO89RSB1
77	IO88RSB1
78	IO87RSB1
79	IO86RSB1
80	IO85RSB1
81	GND
82	IO84RSB1
83	IO83RSB1
84	IO82RSB1
85	IO81RSB1
86	IO80RSB1
87	IO79RSB1
88	V _{CC}
89	V _{CCI} B1
90	IO78RSB1
91	IO77RSB1
92	IO76RSB1
93	IO75RSB1
94	IO74RSB1
95	IO73RSB1
96	GDC2/IO72RSB1
97	GND
98	GDB2/IO71RSB1
99	GDA2/IO70RSB1
100	GNDQ
101	TCK
102	TDI
103	TMS
104	VMV1
105	GND
106	V _{PUMP}
107	NC
108	TDO

208-Pin PQFP	
Pin Number	A3P125 Function
109	TRST
110	V_{JTAG}
111	GDA0/IO66RSB0
112	GDA1/IO65RSB0
113	GDB0/IO64RSB0
114	GDB1/IO63RSB0
115	GDC0/IO62RSB0
116	GDC1/IO61RSB0
117	NC
118	NC
119	NC
120	NC
121	NC
122	GND
123	V _{CCI} B0
124	NC
125	NC
126	V _{CC}
127	IO60RSB0
128	GCC2/IO59RSB0
129	GCB2/IO58RSB0
130	GND
131	GCA2/IO57RSB0
132	GCA0/IO56RSB0
133	GCA1/IO55RSB0
134	GCB0/IO54RSB0
135	GCB1/IO53RSB0
136	GCC0/IO52RSB0
137	GCC1/IO51RSB0
138	IO50RSB0
139	IO49RSB0
140	V _{CCI} B0
141	GND
142	V _{CC}
143	IO48RSB0
144	IO47RSB0

208-Pin PQFP	
Pin Number	A3P125 Function
145	IO46RSB0
146	NC
147	NC
148	NC
149	GBC2/IO45RSB0
150	IO44RSB0
151	GBB2/IO43RSB0
152	IO42RSB0
153	GBA2/IO41RSB0
154	VMV0
155	GNDQ
156	GND
157	NC
158	GBA1/IO40RSB0
159	GBA0/IO39RSB0
160	GBB1/IO38RSB0
161	GBB0/IO37RSB0
162	GND
163	GBC1/IO36RSB0
164	GBC0/IO35RSB0
165	IO34RSB0
166	IO33RSB0
167	IO32RSB0
168	IO31RSB0
169	IO30RSB0
170	V _{CCI} B0
171	V _{CC}
172	IO29RSB0
173	IO28RSB0
174	IO27RSB0
175	IO26RSB0
176	IO25RSB0
177	IO24RSB0
178	GND
179	IO23RSB0
180	IO22RSB0

208-Pin PQFP	
Pin Number	A3P125 Function
181	IO21RSB0
182	IO20RSB0
183	IO19RSB0
184	IO18RSB0
185	IO17RSB0
186	V _{CCI} B0
187	V _{CC}
188	IO16RSB0
189	IO15RSB0
190	IO14RSB0
191	IO13RSB0
192	IO12RSB0
193	IO11RSB0
194	IO10RSB0
195	GND
196	IO09RSB0
197	IO08RSB0
198	IO07RSB0
199	IO06RSB0
200	V _{CCI} B0
201	GAC1/IO05RSB0
202	GAC0/IO04RSB0
203	GAB1/IO03RSB0
204	GAB0/IO02RSB0
205	GAA1/IO01RSB0
206	GAA0/IO00RSB0
207	GNDQ
208	VMV0

3-30 v1.5

208-Pin PQFP	
Pin Number	A3P250 Function
1	GND
2	GAA2/IO118UDB3
3	IO118VDB3
4	GAB2/IO117UDB3
5	IO117VDB3
6	GAC2/IO116UDB3
7	IO116VDB3
8	IO115UDB3
9	IO115VDB3
10	IO114UDB3
11	IO114VDB3
12	IO113PDB3
13	IO113NDB3
14	IO112PDB3
15	IO112NDB3
16	V _{CC}
17	GND
18	V _{CCI} B3
19	IO111PDB3
20	IO111NDB3
21	GFC1/IO110PDB3
22	GFC0/IO110NDB3
23	GFB1/IO109PDB3
24	GFB0/IO109NDB3
25	V_{COMPLF}
26	GFA0/IO108NPB3
27	V_{CCPLF}
28	GFA1/IO108PPB3
29	GND
30	GFA2/IO107PDB3
31	IO107NDB3
32	GFB2/IO106PDB3
33	IO106NDB3
34	GFC2/IO105PDB3
35	IO105NDB3
36	NC

208-Pin PQFP	
Pin Number	A3P250 Function
37	IO104PDB3
38	IO104NDB3
39	IO103PSB3
40	V _{CCI} B3
41	GND
42	IO101PDB3
43	IO101NDB3
44	GEC1/IO100PDB3
45	GEC0/IO100NDB3
46	GEB1/IO99PDB3
47	GEB0/IO99NDB3
48	GEA1/IO98PDB3
49	GEA0/IO98NDB3
50	VMV3
51	GNDQ
52	GND
53	NC
54	NC
55	GEA2/IO97RSB2
56	GEB2/IO96RSB2
57	GEC2/IO95RSB2
58	IO94RSB2
59	IO93RSB2
60	IO92RSB2
61	IO91RSB2
62	V _{CCI} B2
63	IO90RSB2
64	IO89RSB2
65	GND
66	IO88RSB2
67	IO87RSB2
68	IO86RSB2
69	IO85RSB2
70	IO84RSB2
71	V _{CC}
72	V _{CCI} B2

208-Pin PQFP	
Pin Number	A3P250 Function
73	IO83RSB2
74	IO82RSB2
75	IO81RSB2
76	IO80RSB2
77	IO79RSB2
78	IO78RSB2
79	IO77RSB2
80	IO76RSB2
81	GND
82	IO75RSB2
83	IO74RSB2
84	IO73RSB2
85	IO72RSB2
86	IO71RSB2
87	IO70RSB2
88	V _{CC}
89	V _{CCI} B2
90	IO69RSB2
91	IO68RSB2
92	IO67RSB2
93	IO66RSB2
94	IO65RSB2
95	IO64RSB2
96	GDC2/IO63RSB2
97	GND
98	GDB2/IO62RSB2
99	GDA2/IO61RSB2
100	GNDQ
101	TCK
102	TDI
103	TMS
104	VMV2
105	GND
106	V _{PUMP}
107	NC
108	TDO

208-Pin PQFP	
Pin Number A3P250 Function	
109	TRST
110	V_{JTAG}
111	GDA0/IO60VDB1
112	GDA1/IO60UDB1
113	GDB0/IO59VDB1
114	GDB1/IO59UDB1
115	GDC0/IO58VDB1
116	GDC1/IO58UDB1
117	IO57VDB1
118	IO57UDB1
119	IO56NDB1
120	IO56PDB1
121	IO55RSB1
122	GND
123	V _{CCI} B1
124	NC
125	NC
126	V _{CC}
127	IO53NDB1
128	GCC2/IO53PDB1
129	GCB2/IO52PSB1
130	GND
131	GCA2/IO51PSB1
132	GCA1/IO50PDB1
133	GCA0/IO50NDB1
134	GCB0/IO49NDB1
135	GCB1/IO49PDB1
136	GCC0/IO48NDB1
137	GCC1/IO48PDB1
138	IO47NDB1
139	IO47PDB1
140	V _{CCI} B1
141	GND
142	V _{CC}
143	IO46RSB1
144	IO45NDB1

208-Pin PQFP	
Pin Number	A3P250 Function
145	IO45PDB1
146	IO44NDB1
147	IO44PDB1
148	IO43NDB1
149	GBC2/IO43PDB1
150	IO42NDB1
151	GBB2/IO42PDB1
152	IO41NDB1
153	GBA2/IO41PDB1
154	VMV1
155	GNDQ
156	GND
157	NC
158	GBA1/IO40RSB0
159	GBA0/IO39RSB0
160	GBB1/IO38RSB0
161	GBB0/IO37RSB0
162	GND
163	GBC1/IO36RSB0
164	GBC0/IO35RSB0
165	IO34RSB0
166	IO33RSB0
167	IO32RSB0
168	IO31RSB0
169	IO30RSB0
170	V _{CCI} B0
171	V _{CC}
172	IO29RSB0
173	IO28RSB0
174	IO27RSB0
175	IO26RSB0
176	IO25RSB0
177	IO24RSB0
178	GND
179	IO23RSB0
180	IO22RSB0

208-Pin PQFP	
Pin Number	A3P250 Function
181	IO21RSB0
182	IO20RSB0
183	IO19RSB0
184	IO18RSB0
185	IO17RSB0
186	V _{CCI} B0
187	V _{CC}
188	IO16RSB0
189	IO15RSB0
190	IO14RSB0
191	IO13RSB0
192	IO12RSB0
193	IO11RSB0
194	IO10RSB0
195	GND
196	IO09RSB0
197	IO08RSB0
198	IO07RSB0
199	IO06RSB0
200	V _{CCI} B0
201	GAC1/IO05RSB0
202	GAC0/IO04RSB0
203	GAB1/IO03RSB0
204	GAB0/IO02RSB0
205	GAA1/IO01RSB0
206	GAA0/IO00RSB0
207	GNDQ
208	VMV0

3-32 v1.5

208-Pin PQFP	
Pin Number A3P400 Function	
1	GND
2	GAA2/IO155UDB3
3	IO155VDB3
4	GAB2/IO154UDB3
5	IO154VDB3
6	GAC2/IO153UDB3
7	IO153VDB3
8	IO152UDB3
9	IO152VDB3
10	IO151UDB3
11	IO151VDB3
12	IO150PDB3
13	IO150NDB3
14	IO149PDB3
15	IO149NDB3
16	V _{CC}
17	GND
18	V _{CCI} B3
19	IO148PDB3
20	IO148NDB3
21	GFC1/IO147PDB3
22	GFC0/IO147NDB3
23	GFB1/IO146PDB3
24	GFB0/IO146NDB3
25	V _{COMPLF}
26	GFA0/IO145NPB3
27	V_{CCPLF}
28	GFA1/IO145PPB3
29	GND
30	GFA2/IO144PDB3
31	IO144NDB3
32	GFB2/IO143PDB3
33	IO143NDB3
34	GFC2/IO142PDB3
35	IO142NDB3
36	NC

208-Pin PQFP	
Pin Number	A3P400 Function
37	IO141PSB3
38	IO140PDB3
39	IO140NDB3
40	V _{CCI} B3
41	GND
42	IO138PDB3
43	IO138NDB3
44	GEC1/IO137PDB3
45	GEC0/IO137NDB3
46	GEB1/IO136PDB3
47	GEB0/IO136NDB3
48	GEA1/IO135PDB3
49	GEA0/IO135NDB3
50	VMV3
51	GNDQ
52	GND
53	VMV2
54	NC
55	GEA2/IO134RSB2
56	GEB2/IO133RSB2
57	GEC2/IO132RSB2
58	IO131RSB2
59	IO130RSB2
60	IO129RSB2
61	IO128RSB2
62	V _{CCI} B2
63	IO125RSB2
64	IO123RSB2
65	GND
66	IO121RSB2
67	IO119RSB2
68	IO117RSB2
69	IO115RSB2
70	IO113RSB2
71	V _{CC}
72	V _{CCI} B2

208-Pin PQFP	
Pin Number	A3P400 Function
73	
	IO112RSB2
74	IO111RSB2
75	IO110RSB2
76	IO109RSB2
77	IO108RSB2
78	IO107RSB2
79	IO106RSB2
80	IO104RSB2
81	GND
82	IO102RSB2
83	IO101RSB2
84	IO100RSB2
85	IO99RSB2
86	IO98RSB2
87	IO97RSB2
88	V _{CC}
89	V _{CCI} B2
90	IO94RSB2
91	IO92RSB2
92	IO90RSB2
93	IO88RSB2
94	IO86RSB2
95	IO84RSB2
96	GDC2/IO82RSB2
97	GND
98	GDB2/IO81RSB2
99	GDA2/IO80RSB2
100	GNDQ
101	TCK
102	TDI
103	TMS
104	VMV2
105	GND
106	V _{PUMP}
107	NC
108	TDO

208-Pin PQFP	
Pin Number A3P400 Function	
109	TRST
110	V_{JTAG}
111	GDA0/IO79VDB1
112	GDA1/IO79UDB1
113	GDB0/IO78VDB1
114	GDB1/IO78UDB1
115	GDC0/IO77VDB1
116	GDC1/IO77UDB1
117	IO76VDB1
118	IO76UDB1
119	IO75NDB1
120	IO75PDB1
121	IO74RSB1
122	GND
123	V _{CCI} B1
124	NC
125	NC
126	V _{CC}
127	IO72NDB1
128	GCC2/IO72PDB1
129	GCB2/IO71PSB1
130	GND
131	GCA2/IO70PSB1
132	GCA1/IO69PDB1
133	GCA0/IO69NDB1
134	GCB0/IO68NDB1
135	GCB1/IO68PDB1
136	GCC0/IO67NDB1
137	GCC1/IO67PDB1
138	IO66NDB1
139	IO66PDB1
140	V _{CCI} B1
141	GND
142	V _{CC}
143	IO65RSB1
144	IO64NDB1

208-Pin PQFP	
Pin Number	A3P400 Function
145	IO64PDB1
146	IO63NDB1
147	IO63PDB1
148	IO62NDB1
149	GBC2/IO62PDB1
150	IO61NDB1
151	GBB2/IO61PDB1
152	IO60NDB1
153	GBA2/IO60PDB1
154	VMV1
155	GNDQ
156	GND
157	VMV0
158	GBA1/IO59RSB0
159	GBA0/IO58RSB0
160	GBB1/IO57RSB0
161	GBB0/IO56RSB0
162	GND
163	GBC1/IO55RSB0
164	GBC0/IO54RSB0
165	IO52RSB0
166	IO49RSB0
167	IO46RSB0
168	IO43RSB0
169	IO40RSB0
170	V _{CCI} B0
171	V _{CC}
172	IO36RSB0
173	IO35RSB0
174	IO34RSB0
175	IO33RSB0
176	IO32RSB0
177	IO31RSB0
178	GND
179	IO29RSB0
180	IO28RSB0

200 51 - 2	
208-Pin PQFP	
Pin Number	A3P400 Function
181	IO27RSB0
182	IO26RSB0
183	IO25RSB0
184	IO24RSB0
185	IO23RSB0
186	V _{CCI} B0
187	V _{CC}
188	IO21RSB0
189	IO20RSB0
190	IO19RSB0
191	IO18RSB0
192	IO17RSB0
193	IO16RSB0
194	IO15RSB0
195	GND
196	IO13RSB0
197	IO11RSB0
198	IO09RSB0
199	IO07RSB0
200	V _{CCI} B0
201	GAC1/IO05RSB0
202	GAC0/IO04RSB0
203	GAB1/IO03RSB0
204	GAB0/IO02RSB0
205	GAA1/IO01RSB0
206	GAA0/IO00RSB0
207	GNDQ
208	VMV0

3-34 v1.5

208-Pin PQFP	
Pin Number	A3P600 Function
1	GND
2	GAA2/IO174PDB3
3	IO174NDB3
4	GAB2/IO173PDB3
5	IO173NDB3
6	GAC2/IO172PDB3
7	IO172NDB3
8	IO171PDB3
9	IO171NDB3
10	IO170PDB3
11	IO170NDB3
12	IO169PDB3
13	IO169NDB3
14	IO168PDB3
15	IO168NDB3
16	V _{CC}
17	GND
18	V _{CCI} B3
19	IO166PDB3
20	IO166NDB3
21	GFC1/IO164PDB3
22	GFC0/IO164NDB3
23	GFB1/IO163PDB3
24	GFB0/IO163NDB3
25	V _{COMPLF}
26	GFA0/IO162NPB3
27	V_{CCPLF}
28	GFA1/IO162PPB3
29	GND
30	GFA2/IO161PDB3
31	IO161NDB3
32	GFB2/IO160PDB3
33	IO160NDB3
34	GFC2/IO159PDB3
35	IO159NDB3
36	V _{CC}

208-Pin PQFP	
Pin Number	A3P600 Function
37	IO152PDB3
38	IO152NDB3
39	IO150PSB3
40	V _{CCI} B3
41	GND
42	IO147PDB3
43	IO147NDB3
44	GEC1/IO146PDB3
45	GEC0/IO146NDB3
46	GEB1/IO145PDB3
47	GEB0/IO145NDB3
48	GEA1/IO144PDB3
49	GEA0/IO144NDB3
50	VMV3
51	GNDQ
52	GND
53	VMV2
54	GEA2/IO143RSB2
55	GEB2/IO142RSB2
56	GEC2/IO141RSB2
57	IO140RSB2
58	IO139RSB2
59	IO138RSB2
60	IO137RSB2
61	IO136RSB2
62	V _{CCI} B2
63	IO135RSB2
64	IO133RSB2
65	GND
66	IO131RSB2
67	IO129RSB2
68	IO127RSB2
69	IO125RSB2
70	IO123RSB2
71	V _{CC}
72	V _{CCI} B2

208-Pin PQFP	
Pin Number	A3P600 Function
73	IO120RSB2
74	IO119RSB2
75	IO118RSB2
76	IO117RSB2
77	IO116RSB2
78	IO115RSB2
79	IO114RSB2
80	IO112RSB2
81	GND
82	IO111RSB2
83	IO110RSB2
84	IO109RSB2
85	IO108RSB2
86	IO107RSB2
87	IO106RSB2
88	V _{CC}
89	V _{CCI} B2
90	IO104RSB2
91	IO102RSB2
92	IO100RSB2
93	IO98RSB2
94	IO96RSB2
95	IO92RSB2
96	GDC2/IO91RSB2
97	GND
98	GDB2/IO90RSB2
99	GDA2/IO89RSB2
100	GNDQ
101	TCK
102	TDI
103	TMS
104	VMV2
105	GND
106	V _{PUMP}
107	GNDQ
108	TDO

208-Pin PQFP	
Pin Number	A3P600 Function
109	TRST
110	V_{JTAG}
111	GDA0/IO88NDB1
112	GDA1/IO88PDB1
113	GDB0/IO87NDB1
114	GDB1/IO87PDB1
115	GDC0/IO86NDB1
116	GDC1/IO86PDB1
117	IO84NDB1
118	IO84PDB1
119	IO82NDB1
120	IO82PDB1
121	IO81PSB1
122	GND
123	V _{CCI} B1
124	IO77NDB1
125	IO77PDB1
126	NC
127	IO74NDB1
128	GCC2/IO74PDB1
129	GCB2/IO73PSB1
130	GND
131	GCA2/IO72PSB1
132	GCA1/IO71PDB1
133	GCA0/IO71NDB1
134	GCB0/IO70NDB1
135	GCB1/IO70PDB1
136	GCC0/IO69NDB1
137	GCC1/IO69PDB1
138	IO67NDB1
139	IO67PDB1
140	V _{CCI} B1
141	GND
142	V _{CC}
143	IO65PSB1
144	IO64NDB1

208-Pin PQFP	
Pin Number	A3P600 Function
145	IO64PDB1
146	IO63NDB1
147	IO63PDB1
148	IO62NDB1
149	GBC2/IO62PDB1
150	IO61NDB1
151	GBB2/IO61PDB1
152	IO60NDB1
153	GBA2/IO60PDB1
154	VMV1
155	GNDQ
156	GND
157	VMV0
158	GBA1/IO59RSB0
159	GBA0/IO58RSB0
160	GBB1/IO57RSB0
161	GBB0/IO56RSB0
162	GND
163	GBC1/IO55RSB0
164	GBC0/IO54RSB0
165	IO52RSB0
166	IO50RSB0
167	IO48RSB0
168	IO46RSB0
169	IO44RSB0
170	V _{CCI} B0
171	V _{CC}
172	IO36RSB0
173	IO35RSB0
174	IO34RSB0
175	IO33RSB0
176	IO32RSB0
177	IO31RSB0
178	GND
179	IO29RSB0
180	IO28RSB0

208-Pin PQFP	
Pin Number	A3P600 Function
181	IO27RSB0
182	IO26RSB0
183	IO25RSB0
184	IO24RSB0
185	IO23RSB0
186	V _{CCI} B0
187	V _{CC}
188	IO20RSB0
189	IO19RSB0
190	IO18RSB0
191	IO17RSB0
192	IO16RSB0
193	IO14RSB0
194	IO12RSB0
195	GND
196	IO10RSB0
197	IO09RSB0
198	IO08RSB0
199	IO07RSB0
200	V _{CCI} B0
201	GAC1/IO05RSB0
202	GAC0/IO04RSB0
203	GAB1/IO03RSB0
204	GAB0/IO02RSB0
205	GAA1/IO01RSB0
206	GAA0/IO00RSB0
207	GNDQ
208	VMV0

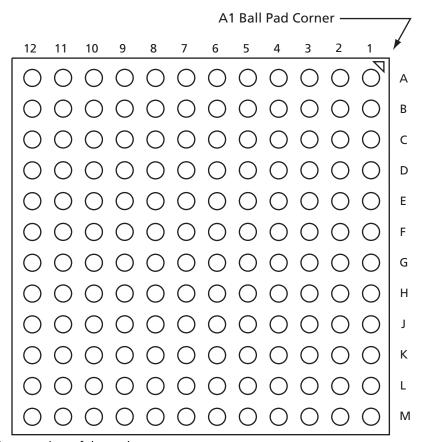
3-36 v1.5

20	8-Pin PQFP
Pin Number	A3P1000 Function
1	GND
2	GAA2/IO225PDB3
3	IO225NDB3
4	GAB2/IO224PDB3
5	IO224NDB3
6	GAC2/IO223PDB3
7	IO223NDB3
8	IO222PDB3
9	IO222NDB3
10	IO220PDB3
11	IO220NDB3
12	IO218PDB3
13	IO218NDB3
14	IO216PDB3
15	IO216NDB3
16	V _{CC}
17	GND
18	V _{CCI} B3
19	IO212PDB3
20	IO212NDB3
21	GFC1/IO209PDB3
22	GFC0/IO209NDB3
23	GFB1/IO208PDB3
24	GFB0/IO208NDB3
25	V _{COMPLF}
26	GFA0/IO207NPB3
27	V _{CCPLF}
28	GFA1/IO207PPB3
29	GND
30	GFA2/IO206PDB3
31	IO206NDB3
32	GFB2/IO205PDB3
33	IO205NDB3
34	GFC2/IO204PDB3
35	IO204NDB3
36	V _{CC}

208-Pin PQFP	
Pin Number	A3P1000 Function
37	IO199PDB3
38	IO199NDB3
39	IO197PSB3
40	V _{CCI} B3
41	GND
42	IO191PDB3
43	IO191NDB3
44	GEC1/IO190PDB3
45	GEC0/IO190NDB3
46	GEB1/IO189PDB3
47	GEB0/IO189NDB3
48	GEA1/IO188PDB3
49	GEA0/IO188NDB3
50	VMV3
51	GNDQ
52	GND
53	VMV2
54	GEA2/IO187RSB2
55	GEB2/IO186RSB2
56	GEC2/IO185RSB2
57	IO184RSB2
58	IO183RSB2
59	IO182RSB2
60	IO181RSB2
61	IO180RSB2
62	V _{CCI} B2
63	IO178RSB2
64	IO176RSB2
65	GND
66	IO174RSB2
67	IO172RSB2
68	IO170RSB2
69	IO168RSB2
70	IO166RSB2
71	V _{CC}
72	V _{CCI} B2

208-Pin PQFP		
Pin Number	A3P1000 Function	
73	IO162RSB2	
74	IO160RSB2	
75	IO158RSB2	
76	IO156RSB2	
77	IO154RSB2	
78	IO152RSB2	
79	IO150RSB2	
80	IO148RSB2	
81	GND	
82	IO143RSB2	
83	IO141RSB2	
84	IO139RSB2	
85	IO137RSB2	
86	IO135RSB2	
87	IO133RSB2	
88	V _{CC}	
89	V _{CCI} B2	
90	IO128RSB2	
91	IO126RSB2	
92	IO124RSB2	
93	IO122RSB2	
94	IO120RSB2	
95	IO118RSB2	
96	GDC2/IO116RSB2	
97	GND	
98	GDB2/IO115RSB2	
99	GDA2/IO114RSB2	
100	GNDQ	
101	TCK	
102	TDI	
103	TMS	
104	VMV2	
105	GND	
106	V _{PUMP}	
107	GNDQ	
108	TDO	

20	208-Pin PQFP	
Pin Number	A3P1000 Function	
109	TRST	
110	V_{JTAG}	
111	GDA0/IO113NDB1	
112	GDA1/IO113PDB1	
113	GDB0/IO112NDB1	
114	GDB1/IO112PDB1	
115	GDC0/IO111NDB1	
116	GDC1/IO111PDB1	
117	IO109NDB1	
118	IO109PDB1	
119	IO106NDB1	
120	IO106PDB1	
121	IO104PSB1	
122	GND	
123	V _{CCI} B1	
124	IO99NDB1	
125	IO99PDB1	
126	NC	
127	IO96NDB1	
128	GCC2/IO96PDB1	
129	GCB2/IO95PSB1	
130	GND	
131	GCA2/IO94PSB1	
132	GCA1/IO93PDB1	
133	GCA0/IO93NDB1	
134	GCB0/IO92NDB1	
135	GCB1/IO92PDB1	
136	GCC0/IO91NDB1	
137	GCC1/IO91PDB1	
138	IO88NDB1	
139	IO88PDB1	
140	V _{CCI} B1	
141	GND	
142	V _{CC}	
143	IO86PSB1	
144	IO84NDB1	


208-Pin PQFP		
Pin Number	A3P1000 Function	
145	IO84PDB1	
146	IO84FDB1	
147	IO82PDB1	
148	IO80NDB1	
149	GBC2/IO80PDB1	
150	IO79NDB1	
151	GBB2/IO79PDB1	
152	IO78NDB1	
153	GBA2/IO78PDB1	
154	VMV1	
155	GNDQ	
156	GND	
157	VMV0	
158	GBA1/IO77RSB0	
159	GBA0/IO76RSB0	
160	GBB1/IO75RSB0	
161	GBB0/IO74RSB0	
162	GND	
163	GBC1/IO73RSB0	
164	GBC0/IO72RSB0	
165	IO70RSB0	
166	IO67RSB0	
167	IO63RSB0	
168	IO60RSB0	
169	IO57RSB0	
170	V _{CCI} B0	
171	V _{CC}	
172	IO54RSB0	
173	IO51RSB0	
174	IO48RSB0	
175	IO45RSB0	
176	IO42RSB0	
177	IO40RSB0	
178	GND	
179	IO38RSB0	
180	IO35RSB0	

208-Pin PQFP		
Pin Number	A3P1000 Function	
181	IO33RSB0	
182	IO31RSB0	
183	IO29RSB0	
184	IO27RSB0	
185	IO25RSB0	
186	V _{CCI} B0	
187	V _{CC}	
188	IO22RSB0	
189	IO20RSB0	
190	IO18RSB0	
191	IO16RSB0	
192	IO15RSB0	
193	IO14RSB0	
194	IO13RSB0	
195	GND	
196	IO12RSB0	
197	IO11RSB0	
198	IO10RSB0	
199	IO09RSB0	
200	V _{CCI} B0	
201	GAC1/IO05RSB0	
202	GAC0/IO04RSB0	
203	GAB1/IO03RSB0	
204	GAB0/IO02RSB0	
205	GAA1/IO01RSB0	
206	GAA0/IO00RSB0	
207	GNDQ	
208	VMV0	

3-38 v1.5

144-Pin FBGA

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

Pin Number A3P060 Function A1 GNDQ A2 VMV0 A3 GAB0/IO04RSB0 A4 GAB1/IO05RSB0 A5 IO08RSB0 A6 GND A7 IO11RSB0 A8 V _{CC} A9 IO16RSB0 A10 GBA0/IO23RSB0 A11 GBA1/IO24RSB0 A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 </th <th colspan="3">144-Pin FBGA</th>	144-Pin FBGA		
A2 VMV0 A3 GAB0/IO04RSB0 A4 GAB1/IO05RSB0 A5 IO08RSB0 A6 GND A7 IO11RSB0 A8 V _{CC} A9 IO16RSB0 A10 GBA0/IO23RSB0 A11 GBA1/IO24RSB0 A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0	Pin Number	A3P060 Function	
A3 GAB0/IO04RSB0 A4 GAB1/IO05RSB0 A5 IO08RSB0 A6 GND A7 IO11RSB0 A8 V _{CC} A9 IO16RSB0 A10 GBA0/IO23RSB0 A11 GBA1/IO24RSB0 A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0	A1	GNDQ	
A4 GAB1/IO05RSB0 A5 IO08RSB0 A6 GND A7 IO11RSB0 A8 V _{CC} A9 IO16RSB0 A10 GBA0/IO23RSB0 A11 GBA1/IO24RSB0 A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 </td <td>A2</td> <td>VMV0</td>	A2	VMV0	
A5 IO08RSB0 A6 GND A7 IO11RSB0 A8 V _{CC} A9 IO16RSB0 A10 GBA0/IO23RSB0 A11 GBA1/IO24RSB0 A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0	A3	GAB0/IO04RSB0	
A6 GND A7 IO11RSB0 A8 V _{CC} A9 IO16RSB0 A10 GBA0/IO23RSB0 A11 GBA1/IO24RSB0 A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0	A4	GAB1/IO05RSB0	
A7 IO11RSB0 A8 V _{CC} A9 IO16RSB0 A10 GBA0/IO23RSB0 A11 GBA1/IO24RSB0 A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	A5	IO08RSB0	
A8 V _{CC} A9 IO16RSB0 A10 GBA0/IO23RSB0 A11 GBA1/IO24RSB0 A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	A6	GND	
A9 IO16RSB0 A10 GBA0/IO23RSB0 A11 GBA1/IO24RSB0 A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	A7	IO11RSB0	
A10 GBA0/IO23RSB0 A11 GBA1/IO24RSB0 A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	A8	V _{CC}	
A11 GBA1/IO24RSB0 A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0	A9	IO16RSB0	
A12 GNDQ B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	A10	GBA0/IO23RSB0	
B1 GAB2/IO53RSB1 B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	A11	GBA1/IO24RSB0	
B2 GND B3 GAA0/IO02RSB0 B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	A12	GNDQ	
B3 GAAO/IOO2RSBO B4 GAA1/IOO3RSBO B5 IOOORSBO B6 IO10RSBO B7 IO12RSBO B8 IO14RSBO B9 GBBO/IO21RSBO B10 GBB1/IO22RSBO B11 GND B12 VMVO C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSBO C6 IO09RSBO C7 IO13RSBO C8 IO15RSBO C9 IO17RSBO C10 GBA2/IO25RSBO C11 IO26RSBO	B1	GAB2/IO53RSB1	
B4 GAA1/IO03RSB0 B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	B2	GND	
B5 IO00RSB0 B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	В3	GAA0/IO02RSB0	
B6 IO10RSB0 B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	B4	GAA1/IO03RSB0	
B7 IO12RSB0 B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	B5	IO00RSB0	
B8 IO14RSB0 B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	В6	IO10RSB0	
B9 GBB0/IO21RSB0 B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	В7	IO12RSB0	
B10 GBB1/IO22RSB0 B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	B8	IO14RSB0	
B11 GND B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	В9	GBB0/IO21RSB0	
B12 VMV0 C1 IO95RSB1 C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	B10	GBB1/IO22RSB0	
C1	B11	GND	
C2 GFA2/IO83RSB1 C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	B12	VMV0	
C3 GAC2/IO94RSB1 C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	C1	IO95RSB1	
C4 V _{CC} C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	C2	GFA2/IO83RSB1	
C5 IO01RSB0 C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	C3	GAC2/IO94RSB1	
C6 IO09RSB0 C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	C4	V _{CC}	
C7 IO13RSB0 C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	C5	IO01RSB0	
C8 IO15RSB0 C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	C6	IO09RSB0	
C9 IO17RSB0 C10 GBA2/IO25RSB0 C11 IO26RSB0	C7	IO13RSB0	
C10 GBA2/IO25RSB0 C11 IO26RSB0	C8	IO15RSB0	
C11 IO26RSB0	C9	IO17RSB0	
	C10	GBA2/IO25RSB0	
C12 GBC2/IO29RSB0	C11	IO26RSB0	
	C12	GBC2/IO29RSB0	

	Pin FBGA	
Pin Number	A3P060 Function	
D1	IO91RSB1	
D2	IO92RSB1	
D3	IO93RSB1	
D4	GAA2/IO51RSB1	
D5	GAC0/IO06RSB0	
D6	GAC1/IO07RSB0	
D7	GBC0/IO19RSB0	
D8	GBC1/IO20RSB0	
D9	GBB2/IO27RSB0	
D10	IO18RSB0	
D11	IO28RSB0	
D12	GCB1/IO37RSB0	
E1	V _{CC}	
E2	GFC0/IO88RSB1	
E3	GFC1/IO89RSB1	
E4	V _{CCI} B1	
E5	IO52RSB1	
E6	V _{CCI} B0	
E7	V _{CCI} B0	
E8	GCC1/IO35RSB0	
E9	V _{CCI} B0	
E10	V _{CC}	
E11	GCA0/IO40RSB0	
E12	IO30RSB0	
F1	GFB0/IO86RSB1	
F2	V _{COMPLF}	
F3	GFB1/IO87RSB1	
F4	IO90RSB1	
F5	GND	
F6	GND	
F7	GND	
F8	GCC0/IO36RSB0	
F9	GCB0/IO38RSB0	
F10	GND	
F11	GCA1/IO39RSB0	
F12	GCA2/IO41RSB0	
	•	

144-Pin FBGA		
Pin Number	A3P060 Function	
G1	GFA1/IO84RSB1	
G2	GND	
G3	V_{CCPLF}	
G4	GFA0/IO85RSB1	
G5	GND	
G6	GND	
G7	GND	
G8	GDC1/IO45RSB0	
G9	IO32RSB0	
G10	GCC2/IO43RSB0	
G11	IO31RSB0	
G12	GCB2/IO42RSB0	
H1	V _{CC}	
H2	GFB2/IO82RSB1	
Н3	GFC2/IO81RSB1	
H4	GEC1/IO77RSB1	
H5	V _{CC}	
H6	IO34RSB0	
H7	IO44RSB0	
Н8	GDB2/IO55RSB1	
H9	GDC0/IO46RSB0	
H10	V _{CCI} B0	
H11	IO33RSB0	
H12	V _{CC}	
J1	GEB1/IO75RSB1	
J2	IO78RSB1	
J3	V _{CCI} B1	
J4	GEC0/IO76RSB1	
J5	IO79RSB1	
J6	IO80RSB1	
J7	V _{CC}	
J8	TCK	
J9	GDA2/IO54RSB1	
J10	TDO	
J11	GDA1/IO49RSB0	
J12	GDB1/IO47RSB0	

3-40 v1.5

144-Pin FBGA	
Pin Number	A3P060 Function
K1	GEB0/IO74RSB1
K2	GEA1/IO73RSB1
K3	GEA0/IO72RSB1
K4	GEA2/IO71RSB1
K5	IO65RSB1
K6	IO64RSB1
K7	GND
K8	IO57RSB1
K9	GDC2/IO56RSB1
K10	GND
K11	GDA0/IO50RSB0
K12	GDB0/IO48RSB0
L1	GND
L2	VMV1
L3	GEB2/IO70RSB1
L4	IO67RSB1
L5	V _{CCI} B1
L6	IO62RSB1
L7	IO59RSB1
L8	IO58RSB1
L9	TMS
L10	V_{JTAG}
L11	VMV1
L12	TRST
M1	GNDQ
M2	GEC2/IO69RSB1
M3	IO68RSB1
M4	IO66RSB1
M5	IO63RSB1
M6	IO61RSB1
M7	IO60RSB1
M8	NC
M9	TDI
M10	V _{CCI} B1
M11	V _{PUMP}
M12	GNDQ

144-Pin FBGA		
Pin Number	A3P125 Function	
A1	GNDQ	
A2	VMV0	
A3	GAB0/IO02RSB0	
A4	GAB1/IO03RSB0	
A5	IO11RSB0	
A6	GND	
A7	IO18RSB0	
A8	V _{CC}	
A9	IO25RSB0	
A10	GBA0/IO39RSB0	
A11	GBA1/IO40RSB0	
A12	GNDQ	
B1	GAB2/IO69RSB1	
B2	GND	
В3	GAA0/IO00RSB0	
B4	GAA1/IO01RSB0	
B5	IO08RSB0	
В6	IO14RSB0	
В7	IO19RSB0	
B8	IO22RSB0	
В9	GBB0/IO37RSB0	
B10	GBB1/IO38RSB0	
B11	GND	
B12	VMV0	
C1	IO132RSB1	
C2	GFA2/IO120RSB1	
C3	GAC2/IO131RSB1	
C4	V _{CC}	
C5	IO10RSB0	
C6	IO12RSB0	
C7	IO21RSB0	
C8	IO24RSB0	
C9	IO27RSB0	
C10	GBA2/IO41RSB0	
C11	IO42RSB0	
C12	GBC2/IO45RSB0	

144-Pin FBGA	
Pin Number	A3P125 Function
D1	IO128RSB1
D2	IO129RSB1
D3	IO130RSB1
D4	GAA2/IO67RSB1
D5	GAC0/IO04RSB0
D6	GAC1/IO05RSB0
D7	GBC0/IO35RSB0
D8	GBC1/IO36RSB0
D9	GBB2/IO43RSB0
D10	IO28RSB0
D11	IO44RSB0
D12	GCB1/IO53RSB0
E1	V _{CC}
E2	GFC0/IO125RSB1
E3	GFC1/IO126RSB1
E4	V _{CCI} B1
E5	IO68RSB1
E6	V _{CCI} B0
E7	V _{CCI} B0
E8	GCC1/IO51RSB0
E9	V _{CCI} B0
E10	V _{CC}
E11	GCA0/IO56RSB0
E12	IO46RSB0
F1	GFB0/IO123RSB1
F2	V_{COMPLF}
F3	GFB1/IO124RSB1
F4	IO127RSB1
F5	GND
F6	GND
F7	GND
F8	GCC0/IO52RSB0
F9	GCB0/IO54RSB0
F10	GND
F11	GCA1/IO55RSB0
F12	GCA2/IO57RSB0

144-Pin FBGA	
Pin Number	A3P125 Function
G1	GFA1/IO121RSB1
G2	GND
G3	V_{CCPLF}
G4	GFA0/IO122RSB1
G5	GND
G6	GND
G7	GND
G8	GDC1/IO61RSB0
G9	IO48RSB0
G10	GCC2/IO59RSB0
G11	IO47RSB0
G12	GCB2/IO58RSB0
H1	V _{CC}
H2	GFB2/IO119RSB1
Н3	GFC2/IO118RSB1
H4	GEC1/IO112RSB1
H5	V _{CC}
H6	IO50RSB0
H7	IO60RSB0
Н8	GDB2/IO71RSB1
Н9	GDC0/IO62RSB0
H10	V _{CCI} B0
H11	IO49RSB0
H12	V _{CC}
J1	GEB1/IO110RSB1
J2	IO115RSB1
J3	V _{CCI} B1
J4	GEC0/IO111RSB1
J5	IO116RSB1
J6	IO117RSB1
J7	V _{CC}
J8	TCK
J9	GDA2/IO70RSB1
J10	TDO
J11	GDA1/IO65RSB0
J12	GDB1/IO63RSB0

3-42 v1.5

144-Pin FBGA	
Pin Number	A3P125 Function
K1	GEB0/IO109RSB1
K2	GEA1/IO108RSB1
K3	GEA0/IO107RSB1
K4	GEA2/IO106RSB1
K5	IO100RSB1
K6	IO98RSB1
K7	GND
K8	IO73RSB1
K9	GDC2/IO72RSB1
K10	GND
K11	GDA0/IO66RSB0
K12	GDB0/IO64RSB0
L1	GND
L2	VMV1
L3	GEB2/IO105RSB1
L4	IO102RSB1
L5	V _{CCI} B1
L6	IO95RSB1
L7	IO85RSB1
L8	IO74RSB1
L9	TMS
L10	V_{JTAG}
L11	VMV1
L12	TRST
M1	GNDQ
M2	GEC2/IO104RSB1
M3	IO103RSB1
M4	IO101RSB1
M5	IO97RSB1
M6	IO94RSB1
M7	IO86RSB1
M8	IO75RSB1
M9	TDI
M10	V _{CCI} B1
M11	V_{PUMP}
M12	GNDQ

144-Pin FBGA	
Pin Number	A3P250 Function
A1	GNDQ
A2	VMV0
A3	GAB0/IO02RSB0
A4	GAB1/IO03RSB0
A5	IO16RSB0
A6	GND
A7	IO29RSB0
A8	V _{CC}
A9	IO33RSB0
A10	GBA0/IO39RSB0
A11	GBA1/IO40RSB0
A12	GNDQ
B1	GAB2/IO117UDB3
B2	GND
В3	GAA0/IO00RSB0
В4	GAA1/IO01RSB0
B5	IO14RSB0
В6	IO19RSB0
В7	IO22RSB0
В8	IO30RSB0
В9	GBB0/IO37RSB0
B10	GBB1/IO38RSB0
B11	GND
B12	VMV1
C1	IO117VDB3
C2	GFA2/IO107PPB3
C3	GAC2/IO116UDB3
C4	V _{CC}
C5	IO12RSB0
C6	IO17RSB0
C7	IO24RSB0
C8	IO31RSB0
C9	IO34RSB0
C10	GBA2/IO41PDB1
C11	IO41NDB1
C12	GBC2/IO43PPB1

144-Pin FBGA	
Pin Number	A3P250 Function
D1	IO112NDB3
D2	IO112PDB3
D3	IO116VDB3
D4	GAA2/IO118UPB3
D5	GAC0/IO04RSB0
D6	GAC1/IO05RSB0
D7	GBC0/IO35RSB0
D8	GBC1/IO36RSB0
D9	GBB2/IO42PDB1
D10	IO42NDB1
D11	IO43NPB1
D12	GCB1/IO49PPB1
E1	V _{CC}
E2	GFC0/IO110NDB3
E3	GFC1/IO110PDB3
E4	V _{CCI} B3
E5	IO118VPB3
E6	V _{CCI} B0
E7	V _{CCI} B0
E8	GCC1/IO48PDB1
E9	V _{CCI} B1
E10	V _{CC}
E11	GCA0/IO50NDB1
E12	IO51NDB1
F1	GFB0/IO109NPB3
F2	V_{COMPLF}
F3	GFB1/IO109PPB3
F4	IO107NPB3
F5	GND
F6	GND
F7	GND
F8	GCC0/IO48NDB1
F9	GCB0/IO49NPB1
F10	GND
F11	GCA1/IO50PDB1
F12	GCA2/IO51PDB1

144-Pin FBGA		
Pin Number	A3P250 Function	
G1	GFA1/IO108PPB3	
G2	GND	
G3	V _{CCPLF}	
G4	GFA0/IO108NPB3	
G5	GND	
G6	GND	
G7	GND	
G8	GDC1/IO58UPB1	
G9	IO53NDB1	
G10	GCC2/IO53PDB1	
G11	IO52NDB1	
G12	GCB2/IO52PDB1	
H1	V _{CC}	
H2	GFB2/IO106PDB3	
Н3	GFC2/IO105PSB3	
H4	GEC1/IO100PDB3	
H5	V _{CC}	
H6	IO79RSB2	
H7	IO65RSB2	
Н8	GDB2/IO62RSB2	
H9	GDC0/IO58VPB1	
H10	V _{CCI} B1	
H11	IO54PSB1	
H12	V _{CC}	
J1	GEB1/IO99PDB3	
J2	IO106NDB3	
J3	V _{CCI} B3	
J4	GEC0/IO100NDB3	
J5	IO88RSB2	
J6	IO81RSB2	
J7	V _{CC}	
J8	TCK	
J9	GDA2/IO61RSB2	
J10	TDO	
J11	GDA1/IO60UDB1	
J12	GDB1/IO59UDB1	

3-44 v1.5

144-Pin FBGA	
Pin Number	A3P250 Function
K1	GEB0/IO99NDB3
K2	GEA1/IO98PDB3
K3	GEA0/IO98NDB3
K4	GEA2/IO97RSB2
K5	IO90RSB2
K6	IO84RSB2
K7	GND
K8	IO66RSB2
K9	GDC2/IO63RSB2
K10	GND
K11	GDA0/IO60VDB1
K12	GDB0/IO59VDB1
L1	GND
L2	VMV3
L3	GEB2/IO96RSB2
L4	IO91RSB2
L5	V _{CCI} B2
L6	IO82RSB2
L7	IO80RSB2
L8	IO72RSB2
L9	TMS
L10	V_{JTAG}
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO95RSB2
M3	IO92RSB2
M4	IO89RSB2
M5	IO87RSB2
M6	IO85RSB2
M7	IO78RSB2
M8	IO76RSB2
M9	TDI
M10	V _{CCI} B2
M11	V _{PUMP}
M12	GNDQ

144	144-Pin FBGA	
Pin Number	A3P400 Function	
A1	GNDQ	
A2	VMV0	
A3	GAB0/IO02RSB0	
A4	GAB1/IO03RSB0	
A5	IO16RSB0	
A6	GND	
A7	IO30RSB0	
A8	V _{CC}	
A9	IO34RSB0	
A10	GBA0/IO58RSB0	
A11	GBA1/IO59RSB0	
A12	GNDQ	
B1	GAB2/IO154UDB3	
B2	GND	
В3	GAA0/IO00RSB0	
B4	GAA1/IO01RSB0	
B5	IO14RSB0	
В6	IO19RSB0	
В7	IO23RSB0	
В8	IO31RSB0	
В9	GBB0/IO56RSB0	
B10	GBB1/IO57RSB0	
B11	GND	
B12	VMV1	
C1	IO154VDB3	
C2	GFA2/IO144PPB3	
C3	GAC2/IO153UDB3	
C4	V _{CC}	
C5	IO12RSB0	
C6	IO17RSB0	
C 7	IO25RSB0	
C8	IO32RSB0	
C9	IO53RSB0	
C10	GBA2/IO60PDB1	
C11	IO60NDB1	
C12	GBC2/IO62PPB1	

144-Pin FBGA	
Pin Number	A3P400 Function
D1	IO149NDB3
D2	IO149PDB3
D3	IO153VDB3
D4	GAA2/IO155UPB3
D5	GAC0/IO04RSB0
D6	GAC1/IO05RSB0
D7	GBC0/IO54RSB0
D8	GBC1/IO55RSB0
D9	GBB2/IO61PDB1
D10	IO61NDB1
D11	IO62NPB1
D12	GCB1/IO68PPB1
E1	V _{CC}
E2	GFC0/IO147NDB3
E3	GFC1/IO147PDB3
E4	V _{CCI} B3
E5	IO155VPB3
E6	V _{CCI} B0
E7	V _{CCI} B0
E8	GCC1/IO67PDB1
E9	V _{CCI} B1
E10	V _{CC}
E11	GCA0/IO69NDB1
E12	IO70NDB1
F1	GFB0/IO146NPB3
F2	V _{COMPLF}
F3	GFB1/IO146PPB3
F4	IO144NPB3
F5	GND
F6	GND
F7	GND
F8	GCC0/IO67NDB1
F9	GCB0/IO68NPB1
F10	GND
F11	GCA1/IO69PDB1
F12	GCA2/IO70PDB1

144-Pin FBGA	
Pin Number	A3P400 Function
G1	GFA1/IO145PPB3
G2	GND
G3	V_{CCPLF}
G4	GFA0/IO145NPB3
G5	GND
G6	GND
G 7	GND
G8	GDC1/IO77UPB1
G9	IO72NDB1
G10	GCC2/IO72PDB1
G11	IO71NDB1
G12	GCB2/IO71PDB1
H1	V _{CC}
H2	GFB2/IO143PDB3
Н3	GFC2/IO142PSB3
H4	GEC1/IO137PDB3
H5	V _{CC}
Н6	IO75PDB1
H7	IO75NDB1
H8	GDB2/IO81RSB2
H9	GDC0/IO77VPB1
H10	V _{CCI} B1
H11	IO73PSB1
H12	V _{CC}
J1	GEB1/IO136PDB3
J2	IO143NDB3
J3	V _{CCI} B3
J4	GEC0/IO137NDB3
J5	IO125RSB2
J6	IO116RSB2
J7	V _{CC}
J8	TCK
19	GDA2/IO80RSB2
J10	TDO
J11	GDA1/IO79UDB1
J12	GDB1/IO78UDB1

3-46 v1.5

144-Pin FBGA	
Pin Number	A3P400 Function
K1	GEB0/IO136NDB3
K2	GEA1/IO135PDB3
К3	GEA0/IO135NDB3
K4	GEA2/IO134RSB2
K5	IO127RSB2
K6	IO121RSB2
K7	GND
K8	IO104RSB2
К9	GDC2/IO82RSB2
K10	GND
K11	GDA0/IO79VDB1
K12	GDB0/IO78VDB1
L1	GND
L2	VMV3
L3	GEB2/IO133RSB2
L4	IO128RSB2
L5	V _{CCI} B2
L6	IO119RSB2
L7	IO114RSB2
L8	IO110RSB2
L9	TMS
L10	V_{JTAG}
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO132RSB2
M3	IO129RSB2
M4	IO126RSB2
M5	IO124RSB2
M6	IO122RSB2
M7	IO117RSB2
M8	IO115RSB2
M9	TDI
M10	V _{CCI} B2
M11	V_{PUMP}
M12	GNDQ

144	144-Pin FBGA	
Pin Number A3P600 Function		
A1	GNDQ	
A2	VMV0	
A3	GAB0/IO02RSB0	
A4	GAB1/IO03RSB0	
A5	IO10RSB0	
A6	GND	
A7	IO34RSB0	
A8	V _{CC}	
A9	IO50RSB0	
A10	GBA0/IO58RSB0	
A11	GBA1/IO59RSB0	
A12	GNDQ	
B1	GAB2/IO173PDB3	
В2	GND	
В3	GAA0/IO00RSB0	
В4	GAA1/IO01RSB0	
B5	IO13RSB0	
В6	IO19RSB0	
В7	IO31RSB0	
В8	IO39RSB0	
В9	GBB0/IO56RSB0	
B10	GBB1/IO57RSB0	
B11	GND	
B12	VMV1	
C1	IO173NDB3	
C2	GFA2/IO161PPB3	
C3	GAC2/IO172PDB3	
C4	V _{CC}	
C5	IO16RSB0	
C6	IO25RSB0	
C 7	IO28RSB0	
C8	IO42RSB0	
C9	IO45RSB0	
C10	GBA2/IO60PDB1	
C11	IO60NDB1	
C12	GBC2/IO62PPB1	

144-Pin FBGA	
Pin Number	A3P600 Function
D1	IO169PDB3
D2	IO169NDB3
D3	IO172NDB3
D4	GAA2/IO174PPB3
D5	GAC0/IO04RSB0
D6	GAC1/IO05RSB0
D7	GBC0/IO54RSB0
D8	GBC1/IO55RSB0
D9	GBB2/IO61PDB1
D10	IO61NDB1
D11	IO62NPB1
D12	GCB1/IO70PPB1
E1	V _{CC}
E2	GFC0/IO164NDB3
E3	GFC1/IO164PDB3
E4	V _{CCI} B3
E5	IO174NPB3
E6	V _{CCI} B0
E7	V _{CCI} B0
E8	GCC1/IO69PDB1
E9	V _{CCI} B1
E10	V _{CC}
E11	GCA0/IO71NDB1
E12	IO72NDB1
F1	GFB0/IO163NPB3
F2	V _{COMPLF}
F3	GFB1/IO163PPB3
F4	IO161NPB3
F5	GND
F6	GND
F7	GND
F8	GCC0/IO69NDB1
F9	GCB0/IO70NPB1
F10	GND
F11	GCA1/IO71PDB1
F12	GCA2/IO72PDB1

444 Pin FDC A	
144-Pin FBGA	
Pin Number	A3P600 Function
G1	GFA1/IO162PPB3
G2	GND
G3	V_{CCPLF}
G4	GFA0/IO162NPB3
G5	GND
G6	GND
G 7	GND
G8	GDC1/IO86PPB1
G9	IO74NDB1
G10	GCC2/IO74PDB1
G11	IO73NDB1
G12	GCB2/IO73PDB1
H1	V _{CC}
H2	GFB2/IO160PDB3
Н3	GFC2/IO159PSB3
H4	GEC1/IO146PDB3
H5	V _{CC}
H6	IO80PDB1
H7	IO80NDB1
H8	GDB2/IO90RSB2
H9	GDC0/IO86NPB1
H10	V _{CCI} B1
H11	IO84PSB1
H12	V _{CC}
J1	GEB1/IO145PDB3
J2	IO160NDB3
J3	V _{CCI} B3
J4	GEC0/IO146NDB3
J5	IO129RSB2
J6	IO131RSB2
J7	V _{CC}
J8	TCK
J9	GDA2/IO89RSB2
J10	TDO
J11	GDA1/IO88PDB1
J12	GDB1/IO87PDB1

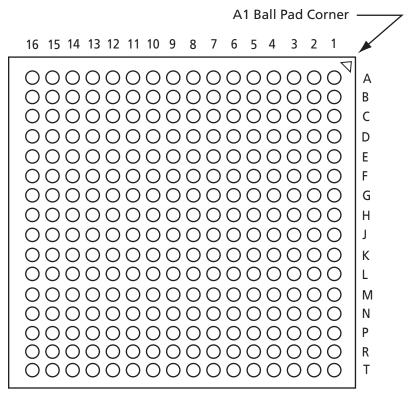
3-48 v1.5

144-Pin FBGA	
Pin Number	A3P600 Function
K1	GEB0/IO145NDB3
K2	GEA1/IO144PDB3
K3	GEA0/IO144NDB3
K4	GEA2/IO143RSB2
K5	IO119RSB2
K6	IO111RSB2
K7	GND
K8	IO94RSB2
К9	GDC2/IO91RSB2
K10	GND
K11	GDA0/IO88NDB1
K12	GDB0/IO87NDB1
L1	GND
L2	VMV3
L3	GEB2/IO142RSB2
L4	IO136RSB2
L5	V _{CCI} B2
L6	IO115RSB2
L7	IO103RSB2
L8	IO97RSB2
L9	TMS
L10	V_{JTAG}
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO141RSB2
M3	IO138RSB2
M4	IO123RSB2
M5	IO126RSB2
M6	IO134RSB2
M7	IO108RSB2
M8	IO99RSB2
M9	TDI
M10	V _{CCI} B2
M11	V_{PUMP}
M12	GNDQ

144-Pin FBGA		
Pin Number	A3P1000 Function	
A1	GNDQ	
A2	VMV0	
A3	GAB0/IO02RSB0	
A4	GAB1/IO03RSB0	
A5	IO10RSB0	
A6	GND	
A7	IO44RSB0	
A8	V _{CC}	
A9	IO69RSB0	
A10	GBA0/IO76RSB0	
A11	GBA1/IO77RSB0	
A12	GNDQ	
B1	GAB2/IO224PDB3	
B2	GND	
В3	GAA0/IO00RSB0	
В4	GAA1/IO01RSB0	
B5	IO13RSB0	
В6	IO26RSB0	
В7	IO35RSB0	
В8	IO60RSB0	
В9	GBB0/IO74RSB0	
B10	GBB1/IO75RSB0	
B11	GND	
B12	VMV1	
C1	IO224NDB3	
C2	GFA2/IO206PPB3	
C3	GAC2/IO223PDB3	
C4	V _{CC}	
C5	IO16RSB0	
C6	IO29RSB0	
C 7	IO32RSB0	
C8	IO63RSB0	
C9	IO66RSB0	
C10	GBA2/IO78PDB1	
C11	IO78NDB1	
C12	GBC2/IO80PPB1	

Pin Number		
	144-Pin FBGA Pin Number A3P1000 Function	
D1	IO213PDB3	
D2	IO213NDB3	
D3	IO223NDB3	
D4	GAA2/IO225PPB3	
D5	GAC0/IO04RSB0	
D6	GAC1/IO05RSB0	
D7	GBC0/IO72RSB0	
D8	GBC1/IO73RSB0	
D9	GBB2/IO79PDB1	
D10	IO79NDB1	
D11	IO80NPB1	
D12	GCB1/IO92PPB1	
E1	V _{CC}	
E2	GFC0/IO209NDB3	
E3	GFC1/IO209PDB3	
E4	VCCIB3	
E5	IO225NPB3	
E6	V _{CCI} B0	
E7	V _{CCI} B0	
E8	GCC1/IO91PDB1	
E9	V _{CCI} B1	
E10	V _{CC}	
E11	GCA0/IO93NDB1	
E12	IO94NDB1	
F1	GFB0/IO208NPB3	
F2	V_{COMPLF}	
F3	GFB1/IO208PPB3	
F4	IO206NPB3	
F5	GND	
F6	GND	
F7	GND	
F8	GCC0/IO91NDB1	
F9	GCB0/IO92NPB1	
F10	GND	
F11	GCA1/IO93PDB1	
F12	GCA2/IO94PDB1	

144-Pin FBGA	
Pin Number A3P1000 Function	
G1	GFA1/IO207PPB3
G2	GND
G2 G3	_
	V _{CCPLF}
G4	GFA0/IO207NPB3
G5	GND
G6	GND
G7	GND
G8	GDC1/IO111PPB1
G9	IO96NDB1
G10	GCC2/IO96PDB1
G11	IO95NDB1
G12	GCB2/IO95PDB1
H1	V _{CC}
H2	GFB2/IO205PDB3
Н3	GFC2/IO204PSB3
H4	GEC1/IO190PDB3
H5	V _{CC}
H6	IO105PDB1
H7	IO105NDB1
H8	GDB2/IO115RSB2
H9	GDC0/IO111NPB1
H10	V _{CCI} B1
H11	IO101PSB1
H12	V _{CC}
J1	GEB1/IO189PDB3
J2	IO205NDB3
J3	V _{CCI} B3
J4	GEC0/IO190NDB3
J5	IO160RSB2
J6	IO157RSB2
J7	V _{CC}
J8	TCK
J9	GDA2/IO114RSB2
J10	TDO
J11	GDA1/IO113PDB1
J12	GDB1/IO112PDB1
	322.7101121001


3-50 v1.5

144-Pin FBGA	
Pin Number A3P1000 Function	
K1	GEB0/IO189NDB3
K2	GEA1/IO188PDB3
K3	GEA0/IO188NDB3
K4	GEA2/IO187RSB2
K5	IO169RSB2
K6	IO152RSB2
K7	GND
K8	IO117RSB2
K9	GDC2/IO116RSB2
K10	GND
K11	GDA0/IO113NDB1
K12	GDB0/IO112NDB1
L1	GND
L2	VMV3
L3	GEB2/IO186RSB2
L4	IO172RSB2
L5	V _{CCI} B2
L6	IO153RSB2
L7	IO144RSB2
L8	IO140RSB2
L9	TMS
L10	V_{JTAG}
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO185RSB2
M3	IO173RSB2
M4	IO168RSB2
M5	IO161RSB2
M6	IO156RSB2
M7	IO145RSB2
M8	IO141RSB2
M9	TDI
M10	V _{CCI} B2
M11	V_{PUMP}
M12	GNDQ

256-Pin FBGA

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

3-52 v1.5

256-Pin FBGA	
Pin Number	A3P250 Function
A1	GND
A2	GAA0/IO00RSB0
A3	GAA1/IO01RSB0
A4	GAB0/IO02RSB0
A5	IO07RSB0
A6	IO10RSB0
A7	IO11RSB0
A8	IO15RSB0
A9	IO20RSB0
A10	IO25RSB0
A11	IO29RSB0
A12	IO33RSB0
A13	GBB1/IO38RSB0
A14	GBA0/IO39RSB0
A15	GBA1/IO40RSB0
A16	GND
B1	GAB2/IO117UDB3
B2	GAA2/IO118UDB3
В3	NC
В4	GAB1/IO03RSB0
B5	IO06RSB0
В6	IO09RSB0
В7	IO12RSB0
В8	IO16RSB0
В9	IO21RSB0
B10	IO26RSB0
B11	IO30RSB0
B12	GBC1/IO36RSB0
B13	GBB0/IO37RSB0
B14	NC
B15	GBA2/IO41PDB1
B16	IO41NDB1
C1	IO117VDB3
C2	IO118VDB3
C3	NC
C4	NC

256-Pin FBGA	
Pin Number	A3P250 Function
C5	GAC0/IO04RSB0
C6	GAC1/IO05RSB0
C7	IO13RSB0
C8	IO17RSB0
C9	IO22RSB0
C10	IO27RSB0
C11	IO31RSB0
C12	GBC0/IO35RSB0
C13	IO34RSB0
C14	NC
C15	IO42NPB1
C16	IO44PDB1
D1	IO114VDB3
D2	IO114UDB3
D3	GAC2/IO116UDB3
D4	NC
D5	GNDQ
D6	IO08RSB0
D7	IO14RSB0
D8	IO18RSB0
D9	IO23RSB0
D10	IO28RSB0
D11	IO32RSB0
D12	GNDQ
D13	NC
D14	GBB2/IO42PPB1
D15	NC
D16	IO44NDB1
E1	IO113PDB3
E2	NC
E3	IO116VDB3
E4	IO115UDB3
E5	VMV0
E6	V _{CCI} B0
E7	V _{CCI} B0
E8	IO19RSB0

256-Pin FBGA	
Pin Number	A3P250 Function
E9	IO24RSB0
E10	V _{CCI} B0
E11	V _{CCI} B0
E12	VMV1
E13	GBC2/IO43PDB1
E14	IO46RSB1
E15	NC
E16	IO45PDB1
F1	IO113NDB3
F2	IO112PPB3
F3	NC
F4	IO115VDB3
F5	V _{CCI} B3
F6	GND
F7	V _{CC}
F8	V _{CC}
F9	V _{CC}
F10	V _{CC}
F11	GND
F12	V _{CCI} B1
F13	IO43NDB1
F14	NC
F15	IO47PPB1
F16	IO45NDB1
G1	IO111NDB3
G2	IO111PDB3
G3	IO112NPB3
G4	GFC1/IO110PPB3
G5	V _{CCI} B3
G6	V _{CC}
G7	GND
G8	GND
G9	GND
G10	GND
G11	V _{CC}
G12	V _{CCI} B1

256-Pin FBGA	
Pin Number A3P250 Function	
G13	GCC1/IO48PPB1
G14	IO47NPB1
G15	IO54PDB1
G16	IO54NDB1
H1	GFB0/IO109NPB3
H2	GFA0/IO108NDB3
Н3	GFB1/IO109PPB3
H4	V _{COMPLF}
H5	GFC0/IO110NPB3
H6	V _{CC}
H7	GND
Н8	GND
H9	GND
H10	GND
H11	V _{CC}
H12	GCC0/IO48NPB1
H13	GCB1/IO49PPB1
H14	GCA0/IO50NPB1
H15	NC
H16	GCB0/IO49NPB1
J1	GFA2/IO107PPB3
J2	GFA1/IO108PDB3
J3	V _{CCPLF}
J4	IO106NDB3
J5	GFB2/IO106PDB3
J6	V _{CC}
J7	GND
J8	GND
J9	GND
J10	GND
J11	V _{CC}
J12	GCB2/IO52PPB1
J13	GCA1/IO50PPB1
J14	GCC2/IO53PPB1
J15	NC
J16	GCA2/IO51PDB1

256-Pin FBGA	
Pin Number A3P250 Function	
K1	GFC2/IO105PDB3
K2	IO107NPB3
K3	IO107NFB3
K4	NC
	_
K5	V _{CCI} B3
K6	V _{CC}
K7	GND
K8	GND
K9	GND
K10	GND
K11	V _{CC}
K12	V _{CCI} B1
K13	IO52NPB1
K14	IO55RSB1
K15	IO53NPB1
K16	IO51NDB1
L1	IO105NDB3
L2	IO104NPB3
L3	NC
L4	IO102RSB3
L5	V _{CCI} B3
L6	GND
L7	V _{CC}
L8	V _{CC}
L9	V _{CC}
L10	V _{CC}
L11	GND
L12	V _{CCI} B1
L13	GDB0/IO59VPB1
L14	IO57VDB1
L15	IO57UDB1
L16	IO56PDB1
M1	IO103PDB3
M2	NC
M3	IO101NPB3
M4	GEC0/IO100NPB3

arc pic sp.c.	
256-Pin FBGA	
Pin Number	A3P250 Function
M5	VMV3
M6	V _{CCI} B2
M7	V _{CCI} B2
M8	NC
M9	IO74RSB2
M10	V _{CCI} B2
M11	V _{CCI} B2
M12	VMV2
M13	NC
M14	GDB1/IO59UPB1
M15	GDC1/IO58UDB1
M16	IO56NDB1
N1	IO103NDB3
N2	IO101PPB3
N3	GEC1/IO100PPB3
N4	NC
N5	GNDQ
N6	GEA2/IO97RSB2
N7	IO86RSB2
N8	IO82RSB2
N9	IO75RSB2
N10	IO69RSB2
N11	IO64RSB2
N12	GNDQ
N13	NC
N14	V_{JTAG}
N15	GDC0/IO58VDB1
N16	GDA1/IO60UDB1
P1	GEB1/IO99PDB3
P2	GEB0/IO99NDB3
Р3	NC
P4	NC
P5	IO92RSB2
P6	IO89RSB2
P7	IO85RSB2
P8	IO81RSB2

3-54 v1.5

	-Pin FBGA
Pin Number	A3P250 Function
P9	IO76RSB2
P10	IO71RSB2
P11	IO66RSB2
P12	NC
P13	TCK
P14	V_{PUMP}
P15	TRST
P16	GDA0/IO60VDB1
R1	GEA1/IO98PDB3
R2	GEA0/IO98NDB3
R3	NC
R4	GEC2/IO95RSB2
R5	IO91RSB2
R6	IO88RSB2
R7	IO84RSB2
R8	IO80RSB2
R9	IO77RSB2
R10	IO72RSB2
R11	IO68RSB2
R12	IO65RSB2
R13	GDB2/IO62RSB2
R14	TDI
R15	NC
R16	TDO
T1	GND
T2	IO94RSB2
T3	GEB2/IO96RSB2
T4	IO93RSB2
T5	IO90RSB2
T6	IO87RSB2
T7	IO83RSB2
Т8	IO79RSB2
Т9	IO78RSB2
T10	IO73RSB2
T11	IO70RSB2
T12	GDC2/IO63RSB2

256-Pin FBGA	
Pin Number	A3P250 Function
T13	IO67RSB2
T14	GDA2/IO61RSB2
T15	TMS
T16	GND

256-Pin FBGA	
Pin Number A3P400 Function	
A1	GND
A2	GAA0/IO00RSB0
A3	GAA1/IO01RSB0
A4	GAB0/IO02RSB0
A5	IO16RSB0
A6	IO17RSB0
A7	IO22RSB0
A8	IO28RSB0
A9	IO34RSB0
A10	IO37RSB0
A11	IO41RSB0
A12	IO43RSB0
A13	GBB1/IO57RSB0
A14	GBA0/IO58RSB0
A15	GBA1/IO59RSB0
A16	GND
B1	GAB2/IO154UDB3
B2	GAA2/IO155UDB3
В3	IO12RSB0
В4	GAB1/IO03RSB0
B5	IO13RSB0
В6	IO14RSB0
В7	IO21RSB0
В8	IO27RSB0
В9	IO32RSB0
B10	IO38RSB0
B11	IO42RSB0
B12	GBC1/IO55RSB0
B13	GBB0/IO56RSB0
B14	IO44RSB0
B15	GBA2/IO60PDB1
B16	IO60NDB1
C1	IO154VDB3
C2	IO155VDB3
C3	IO11RSB0
C4	IO07RSB0

256-Pin FBGA	
Pin Number	A3P400 Function
C5	GAC0/IO04RSB0
C6	GAC1/IO05RSB0
C7	IO20RSB0
C8	IO24RSB0
C9	IO33RSB0
C10	IO39RSB0
C10	IO45RSB0
C12	GBC0/IO54RSB0
C12	IO48RSB0
C13	VMV0
_	
C15 C16	IO61NPB1
	IO63PDB1
D1	IO151VDB3
D2	IO151UDB3
D3	GAC2/IO153UDB3
D4	IO06RSB0
D5	GNDQ
D6	IO10RSB0
D7	IO19RSB0
D8	IO26RSB0
D9	IO30RSB0
D10	IO40RSB0
D11	IO46RSB0
D12	GNDQ
D13	IO47RSB0
D14	GBB2/IO61PPB1
D15	IO53RSB0
D16	IO63NDB1
E1	IO150PDB3
E2	IO08RSB0
E3	IO153VDB3
E4	IO152VDB3
E5	VMV0
E6	V _{CCI} B0
E7	V _{CCI} B0
E8	IO25RSB0

256-Pin FBGA	
Pin Number	A3P400 Function
E9	IO31RSB0
E10	V _{CCI} B0
E11	V _{CCI} B0
E12	VMV1
E13	GBC2/IO62PDB1
E14	IO65RSB1
E15	IO52RSB0
E16	IO66PDB1
F1	IO150NDB3
F2	IO149NPB3
F3	IO09RSB0
F4	IO152UDB3
F5	V _{CCI} B3
F6	GND
F7	V _{CC}
F8	V _{CC}
F9	V _{CC}
F10	V _{CC}
F11	GND
F12	V _{CCI} B1
F13	IO62NDB1
F14	IO49RSB0
F15	IO64PPB1
F16	IO66NDB1
G1	IO148NDB3
G2	IO148PDB3
G3	IO149PPB3
G4	GFC1/IO147PPB3
G5	V _{CCI} B3
G6	V _{CC}
G7	GND
G8	GND
G9	GND
G10	GND
G11	V _{CC}
G12	V _{CCI} B1

3-56 v1.5

256-Pin FBGA	
Pin Number A3P400 Function	
G13	GCC1/IO67PPB1
G14	IO64NPB1
G15	IO73PDB1
G16	IO73NDB1
H1	GFB0/IO146NPB3
H2	GFA0/IO145NDB3
Н3	GFB1/IO146PPB3
H4	V_{COMPLF}
H5	GFC0/IO147NPB3
H6	V _{CC}
H7	GND
Н8	GND
H9	GND
H10	GND
H11	V _{CC}
H12	GCC0/IO67NPB1
H13	GCB1/IO68PPB1
H14	GCA0/IO69NPB1
H15	NC
H16	GCB0/IO68NPB1
J1	GFA2/IO144PPB3
J2	GFA1/IO145PDB3
J3	V_{CCPLF}
J4	IO143NDB3
J5	GFB2/IO143PDB3
J6	V _{CC}
J7	GND
J8	GND
J9	GND
J10	GND
J11	V _{CC}
J12	GCB2/IO71PPB1
J13	GCA1/IO69PPB1
J14	GCC2/IO72PPB1
J15	NC
J16	GCA2/IO70PDB1

256-Pin FBGA	
Pin Number	A3P400 Function
K1	GFC2/IO142PDB3
K2	IO144NPB3
K3	IO141PPB3
K4	IO120RSB2
K5	V _{CCI} B3
K6	V _{CC}
K7	GND
K8	GND
K9	GND
K10	GND
K11	V _{CC}
K12	V _{CCI} B1
K13	IO71NPB1
K14	IO74RSB1
K15	IO72NPB1
K16	IO70NDB1
L1	IO142NDB3
L2	IO141NPB3
L3	IO125RSB2
L4	IO139RSB3
L5	V _{CCI} B3
L6	GND
L7	V _{CC}
L8	V _{CC}
L9	V _{CC}
L10	V _{CC}
L11	GND
L12	V _{CCI} B1
L13	GDB0/IO78VPB1
L14	IO76VDB1
L15	IO76UDB1
L16	IO75PDB1
M1	IO140PDB3
M2	IO130RSB2
M3	IO138NPB3
M4	GEC0/IO137NPB3

256-Pin FBGA	
Pin Number	A3P400 Function
M5	VMV3
M6	V _{CCI} B2
M7	V _{CCI} B2
M8	IO108RSB2
M9	IO101RSB2
M10	V _{CCI} B2
M11	V _{CCI} B2
M12	VMV2
M13	IO83RSB2
M14	GDB1/IO78UPB1
M15	GDC1/IO77UDB1
M16	IO75NDB1
N1	IO140NDB3
N2	IO138PPB3
N3	GEC1/IO137PPB3
N4	IO131RSB2
N5	GNDQ
N6	GEA2/IO134RSB2
N7	IO117RSB2
N8	IO111RSB2
N9	IO99RSB2
N10	IO94RSB2
N11	IO87RSB2
N12	GNDQ
N13	IO93RSB2
N14	V_{JTAG}
N15	GDC0/IO77VDB1
N16	GDA1/IO79UDB1
P1	GEB1/IO136PDB3
P2	GEB0/IO136NDB3
Р3	VMV2
P4	IO129RSB2
P5	IO128RSB2
P6	IO122RSB2
P7	IO115RSB2
P8	IO110RSB2

256-Pin FBGA	
Pin Number	A3P400 Function
P9	IO98RSB2
P10	IO95RSB2
P11	IO88RSB2
P12	IO84RSB2
P13	TCK
P14	V _{PUMP}
P15	TRST
P16	GDA0/IO79VDB1
R1	GEA1/IO135PDB3
R2	GEA0/IO135NDB3
R3	IO127RSB2
R4	GEC2/IO132RSB2
R5	IO123RSB2
R6	IO118RSB2
R7	IO112RSB2
R8	IO106RSB2
R9	IO100RSB2
R10	IO96RSB2
R11	IO89RSB2
R12	IO85RSB2
R13	GDB2/IO81RSB2
R14	TDI
R15	NC
R16	TDO
T1	GND
T2	IO126RSB2
T3	GEB2/IO133RSB2
T4	IO124RSB2
T5	IO116RSB2
Т6	IO113RSB2
T7	IO107RSB2
Т8	IO105RSB2
Т9	IO102RSB2
T10	IO97RSB2
T11	IO92RSB2
T12	GDC2/IO82RSB2

256-Pin FBGA	
Pin Number	A3P400 Function
T13	IO86RSB2
T14	GDA2/IO80RSB2
T15	TMS
T16	GND

3-58 v1.5

256-Pin FBGA	
Pin Number	A3P600 Function
A1	GND
A2	GAA0/IO00RSB0
A3	GAA1/IO01RSB0
A4	GAB0/IO02RSB0
A5	IO11RSB0
A6	IO16RSB0
A7	IO18RSB0
A8	IO28RSB0
A9	IO34RSB0
A10	IO37RSB0
A11	IO41RSB0
A12	IO43RSB0
A13	GBB1/IO57RSB0
A14	GBA0/IO58RSB0
A15	GBA1/IO59RSB0
A16	GND
B1	GAB2/IO173PDB3
В2	GAA2/IO174PDB3
В3	GNDQ
В4	GAB1/IO03RSB0
B5	IO13RSB0
В6	IO14RSB0
В7	IO21RSB0
В8	IO27RSB0
В9	IO32RSB0
B10	IO38RSB0
B11	IO42RSB0
B12	GBC1/IO55RSB0
B13	GBB0/IO56RSB0
B14	IO52RSB0
B15	GBA2/IO60PDB1
B16	IO60NDB1
C1	IO173NDB3
C2	IO174NDB3
C3	VMV3
C4	IO07RSB0

256	-Pin FBGA
Pin Number	A3P600 Function
C5	GAC0/IO04RSB0
C6	GAC1/IO05RSB0
C 7	IO20RSB0
C8	IO24RSB0
C9	IO33RSB0
C10	IO39RSB0
C11	IO44RSB0
C12	GBC0/IO54RSB0
C13	IO51RSB0
C14	VMV0
C15	IO61NPB1
C16	IO63PDB1
D1	IO171NDB3
D2	IO171PDB3
D3	GAC2/IO172PDB3
D4	IO06RSB0
D5	GNDQ
D6	IO10RSB0
D7	IO19RSB0
D8	IO26RSB0
D9	IO30RSB0
D10	IO40RSB0
D11	IO45RSB0
D12	GNDQ
D13	IO50RSB0
D14	GBB2/IO61PPB1
D15	IO53RSB0
D16	IO63NDB1
E1	IO166PDB3
E2	IO167NPB3
E3	IO172NDB3
E4	IO169NDB3
E5	VMV0
E6	V _{CCI} B0
E7	V _{CCI} B0
E8	IO25RSB0

256-Pin FBGA	
Pin Number	A3P600 Function
E9	IO31RSB0
E10	V _{CCI} B0
E11	V _{CCI} B0
E12	VMV1
E13	GBC2/IO62PDB1
E14	IO67PPB1
E15	IO64PPB1
E16	IO66PDB1
F1	IO166NDB3
F2	IO168NPB3
F3	IO167PPB3
F4	IO169PDB3
F5	V _{CCI} B3
F6	GND
F7	V _{CC}
F8	V _{CC}
F9	V _{CC}
F10	V _{CC}
F11	GND
F12	V _{CCI} B1
F13	IO62NDB1
F14	IO64NPB1
F15	IO65PPB1
F16	IO66NDB1
G1	IO165NDB3
G2	IO165PDB3
G3	IO168PPB3
G4	GFC1/IO164PPB3
G5	V _{CCI} B3
G6	V _{CC}
G7	GND
G8	GND
G9	GND
G10	GND
G11	V _{CC}
G12	V _{CCI} B1

256-Pin FBGA	
Pin Number	A3P600 Function
G13	GCC1/IO69PPB1
G14	IO65NPB1
G15	IO75PDB1
G16	IO75NDB1
H1	GFB0/IO163NPB3
H2	GFA0/IO162NDB3
H3	GFB1/IO163PPB3
H4	V _{COMPLF}
H5	GFC0/IO164NPB3
H6	V _{CC}
H7	GND
H8	GND
Н9	GND
H10	GND
H11	V _{CC}
H12	GCC0/IO69NPB1
H13	GCB1/IO70PPB1
H14	GCA0/IO71NPB1
H15	IO67NPB1
H16	GCB0/IO70NPB1
J1	GFA2/IO161PPB3
J2	GFA1/IO162PDB3
J3	V _{CCPLF}
J4	IO160NDB3
J5	GFB2/IO160PDB3
J6	V _{CC}
J7	GND
J8	GND
J9	GND
J10	GND
J11	V _{CC}
J12	GCB2/IO73PPB1
J13	GCA1/IO71PPB1
J14	GCC2/IO74PPB1
J15	IO80PPB1
J16	GCA2/IO72PDB1

256-Pin FBGA	
Pin Number	A3P600 Function
K1	GFC2/IO159PDB3
K2	IO161NPB3
K3	IO156PPB3
K4	IO129RSB2
K5	V _{CCI} B3
K6	V _{CC}
K7	GND
K8	GND
К9	GND
K10	GND
K11	V _{CC}
K12	V _{CCI} B1
K13	IO73NPB1
K14	IO80NPB1
K15	IO74NPB1
K16	IO72NDB1
L1	IO159NDB3
L2	IO156NPB3
L3	IO151PPB3
L4	IO158PSB3
L5	V _{CCI} B3
L6	GND
L7	V _{CC}
L8	V _{CC}
L9	V _{CC}
L10	V _{CC}
L11	GND
L12	V _{CCI} B1
L13	GDB0/IO87NPB1
L14	IO85NDB1
L15	IO85PDB1
L16	IO84PDB1
M1	IO150PDB3
M2	IO151NPB3
M3	IO147NPB3
M4	GEC0/IO146NPB3

256-Pin FBGA	
Pin Number	A3P600 Function
M5	VMV3
M6	V _{CCI} B2
M7	V _{CCI} B2
M8	IO117RSB2
M9	IO110RSB2
M10	V _{CCI} B2
M11	V _{CCI} B2
M12	VMV2
M13	IO94RSB2
M14	GDB1/IO87PPB1
M15	GDC1/IO86PDB1
M16	IO84NDB1
N1	IO150NDB3
N2	IO147PPB3
N3	GEC1/IO146PPB3
N4	IO140RSB2
N5	GNDQ
N6	GEA2/IO143RSB2
N7	IO126RSB2
N8	IO120RSB2
N9	IO108RSB2
N10	IO103RSB2
N11	IO99RSB2
N12	GNDQ
N13	IO92RSB2
N14	V_{JTAG}
N15	GDC0/IO86NDB1
N16	GDA1/IO88PDB1
P1	GEB1/IO145PDB3
P2	GEB0/IO145NDB3
P3	VMV2
P4	IO138RSB2
P5	IO136RSB2
P6	IO131RSB2
P7	IO124RSB2
P8	IO119RSB2

3-60 v1.5

256-Pin FBGA	
Pin Number	A3P600 Function
P9	IO107RSB2
P10	IO107R3B2
P11	IO97RSB2
P12	VMV1
P12	TCK
P14	-
	V _{PUMP}
P15	TRST
P16	GDA0/IO88NDB1
R1	GEA1/IO144PDB3
R2	GEA0/IO144NDB3
R3	IO139RSB2
R4	GEC2/IO141RSB2
R5	IO132RSB2
R6	IO127RSB2
R7	IO121RSB2
R8	IO114RSB2
R9	IO109RSB2
R10	IO105RSB2
R11	IO98RSB2
R12	IO96RSB2
R13	GDB2/IO90RSB2
R14	TDI
R15	GNDQ
R16	TDO
T1	GND
T2	IO137RSB2
Т3	GEB2/IO142RSB2
T4	IO134RSB2
T5	IO125RSB2
T6	IO123RSB2
Т7	IO118RSB2
Т8	IO115RSB2
Т9	IO111RSB2
T10	IO106RSB2
T11	IO102RSB2
T12	GDC2/IO91RSB2

256-Pin FBGA	
Pin Number	A3P600 Function
T13	IO93RSB2
T14	GDA2/IO89RSB2
T15	TMS
T16	GND

256-Pin FBGA	
Pin Number	A3P1000 Function
A1	GND
A2	GAA0/IO00RSB0
A3	GAA1/IO01RSB0
A4	GAB0/IO02RSB0
A5	IO16RSB0
A6	IO22RSB0
A7	IO28RSB0
A8	IO35RSB0
A9	IO45RSB0
A10	IO50RSB0
A11	IO55RSB0
A12	IO61RSB0
A13	GBB1/IO75RSB0
A14	GBA0/IO76RSB0
A15	GBA1/IO77RSB0
A16	GND
B1	GAB2/IO224PDB3
В2	GAA2/IO225PDB3
В3	GNDQ
B4	GAB1/IO03RSB0
В5	IO17RSB0
В6	IO21RSB0
В7	IO27RSB0
В8	IO34RSB0
В9	IO44RSB0
B10	IO51RSB0
B11	IO57RSB0
B12	GBC1/IO73RSB0
B13	GBB0/IO74RSB0
B14	IO71RSB0
B15	GBA2/IO78PDB1
B16	IO81PDB1
C1	IO224NDB3
C2	IO225NDB3
C3	VMV3
C4	IO11RSB0
C5	GAC0/IO04RSB0
C6	GAC1/IO05RSB0

256-Pin FBGA	
Pin Number	A3P1000 Function
C7	IO25RSB0
C8	IO36RSB0
C9	IO42RSB0
C10	IO49RSB0
C11	IO56RSB0
C12	GBC0/IO72RSB0
C13	IO62RSB0
C14	VMV0
C15	IO78NDB1
C16	IO81NDB1
D1	IO222NDB3
D2	IO222PDB3
D3	GAC2/IO223PDB3
D4	IO223NDB3
D5	GNDQ
D6	IO23RSB0
D7	IO29RSB0
D8	IO33RSB0
D9	IO46RSB0
D10	IO52RSB0
D11	IO60RSB0
D12	GNDQ
D13	IO80NDB1
D14	GBB2/IO79PDB1
D15	IO79NDB1
D16	IO82NSB1
E1	IO217PDB3
E2	IO218PDB3
E3	IO221NDB3
E4	IO221PDB3
E5	VMV0
E6	V _{CCI} B0
E7	V _{CCI} B0
E8	IO38RSB0
E9	IO47RSB0
E10	V _{CCI} B0
E11	V _{CCI} B0
E12	VMV1

DEC Dis EDGA	
256-Pin FBGA	
Pin Number	A3P1000 Function
E13	GBC2/IO80PDB1
E14	IO83PPB1
E15	IO86PPB1
E16	IO87PDB1
F1	IO217NDB3
F2	IO218NDB3
F3	IO216PDB3
F4	IO216NDB3
F5	V _{CCI} B3
F6	GND
F7	V _{CC}
F8	V _{CC}
F9	V _{CC}
F10	V _{CC}
F11	GND
F12	V _{CCI} B1
F13	IO83NPB1
F14	IO86NPB1
F15	IO90PPB1
F16	IO87NDB1
G1	IO210PSB3
G2	IO213NDB3
G3	IO213PDB3
G4	GFC1/IO209PPB3
G5	V _{CCI} B3
G6	V _{CC}
G7	GND
G8	GND
G9	GND
G10	GND
G11	V _{CC}
G12	V _{CCI} B1
G13	GCC1/IO91PPB1
G14	IO90NPB1
G15	IO88PDB1
G16	IO88NDB1
H1	GFB0/IO208NPB3
H2	GFA0/IO207NDB3

3-62 v1.5

256-Pin FBGA	
Pin Number	A3P1000 Function
H3	GFB1/IO208PPB3
H4	V _{COMPLF}
H5	GFC0/IO209NPB3
H6	V _{CC}
H7	GND
H8	GND
H9	GND
H10	GND
H11	V _{CC}
H12	GCC0/IO91NPB1
H13	GCB1/IO92PPB1
H14	GCA0/IO93NPB1
H15	IO96NPB1
H16	GCB0/IO92NPB1
J1	GFA2/IO206PSB3
J2	GFA1/IO207PDB3
J3	V_{CCPLF}
J4	IO205NDB3
J5	GFB2/IO205PDB3
J6	V _{CC}
J7	GND
J8	GND
J9	GND
J10	GND
J11	V _{CC}
J12	GCB2/IO95PPB1
J13	GCA1/IO93PPB1
J14	GCC2/IO96PPB1
J15	IO100PPB1
J16	GCA2/IO94PSB1
K1	GFC2/IO204PDB3
K2	IO204NDB3
К3	IO203NDB3
K4	IO203PDB3
K5	V _{CCI} B3
K6	V _{CC}
K7	GND
K8	GND

256-Pin FBGA	
A3P1000 Function	
GND	
GND	
V _{CC}	
V _{CCI} B1	
IO95NPB1	
IO100NPB1	
IO102NDB1	
IO102PDB1	
IO202NDB3	
IO202PDB3	
IO196PPB3	
IO193PPB3	
V _{CCI} B3	
GND	
V _{CC}	
GND	
V _{CCI} B1	
GDB0/IO112NPB1	
IO106NDB1	
IO106PDB1	
IO107PDB1	
IO197NSB3	
IO196NPB3	
IO193NPB3	
GEC0/IO190NPB3	
VMV3	
V _{CCI} B2	
V _{CCI} B2	
IO147RSB2	
IO136RSB2	
V _{CCI} B2	
V _{CCI} B2	
VMV2	
IO110NDB1	
GDB1/IO112PPB1	

256-Pin FBGA	
Pin Number	A3P1000 Function
M15	GDC1/IO111PDB1
M16	IO107NDB1
N1	IO194PSB3
N2	IO192PPB3
N3	GEC1/IO190PPB3
N4	IO192NPB3
N5	GNDQ
N6	GEA2/IO187RSB2
N7	IO161RSB2
N8	IO155RSB2
N9	IO133R3B2
N10	IO141RSB2
-	
N11 N12	IO124RSB2
	GNDQ
N13	IO110PDB1
N14	V _{JTAG}
N15	GDC0/IO111NDB1
N16	GDA1/IO113PDB1
P1	GEB1/IO189PDB3
P2	GEB0/IO189NDB3
P3	VMV2
P4	IO179RSB2
P5	IO171RSB2
P6	IO165RSB2
P7	IO159RSB2
P8	IO151RSB2
P9	IO137RSB2
P10	IO134RSB2
P11	IO128RSB2
P12	VMV1
P13	TCK
P14	V_{PUMP}
P15	TRST
P16	GDA0/IO113NDB1
R1	GEA1/IO188PDB3
R2	GEA0/IO188NDB3
R3	IO184RSB2
R4	GEC2/IO185RSB2

256-Pin FBGA	
Pin Number	A3P1000 Function
R5	IO168RSB2
R6	IO163RSB2
R7	IO157RSB2
R8	IO149RSB2
R9	IO143RSB2
R10	IO138RSB2
R11	IO131RSB2
R12	IO125RSB2
R13	GDB2/IO115RSB2
R14	TDI
R15	GNDQ
R16	TDO
T1	GND
T2	IO183RSB2
T3	GEB2/IO186RSB2
T4	IO172RSB2
T5	IO170RSB2
T6	IO164RSB2
T7	IO158RSB2
Т8	IO153RSB2
Т9	IO142RSB2
T10	IO135RSB2
T11	IO130RSB2
T12	GDC2/IO116RSB2
T13	IO120RSB2
T14	GDA2/IO114RSB2
T15	TMS
T16	GND

3-64 v1.5

484-Pin FBGA

A1 Ball Pad Corner

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Α В C D Ε F G Н J K L M Ν Ρ R Τ U V W Υ AA

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx.

> v1.5 3-65

AB

484-Pin FBGA	
Pin Number	A3P400 Function
A1	GND
A2	GND
A3	V _{CCI} B0
A4	NC
A5	NC
A6	IO15RSB0
A7	IO18RSB0
A8	NC
A9	NC
A10	IO23RSB0
A11	IO29RSB0
A12	IO35RSB0
A13	IO36RSB0
A14	NC
A15	NC
A16	IO50RSB0
A17	IO51RSB0
A18	NC
A19	NC
A20	V _{CCI} B0
A21	GND
A22	GND
B1	GND
B2	V _{CCI} B3
В3	NC
В4	NC
B5	NC
В6	NC
В7	NC
В8	NC
В9	NC
B10	NC
B11	NC
B12	NC
B13	NC
B14	NC

Pin Number A3P400 Function B15 NC B16 NC B17 NC B18 NC B19 NC B20 NC B21 V _{CCI} B1 B22 GND C1 V _{CCI} B3 C2 NC C3 NC C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	484-Pin FBGA	
B16 NC B17 NC B18 NC B19 NC B20 NC B21 V _{CCI} B1 B22 GND C1 V _{CCI} B3 C2 NC C3 NC C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC		
B17 NC B18 NC B19 NC B20 NC B21 V _{CCI} B1 B22 GND C1 V _{CCI} B3 C2 NC C3 NC C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC		
B17 NC B18 NC B19 NC B20 NC B21 V _{CCI} B1 B22 GND C1 V _{CCI} B3 C2 NC C3 NC C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	B16	NC
B19 NC B20 NC B21 V _{CCI} B1 B22 GND C1 V _{CCI} B3 C2 NC C3 NC C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC		
B19 NC B20 NC B21 V _{CCI} B1 B22 GND C1 V _{CCI} B3 C2 NC C3 NC C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC		
B20 NC B21 V _{CCI} B1 B22 GND C1 V _{CCI} B3 C2 NC C3 NC C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC		
B21 V _{CCI} B1 B22 GND C1 V _{CCI} B3 C2 NC C3 NC C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC		
B22 GND	B21	V _{CCI} B1
C1 V _{CCI} B3 C2 NC C3 NC C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC		
C2 NC C3 NC C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C1	V _{CCI} B3
C3 NC C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC		
C4 NC C5 GND C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC		
C6 NC C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C4	
C7 NC C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C5	GND
C8 V _{CC} C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C6	NC
C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C7	NC
C9 V _{CC} C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C8	V _{CC}
C10 NC C11 NC C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C9	
C12 NC C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C10	
C13 NC C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C11	NC
C14 V _{CC} C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C12	NC
C15	C13	NC
C15 V _{CC} C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C14	V _{CC}
C16 NC C17 NC C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C15	
C18 GND C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C16	
C19 NC C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C17	NC
C20 NC C21 NC C22 V _{CCI} B1 D1 NC	C18	GND
C21 NC C22 V _{CCI} B1 D1 NC	C19	NC
C22 V _{CCI} B1 D1 NC	C20	NC
D1 NC	C21	NC
	C22	V _{CCI} B1
D2 NC	D1	NC
1 1	D2	NC
D3 NC	D3	NC
D4 GND	D4	GND
D5 GAA0/IO00RSB0	D5	GAA0/IO00RSB0
D6 GAA1/IO01RSB0	D6	GAA1/IO01RSB0

484-Pin FBGA	
Pin Number	A3P400 Function
D7	GAB0/IO02RSB0
D8	IO16RSB0
D9	IO17RSB0
D10	IO22RSB0
D11	IO28RSB0
D12	IO34RSB0
D13	IO37RSB0
D14	IO41RSB0
D15	IO43RSB0
D16	GBB1/IO57RSB0
D17	GBA0/IO58RSB0
D18	GBA1/IO59RSB0
D19	GND
D20	NC
D21	NC
D22	NC
E1	NC
E2	NC
E3	GND
E4	GAB2/IO154UDB3
E5	GAA2/IO155UDB3
E6	IO12RSB0
E7	GAB1/IO03RSB0
E8	IO13RSB0
E9	IO14RSB0
E10	IO21RSB0
E11	IO27RSB0
E12	IO32RSB0
E13	IO38RSB0
E14	IO42RSB0
E15	GBC1/IO55RSB0
E16	GBB0/IO56RSB0
E17	IO44RSB0
E18	GBA2/IO60PDB1
E19	IO60NDB1
E20	GND

3-66 v1.5

484-Pin FBGA	
Pin Number	A3P400 Function
E21	NC
E22	NC
F1	NC
F2	NC
F3	NC
F4	IO154VDB3
F5	IO155VDB3
F6	IO11RSB0
F7	IO07RSB0
F8	GAC0/IO04RSB0
F9	GAC1/IO05RSB0
F10	IO20RSB0
F11	IO24RSB0
F12	IO33RSB0
F13	IO39RSB0
F14	IO45RSB0
F15	GBC0/IO54RSB0
F16	IO48RSB0
F17	VMV0
F18	IO61NPB1
F19	IO63PDB1
F20	NC
F21	NC
F22	NC
G1	NC
G2	NC
G3	NC
G4	IO151VDB3
G5	IO151UDB3
G6	GAC2/IO153UDB3
G 7	IO06RSB0
G8	GNDQ
G9	IO10RSB0
G10	IO19RSB0
G11	IO26RSB0
G12	IO30RSB0

484-Pin FBGA	
Pin Number	A3P400 Function
G13	IO40RSB0
G14	IO46RSB0
G15	GNDQ
G16	IO47RSB0
G17	GBB2/IO61PPB1
G18	IO53RSB0
G19	IO63NDB1
G20	NC
G21	NC
G22	NC
H1	NC
H2	NC
Н3	V _{CC}
H4	IO150PDB3
H5	IO08RSB0
H6	IO153VDB3
H7	IO152VDB3
Н8	VMV0
Н9	V _{CCI} B0
H10	V _{CCI} B0
H11	IO25RSB0
H12	IO31RSB0
H13	V _{CCI} B0
H14	V _{CCI} B0
H15	VMV1
H16	GBC2/IO62PDB1
H17	IO65RSB1
H18	IO52RSB0
H19	IO66PDB1
H20	V _{CC}
H21	NC
H22	NC
J1	NC
J2	NC
J3	NC
J4	IO150NDB3

484-Pin FBGA	
Pin Number	A3P400 Function
J5	IO149NPB3
J6	IO09RSB0
J7	IO152UDB3
J8	V _{CCI} B3
J9	GND
J10	V _{CC}
J11	V _{CC}
J12	V _{CC}
J13	V _{CC}
J14	GND
J15	V _{CCI} B1
J16	IO62NDB1
J17	IO49RSB0
J18	IO64PPB1
J19	IO66NDB1
J20	NC
J21	NC
J22	NC
K1	NC
K2	NC
K3	NC
K4	IO148NDB3
K5	IO148PDB3
K6	IO149PPB3
K7	GFC1/IO147PPB3
K8	V _{CCI} B3
К9	V _{CC}
K10	GND
K11	GND
K12	GND
K13	GND
K14	V _{CC}
K15	V _{CCI} B1
K16	GCC1/IO67PPB1
K17	IO64NPB1
K18	IO73PDB1

484-Pin FBGA	
Pin Number	A3P400 Function
K19	IO73NDB1
K20	NC
K21	NC
K22	NC
L1	NC
L2	NC
L3	NC
L4	GFB0/IO146NPB3
L5	GFA0/IO145NDB3
L6	GFB1/IO146PPB3
L7	V_{COMPLF}
L8	GFC0/IO147NPB3
L9	V _{CC}
L10	GND
L11	GND
L12	GND
L13	GND
L14	V _{CC}
L15	GCC0/IO67NPB1
L16	GCB1/IO68PPB1
L17	GCA0/IO69NPB1
L18	NC
L19	GCB0/IO68NPB1
L20	NC
L21	NC
L22	NC
M1	NC
M2	NC
M3	NC
M4	GFA2/IO144PPB3
M5	GFA1/IO145PDB3
M6	V_{CCPLF}
M7	IO143NDB3
M8	GFB2/IO143PDB3
M9	V _{CC}
M10	GND

484-Pin FBGA	
Pin Number	A3P400 Function
M11	GND
M12	GND
M13	GND
M14	V _{CC}
M15	GCB2/IO71PPB1
M16	GCA1/IO69PPB1
M17	GCC2/IO72PPB1
M18	NC
M19	GCA2/IO70PDB1
M20	NC
M21	NC
M22	NC
N1	NC
N2	NC
N3	NC
N4	GFC2/IO142PDB3
N5	IO144NPB3
N6	IO141PPB3
N7	IO120RSB2
N8	V _{CCI} B3
N9	V _{CC}
N10	GND
N11	GND
N12	GND
N13	GND
N14	V _{CC}
N15	V _{CCI} B1
N16	IO71NPB1
N17	IO74RSB1
N18	IO72NPB1
N19	IO70NDB1
N20	NC
N21	NC
N22	NC
P1	NC
P2	NC

404 51	
484-Pin FBGA	
Pin Number	A3P400 Function
P3	NC
P4	IO142NDB3
P5	IO141NPB3
P6	IO125RSB2
P7	IO139RSB3
P8	V _{CCI} B3
P9	GND
P10	V _{CC}
P11	V _{CC}
P12	V _{CC}
P13	V _{CC}
P14	GND
P15	V _{CCI} B1
P16	GDB0/IO78VPB1
P17	IO76VDB1
P18	IO76UDB1
P19	IO75PDB1
P20	NC
P21	NC
P22	NC
R1	NC
R2	NC
R3	V _{CC}
R4	IO140PDB3
R5	IO130RSB2
R6	IO138NPB3
R7	GEC0/IO137NPB3
R8	VMV3
R9	V _{CCI} B2
R10	V _{CCI} B2
R11	IO108RSB2
R12	IO101RSB2
R13	V _{CCI} B2
R14	V _{CCI} B2
R15	VMV2
R16	IO83RSB2

3-68 v1.5

484-Pin FBGA	
Pin Number A3P400 Function	
R17	GDB1/IO78UPB1
R18	GDC1/IO77UDB1
R19	IO75NDB1
R20	V _{CC}
R21	NC
R22	NC
T1	NC
T2	NC
T3	NC
T4	IO140NDB3
T5	IO138PPB3
T6	GEC1/IO137PPB3
T7	IO131RSB2
Т8	GNDQ
Т9	GEA2/IO134RSB2
T10	IO117RSB2
T11	IO111RSB2
T12	IO99RSB2
T13	IO94RSB2
T14	IO87RSB2
T15	GNDQ
T16	IO93RSB2
T17	V_{JTAG}
T18	GDC0/IO77VDB1
T19	GDA1/IO79UDB1
T20	NC
T21	NC
T22	NC
U1	NC
U2	NC
U3	NC
U4	GEB1/IO136PDB3
U5	GEB0/IO136NDB3
U6	VMV2
U7	IO129RSB2
U8	IO128RSB2

484-Pin FBGA	
Pin Number	A3P400 Function
U9	IO122RSB2
U10	IO115RSB2
U11	IO110RSB2
U12	IO98RSB2
U13	IO95RSB2
U14	IO88RSB2
U15	IO84RSB2
U16	TCK
U17	V _{PUMP}
U18	TRST
U19	GDA0/IO79VDB1
U20	NC
U21	NC
U22	NC
V1	NC
V2	NC
V3	GND
V4	GEA1/IO135PDB3
V5	GEA0/IO135NDB3
V6	IO127RSB2
V7	GEC2/IO132RSB2
V8	IO123RSB2
V9	IO118RSB2
V10	IO112RSB2
V11	IO106RSB2
V12	IO100RSB2
V13	IO96RSB2
V14	IO89RSB2
V15	IO85RSB2
V16	GDB2/IO81RSB2
V17	TDI
V18	NC
V19	TDO
V20	GND
V21	NC
V22	NC

484-Pin FBGA	
Pin Number A3P400 Function	
W1	NC NC
W2	NC
W3	NC
W4	GND
W5	IO126RSB2
W6	GEB2/IO133RSB2
W7	IO124RSB2
W8	IO116RSB2
W9	IO113RSB2
W10	IO107RSB2
W11	IO105RSB2
W12	IO102RSB2
W13	IO97RSB2
W14	IO92RSB2
W15	GDC2/IO82RSB2
W16	IO86RSB2
W17	GDA2/IO80RSB2
W18	TMS
W19	GND
W20	NC
W21	NC
W22	NC
Y1	V _{CCI} B3
Y2	NC NC
Y3	NC
Y4	NC
Y5	GND
Y6	NC
Y7	NC
Y8	V _{CC}
Y9	V _{CC}
Y10	NC
Y11	NC
Y12	NC
Y13	NC
Y14	V _{CC}
<u> </u>	

484-Pin FBGA	
Pin Number	A3P400 Function
Y15	V _{CC}
Y16	NC
Y17	NC
Y18	GND
Y19	NC
Y20	NC
Y21	NC
Y22	V _{CCI} B1
AA1	GND
AA2	V _{CCI} B3
AA3	NC
AA4	NC
AA5	NC
AA6	NC
AA7	NC
AA8	NC
AA9	NC
AA10	NC
AA11	NC
AA12	NC
AA13	NC
AA14	NC
AA15	NC
AA16	NC
AA17	NC
AA18	NC
AA19	NC
AA20	NC
AA21	V _{CCI} B1
AA22	GND
AB1	GND
AB2	GND
AB3	V _{CCI} B2
AB4	NC
AB5	NC
AB6	IO121RSB2

484-Pin FBGA	
Pin Number	A3P400 Function
AB7	IO119RSB2
AB8	IO114RSB2
AB9	IO109RSB2
AB10	NC
AB11	NC
AB12	IO104RSB2
AB13	IO103RSB2
AB14	NC
AB15	NC
AB16	IO91RSB2
AB17	IO90RSB2
AB18	NC
AB19	NC
AB20	V _{CCI} B2
AB21	GND
AB22	GND

3-70 v1.5

484-Pin FBGA	
Pin Number A3P600 Function	
A1	GND
A2	GND
A3	VCCIB0
A4	NC
A5	NC
A6	IO09RSB0
A7	IO15RSB0
A8	NC
A9	NC
A10	IO22RSB0
A11	IO23RSB0
A12	IO29RSB0
A13	IO35RSB0
A14	NC
A15	NC
A16	IO46RSB0
A17	IO48RSB0
A18	NC
A19	NC
A20	V _{CCI} B0
A21	GND
A22	GND
В1	GND
B2	V _{CCI} B3
В3	NC
В4	NC
В5	NC
В6	IO08RSB0
В7	IO12RSB0
В8	NC
В9	NC
B10	IO17RSB0
B11	NC
B12	NC
B13	IO36RSB0
	NC

484-Pin FBGA	
Pin Number	A3P600 Function
B15	NC
B16	IO47RSB0
B17	IO49RSB0
B18	NC
B19	NC
B20	NC
B21	V _{CCI} B1
B22	GND
C1	V _{CCI} B3
C2	NC
C3	NC
C4	NC
C5	GND
C6	NC
C7	NC
C8	V _{CC}
C9	V _{CC}
C10	NC
C11	NC
C12	NC
C13	NC
C14	V _{CC}
C15	V _{CC}
C16	NC
C17	NC
C18	GND
C19	NC
C20	NC
C21	NC
C22	V _{CCI} B1
D1	NC
D2	NC
D3	NC
D4	GND
D5	GAA0/IO00RSB0
D6	GAA1/IO01RSB0

484-Pin FBGA	
Pin Number	A3P600 Function
D7	GAB0/IO02RSB0
D8	IO11RSB0
D9	IO16RSB0
D10	IO18RSB0
D11	IO28RSB0
D12	IO34RSB0
D13	IO37RSB0
D14	IO41RSB0
D15	IO43RSB0
D16	GBB1/IO57RSB0
D17	GBA0/IO58RSB0
D18	GBA1/IO59RSB0
D19	GND
D20	NC
D21	NC
D22	NC
E1	NC
E2	NC
E3	GND
E4	GAB2/IO173PDB3
E5	GAA2/IO174PDB3
E6	GNDQ
E7	GAB1/IO03RSB0
E8	IO13RSB0
E9	IO14RSB0
E10	IO21RSB0
E11	IO27RSB0
E12	IO32RSB0
E13	IO38RSB0
E14	IO42RSB0
E15	GBC1/IO55RSB0
E16	GBB0/IO56RSB0
E17	IO52RSB0
E18	GBA2/IO60PDB1
E19	IO60NDB1
E20	GND

484-Pin FBGA	
Pin Number	A3P600 Function
E21	NC
E22	NC
F1	NC
F2	NC
F3	NC
F4	IO173NDB3
F5	IO174NDB3
F6	VMV3
F7	IO07RSB0
F8	GAC0/IO04RSB0
F9	GAC1/IO05RSB0
F10	IO20RSB0
F11	IO24RSB0
F12	IO33RSB0
F13	IO39RSB0
F14	IO44RSB0
F15	GBC0/IO54RSB0
F16	IO51RSB0
F17	VMV0
F18	IO61NPB1
F19	IO63PDB1
F20	NC
F21	NC
F22	NC
G1	IO170NDB3
G2	IO170PDB3
G3	NC
G4	IO171NDB3
G5	IO171PDB3
G6	GAC2/IO172PDB3
G 7	IO06RSB0
G8	GNDQ
G9	IO10RSB0
G10	IO19RSB0
G11	IO26RSB0
G12	IO30RSB0

AOA Din EDCA	
484-Pin FBGA	
Pin Number	A3P600 Function
G13	IO40RSB0
G14	IO45RSB0
G15	GNDQ
G16	IO50RSB0
G17	GBB2/IO61PPB1
G18	IO53RSB0
G19	IO63NDB1
G20	NC
G21	NC
G22	NC
H1	NC
H2	NC
H3	V _{CC}
H4	IO166PDB3
H5	IO167NPB3
H6	IO172NDB3
H7	IO169NDB3
Н8	VMV0
Н9	V _{CCI} B0
H10	V _{CCI} B0
H11	IO25RSB0
H12	IO31RSB0
H13	V _{CCI} B0
H14	V _{CCI} B0
H15	VMV1
H16	GBC2/IO62PDB1
H17	IO67PPB1
H18	IO64PPB1
H19	IO66PDB1
H20	V _{CC}
H21	NC
H22	NC
J1	NC
J2	NC
J3	NC
J4	IO166NDB3

404 P' - FDG4	
484-Pin FBGA	
Pin Number	A3P600 Function
J5	IO168NPB3
J6	IO167PPB3
J7	IO169PDB3
J8	V _{CCI} B3
J9	GND
J10	V _{CC}
J11	V _{CC}
J12	V _{CC}
J13	V _{CC}
J14	GND
J15	V _{CCI} B1
J16	IO62NDB1
J17	IO64NPB1
J18	IO65PPB1
J19	IO66NDB1
J20	NC
J21	IO68PDB1
J22	IO68NDB1
K1	IO157PDB3
K2	IO157NDB3
K3	NC
K4	IO165NDB3
K5	IO165PDB3
K6	IO168PPB3
K7	GFC1/IO164PPB3
K8	V _{CCI} B3
К9	V _{CC}
K10	GND
K11	GND
K12	GND
K13	GND
K14	V _{CC}
K15	V _{CCI} B1
K16	GCC1/IO69PPB1
K17	IO65NPB1
K18	IO75PDB1

3-72 v1.5

484-Pin FBGA	
Pin Number	A3P600 Function
K19	IO75NDB1
K20	NC
K21	IO76NDB1
K22	IO76PDB1
L1	NC
L2	IO155PDB3
L3	NC
L4	GFB0/IO163NPB3
L5	GFA0/IO162NDB3
L6	GFB1/IO163PPB3
L7	V _{COMPLF}
L8	GFC0/IO164NPB3
L9	V _{CC}
L10	GND
L11	GND
L12	GND
L13	GND
L14	V _{CC}
L15	GCC0/IO69NPB1
L16	GCB1/IO70PPB1
L17	GCA0/IO71NPB1
L18	IO67NPB1
L19	GCB0/IO70NPB1
L20	IO77PDB1
L21	IO77NDB1
L22	IO78NPB1
M1	NC
M2	IO155NDB3
M3	IO158NPB3
M4	GFA2/IO161PPB3
M5	GFA1/IO162PDB3
M6	V _{CCPLF}
M7	IO160NDB3
M8	GFB2/IO160PDB3
M9	V _{CC}
M10	GND

484-Pin FBGA	
Pin Number	A3P600 Function
M11	GND
M12	GND
M13	GND
M14	V _{CC}
M15	GCB2/IO73PPB1
M16	GCA1/IO71PPB1
M17	GCC2/IO74PPB1
M18	IO80PPB1
M19	GCA2/IO72PDB1
M20	IO79PPB1
M21	IO78PPB1
M22	NC
N1	IO154NDB3
N2	IO154PDB3
N3	NC
N4	GFC2/IO159PDB3
N5	IO161NPB3
N6	IO156PPB3
N7	IO129RSB2
N8	V _{CCI} B3
N9	V _{CC}
N10	GND
N11	GND
N12	GND
N13	GND
N14	V _{CC}
N15	V _{CCI} B1
N16	IO73NPB1
N17	IO80NPB1
N18	IO74NPB1
N19	IO72NDB1
N20	NC
N21	IO79NPB1
N22	NC
P1	NC
P2	IO153PDB3

484-Pin FBGA	
Pin Number	A3P600 Function
P3	IO153NDB3
P4	IO159NDB3
P5	IO156NPB3
P6	IO151PPB3
P7	IO158PPB3
P8	V _{CCI} B3
Р9	GND
P10	V _{CC}
P11	V _{CC}
P12	V _{CC}
P13	V _{CC}
P14	GND
P15	V _{CCI} B1
P16	GDB0/IO87NPB1
P17	IO85NDB1
P18	IO85PDB1
P19	IO84PDB1
P20	NC
P21	IO81PDB1
P22	NC
R1	NC
R2	NC
R3	V _{CC}
R4	IO150PDB3
R5	IO151NPB3
R6	IO147NPB3
R7	GEC0/IO146NPB3
R8	VMV3
R9	V _{CCI} B2
R10	V _{CCI} B2
R11	IO117RSB2
R12	IO110RSB2
R13	V _{CCI} B2
R14	V _{CCI} B2
R15	VMV2
R16	IO94RSB2

484-Pin FBGA	
Pin Number	A3P600 Function
R17	GDB1/IO87PPB1
R18	GDC1/IO86PDB1
R19	IO84NDB1
R20	V _{CC}
R21	IO81NDB1
R22	IO82PDB1
T1	IO152PDB3
T2	IO152NDB3
T3	NC
T4	IO150NDB3
T5	IO147PPB3
T6	GEC1/IO146PPB3
T7	IO140RSB2
Т8	GNDQ
Т9	GEA2/IO143RSB2
T10	IO126RSB2
T11	IO120RSB2
T12	IO108RSB2
T13	IO103RSB2
T14	IO99RSB2
T15	GNDQ
T16	IO92RSB2
T17	V_{JTAG}
T18	GDC0/IO86NDB1
T19	GDA1/IO88PDB1
T20	NC
T21	IO83PDB1
T22	IO82NDB1
U1	IO149PDB3
U2	IO149NDB3
U3	NC
U4	GEB1/IO145PDB3
U5	GEB0/IO145NDB3
U6	VMV2
U7	IO138RSB2
U8	IO136RSB2

Very Number A3P600 Function U9 IO131RSB2 U10 IO124RSB2 U11 IO119RSB2 U12 IO107RSB2 U13 IO104RSB2 U14 IO97RSB2 U15 VMV1 U16 TCK U17 VPUMP U18 TRST U19 GDA0/IO88NDB1 U20 NC V1 NC V2 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI		
U9 IO131RSB2 U10 IO124RSB2 U11 IO119RSB2 U12 IO107RSB2 U13 IO104RSB2 U14 IO97RSB2 U15 VMV1 U16 TCK U17 VPUMP U18 TRST U19 GDA0/IO88NDB1 U20 NC V1 NC V2 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 </th <th colspan="2">484-Pin FBGA</th>	484-Pin FBGA	
U10 IO124RSB2 U11 IO119RSB2 U12 IO107RSB2 U13 IO104RSB2 U14 IO97RSB2 U15 VMV1 U16 TCK U17 VPUMP U18 TRST U19 GDA0/IO88NDB1 U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V	Pin Number	A3P600 Function
U11 IO119RSB2 U12 IO107RSB2 U13 IO104RSB2 U14 IO97RSB2 U15 VMV1 U16 TCK U17 VPUMP U18 TRST U19 GDA0/IO88NDB1 U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V10 IO114RSB2 V11 IO114RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND	U9	IO131RSB2
U12 IO107RSB2 U13 IO104RSB2 U14 IO97RSB2 U15 VMV1 U16 TCK U17 V _{PUMP} U18 TRST U19 GDA0/IO88NDB1 U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V11 IO114RSB2 V11 IO114RSB2 V11 IO114RSB2 V11 IO114RSB2 V11 IO114RSB2 V11 IO109RSB2 V11 IO98RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND	U10	IO124RSB2
U13 IO104RSB2 U14 IO97RSB2 U15 VMV1 U16 TCK U17 V _{PUMP} U18 TRST U19 GDA0/IO88NDB1 U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND	U11	IO119RSB2
U14 IO97RSB2 U15 VMV1 U16 TCK U17 VPUMP U18 TRST U19 GDAO/IO88NDB1 U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	U12	IO107RSB2
U15 VMV1 U16 TCK U17 VPUMP U18 TRST U19 GDA0/IO88NDB1 U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	U13	IO104RSB2
U16 TCK U17 VPUMP U18 TRST U19 GDAO/IO88NDB1 U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V20 GND V21 NC	U14	IO97RSB2
U17 V _{PUMP} U18 TRST U19 GDA0/IO88NDB1 U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	U15	VMV1
U18 TRST U19 GDA0/IO88NDB1 U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	U16	TCK
U19 GDA0/IO88NDB1 U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	U17	V _{PUMP}
U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	U18	TRST
U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	U19	GDA0/IO88NDB1
U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	U20	NC
V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	U21	IO83NDB1
V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	U22	NC
V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V1	NC
V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V2	NC
V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V3	GND
V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V4	GEA1/IO144PDB3
V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V5	GEA0/IO144NDB3
V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V6	IO139RSB2
V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V7	GEC2/IO141RSB2
V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V8	IO132RSB2
V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V9	IO127RSB2
V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V10	IO121RSB2
V13 IO105RSB2 V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V11	IO114RSB2
V14 IO98RSB2 V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V12	IO109RSB2
V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V13	IO105RSB2
V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V14	IO98RSB2
V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC	V15	IO96RSB2
V18 GNDQ V19 TDO V20 GND V21 NC	V16	GDB2/IO90RSB2
V19 TDO V20 GND V21 NC	V17	TDI
V20 GND V21 NC	V18	GNDQ
V21 NC	V19	TDO
	V20	GND
V22 NC	V21	NC
	V22	NC

484-Pin FBGA	
Pin Number	A3P600 Function
W1	NC
W2	IO148PDB3
W3	NC
W4	GND
W5	IO137RSB2
W6	GEB2/IO142RSB2
W7	IO134RSB2
W8	IO125RSB2
W9	IO123RSB2
W10	IO118RSB2
W11	IO115RSB2
W12	IO111RSB2
W13	IO106RSB2
W14	IO102RSB2
W15	GDC2/IO91RSB2
W16	IO93RSB2
W17	GDA2/IO89RSB2
W18	TMS
W19	GND
W20	NC
W21	NC
W22	NC
Y1	V _{CCI} B3
Y2	IO148NDB3
Y3	NC
Y4	NC
Y5	GND
Y6	NC
Y7	NC
Y8	V _{CC}
Y9	V _{CC}
Y10	NC
Y11	NC
Y12	NC
Y13	NC
Y14	V _{CC}

3-74 v1.5

484-Pin FBGA	
Pin Number	A3P600 Function
Y15	V _{CC}
Y16	NC
Y17	NC
Y18	GND
Y19	NC
Y20	NC
Y21	NC
Y22	V _{CCI} B1
AA1	GND
AA2	V _{CCI} B3
AA3	NC
AA4	NC
AA5	NC
AA6	IO135RSB2
AA7	IO133RSB2
AA8	NC
AA9	NC
AA10	NC
AA11	NC
AA12	NC
AA13	NC
AA14	NC
AA15	NC
AA16	IO101RSB2
AA17	NC
AA18	NC
AA19	NC
AA20	NC
AA21	V _{CCI} B1
AA22	GND
AB1	GND
AB2	GND
AB3	V _{CCI} B2
AB4	NC
AB5	NC
AB6	IO130RSB2

484	-Pin FBGA
Pin Number	A3P600 Function
AB7	IO128RSB2
AB8	IO122RSB2
AB9	IO116RSB2
AB10	NC
AB11	NC
AB12	IO113RSB2
AB13	IO112RSB2
AB14	NC
AB15	NC
AB16	IO100RSB2
AB17	IO95RSB2
AB18	NC
AB19	NC
AB20	V _{CCI} B2
AB21	GND
AB22	GND

v1.5 3-75

484	484-Pin FBGA	
Pin Number A3P1000 Function		
A1	GND	
A2	GND	
A3	V _{CCI} B0	
A4	IO07RSB0	
A5	IO09RSB0	
A6	IO13RSB0	
A7	IO18RSB0	
A8	IO20RSB0	
A9	IO26RSB0	
A10	IO32RSB0	
A11	IO40RSB0	
A12	IO41RSB0	
A13	IO53RSB0	
A14	IO59RSB0	
A15	IO64RSB0	
A16	IO65RSB0	
A17	IO67RSB0	
A18	IO69RSB0	
A19	NC	
A20	V _{CCI} B0	
A21	GND	
A22	GND	
B1	GND	
В2	V _{CCI} B3	
В3	NC	
B4	IO06RSB0	
В5	IO08RSB0	
В6	IO12RSB0	
В7	IO15RSB0	
B8	IO19RSB0	
В9	IO24RSB0	
B10	IO31RSB0	
B11	IO39RSB0	
B12	IO48RSB0	
B13	IO54RSB0	
B14	IO58RSB0	

484-Pin FBGA	
Pin Number	A3P1000 Function
B15	IO63RSB0
B16	IO66RSB0
B17	IO68RSB0
B18	IO70RSB0
B19	NC
B20	NC
B21	V _{CCI} B1
B22	GND
C1	V _{CCI} B3
C2	IO220PDB3
C3	NC
C4	NC
C5	GND
C6	IO10RSB0
C7	IO14RSB0
C8	V _{CC}
C9	V _{CC}
C10	IO30RSB0
C11	IO37RSB0
C12	IO43RSB0
C13	NC
C14	V _{CC}
C15	V _{CC}
C16	NC
C17	NC
C18	GND
C19	NC
C20	NC
C21	NC
C22	V _{CCI} B1
D1	IO219PDB3
D2	IO220NDB3
D3	NC
D4	GND
D5	GAA0/IO00RSB0
D6	GAA1/IO01RSB0

484-Pin FBGA	
Pin Number	A3P1000 Function
D7	GAB0/IO02RSB0
D8	IO16RSB0
D9	IO22RSB0
D10	IO28RSB0
D11	IO35RSB0
D12	IO45RSB0
D13	IO50RSB0
D14	IO55RSB0
D15	IO61RSB0
D16	GBB1/IO75RSB0
D17	GBA0/IO76RSB0
D18	GBA1/IO77RSB0
D19	GND
D20	NC
D21	NC
D22	NC
E1	IO219NDB3
E2	NC
E3	GND
E4	GAB2/IO224PDB3
E5	GAA2/IO225PDB3
E6	GNDQ
E7	GAB1/IO03RSB0
E8	IO17RSB0
E9	IO21RSB0
E10	IO27RSB0
E11	IO34RSB0
E12	IO44RSB0
E13	IO51RSB0
E14	IO57RSB0
E15	GBC1/IO73RSB0
E16	GBB0/IO74RSB0
E17	IO71RSB0
E18	GBA2/IO78PDB1
E19	IO81PDB1
E20	GND

3-76 v1.5

484-Pin FBGA	
Pin Number	A3P1000 Function
E21	NC
E22	IO84PDB1
F1	NC
F2	IO215PDB3
F3	IO215NDB3
F4	IO224NDB3
F5	IO225NDB3
F6	VMV3
F7	IO11RSB0
F8	GAC0/IO04RSB0
F9	GAC1/IO05RSB0
F10	IO25RSB0
F11	IO36RSB0
F12	IO42RSB0
F13	IO49RSB0
F14	IO56RSB0
F15	GBC0/IO72RSB0
F16	IO62RSB0
F17	VMV0
F18	IO78NDB1
F19	IO81NDB1
F20	IO82PPB1
F21	NC
F22	IO84NDB1
G1	IO214NDB3
G2	IO214PDB3
G3	NC
G4	IO222NDB3
G5	IO222PDB3
G6	GAC2/IO223PDB3
G 7	IO223NDB3
G8	GNDQ
G9	IO23RSB0
G10	IO29RSB0
G11	IO33RSB0
G12	IO46RSB0

484-Pin FBGA		
Pin Number A3P1000 Function		
G13	IO52RSB0	
G14	IO60RSB0	
G15	GNDQ	
G16	IO80NDB1	
G17	GBB2/IO79PDB1	
G18	IO79NDB1	
G19	IO82NPB1	
G20	IO85PDB1	
G21	IO85NDB1	
G22	NC	
H1	NC	
H2	NC	
Н3	V _{CC}	
H4	IO217PDB3	
H5	IO218PDB3	
H6	IO221NDB3	
H7	IO221PDB3	
H8	VMV0	
H9	V _{CCI} B0	
H10	V _{CCI} B0	
H11	IO38RSB0	
H12	IO47RSB0	
H13	V _{CCI} B0	
H14	V _{CCI} B0	
H15	VMV1	
H16	GBC2/IO80PDB1	
H17	IO83PPB1	
H18	IO86PPB1	
H19	IO87PDB1	
H20	V _{CC}	
H21	NC	
H22	NC	
J1	IO212NDB3	
J2	IO212PDB3	
J3	NC	
J4	IO217NDB3	

484-Pin FBGA		
Pin Number A3P1000 Function		
J5	IO218NDB3	
J6	IO216PDB3	
J7	IO216NDB3	
J8	V _{CCI} B3	
J9	GND	
J10	V _{CC}	
J11	V _{CC}	
J12	V _{CC}	
J13	V _{CC}	
J14	GND	
J15	V _{CCI} B1	
J16	IO83NPB1	
J17	IO86NPB1	
J18	IO90PPB1	
J19	IO87NDB1	
J20	NC	
J21	IO89PDB1	
J22	IO89NDB1	
K1	IO211PDB3	
K2	IO211NDB3	
K3	NC	
K4	IO210PPB3	
K5	IO213NDB3	
K6	IO213PDB3	
K7	GFC1/IO209PPB3	
K8	V _{CCI} B3	
K9	V _{CC}	
K10	GND	
K11	GND	
K12	GND	
K13	GND	
K14	V _{CC}	
K15	V _{CCI} B1	
K16	GCC1/IO91PPB1	
K17	IO90NPB1	
K18	IO88PDB1	

484-Pin FBGA		
Pin Number A3P1000 Function		
K19	IO88NDB1	
K20	IO94NPB1	
K21	IO98NDB1	
K22	IO98PDB1	
L1	NC	
L2	IO200PDB3	
L3	IO210NPB3	
L4	GFB0/IO208NPB3	
L5	GFA0/IO207NDB3	
L6	GFB1/IO208PPB3	
L7	V _{COMPLF}	
L8	GFC0/IO209NPB3	
L9	V _{CC}	
L10	GND	
L11	GND	
L12	GND	
L13 GND		
L14	V _{CC}	
L15	GCC0/IO91NPB1	
L16	GCB1/IO92PPB1	
L17	GCA0/IO93NPB1	
L18	IO96NPB1	
L19	GCB0/IO92NPB1	
L20	IO97PDB1	
L21	IO97NDB1	
L22	IO99NPB1	
M1	NC	
M2	IO200NDB3	
M3	IO206NDB3	
M4	GFA2/IO206PDB3	
M5	GFA1/IO207PDB3	
M6	V_{CCPLF}	
M7	IO205NDB3	
	GFB2/IO205PDB3	
M8		
M8 M9	V _{CC}	

484-Pin FBGA		
Pin Number A3P1000 Function		
M11	GND	
M12	GND	
M13	GND	
M14	V _{CC}	
M15	GCB2/IO95PPB1	
M16	GCA1/IO93PPB1	
M17	GCC2/IO96PPB1	
M18	IO100PPB1	
M19	GCA2/IO94PPB1	
M20	IO101PPB1	
M21	IO99PPB1	
M22	NC	
N1	IO201NDB3	
N2	IO201PDB3	
N3	NC	
N4	GFC2/IO204PDB3	
N5	IO204NDB3	
N6	IO203NDB3	
N7	IO203PDB3	
N8	V _{CCI} B3	
N9	V _{CC}	
N10	GND	
N11	GND	
N12	GND	
N13	GND	
N14	V _{CC}	
N15	V _{CCI} B1	
N16	IO95NPB1	
N17	IO100NPB1	
N18	IO102NDB1	
N19	IO102PDB1	
N20	NC	
N21	IO101NPB1	
N22	IO103PDB1	
P1	NC	
P2	IO199PDB3	

404.51.55.5		
484-Pin FBGA		
Pin Number	A3P1000 Function	
P3	IO199NDB3	
P4	IO202NDB3	
P5	IO202PDB3	
P6	IO196PPB3	
P7	IO193PPB3	
P8	V _{CCI} B3	
P9	GND	
P10	V _{CC}	
P11	V _{CC}	
P12	V _{CC}	
P13	V _{CC}	
P14	GND	
P15	V _{CCI} B1	
P16	GDB0/IO112NPB1	
P17 IO106NDB1		
P18	IO106PDB1	
P19	IO107PDB1	
P20	NC	
P21	IO104PDB1	
P22	IO103NDB1	
R1	NC	
R2	IO197PPB3	
R3	V _{CC}	
R4	IO197NPB3	
R5	IO196NPB3	
R6	IO193NPB3	
R7	GEC0/IO190NPB3	
R8	VMV3	
R9	V _{CCI} B2	
R10	V _{CCI} B2	
R11	IO147RSB2	
R12	IO136RSB2	
R13	V _{CCI} B2	
R14	V _{CCI} B2	
R15	VMV2	
R16	IO110NDB1	

3-78 v1.5

484	484-Pin FBGA		
Pin Number A3P1000 Function			
R17	GDB1/IO112PPB1		
R18	GDC1/IO111PDB1		
R19	IO107NDB1		
R20	V _{CC}		
R21	IO104NDB1		
R22	IO105PDB1		
T1	IO198PDB3		
T2	IO198NDB3		
T3	NC		
T4	IO194PPB3		
T5	IO192PPB3		
T6	GEC1/IO190PPB3		
T7	IO192NPB3		
Т8	GNDQ		
Т9	GEA2/IO187RSB2		
T10	IO161RSB2		
T11	IO155RSB2		
T12	IO141RSB2		
T13	IO129RSB2		
T14	IO124RSB2		
T15	GNDQ		
T16	IO110PDB1		
T17	V_{JTAG}		
T18	GDC0/IO111NDB1		
T19	GDA1/IO113PDB1		
T20	NC		
T21	IO108PDB1		
T22	IO105NDB1		
U1	IO195PDB3		
U2	IO195NDB3		
U3	IO194NPB3		
U4	GEB1/IO189PDB3		
U5	GEB0/IO189NDB3		
U6	VMV2		
U7	IO179RSB2		
U8	IO171RSB2		

484-Pin FBGA		
Pin Number A3P1000 Functio		
U9	IO165RSB2	
U10	IO159RSB2	
U11	IO151RSB2	
U12	IO137RSB2	
U13	IO134RSB2	
U14	IO128RSB2	
U15	VMV1	
U16	TCK	
U17	V _{PUMP}	
U18	TRST	
U19	GDA0/IO113NDB1	
U20	NC	
U21	IO108NDB1	
U22	IO109PDB1	
V1	NC	
V2	NC	
V3	GND	
V4	GEA1/IO188PDB3	
V5	GEA0/IO188NDB3	
V6	IO184RSB2	
V7	GEC2/IO185RSB2	
V8	IO168RSB2	
V9	IO163RSB2	
V10	IO157RSB2	
V11	IO149RSB2	
V12	IO143RSB2	
V13	IO138RSB2	
V14	IO131RSB2	
V15	IO125RSB2	
V16	GDB2/IO115RSB2	
V17	TDI	
V18	GNDQ	
V19	TDO	
V20	GND	
V21	NC	
V22	IO109NDB1	

404 51		
484-Pin FBGA		
Pin Number	A3P1000 Function	
W1	NC	
W2	IO191PDB3	
W3	NC	
W4	GND	
W5	IO183RSB2	
W6	GEB2/IO186RSB2	
W7	IO172RSB2	
W8	IO170RSB2	
W9	IO164RSB2	
W10	IO158RSB2	
W11	IO153RSB2	
W12	IO142RSB2	
W13	IO135RSB2	
W14	IO130RSB2	
W15	GDC2/IO116RSB2	
W16	IO120RSB2	
W17	GDA2/IO114RSB2	
W18	TMS	
W19	GND	
W20	NC	
W21	NC	
W22	NC	
Y1	V _{CCI} B3	
Y2	IO191NDB3	
Y3	NC	
Y4	IO182RSB2	
Y5	GND	
Y6	IO177RSB2	
Y7	IO174RSB2	
Y8	V _{CC}	
Y9	V _{CC}	
Y10	IO154RSB2	
Y11	IO148RSB2	
Y12	IO140RSB2	
Y13	NC	
Y14	V _{CC}	

484-Pin FBGA		
Pin Number	A3P1000 Function	
Y15	V _{CC}	
Y16	NC	
Y17	NC	
Y18	GND	
Y19	NC	
Y20	NC	
Y21	NC	
Y22	V _{CCI} B1	
AA1	GND	
AA2	V _{CCI} B3	
AA3	NC	
AA4	IO181RSB2	
AA5	IO178RSB2	
AA6	IO175RSB2	
AA7	IO169RSB2	
AA8	IO166RSB2	
AA9	IO160RSB2	
AA10	IO152RSB2	
AA11	IO146RSB2	
AA12	IO139RSB2	
AA13	IO133RSB2	
AA14	NC	
AA15	NC	
AA16	IO122RSB2	
AA17	IO119RSB2	
AA18	IO117RSB2	
AA19	NC	
AA20	NC	
AA21	V _{CCI} B1	
AA22	GND	
AB1	GND	
AB2	GND	
AB3	V _{CCI} B2	
AB4	IO180RSB2	
AB5	IO176RSB2	
AB6	IO173RSB2	

484-Pin FBGA		
Pin Number	A3P1000 Function	
AB7	IO167RSB2	
AB8	IO162RSB2	
AB9	IO156RSB2	
AB10	IO150RSB2	
AB11	IO145RSB2	
AB12	IO144RSB2	
AB13	IO132RSB2	
AB14	IO127RSB2	
AB15	IO126RSB2	
AB16	IO123RSB2	
AB17	IO121RSB2	
AB18	IO118RSB2	
AB19	NC	
AB20	V _{CCI} B2	
AB21	GND	
AB22	GND	

3-80 v1.5

Part Number and Revision Date

Part Number 51700097-003-5 Revised October 2009

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v1.5)	Page
v1.4 (December 2008)	The "121-Pin CSP" figure and table are new.	3-15
v1.3	The "48-Pin QFP" table is new.	3-2
(June 2008)	The "68-Pin QFN" table is new.	3-5
v1.2 (February 2008)	Pin numbers were added to the "48-Pin QFN" package diagram. Note 2 was added below the diagram.	3-1
	The "132-Pin QFN" package diagram was updated to include D1 to D4. In addition, note 1 was changed from top view to bottom view, and note 2 is new.	3-6
v1.1 (January 2008)	The "48-Pin QFN" section is new.	3-1
v1.0 (January 2008)	In the "100-Pin VQFP" A3P030 pin table, the function of pin 63 was incorrect and changed from IO39RSB0 to GDB0/IO38RSB0.	3-18
v2.2 (July 2007)	This document was previously in datasheet v2.2. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is v1.0.	N/A
v2.0 (April 2007)	The following pin tables were updated for A3P600: "208-Pin PQFP", "256-Pin FBGA", and "484-Pin FBGA". The "144-Pin FBGA" table for A3P600 is new.	4-27 – 4-63
Advance v0.7 (January 2007)	Notes were added to the package diagrams identifying if they were top or bottom view.	N/A
	The A3P030 "132-Pin QFN" table is new.	4-2
	The A3P060 "132-Pin QFN" table is new.	4-4
	The A3P125 "132-Pin QFN" table is new.	4-6
	The A3P250 "132-Pin QFN" table is new.	4-8
	The A3P030 "100-Pin VQFP" table is new.	4-11
Advance v0.5	The A3P060 "100-Pin VQFP" pin table was updated.	4-13
(January 2006)	The A3P125 "100-Pin VQFP" pin table was updated.	4-13
	The A3P060 "144-Pin TQFP" pin table was updated.	4-16
	The A3P125 "144-Pin TQFP" pin table was updated.	4-18
	The A3P125 "208-Pin PQFP" pin table was updated.	4-21
	The A3P400 "208-Pin PQFP" pin table was updated.	4-25
	The A3P060 "144-Pin FBGA" pin table was updated.	4-32
	The A3P125 "144-Pin FBGA" pin table is new.	4-34

Previous Version	Changes in Current Version (v1.5)	Page
Advance v0.5	The A3P400 "144-Pin FBGA" is new.	4-38
(continued)	The A3P400 "256-Pin FBGA" was updated.	4-48
	The A3P1000 "256-Pin FBGA" was updated.	4-54
	The A3P400 "484-Pin FBGA" was updated.	4-58
	The A3P1000 "484-Pin FBGA" was updated.	4-68
Advance v0.2	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68

3-82 v1.5

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advance," "Preliminary," and "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Actel Safety Critical, Life Support, and High-Reliability Applications Policy

The Actel products described in this advance status document may not have completed Actel's qualification process. Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Actel's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of Actel's products is available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.

v1.5 3-83

Section II - User's Guide

Low-Power Flash Technology and Flash*Freeze Mode

1 – FPGA Array Architecture in Low-Power Flash Devices

Device Architecture

Advanced Flash Switch

Unlike SRAM FPGAs, the low-power flash devices use a live-at-power-up ISP flash switch as their programming element. Flash cells are distributed throughout the device to provide nonvolatile, reconfigurable programming to connect signal lines to the appropriate VersaTile inputs and outputs. In the flash switch, two transistors share the floating gate, which stores the programming information (Figure 1-1). One is the sensing transistor, which is only used for writing and verification of the floating gate voltage. The other is the switching transistor. The latter is used to connect or separate routing nets, or to configure VersaTile logic. It is also used to erase the floating gate. Dedicated high-performance lines are connected as required using the flash switch for fast, low-skew, global signal distribution throughout the device core. Maximum core utilization is possible for virtually any design. The use of the flash switch technology also removes the possibility of firm errors, which are increasingly common in SRAM-based FPGAs.

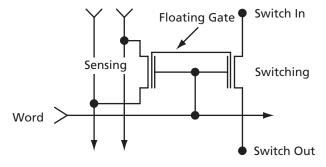


Figure 1-1 • Flash-Based Switch

FPGA Array Architecture Support

The flash FPGAs listed in Table 1-1 support the architecture features described in this document.

Table 1-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO®	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO nano	The industry's lowest-power, smallest-size solution
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
ProASIC®3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex™-M1 soft processors, and flash memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

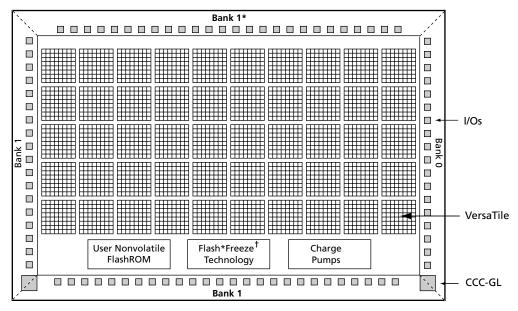
IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 1-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 1-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

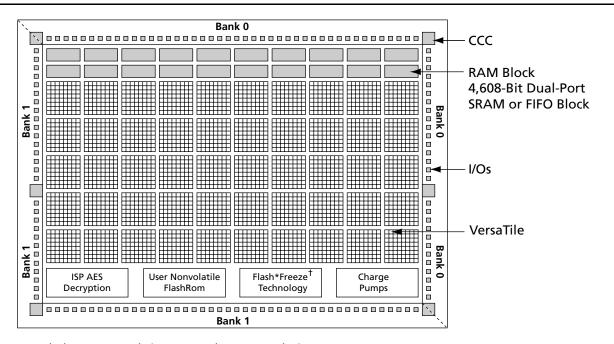
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.


1-2 v1.4

Device Overview

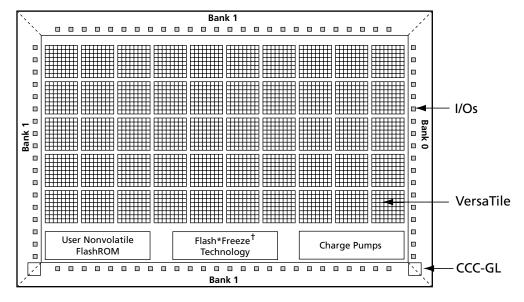
The low-power flash devices consist of multiple distinct programmable architectural features (Figure 1-5 on page 1-5 through Figure 1-7 on page 1-6):

- FPGA fabric/core (VersaTiles)
- Routing and clock resources (VersaNets)
- FlashROM
- Dedicated SRAM and/or FIFO
 - 30 k gate and smaller device densities do not support SRAM or FIFO.
 - Automotive devices do not support FIFO operation.
- I/O structures
- Flash*Freeze technology and low-power modes


Notes: * Bank 0 for the 30 k devices

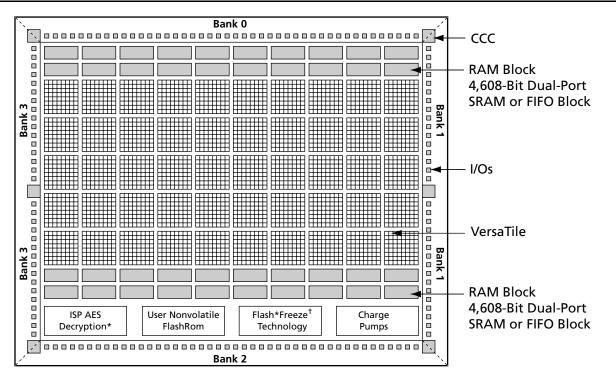
† Flash*Freeze mode is supported on IGLOO devices.

Figure 1-2 • IGLOO and ProASIC3 nano Device Architecture Overview with Two I/O Banks (applies to 10 k and 30 k device densities, excluding IGLOO PLUS devices)


v1.4 1-3

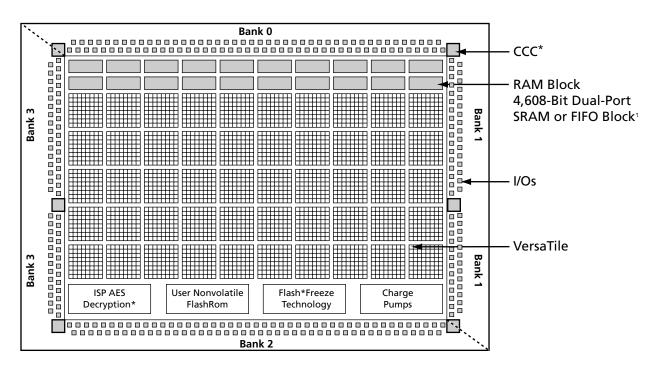
Note: † Flash*Freeze mode is supported on IGLOO devices.

Figure 1-3 • IGLOO Device Architecture Overview with Two I/O Banks with RAM and PLL (60 k and 125 k gate densities)



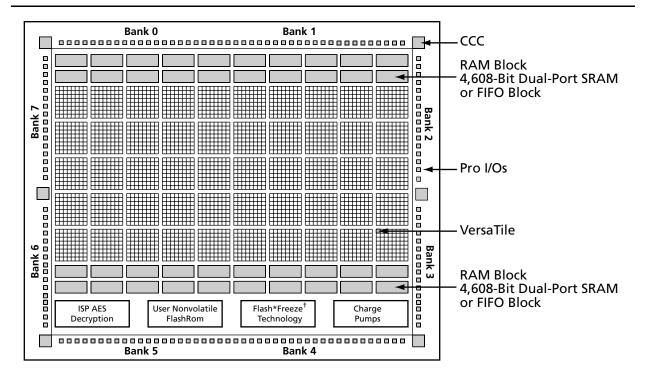
Note: † Flash*Freeze mode is supported on IGLOO devices.

Figure 1-4 • IGLOO Device Architecture Overview with Three I/O Banks (AGLN015, AGLN020, A3PN015, and A3PN020)


1-4 v1.4

Note: Flash*Freeze technology only applies to IGLOO and ProASIC3L families.

Figure 1-5 • IGLOO, IGLOO nano, ProASIC3 nano, and ProASIC3/L Device Architecture Overview with Four I/O Banks (AGL600 device is shown)



Note: * AGLP030 does not contain a PLL or support AES security.

Figure 1-6 • IGLOO PLUS Device Architecture Overview with Four I/O Banks

v1.4 1-5

Note: Flash*Freeze technology only applies to IGLOOe devices.

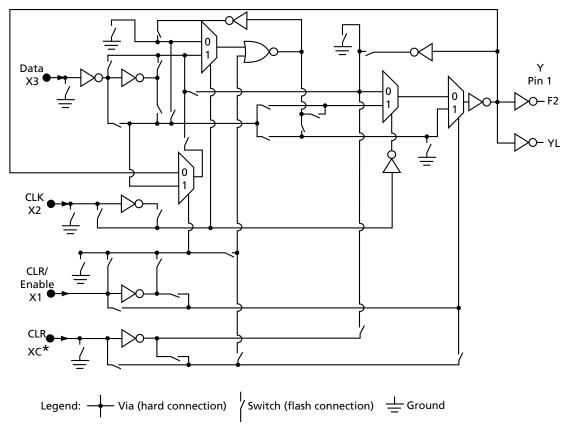
Figure 1-7 • IGLOOe and ProASIC3E Device Architecture Overview (AGLE600 device is shown)

1-6 v1.4

Core Architecture

VersaTile

The proprietary IGLOO and ProASIC3 device architectures provide granularity comparable to gate arrays. The device core consists of a sea-of-VersaTiles architecture.


As illustrated in Figure 1-8, there are four inputs in a logic VersaTile cell, and each VersaTile can be configured using the appropriate flash switch connections:

- Any 3-input logic function
- · Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set (on a 4th input)

VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line routing resources. VersaTiles and larger functions can be connected with any of the four levels of routing hierarchy.

When the VersaTile is used as an enable D-flip-flop, SET/CLR is supported by a fourth input. The SET/CLR signal can only be routed to this fourth input over the VersaNet (global) network. However, if, in the user's design, the SET/CLR signal is not routed over the VersaNet network, a compile warning message will be given, and the intended logic function will be implemented by two VersaTiles instead of one.

The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the connection is to the efficient long-line or very-long-line resources.

* This input can only be connected to the global clock distribution network.

Figure 1-8 • Low-Power Flash Device Core VersaTile

v1.4 1-7

Array Coordinates

During many place-and-route operations in the Actel Designer software tool, it is possible to set constraints that require array coordinates. Table 1-2 provides array coordinates of core cells and memory blocks for IGLOO and ProASIC3 devices. Table 1-3 provides the information for IGLOO PLUS devices. Table 1-4 on page 1-9 provides the information for IGLOO nano and ProASIC3 nano devices. The array coordinates are measured from the lower left (0, 0). They can be used in region constraints for specific logic groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.

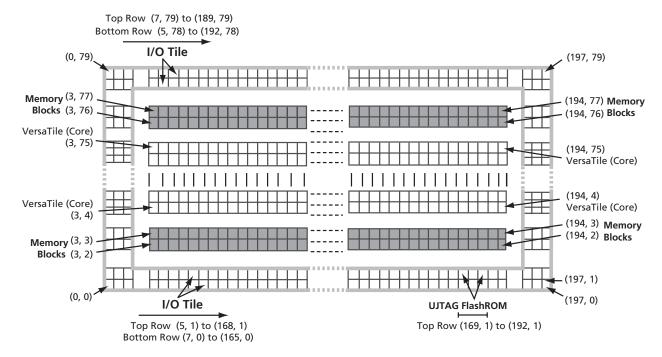
I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed because there is not a one-to-one correspondence between I/O cells and core cells. In addition, the I/O coordinate system changes depending on the die/package combination. It is not listed in Table 1-2. The Designer ChipPlanner tool provides the array coordinates of all I/O locations. I/O and cell coordinates are used for placement constraints. However, I/O placement is easier by package pin assignment.

Figure 1-9 on page 1-9 illustrates the array coordinates of a 600 k gate device. For more information on how to use array coordinates for region/placement constraints, see the *Designer User's Guide* or online help (available in the software) for software tools.

Table 1-2 • IGLOO and ProASIC3 Array Coordinates

			VersaTiles Mer		Memoi	Memory Rows		Entire Die	
Device		Mi	in.	Ma	ax.	Bottom	Тор	Min.	Max.
IGLOO	ProASIC3/ ProASIC3L	х	у	х	у	(x, y)	(x, y)	(x, y)	(x, y)
AGL015	A3P015	3	2	34	13	None	None	(0, 0)	(37, 15)
AGL030	A3P030	3	3	66	13	None	None	(0, 0)	(69, 15)
AGL060	A3P060	3	2	66	25	None	(3, 26)	(0, 0)	(69, 29)
AGL125	A3P125	3	2	130	25	None	(3, 26)	(0, 0)	(133, 29)
AGL250	A3P250/L	3	2	130	49	None	(3, 50)	(0, 0)	(133, 53)
AGL400	A3P400	3	2	194	49	None	(3, 50)	(0, 0)	(197, 53)
AGL600	A3P600/L	3	4	194	75	(3, 2)	(3, 76)	(0, 0)	(197, 79)
AGL1000	A3P1000/L	3	4	258	99	(3, 2)	(3, 100)	(0, 0)	(261, 103)
AGLE600	A3PE600/L, RT3PE600L	3	4	194	75	(3, 2)	(3, 76)	(0, 0)	(197, 79)
	A3PE1500	3	4	322	123	(3, 2)	(3, 124)	(0, 0)	(325, 127)
AGLE3000	A3PE3000/L, RT3PE3000L	3	6	450	173	(3, 2) or (3, 4)	(3, 174) or (3, 176)	(0, 0)	(453, 179)

Table 1-3 • IGLOO PLUS Array Coordinates


	VersaTiles		Memor	Memory Rows		re Die		
Device	Mi	in.	Ma	ax.	Bottom	Тор	Min.	Max.
IGLOO PLUS	х	У	х	у	(x, y)	(x, y)	(x, y)	(x, y)
AGLP030	2	3	67	13	None	None	(0, 0)	(69, 15)
AGLP060	2	2	67	25	None	(3, 26)	(0, 0)	(69, 29)
AGLP125	2	2	131	25	None	(3, 26)	(0, 0)	(133, 29)

1-8 v1.4

Table 1-4 • IGLOO nano and ProASIC3 nano Array Coordinates

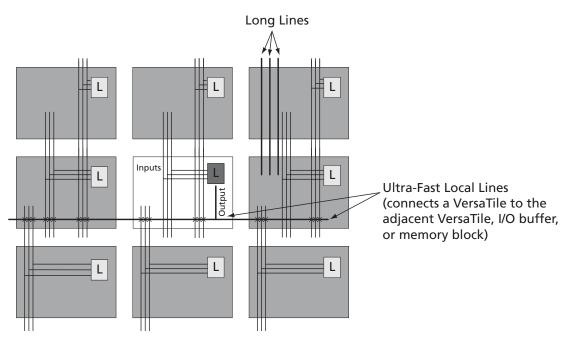
		Vers	aTiles	Memory Rows Entir		Entire	Die
Device		Min.	Мах.	Bottom	Тор	Min.	Max.
IGLOO nano	ProASIC3 nano	(x, y)	(x, y)	(x, y)	(x, y)	(x, y)	(x, y)
AGLN010	A3P010	(0, 2)	(32, 5)	None	None	(0, 0)	(34, 5)
AGLN015	A3PN015	(0, 2)	(32, 9)	None	None	(0, 0)	(34, 9)
AGLN020	A3PN020	(0, 2)	32, 13)	None	None	(0, 0)	(34, 13)
AGLN060	A3PN060	(3, 2)	(66, 25)	None	(3, 26)	(0, 0)	(69, 29)
AGLN125	A3PN125	(3, 2)	(130, 25)	None	(3, 26)	(0, 0)	(133, 29)
AGLN250	A3PN250	(3, 2)	(130, 49)	None	(3, 50)	(0, 0)	(133, 49)

Note: The vertical I/O tile coordinates are not shown. West-side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)}; east-side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 1-9 • Array Coordinates for AGL600, AGLE600, A3P600, and A3PE600

v1.4 1-9

Routing Architecture


The routing structure of low-power flash devices is designed to provide high performance through a flexible four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources; high-speed, very-long-line resources; and the high-performance VersaNet networks.

The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect directly to every input of the eight surrounding VersaTiles (Figure 1-10 on page 1-10). The exception to this is that the SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaTile global network.

The efficient long-line resources provide routing for longer distances and higher-fanout connections. These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and horizontally, and cover the entire device (Figure 1-11 on page 1-11). Each VersaTile can drive signals onto the efficient long-line resources, which can access every input of every VersaTile. Routing software automatically inserts active buffers to limit loading effects.

The high-speed, very-long-line resources, which span the entire device with minimal delay, are used to route very long or high-fanout nets: length ±12 VersaTiles in the vertical direction and length ±16 in the horizontal direction from a given core VersaTile (Figure 1-12 on page 1-11). Very long lines in low-power flash devices have been enhanced over those in previous ProASIC families. This provides a significant performance boost for long-reach signals.

The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from external pins or internal logic. These nets are typically used to distribute clocks, resets, and other high-fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and signals can be introduced at any junction. These can be employed hierarchically, with signals accessing every input of every VersaTile. For more details on VersaNets, refer to Global Resources in Actel Low-Power Flash Devices.

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global network connection.

Figure 1-10 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors

1-10 v1.4

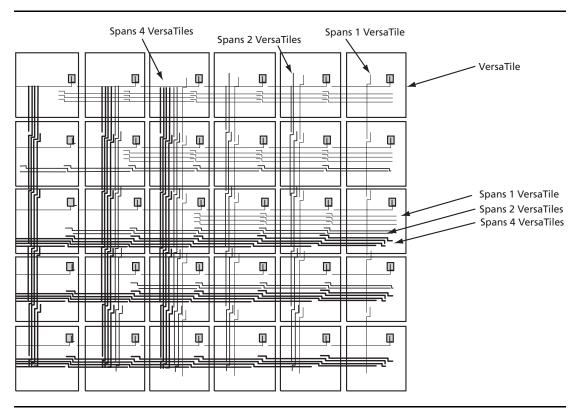


Figure 1-11 • Efficient Long-Line Resources

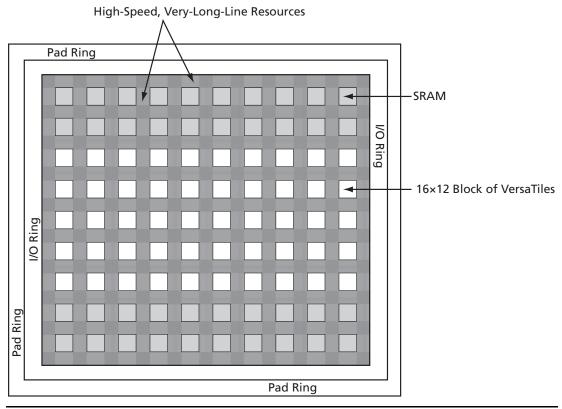


Figure 1-12 • Very-Long-Line Resources

v1.4 1-11

Related Documents

Handbook Documents

Global Resources in Actel Low-Power Flash Devices http://www.actel.com/documents/LPD_Glorbal_HBs.pdf

User's Guides

Designer User's Guide http://www.actel.com/documents/designer_ug.pdf

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet. To improve usability for customers, the device architecture information has now been split into handbook sections, which also include usage information. No technical changes were made to the content unless explicitly listed.

Part Number 51700094-002-4 Revised December 2008

1-12 v1.4

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.4)	Page			
v1.3 (October 2008)	IGLOO nano and ProASIC3 nano devices were added to Table 1-1 \cdot Flash-Based FPGAs.	1-2			
	Figure 1-2 · IGLOO and ProASIC3 nano Device Architecture Overview with Two I/O Banks (applies to 10 k and 30 k device densities, excluding IGLOO PLUS devices) through Figure 1-5 · IGLOO, IGLOO nano, ProASIC3 nano, and ProASIC3/L Device Architecture Overview with Four I/O Banks (AGL600 device is shown) are new.	1-3, 1-4			
	Table 1-4 · IGLOO nano and ProASIC3 nano Array Coordinates is new.	1-9			
v1.2 (June 2008)	The title of this document was changed from "Core Architecture of IGLOO and ProASIC3 Devices" to "FPGA Array Architecture in Low-Power Flash Devices."				
	The "FPGA Array Architecture Support" section was revised to include new families and make the information more concise.	1-2			
	Table 1-2 · IGLOO and ProASIC3 Array Coordinates was updated to include Military ProASIC3/EL and RT ProASIC3 devices.	1-8			
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 1-1 · Flash-Based FPGAs: • ProASIC3L was updated to include 1.5 V. • The number of PLLs for ProASIC3E was changed from five to six.	1-2			
v1.0 (January 2008)	Table 1-1 · Flash-Based FPGAs and the accompanying text was updated to include the IGLOO PLUS family. The "IGLOO Terminology" section and "Device Overview" section are new.	1-2			
	The "Device Overview" section was updated to note that 15 k devices do not support SRAM or FIFO.	1-3			
	Figure 1-6 · IGLOO PLUS Device Architecture Overview with Four I/O Banks is new.	1-5			
	Table 1-2 · IGLOO and ProASIC3 Array Coordinates was updated to add A3P015 and AGL015.	1-8			
	Table 1-3 · IGLOO PLUS Array Coordinates is new.	1-8			

2 – Low-Power Modes in Actel ProASIC3/E and ProASIC3 nano FPGAs

Introduction

The demand for low-power systems and semiconductors, combined with the strong growth observed for value-based FPGAs, is driving growing demand for low-power FPGAs. For portable and battery-operated applications, power consumption has always been the greatest challenge. The battery life of a system and on-board devices has a direct impact on the success of the product. As a result, FPGAs used in these applications should meet low-power consumption requirements.

Actel ProASIC®3/E and ProASIC3 nano FPGAs offer low power consumption capability inherited from their nonvolatile and live-at-power-up (LAPU) flash technology. This application note describes the power consumption and how to use different power saving modes to further reduce power consumption for power-conscious electronics design.

Power Consumption Overview

In evaluating the power consumption of FPGA technologies, it is important to consider it from a system point of view. Generally, the overall power consumption should be based on static, dynamic, inrush, and configuration power. Few FPGAs implement ways to reduce static power consumption utilizing sleep modes.

SRAM-based FPGAs use volatile memory for their configuration, so the device must be reconfigured after each power-up cycle. Moreover, during this initialization state, the logic could be in an indeterminate state, which might cause inrush current and power spikes. More complex power supplies are required to eliminate potential system power-up failures, resulting in higher costs. For portable electronics requiring frequent power-up and -down cycles, this directly affects battery life, requiring more frequent recharging or replacement.

SRAM-Based FPGA Total Power Consumption = P_{static} + P_{dynamic} + P_{inrush} + P_{config}

EQ 2-1

ProASIC3/E Total Power Consumption = $P_{\text{static}} + P_{\text{dynamic}}$

EO 2-2

Unlike SRAM-based FPGAs, Actel flash-based FPGAs are nonvolatile and do not require power-up configuration. Additionally, Actel nonvolatile flash FPGAs are live at power-up and do not require additional support components. Total power consumption is reduced as the inrush current and configuration power components are eliminated.

Note that the static power component can be reduced in flash FPGAs (such as the ProASIC3/E devices) by entering User Low Static mode or Sleep mode. This leads to an extremely low static power component contribution to the total system power consumption.

The following sections describe the usage of Static (Idle) mode to reduce the power component, User Low Static mode to reduce the static power component, and Sleep mode and Shutdown mode to achieve a range of power consumption when the FPGA or system is idle. Table 2-1 on page 2-2 summarizes the different low-power modes offered by ProASIC3/E devices.

v1.2 2-1

Table 2-1 • ProASIC3/E/nano Low-Power Modes Summary

Mode	Power Supplies / Clock Status	Needed to Start Up
Active	On – All, clock	N/A (already active)
	Off – None	
Static (Idle)	On – All	Initiate clock source.
	Off – No active clock in FPGA	No need to initialize volatile contents.
	Optional: Enter User Low Static (Idle) Mode by enabling ULSICC macro to further reduce power consumption by powering down FlashROM.	
Sleep	On – V _{CCI}	Need to turn on core.
	Off – V_{CC} (core voltage), V_{JTAG} (JTAG DC voltage), and V_{PUMP} (programming voltage)	Load states from external memory.
	LAPU enables immediate operation when power returns.	As needed, restore volatile contents from external memory.
	Optional: Save state of volatile contents in external memory.	
Shutdown	On – None	Need to turn on V _{CC} , V _{CCI} .
	Off – All power supplies	
	Applicable to all ProASIC3E, all ProASIC3 nano, and the A3P030 and A3P015 devices, cold-sparing and hot-insertion allow the device to be powered down without bringing down the system. LAPU enables immediate operation when power returns.	

Static (Idle) Mode

In Static (Idle) mode, the clock inputs are not switching and the static power consumption is the minimum power required to keep the device powered up. In this mode, I/Os are only drawing the minimum leakage current specified in the datasheet. Also, in Static (Idle) mode, embedded SRAM, I/Os, and registers retain their values, so the device can enter and exit this mode without any penalty.

If the embedded PLLs are used as the clock source, Static (Idle) mode can be entered easily by pulling LOW the PLL POWERDOWN pin (active-low). By pulling the PLL POWERDOWN pin to LOW, the PLL is turned off. Refer to Figure 2-1 on page 2-3 for more information.

2-2 v1.2

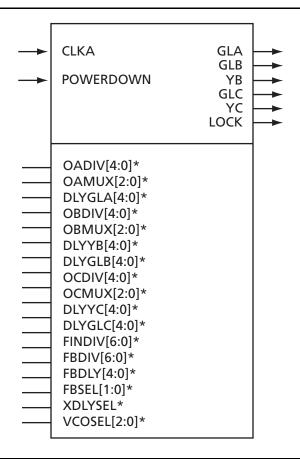


Figure 2-1 • CCC/PLL Macro

User Low Static (Idle) Mode

User Low Static (Idle) mode is an advanced feature supported by ProASIC3/E devices to reduce static (idle) power consumption. Entering and exiting this mode is made possible using the ULSICC macro by setting its value to disable/enable the User Low Static (Idle) mode. Under typical operating conditions, characterization results show up to 25% reduction of the static (idle) power consumption. The greatest power savings in terms of percentage are seen in the smaller members of the ProASIC3 family. The active-high control signal for User Low Static (Idle) mode can be generated by internal or external logic. When the device is operating in User Low Static (Idle) mode, FlashROM functionality is temporarily disabled to save power. If FlashROM functionality is needed, the device can exit User Low Static mode temporarily and re-enter the mode once the functionality is no longer needed.

To utilize User Low Static (Idle) mode, simply instantiate the ULSICC macro (Table 2-2 on page 2-4) in your design, and connect the input port to either an internal logic signal or a device package pin, as illustrated in Figure 2-2 on page 2-4 or Figure 2-3 on page 2-5, respectively. The attribute is used so the Synplify[®] synthesis tool will not optimize the instance with no output port.

This mode can be used to lower standard static (idle) power consumption when the FlashROM feature is not needed. Configuring the device to enter User Low Static (Idle) mode is beneficial when the FPGA enters and exits static mode frequently and lowering power consumption as much as possible is desired. The device is still functional, and data is retained in this state so the device can enter and exit this mode quickly, resulting in reduced total power consumption. The device can also stay in User Low Static mode when the FlashROM feature is not used in the device.

v1.2 2-3

Table 2-2 • Using ULSICC Macro*

VHDL	Verilog
COMPONENT ULSICC	module ULSICC(LSICC);
port (input LSICC;
LSICC : in STD_ULOGIC);	endmodule
END COMPONENT;	
	Example:
Example:	ULSICC U1(.LSICC(myInputSignal))
COMPONENT ULSICC	/* synthesis syn_noprune=1 */;
port (
LSICC : in STD_ULOGIC);	
END COMPONENT;	
attribute syn_noprune : boolean;	
attribute syn_noprune of u1 : label is true;	
ul: ULSICC port map(myInputSignal);	

^{*} Supported in Libero IDE v7.2 and newer versions.

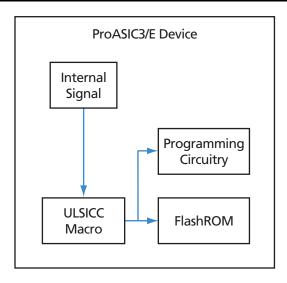


Figure 2-2 • User Low Static (Idle) Mode Application—Internal Control Signal

2-4 v1.2

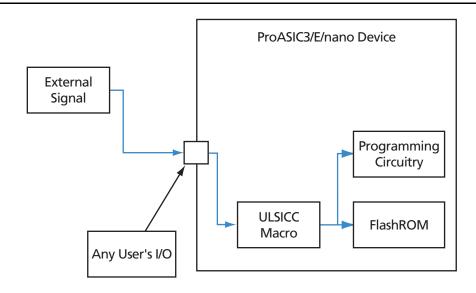


Figure 2-3 • User Low Static (Idle) Mode Application—External Control Signal

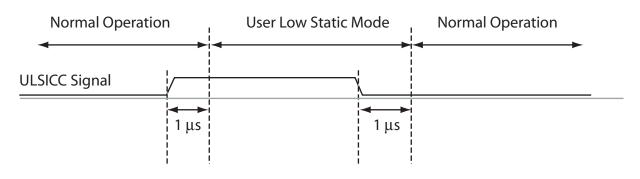


Figure 2-4 • User Low Static (Idle) Mode Timing Diagram

Sleep Mode

Actel ProASIC3/E and ProASIC3 nano FPGAs support Sleep mode when device functionality is not required. In Sleep mode, the V_{CC} (core voltage), V_{JTAG} (JTAG DC voltage), and V_{PUMP} (programming voltage) are grounded, resulting in the FPGA core being turned off to reduce power consumption. While the ProASIC3/E device is in Sleep mode, the rest of the system is still operating and driving the input buffers of the ProASIC3/E device. The driven inputs do not pull up power planes, and the current draw is limited to a minimal leakage current.

Table 2-3 shows the status of the power supplies in Sleep mode. When a power supply is powered off, the corresponding power pin can be left floating or grounded.

Table 2-3 • Sleep Mode—Power Supply Requirements for ProASIC3/E/nano Devices

Power Supplies	ProASIC3/E/nano Device
V _{CC}	Powered off
V _{CCI} = VMV	Powered on
V_{JTAG}	Powered off
V _{PUMP}	Powered off

v1.2 2-5

Table 2-4 shows the current draw in Sleep mode for an A3P250 device with the following test conditions: $V_{CCI} = V_{MV}$; $V_{CC} = V_{JTAG} = V_{PUMP} = GND$.

Table 2-4 • A3P250 Current Draw in Sleep Mode

	A3P250	
Typical Conditions	I _{CCI} (μA)	I _{CCI} (μΑ) per Bank
V _{CCI} = 3.3 V	31.57	7.89
V _{CCI} = 2.5 V	23.96	5.99
V _{CCI} = 1.8 V	17.32	4.33
V _{CCI} = 1.5 V	14.46	3.62
I _{CC} FPGA Core	0.0	0.0
Leakage Current per I/O	0.1	0.1
V _{PUMP}	0.0	0.0

Note: The data in this table were taken under typical conditions and are based on characterization. The data is not guaranteed.

Table 2-5 shows the current draw in Sleep mode for an A3PE600 device with the following test conditions: $V_{CCI} = V_{MV}$; $V_{CC} = V_{ITAG} = V_{PUMP} = GND$.

Table 2-5 • A3PE600 Current Draw in Sleep Mode

	A3PE600	
Typical Conditions	l _{CCI} (μA)	I _{CCI} (μA) per Bank
V _{CCI} = 3.3 V	59.85	7.48
V _{CCI} = 2.5 V	45.50	5.69
V _{CCI} = 1.8 V	32.98	4.12
V _{CCI} = 1.5 V	27.66	3.46
V _{CCI} = 0 V or Floating	0.0	0.0
I _{CC} FPGA Core	0.0	0.0
Leakage Current per I/O	0.1	0.1
I _{PUMP}	0.0	0.0

Note: The data in this table were taken under typical conditions and are based on characterization. The data is not guaranteed.

ProASIC3/E and ProASIC3 nano devices were designed such that before device power-up, all I/Os are in tristate mode. The I/Os will remain tristated during power-up until the last voltage supply (V_{CC} or V_{CCI}) is powered to its functional level. After the last supply reaches the functional level, the outputs will exit the tristate mode and drive the logic at the input of the output buffer. The behavior of user I/Os is independent of the V_{CC} and V_{CCI} sequence or the state of other FPGA voltage supplies (V_{PUMP} and V_{JTAG}). During power-down, device I/Os become tristated once the first power supply (V_{CC} or V_{CCI}) drops below its brownout voltage level. The I/O behavior during power-down is also independent of voltage supply sequencing.

Figure 2-5 on page 2-7 shows a timing diagram for the FPGA core entering the activation and deactivation trip points for a typical application when the V_{CC} power supply ramp rate is 100 μ s (ramping from 0 V to 1.5 V). This is, in fact, the timing diagram for the FPGA entering and exiting Sleep mode, as it is dependent on powering down or powering up V_{CC} . Depending on the ramp rate of the power supply and board-level configurations, the user can easily calculate how long it takes for the core to become active or inactive. For more information, refer to the *Power-Upl-Down Behavior of Low-Power Flash Devices* application note.

2-6 v1.2

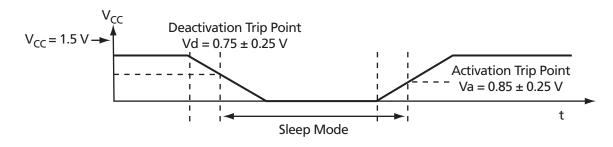


Figure 2-5 • Entering and Exiting Sleep Mode—Typical Timing Diagram

Shutdown Mode

For all ProASIC3E, all ProASIC3 nano, and the A3P030 and A3P015 devices, shutdown mode can be entered by turning off all power supplies when device functionality is not needed. Cold-sparing and hot-insertion features enable the device to be powered down without turning off the entire system. When power returns, the live at power-up feature enables immediate operation of the device.

Using Sleep Mode or Shutdown Mode in the System

Depending on the power supply and components used in an application, there are many ways to turn the power supplies connected to the device on or off. For example, Figure 2-6 shows how a microprocessor is used to control a power FET. It is recommended that power FETs with low on resistance be used to perform the switching action.

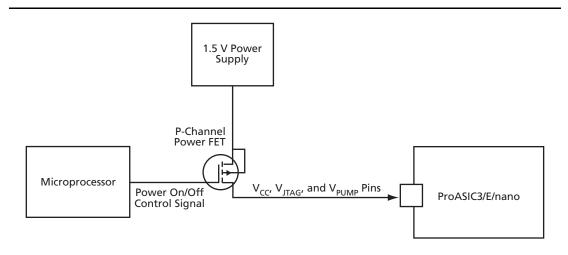


Figure 2-6 • Controlling Power On/Off State Using Microprocessor and Power FET

v1.2 2-7

Alternatively, Figure 2-7 shows how a microprocessor can be used with a voltage regulator's shutdown pin to turn the power supplies connected to the device on or off.

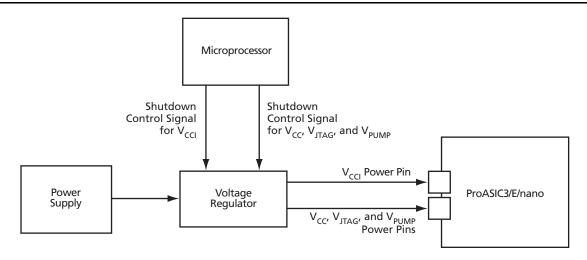


Figure 2-7 • Controlling Power On/Off State Using Microprocessor and Voltage Regulator

Though Sleep mode or Shutdown mode can be used to save power, the content of the SRAM and the state of the registers is lost when power is turned off if no other measure is taken. To keep the original contents of the device, a low-cost external serial EEPROM can be used to save and restore the device contents when entering and exiting Sleep mode. In the *Embedded SRAM Initialization Using External Serial EEPROM* application note, detailed information and a reference design are provided to initialize the embedded SRAM using an external serial EEPROM. The user can easily customize the reference design to save and restore the FPGA state when entering and exiting Sleep mode. The microcontroller will need to manage this activity, so before powering down V_{CC}, the data must be read from the FPGA and stored externally. Similarly, after the FPGA is powered up, the microcontroller must allow the FPGA to load the data from external memory and restore its original state.

Conclusion

Actel ProASIC3/E and ProASIC3 nano FPGAs inherit low-power consumption capability from their nonvolatile and live-at-power-up flash-based technology. Power consumption can be reduced further using the Static (Idle), User Low Static (Idle), Sleep, or Shutdown power modes. All these features result in a low-power, cost-effective, single-chip solution designed specifically for power-sensitive electronics applications.

2-8 v1.2

Related Documents

Application Notes

Power-Up/Down Behavior of Low-Power Flash Devices
http://www.actel.com/documents/LPD_PowerUp_HBs.pdf
Embedded SRAM Initialization Using External Serial EEPROM
http://www.actel.com/documents/EmbeddedSRAMInit_AN.pdf

Handbook Documents

SRAM and FIFO Memories in Actel's in Actel's Low-Power Flash Devices http://www.actel.com/documents/LPD_SRAMFIFO_HBs.pdf

Part Number and Revision Date

This document was previously published as an application note describing features and functions of the device, and as such has now been incorporated into the device handbook format. No technical changes have been made to the content.

Part Number 51700094-003-2 Revised August 2009

v1.2 2-9

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.2)	Page
v1.1 (February 2008)	References to ProASIC3 nano devices were added to the document where appropriate.	N/A
	V _{JTAG} and V _{PUMP} were noted as "Off" in the Sleep Mode section of Table 2-1 • ProASIC3/E/nano Low-Power Modes Summary.	2-2
	The "Sleep Mode" section, including Table 2-3 · Sleep Mode—Power Supply Requirements for ProASIC3/E/nano Devices, was revised to state that V_{JTAG} and V_{PUMP} are powered off during Sleep mode.	2-5
	The text above Table 2-4 • A3P250 Current Draw in Sleep Mode and Table 2-5 • A3PE600 Current Draw in Sleep Mode was revised to state " $V_{CC} = V_{JTAG} = V_{PUMP} = GND$."	2-6
	Figure 2-6 · Controlling Power On/Off State Using Microprocessor and Power FET and Figure 2-7 · Controlling Power On/Off State Using Microprocessor and Voltage Regulator were revised to show shutdown of $\rm V_{JTAG}$ and $\rm V_{PUMP}$ during Sleep mode.	2-7, 2-8
v1.0 (January 2008)	The part number for this document was changed from 51700094-002-0 to 51700094-003-1.	N/A
51900138-2/10.06	The Power Supplies / Clock Status description was updated for Static (Idle) in Table 2-1 · ProASIC3/E/nano Low-Power Modes Summary.	2-2
	Programming information was updated in the "User Low Static (Idle) Mode" section.	2-3
51900138-1/6.06	The "User Low Static (Idle) Mode" section was updated to include information about allowing programming in the ULSICC mode.	2-3
	Figure 2-2 · User Low Static (Idle) Mode Application—Internal Control Signal was updated.	2-4
	Figure 2-3 · User Low Static (Idle) Mode Application—External Control Signal was updated.	2-5
51900138-0/6.05	In Table 2-4 \cdot A3P250 Current Draw in Sleep Mode, "V _{CCI} = 1.5 V" was changed from 3.6158 to 3.62.	2-6
	In Table 2-5 \cdot A3PE600 Current Draw in Sleep Mode, " V_{CCI} = 2.5 V" was changed from 5.6875 to 3.69.	2-6

2-10 v1.2

Global Resources and Clock Conditioning

3 – Global Resources in Actel Low-Power Flash Devices

Introduction

Actel IGLOO, Fusion, and ProASIC Type A devices offer a powerful, low-delay VersaNet global network scheme and have extensive support for multiple clock domains. In addition to the Clock Conditioning Circuits (CCCs) and phase-locked loops (PLLs), there is a comprehensive global clock distribution network called a VersaNet global network. Each logical element (VersaTile) input and output port has access to these global networks. The VersaNet global networks can be used to distribute low-skew clock signals or high-fanout nets. In addition, these highly segmented VersaNet global networks offer users the flexibility to create low-skew local networks using spines. This document describes VersaNet global networks and discusses how to assign signals to these global networks and spines in a design flow. Details concerning low-power flash device PLLs are described in *Clock Conditioning Circuits in IGLOO and ProASIC3 Devices*. This document describes the low-power flash devices' global architecture and uses of these global networks in designs.

Global Architecture

Low-power flash devices offer powerful and flexible control of circuit timing through the use of analog circuitry. Each chip has up to six CCCs, some with PLLs.

- In IGLOOe, ProASIC3EL, and ProASIC3E devices, all CCCs have PLLs—hence, 6 PLLs per device.
- In IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, and ProASIC3L devices, the west CCC contains a PLL core (except in 10 k through 30 k devices).
- In Fusion devices, the west CCC also contains a PLL core. In the two larger devices (AFS600 and AFS1500), the west and east CCCs each contain a PLL.

Each PLL includes delay lines, a phase shifter (0°, 90°, 180°, 270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to three VersaNet global lines on each side of the chip (six global lines total). The CCCs at the four corners each have access to three quadrant global lines in each quadrant of the chip (except in 10 k through 30 k gate devices).

The nano 10 k, 15 k, and 20 k devices support four VersaNet global resources, and 30 k devices support six global resources. The 10 k through 30 k devices have simplified CCCs called CCC-GLs.

The flexible use of the VersaNet global network allows the designer to address several design requirements. User applications that are clock-resource-intensive can easily route external or gated internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global network.

The following sections give an overview of the VersaNet global network, the structure of the global network, and the clock aggregation feature that enables a design to have very low clock skew using spines.

Global Resource Support in Flash-Based Devices

The flash FPGAs listed in Table 3-1 support the global resources and the functions described in this document.

Table 3-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
	IGLOO nano	The industry's lowest-power, smallest-size solution
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex™-M1 soft processors, and flash memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO products as listed in Table 3-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 3-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

3-2 v1.4

VersaNet Global Network Distribution

One of the architectural benefits of low-power flash architecture is the set of powerful, low-delay VersaNet global networks that can access the VersaTiles, SRAM, and I/O tiles of the device. Each device offers a chip global network with six global lines (except for nano 10 k, 15 k, and 20 k gate devices) that are distributed from the center of the FPGA array. In addition, each device (except the 10 k through 30 k gate device) has four quadrant global networks, each with three regional global line resources. These quadrant global networks can only drive a signal inside their own quadrant. Each core VersaTile has access to nine global line resources—three quadrant and six chip-wide (main) global networks—and a total of 18 globals are available on the device (3 × 4 regional from each quadrant and 6 global).

Figure 3-1 shows an overview of the VersaNet global network and device architecture for devices 60 k and above. Figure 3-2 and Figure 3-3 on page 3-4 show simplified VersaNet global networks.

The VersaNet global networks are segmented and consist of VersaNet global networks, spines, global ribs, and global multiplexers (MUXes), as shown in Figure 3-1. The global networks are driven from the global rib at the center of the die or quadrant global networks at the north or south side of the die. The global network uses the MUX trees to access the spine, and the spine uses the clock ribs to access the VersaTile. Access is available to the chip or quadrant global networks and the spines through the global MUXes. Access to the spine using the global MUXes is explained in the "Spine Architecture" section on page 3-5.

These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-skew local networks using spines for up to 252 internal/external clocks or other high-fanout nets in low-power flash devices. Optimal usage of these low-skew networks can result in significant improvement in design performance.

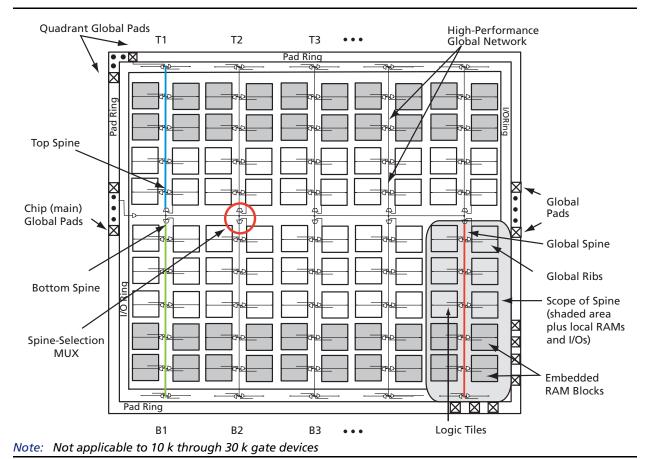


Figure 3-1 • Overview of VersaNet Global Network and Device Architecture

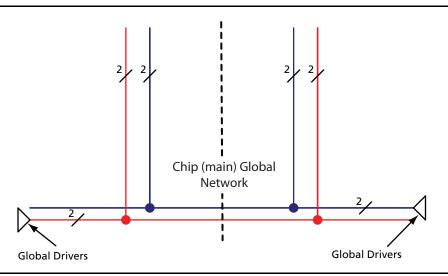


Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below)

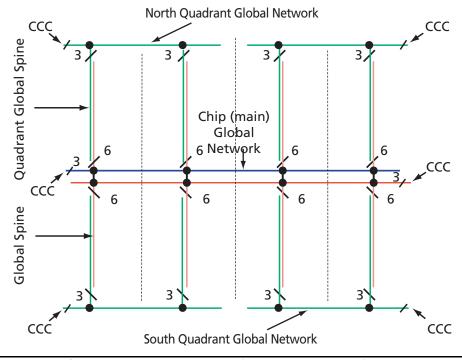


Figure 3-3 • Simplified VersaNet Global Network (60 k gates and above)

3-4 v1.4

Spine Architecture

The low-power flash device architecture allows the VersaNet global networks to be segmented. Each of these networks contains spines (the vertical branches of the global network tree) and ribs that can reach all the VersaTiles inside its region. The nine spines available in a vertical column reside in global networks with two separate regions of scope: the quadrant global network, which has three spines, and the chip (main) global network, which has six spines. Note that the number of quadrant globals and globals/spines per tree varies depending on the specific device. Refer to Table 3-2 on page 3-6 for the clocking resources available for each device. The spines are the vertical branches of the global network tree, shown in Figure 3-3. Each spine in a vertical column of a chip (main) global network is further divided into two spine segments of equal lengths: one in the top and one in the bottom half of the die (except in 10 k through 30 k gate devices).

Top and bottom spine segments radiating from the center of a device have the same height. However, just as in the ProASICPLUS® family, signals assigned only to the top and bottom spine cannot access the middle two rows of the die. The spines for quadrant clock networks do not cross the middle of the die and cannot access the middle two rows of the architecture.

Each spine and its associated ribs cover a certain area of the device (the "scope" of the spine; see Figure 3-3). Each spine is accessed by the dedicated global network MUX tree architecture, which defines how a particular spine is driven—either by the signal on the global network from a CCC, for example, or by another net defined by the user. Details of the chip (main) global network spine-selection MUX are presented in Figure 3-5 on page 3-8. The spine drivers for each spine are located in the middle of the die.

Quadrant spines can be driven from user I/Os on the north and south sides of the die. The ability to drive spines in the quadrant global networks can have a significant effect on system performance for high-fanout inputs to a design. Access to the top quadrant spine regions is from the top of the die, and access to the bottom quadrant spine regions is from the bottom of the die. The A3PE3000 device has 28 clock trees and each tree has nine spines; this flexible global network architecture enables users to map up to 252 different internal/external clocks in an A3PE3000 device.

Table 3-2 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices

ProASIC3/ ProASIC3L Devices	IGLOO Devices	Chip Globals	Quadrant Globals (4×3)	Clock Trees	Globals/ Spines per Tree	Total Spines per Device	VersaTiles in Each Tree	Total VersaTiles	Rows in Each Spine
A3PN010	AGLN010	4	0	1	0	0	260	260	4
A3PN015	AGLN015	4	0	1	0	0	384	384	6
A3PN020	AGLN020	4	0	1	0	0	520	520	6
A3PN060	AGLN060	6	12	4	9	36	384	1,536	12
A3PN125	AGLN125	6	12	8	9	72	384	3,072	12
A3PN250	AGLN250	6	12	8	9	72	768	6,144	24
A3P015	AGL015	6	0	1	9	9	384	384	12
A3P030	AGL030	6	0	2	9	18	384	768	12
A3P060	AGL060	6	12	4	9	36	384	1,536	12
A3P125	AGL125	6	12	8	9	72	384	3,072	12
A3P250/L	AGL250	6	12	8	9	72	768	6,144	24
A3P400	AGL400	6	12	12	9	108	768	9,216	24
A3P600/L	AGL600	6	12	12	9	108	1,152	13,824	36
A3P1000/L	AGL1000	6	12	16	9	144	1,536	24,576	48
A3PE600/L	AGLE600	6	12	12	9	108	1,120	13,440	35
A3PE1500		6	12	20	9	180	1,888	37,760	59
A3PE3000/L	AGLE3000	6	12	28	9	252	2,656	74,368	83

Table 3-3 • Globals/Spines/Rows for IGLOO PLUS Devices

IGLOO PLUS Devices	Chip Globals	Quadrant Globals (4×3)	Clock Trees	Globals/ Spines per Tree	Total Spines per Device	VersaTiles in Each Tree	Total VersaTiles	Rows in Each Spine
AGLP030	6	0	2	9	18	384*	792	12
AGLP060	6	12	4	9	36	384*	1,584	12
AGLP125	6	12	8	9	72	384*	3,120	12

Note: *Clock trees that are located at far left and far right will support more VersaTiles.

Table 3-4 • Globals/Spines/Rows for Fusion Devices

Fusion Device	Chip Globals	Quadrant Globals (4×3)	Clock Trees	Globals/ Spines per Tree	Total Spines per Device	VersaTiles in Each Tree	Total VersaTiles	Rows in Each Spine
AFS090	6	12	6	9	54	384	2,304	12
AFS250	6	12	8	9	72	768	6,144	24
AFS600	6	12	12	9	108	1,152	13,824	36
AFS1500	6	12	20	9	180	1,920	38,400	60

3-6 v1.4

Spine Access

The physical location of each spine is identified by the letter 'T' (top) or 'B' (bottom) and an accompanying number (Tn or Bn). The number n indicates the horizontal location of the spine; 1 refers to the first spine on the left side of the die. Since there are six chip spines in each spine tree, there are up to six spines available for each combination of 'T' (or 'B') and n (for example, six T1 spines). Similarly, there are three quadrant spines available for each combination of 'T' (or 'B') and n (for example, four T1 spines), as shown in Figure 3-4.

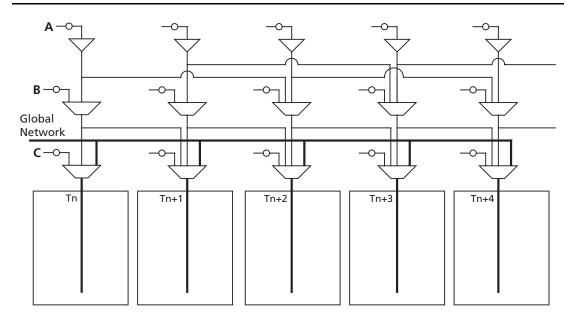


Figure 3-4 • Chip Global Aggregation

Spines are also called local clocks, and are accessed by the dedicated global MUX architecture. These MUXes define how a particular spine is driven. Refer to Figure 3-5 on page 3-8 for the global MUX architecture. The MUXes for each chip global spine are located in the middle of the die. Access to the top and bottom chip global spine is available from the middle of the die. There is no control dependency between the top and bottom spines. If a top spine, T1, of a chip global network is assigned to a net, B1 is not wasted and can be used by the global clock network. The signal assigned only to the top or bottom spine cannot access the middle two rows of the architecture. However, if a spine is using the top and bottom at the same time (T1 and B1, for instance), the previous restriction is lifted.

The MUXes for each quadrant global spine are located in the north and south sides of the die. Access to the top and bottom quadrant global spines is available from the north and south sides of the die. Since the MUXes for quadrant spines are located in the north and south sides of the die, you should not try to drive T1 and B1 quadrant spines from the same signal.

Using Clock Aggregation

Clock aggregation allows for multi-spine clock domains to be assigned using hardwired connections, without adding any extra skew. A MUX tree, shown in Figure 3-5, provides the necessary flexibility to allow long lines, local resources, or I/Os to access domains of one, two, or four global spines. Signal access to the clock aggregation system is achieved through long-line resources in the central rib in the center of the die, and also through local resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 3-6 indicates, this access system is contiguous.

There is no break in the middle of the chip for the north and south I/O VersaNet access. This is different from the quadrant clocks located in these ribs, which only reach the middle of the rib.

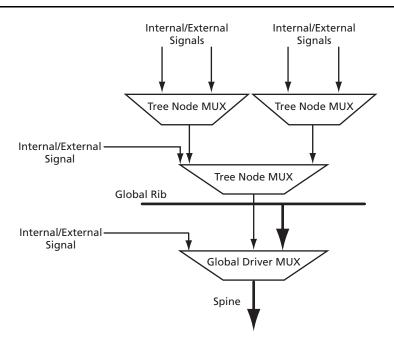


Figure 3-5 • Spine Selection MUX of Global Tree

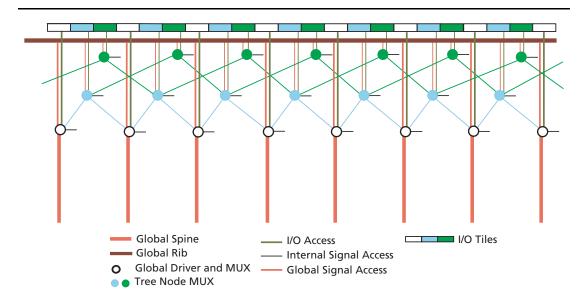


Figure 3-6 • Clock Aggregation Tree Architecture

3-8 v1.4

Clock Aggregation Architecture

This clock aggregation feature allows a balanced clock tree, which improves clock skew. The physical regions for clock aggregation are defined from left to right and shift by one spine. For chip global networks, there are three types of clock aggregation available, as shown in Figure 3-7:

- Long lines that can drive up to four adjacent spines
- Long lines that can drive up to two adjacent spines
- Long lines that can drive one spine

There are three types of clock aggregation available for the quadrant spines, as shown in Figure 3-7:

- I/Os or local resources that can drive up to four adjacent spines
- I/Os or local resources that can drive up to two adjacent spines
- I/Os or local resources that can drive one spine
- As an example, A3PE600 and AFS600 devices have twelve spine locations: T1, T2, T3, T4, T5, T6, B1, B2, B3, B4, B5, and B6. Table 3-5 shows the clock aggregation you can have in A3PE600 and AFS600.

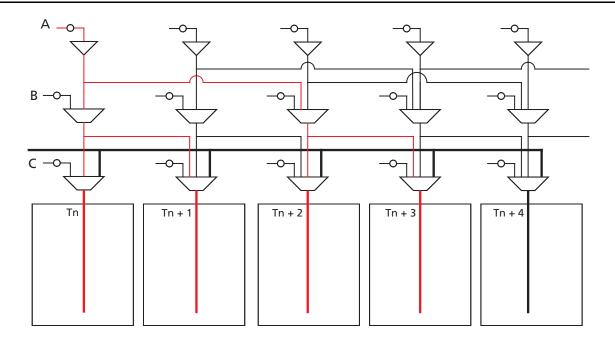


Figure 3-7 • Four Spines Aggregation

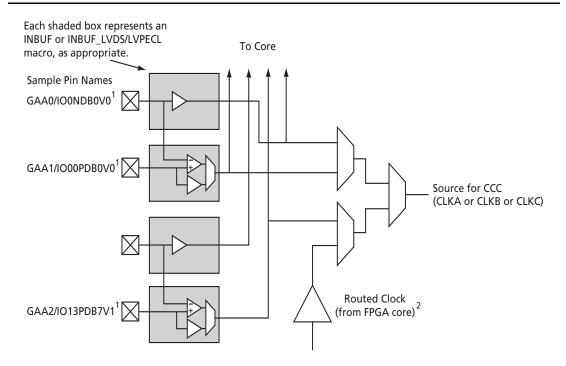
Table 3-5 • Spine Aggregation in A3PE600 or AFS600

Clock Aggregation	Spine
1 spine	T1, T2, T3, T4, T5, T6, B1, B2, B3, B4, B5, B6
2 spines	T1:T2, T2:T3, T3:T4, T4:T5, T5:T6, B1:B2, B2:B3, B3:B4, B4:B5, B5:B6
4 spines	B1:B4, B2:B5, B3:B6, T1:T4, T2:T5, T3:T6

The clock aggregation for the quadrant spines can cross over from the left to right quadrant, but not from top to bottom. The quadrant spine assignment T1:T4 is legal, but the quadrant spine assignment T1:B1 is not legal. Note that this clock aggregation is hardwired. You can always assign signals to spine T1 and B2 by instantiating a buffer, but this may add skew in the signal.

I/O Banks and Global I/Os

The following sections give an overview of naming conventions and other related I/O information.


Naming of Global I/Os

In low-power flash devices, the global I/Os have access to certain clock conditioning circuitry and have direct access to the global network. Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities to those of regular I/Os. Due to the comprehensive and flexible nature of the I/Os in low-power flash devices, a naming scheme is used to show the details of the I/O. The global I/O uses the generic name Gmn/IOuxwByVz. Refer to the I/O Structure section of the handbook for the device that you are using for more information on this naming convention.

Figure 3-8 represents the global input pins connection to the northwest CCC or northwest quadrant global networks for a low-power flash device. Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

- 3 dedicated single-ended I/Os using a hardwired connection
- 2 dedicated differential I/Os using a hardwired connection
- The FPGA core

Since each bank can have a different I/O standard, the user should be careful to choose the correct global I/O for the design. There are 54 global pins available to access 18 global networks. For the single-ended and voltage-referenced I/O standards, you can use any of these three available I/Os to access the global network. For differential I/O standards such as LVDS and LVPECL, the I/O macro needs to be placed on GAA0 and GAA1 or a similar location. The unassigned global I/Os can be used as regular I/Os. Note that pin names starting with GF and GC are associated with the chip global networks, and GA, GB, GD, and GE are used for quadrant global networks.

GAA[0:2]: GA represents global in the northwest corner of the device. A[0:2]: designates specific A clock source.

Figure 3-8 • Global I/O Overview

3-10 v1.4

Unused Global I/O Configuration

The unused clock inputs behave similarly to the unused Pro I/Os. The Actel Designer software automatically configures the unused global pins as inputs with pull-up resistors if they are not used as regular I/O.

I/O Banks and Global I/O Standards

In low-power flash devices, any I/O or internal logic can be used to drive the global network. However, only the global macro placed at the global pins will use the hardwired connection between the I/O and global network. Global signal (signal driving a global macro) assignment to I/O banks is no different from regular I/O assignment to I/O banks with the exception that you are limited to the pin placement location available. Only global signals compatible with both the V_{CCI} and V_{RFF} standards can be assigned to the same bank.

Design Recommendations

The following sections provide design flow recommendations for using a global network in a design.

- "Global Macros and I/O Standards"
- "Using Global Macros in Synplicity" on page 3-13
- "Global Promotion and Demotion Using PDC" on page 3-14
- "Spine Assignment" on page 3-15
- "Designer Flow for Global Assignment" on page 3-16
- "Simple Design Example" on page 3-18
- "Global Management in PLL Design" on page 3-20
- "Using Spines of Occupied Global Networks" on page 3-21

Global Macros and I/O Standards

Low-power flash devices have six chip global networks and four quadrant clock networks. However, the same clock macros are used for assigning signals to chip globals and quadrant globals. Depending on the clock macro placement or assignment in the Physical Design Constraint (PDC) file or MultiView Navigator (MVN), the signal will use the chip global network or quadrant network. Table 3-6 on page 3-12 lists the clock macros available for low-power flash devices. Refer to the IGLOO, Fusion and ProASIC3 Macro Library Guide for details.

Table 3-6 • Clock Macros

Macro Name	Description	Symbol
CLKBUF	Input macro for Clock Network	PAD CLKBUF Y
CLKBUF_x	Input macro for Clock Network with specific I/O standard	CLKBUF_X PAD Y
CLKBUF_LVDS/ LVPECL	LVDS or LVPECL input macro for Clock Network	PADP CLKBUF LVDS Y CLKBUF LVPECL Y PADN
CLKINT	Internal clock interface	A CLKINT
CLKBIBUF	Bidirectional macro with input dedicated to routed Clock Network	D E PAD CLKBIBUF

Use these available macros to assign a signal to the global network. In addition to these global macros, PLL and CLKDLY macros can also drive the global networks. Use I/O-standard-specific clock macros (CLKBUF_x) to instantiate a specific I/O standard for the global signals. Table 3-7 shows the list of these I/O-standard-specific macros. Note that if you use these I/O-standard-specific clock macros, you cannot change the I/O standard later in the design stage. If you use the regular CLKBUF macro, you can use MVN or the PDC file in Designer to change the I/O standard. The default I/O standard for CLKBUF is LVTTL in the current Actel Libero[®] Integrated Design Environment (IDE) and Designer software.

Table 3-7 • I/O Standards within CLKBUF

Name	Description
CLKBUF_LVCMOS5	LVCMOS clock buffer with 5.0 V CMOS voltage level
CLKBUF_LVCMOS33	LVCMOS clock buffer with 3.3 V CMOS voltage level
CLKBUF_LVCMOS25	LVCMOS clock buffer with 2.5 V CMOS voltage level ¹
CLKBUF_LVCMOS18	LVCMOS clock buffer with 1.8 V CMOS voltage level
CLKBUF_LVCMOS15	LVCMOS clock buffer with 1.5 V CMOS voltage level
CLKBUF_LVCMOS12	LVCMOS clock buffer with 1.2 V CMOS voltage level
CLKBUF_PCI	PCI clock buffer
CLKBUF_PCIX	PCIX clock buffer
CLKBUF_GTL25	GTL clock buffer with 2.5 V CMOS voltage level ¹
CLKBUF_GTL33	GTL clock buffer with 3.3 V CMOS voltage level ¹

Notes:

- 1. Supported in only the IGLOOe, ProASIC3E, AFS600, and AFS1500 devices
- 2. By default, the CLKBUF macro uses the 3.3 V LVTTL I/O technology.

3-12 v1.4

Name	Description
CLKBUF_GTLP25	GTL+ clock buffer with 2.5 V CMOS voltage level ¹
CLKBUF_GTLP33	GTL+ clock buffer with 3.3 V CMOS voltage level ¹
CLKBUF_ HSTL _I	HSTL Class I clock buffer ¹
CLKBUF_ HSTL _II	HSTL Class II clock buffer ¹
CLKBUF_SSTL2_I	SSTL2 Class I clock buffer ¹
CLKBUF_SSTL2_II	SSTL2 Class II clock buffer ¹
CLKBUF_SSTL3_I	SSTL3 Class I clock buffer ¹
CLKBUF_SSTL3_II	SSTL3 Class II clock buffer ¹

Notes:

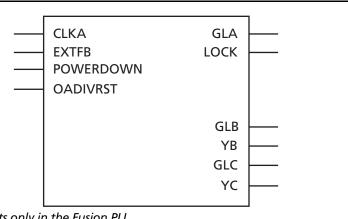
- 1. Supported in only the IGLOOe, ProASIC3E, AFS600, and AFS1500 devices
- 2. By default, the CLKBUF macro uses the 3.3 V LVTTL I/O technology.

The current synthesis tool libraries only infer the CLKBUF or CLKINT macros in the netlist. All other global macros must be instantiated manually into your HDL code. The following is an example of CLKBUF_LVCMOS25 global macro instantiations that you can copy and paste into your code:

VHDL

```
component clkbuf_lvcmos25
  port (pad : in std_logic; y : out std_logic);
end component

begin
-- concurrent statements
u2 : clkbuf_lvcmos25 port map (pad => ext_clk, y => int_clk);
end


Verilog
module design (_____);
input ____;
output ____;
clkbuf_lvcmos25 u2 (.y(int_clk), .pad(ext_clk);
endmodule
```

Using Global Macros in Synplicity

The Synplify® synthesis tool automatically inserts global buffers for nets with high fanout during synthesis. By default, Synplicity® puts six global macros (CLKBUF or CLKINT) in the netlist, including any global instantiation or PLL macro. Synplify always honors your global macro instantiation. If you have a PLL (only primary output is used) in the design, Synplify adds five more global buffers in the netlist. Synplify uses the following global counting rule to add global macros in the netlist:

- 1. CLKBUF: 1 global buffer
- 2. CLKINT: 1 global buffer
- 3. CLKDLY: 1 global buffer
- 4. PLL: 1 to 3 global buffers
 - GLA, GLB, GLC, YB, and YC are counted as 1 buffer.
 - GLB or YB is used or both are counted as 1 buffer.
 - GLC or YC is used or both are counted as 1 buffer.

Note: OAVDIVRST exists only in the Fusion PLL.
Figure 3-9 • PLLs in Low-Power Flash Devices

You can use the syn_global_buffers attribute in Synplify to specify a maximum number of global macros to be inserted in the netlist. This can also be used to restrict the number of global buffers inserted. In the Synplicity 8.1 version, a new attribute, syn_global_minfanout, has been added for low-power flash devices. This enables you to promote only the high-fanout signal to global. However, be aware that you can only have six signals assigned to chip global networks, and the rest of the global signals should be assigned to quadrant global networks. So, if the netlist has 18 global macros, the remaining 12 global macros should have fanout that allows the instances driven by these globals to be placed inside a quadrant.

Global Promotion and Demotion Using PDC

The HDL source file or schematic is the preferred place for defining which signals should be assigned to a clock network using clock macro instantiation. This method is preferred because it is guaranteed to be honored by the synthesis tools and Designer software and stop any replication on this net by the synthesis tool. Note that a signal with fanout may have logic replication if it is not promoted to global during synthesis. In that case, the user cannot promote that signal to global using PDC. See Synplicity Help for details on using this attribute. To help you with global management, Designer allows you to promote a signal to a global network or demote a global macro to a regular macro from the user netlist using the compile options and/or PDC commands.

The following are the PDC constraints you can use to promote a signal to a global network:

1. PDC syntax to promote a regular net to a chip global clock:

```
assign_global_clock -net netname
```

The following will happen during promotion of a regular signal to a global network:

- If the net is external, the net will be driven by a CLKINT inserted automatically by Compile.
- The I/O macro will not be changed to CLKBUF macros.
- If the net is an internal net, the net will be driven by a CLKINT inserted automatically by Compile.
- 2. PDC syntax to promote a net to a quadrant clock:

```
assign_local_clock -net netname -type quadrant UR|UL|LR|LL
```

This follows the same rule as the chip global clock network.

The following PDC command demotes the clock nets to regular nets.

unassign_global_clock -net netname

3-14 v1.4

The following will happen during demotion of a global signal to regular nets:

- CLKBUF_x becomes INBUF_x; CLKINT is removed from the netlist.
- The essential global macro, such as the output of the Clock Conditioning Circuit, cannot be demoted.
- No automatic buffering will happen.

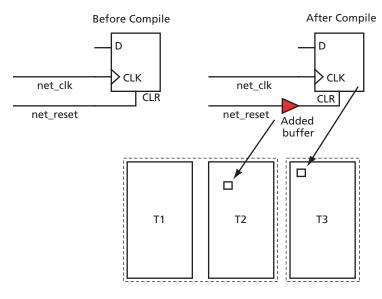
Since no automatic buffering happens when a signal is demoted, this net may have a high delay due to large fanout. This may have a negative effect on the quality of the results. Actel recommends that the automatic global demotion only be used on small-fanout nets. Use clock networks for high-fanout nets to improve timing and routability.

Spine Assignment

The low-power flash device architecture allows the global networks to be segmented and used as clock spines. These spines, also called local clocks, enable the use of PDC or MVN to assign a signal to a spine.

PDC syntax to promote a net to a spine/local clock:

```
assign_local_clock -net netname -type [quadrant|chip] Tn|Bn|Tn:Bm
```


If the net is driven by a clock macro, Designer automatically demotes the clock net to a regular net before it is assigned to a spine. Nets driven by a PLL or CLKDLY macro cannot be assigned to a local clock.

When assigning a signal to a spine or quadrant global network using PDC (pre-compile), the Designer software will legalize the shared instances. The number of shared instances to be legalized can be controlled by compile options. If these networks are created in MVN (only quadrant globals can be created), no legalization is done (as it is post-compile). Designer does not do legalization between non-clock nets.

As an example, consider two nets, net_clk and net_reset, driving the same flip-flop. The following PDC constraints are used:

```
assign_local_clock -net net_clk -type chip T3
assign_local_clock -net net_reset -type chip T1:T2
```

During Compile, Designer adds a buffer in the reset net and places it in the T1 or T2 region, and places the flip-flop in the T3 spine region (Figure 3-10).

assign_local_clock -net net_clk -type chip T3 assign_local_clock -net net_reset -type chip T1:T2

Figure 3-10 • Adding a Buffer for Shared Instances

You can control the maximum number of shared instances allowed for the legalization to take place using the Compile Option dialog box shown in Figure 3-11. Refer to Libero IDE / Designer online help for details on the Compile Option dialog box. A large number of shared instances most likely indicates a floorplanning problem that you should address.

Limit the number of shared instances between any two non-overlapping local clock regions to:

When inserting buffers to legalize shared instances between non-overlapping local clock regions, limit the buffers' fanout to:

Figure 3-11 • Shared Instances in the Compile Option Dialog Box

Designer Flow for Global Assignment

To achieve the desired result, pay special attention to global management during synthesis and place-and-route. The current Synplify tool does not insert more than six global buffers in the netlist by default. Thus, the default flow will not assign any signal to the quadrant global network. However, you can use attributes in Synplify and increase the default global macro assignment in the netlist. Designer v6.2 supports automatic quadrant global assignment, which was not available in Designer v6.1. Layout will make the choice to assign the correct signals to global. However, you can also utilize PDC and perform manual global assignment to overwrite any automatic assignment. The following step-by-step suggestions guide you in the layout of your design and help you improve timing in Designer:

- 1. Run Compile and check the Compile report. The Compile report has global information in the "Device Utilization" section that describes the number of chip and quadrant signals in the design. A "Net Report" section describes chip global nets, quadrant global nets, local clock nets, a list of nets listed by fanout, and net candidates for local clock assignment. Review this information. Note that YB or YC are counted as global only when they are used in isolation; if you use YB only and not GLB, this net is not shown in the global/quadrant nets report. Instead, it appears in the Global Utilization report.
- 2. If some signals have a very high fanout and are candidates for global promotion, promote those signals to global using the compile options or PDC commands. Figure 3-12 on page 3-17 shows the Globals Management section of the compile options. Select **Promote regular nets whose fanout is greater than** and enter a reasonable value for fanouts.

3-16 v1.4

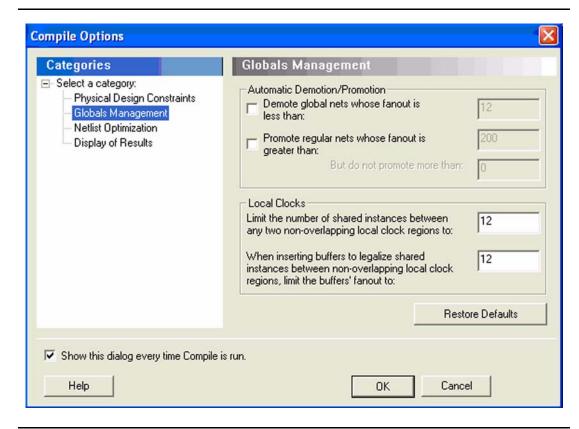


Figure 3-12 • Globals Management GUI in Designer

- 3. Occasionally, the synthesis tool assigns a global macro to clock nets, even though the fanout is significantly less than other asynchronous signals. Select **Demote global nets whose fanout is less than** and enter a reasonable value for fanouts. This frees up some global networks from the signals that have very low fanouts. This can also be done using PDC.
- 4. Use local clocks for the signals that do not need to go to the whole chip but should have low skew. This local clocks assignment can only be done using PDC.
- 5. Assign the I/O buffer using MVN if you have fixed I/O assignment. As shown in Figure 3-7 on page 3-9, there are three sets of global pins that have a hardwired connection to each global network. Do not try to put multiple CLKBUF macros in these three sets of global pins. For example, do not assign two CLKBUFs to GAA0x and GAA2x pins.
- 6. You must click **Commit** at the end of MVN assignment. This runs the pre-layout checker and checks the validity of global assignment.
- 7. Always run Compile with the **Keep existing physical constraints** option on. This uses the quadrant clock network assignment in the MVN assignment and checks if you have the desired signals on the global networks.
- 8. Run Layout and check the timing.

Simple Design Example

Consider a design consisting of six building blocks (shift registers) and targeted for an A3PE600-PQ208 (Figure 3-10 on page 3-15). The example design consists of two PLLs (PLL1 has GLA only; PLL2 has both GLA and GLB), a global reset (ACLR), an enable (EN_ALL), and three external clock domains (QCLK1, QCLK2, and QCLK3) driving the different blocks of the design. Note that the PQ208 package only has two PLLs (which access the chip global network). Because of fanout, the global reset and enable signals need to be assigned to the chip global resources. There is only one free chip global for the remaining global (QCLK1, QCLK2, QCLK3). Place two of these signals on the quadrant global resource. The design example demonstrates manually assignment of QCLK1 and QCLK2 to the quadrant global using the PDC command.

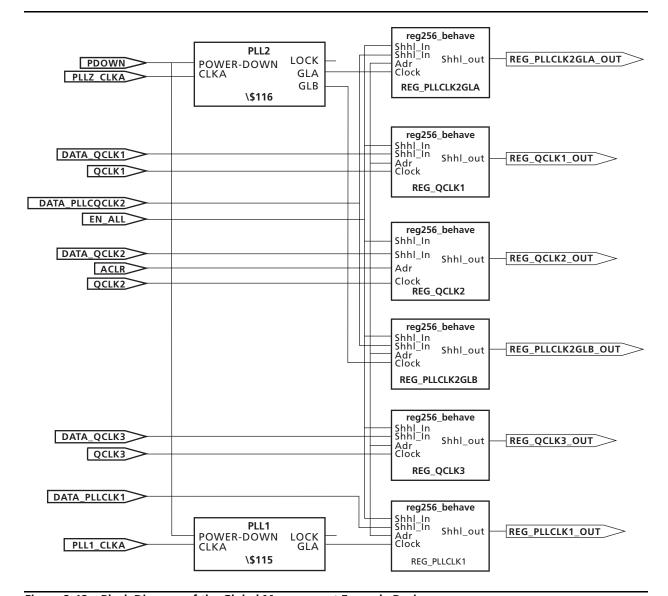


Figure 3-13 • Block Diagram of the Global Management Example Design

3-18 v1.4

Step 1

Run Synthesis with default options. The Synplicity log shows the following device utilization:

Cell usage:

	cell count	area	count*area
DFN1E1C1	1536	2.0	3072.0
BUFF	278	1.0	278.0
INBUF	10	0.0	0.0
VCC	9	0.0	0.0
GND	9	0.0	0.0
OUTBUF	6	0.0	0.0
CLKBUF	3	0.0	0.0
PLL	2	0.0	0.0
TOTAL	1853		3350.0

Step 2

Run Compile with the **Promote regular nets whose fanout is greater than** option selected in Designer; you will see the following in the Compile report:

Device utilization report:					
===========		==			
CORE	Used:	1536	Total:	13824	(11.11%)
IO (W/ clocks)	Used:	19	Total:	147	(12.93%)
Differential IO	Used:	0	Total:	65	(0.00%)
GLOBAL	Used:	8	Total:	18	(44.44%)
PLL	Used:	2	Total:	2	(100.00%)
RAM/FIFO	Used:	0	Total:	24	(0.00%)
FlashROM	Used:	0	Total:	1	(0.00%)

The following nets have been assigned to a global resource:

Fanout	Type	Name	
1536	INT_NET	Net :	EN_ALL_c
		Driver:	EN_ALL_pad_CLKINT
		Source:	AUTO PROMOTED
1536	SET/RESET_NET	Net :	ACLR_c
		Driver:	ACLR_pad_CLKINT
		Source:	AUTO PROMOTED
256	CLK_NET	Net :	QCLK1_c
		Driver:	QCLK1_pad_CLKINT
		Source:	AUTO PROMOTED
256	CLK_NET	Net :	QCLK2_c
		Driver:	QCLK2_pad_CLKINT
		Source:	AUTO PROMOTED
256	CLK_NET	Net :	QCLK3_c
		Driver:	QCLK3_pad_CLKINT
		Source:	AUTO PROMOTED
256	CLK_NET	Net :	\$1N14
		Driver:	\$1I5/Core
		Source:	ESSENTIAL
256	CLK_NET	Net :	\$1N12
		Driver:	\$1I6/Core
		Source:	ESSENTIAL
256	CLK_NET	Net :	\$1N10
		Driver:	\$1I6/Core
		Source:	ESSENTIAL

Designer will promote five more signals to global due to high fanout. There are eight signals assigned to global networks.

During Layout, Designer will assign two of the signals to quadrant global locations.

Step 3 (optional)

You can also assign the QCLK1_c and QCLK2_c nets to quadrant regions using the following PDC commands:

```
assign_local_clock -net QCLK1_c -type quadrant UL assign_local_clock -net QCLK2_c -type quadrant LL
```

Step 4

Import this PDC with the netlist and run Compile again. You will see the following in the Compile report:

```
The following nets have been assigned to a global resource:
Fanout Type
                     Name
1536
       INT_NET
                    Net
                          : EN_ALL_c
                     Driver: EN_ALL_pad_CLKINT
                    Source: AUTO PROMOTED
       SET/RESET_NET Net : ACLR_c
                    Driver: ACLR_pad_CLKINT
                     Source: AUTO PROMOTED
256
       CLK_NET
                     Net : QCLK3_c
                     Driver: QCLK3_pad_CLKINT
                     Source: AUTO PROMOTED
256
       CLK_NET
                     Net : $1N14
                     Driver: $1I5/Core
                     Source: ESSENTIAL
256
       CLK_NET
                    Net : $1N12
                     Driver: $1I6/Core
                     Source: ESSENTIAL
256
       CLK NET
                    Net : $1N10
                     Driver: $1I6/Core
                     Source: ESSENTIAL
The following nets have been assigned to a quadrant clock resource using PDC:
Fanout Type
                  Name
     CLK_NET
                          : QCLK1_c
256
                    Net
                     Driver: QCLK1_pad_CLKINT
                     Region: quadrant_UL
256
       CLK NET
                     Net : QCLK2_c
                     Driver: QCLK2_pad_CLKINT
                     Region: quadrant_LL
```

Step 5

Run Layout.

Global Management in PLL Design

This section describes the legal global network connections to PLLs in the low-power flash devices. For detailed information on using PLLs, refer to *Clock Conditioning Circuits in IGLOO and ProASIC3 Devices*. Actel recommends that you use the dedicated global pins to directly drive the reference clock input of the associated PLL for reduced propagation delays and clock distortion. However, low-power flash devices offer the flexibility to connect other signals to reference clock inputs. Each PLL is associated with three global networks (Figure 3-8 on page 3-10). There are some limitations, such as when trying to use the global and PLL at the same time:

- If you use a PLL with only primary output, you can still use the remaining two free global networks.
- If you use three globals associated with a PLL location, you cannot use the PLL on that location.
- If the YB or YC output is used standalone, it will occupy one global, even though this signal does not go to the global network.

3-20 v1.4

Using Spines of Occupied Global Networks

When a signal is assigned to a global network, the flash switches are programmed to set the MUX select lines (explained in the "Clock Aggregation Architecture" section on page 3-9) to drive the spines of that network with the global net. However, if the global net is restricted from reaching into the scope of a spine, the MUX drivers of that spine are available for other high-fanout or critical signals (Figure 3-14).

For example, if you want to limit the CLK1_c signal to the left half of the chip and want to use the right side of the same global network for CLK2_c, you can add the following PDC commands:

```
define_region -name region1 -type inclusive 0 0 34 29
assign_net_macros region1 CLK1_c
assign_local_clock -net CLK2_c -type chip B2
```

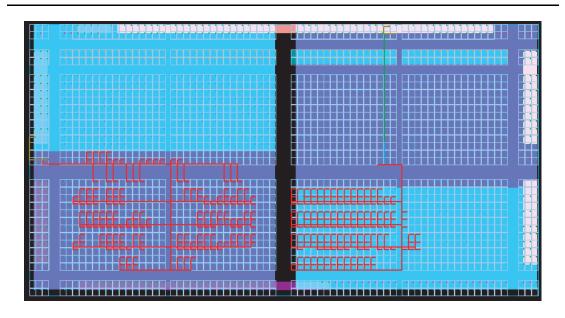


Figure 3-14 • Design Example Using Spines of Occupied Global Networks

Conclusion

IGLOO, Fusion, and ProASIC3 devices contain 18 global networks: 6 chip global networks and 12 quadrant global networks. These global networks can be segmented into local low-skew networks called spines. The spines provide low-skew networks for the high-fanout signals of a design. These allow you up to 252 different internal/external clocks in an A3PE3000 device. This document describes the architecture for the global network, plus guidelines and methodologies in assigning signals to globals and spines.

Related Documents

Handbook Documents

Clock Conditioning Circuits in IGLOO and ProASIC3 Devices http://www.actel.com/LPD_CCC_HBs.pdf

I/O Structures in IGLOO PLUS Devices

http://www.actel.com/documents/IGLOOPLUS_IO_HBs.pdf

I/O Structures in IGLOO and ProASIC3 Devices

http://www.actel.com/documents/IGLOO_PA3_IO_HBs.pdf

I/O Structures in IGLOOe and ProASIC3E Devices

http://www.actel.com/documents/IGLOOe PA3E IO HBs.pdf

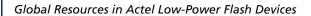
User's Guides

IGLOO, Fusion, and ProASIC3 Macro Library Guide http://www.actel.com/documents/pa3_libguide_ug.pdf

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet, combined with content previously published as an application note describing features and functions of the device. To improve usability for customers, the device architecture information has now been combined with usage information, to reduce duplication and possible inconsistencies in published information. No technical changes were made to the datasheet content unless explicitly listed. Changes to the application note content were made only to be consistent with existing datasheet information.

Part Number 51700094-005-4 Revised December 2008


3-22 v1.4

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.4)	Page
v1.3 (October 2008)	The "Global Architecture" section was updated to include 10 k devices, and to include information about VersaNet global support for IGLOO nano devices.	3-1
	The Table 3-1 · Flash-Based FPGAs was updated to include IGLOO nano and ProASIC3 nano devices.	3-2
	The "VersaNet Global Network Distribution" section was updated to include 10 k devices and to note an exception in global lines for nano devices.	3-3
	Figure 3-2 · Simplified VersaNet Global Network (30 k gates and below) is new.	3-4
	The "Spine Architecture" section was updated to clarify support for 10 k and nano devices.	3-5
	Table 3-2 · Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated to include IGLOO nano and ProASIC3 nano devices.	3-6
	The figure in the CLKBUF_LVDS/LVPECL row of Table 3-6 · Clock Macros was updated to change CLKBIBUF to CLKBUF.	3-12
v1.2 (June 2008)	A third bullet was added to the beginning of the "Global Architecture" section: In Fusion devices, the west CCC also contains a PLL core. In the two larger devices (AFS600 and AFS1500), the west and east CCCs each contain a PLL.	3-1
	The "Global Resource Support in Flash-Based Devices" section was revised to include new families and make the information more concise.	3-2
	Table 3-2 · Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated to include A3PE600/L in the device column.	3-6
	Table note 1 was revised in Table 3-7 · I/O Standards within CLKBUF to include AFS600 and AFS1500.	3-12
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 3-1 · Flash-Based FPGAs: • ProASIC3L was updated to include 1.5 V. • The number of PLLs for ProASIC3E was changed from five to six.	3-2
v1.0 (January 2008)	The "Global Architecture" section was updated to include the IGLOO PLUS family. The bullet was revised to include that the west CCC does not contain a PLL core in 15 k and 30 k devices. Instances of "A3P030 and AGL030 devices" were replaced with "15 k and 30 k gate devices."	3-1
	Table 3-1 · Flash-Based FPGAs and the accompanying text was updated to include the IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new.	3-2
	The "VersaNet Global Network Distribution" section, "Spine Architecture" section, the note in Figure 3-1 · Overview of VersaNet Global Network and Device Architecture, and the note in Figure 3-3 · Simplified VersaNet Global Network (60 k gates and above) were updated to include mention of 15 k gate devices.	3-3, 3-4

Previous Version	Changes in Current Version (v1.4)	Page
v1.0 (continued)	Table 3-2 · Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated to add the A3P015 device, and to revise the values for clock trees, globals/spines per tree, and globals/spines per device for the A3P030 and AGL030 devices.	3-6
	Table 3-3 · Globals/Spines/Rows for IGLOO PLUS Devices is new.	3-6
	CLKBUF_LVCMOS12 was added to Table 3-7 · I/O Standards within CLKBUF.	3-12
	The "Handbook Documents" section was updated to include the three different I/O Structures chapters for ProASIC3 and IGLOO device families.	3-22
51900087-1/3.05	Figure 3-3 \cdot Simplified VersaNet Global Network (60 k gates and above) was updated.	3-4
	The "Naming of Global I/Os" section was updated.	3-10
	The "Using Global Macros in Synplicity" section was updated.	3-13
	The "Global Promotion and Demotion Using PDC" section was updated.	3-14
	The "Designer Flow for Global Assignment" section was updated.	3-16
	The "Simple Design Example" section was updated.	3-18
51900087-0/1.05	Table 3-2 \cdot Globals/Spines/Rows $$ for $$ IGLOO $$ and $$ ProASIC3 $$ Devices $$ was updated.	3-6

3-24 v1.4

4 – Clock Conditioning Circuits in Low-Power Flash Devices and Mixed-Signal FPGAs

Introduction

This document outlines the following device information: Clock Conditioning Circuit (CCC) features, PLL core specifications, functional descriptions, software configuration information, detailed usage information, recommended board-level considerations, and other considerations concerning clock conditioning circuits and global networks in low-power flash devices or mixed-signal FPGAs.

Overview of Clock Conditioning Circuitry

In Fusion, IGLOO,® and ProASIC®3 devices, the CCCs are used to implement frequency division, frequency multiplication, phase shifting, and delay operations. The CCCs are available in six chip locations—each of the four chip corners and the middle of the east and west chip sides. For device-specific variations, refer to the "Device-Specific Layout" section on page 4-17.

The CCC is composed of the following:

- PLL core
- 3 phase selectors
- 6 programmable delays and 1 fixed delay that advances/delays phase
- 5 programmable frequency dividers that provide frequency multiplication/division (not shown in Figure 4-5 on page 4-10 because they are automatically configured based on the user's required frequencies)
- 1 dynamic shift register that provides CCC dynamic reconfiguration capability

Figure 4-1 provides a simplified block diagram of the physical implementation of the building blocks in each of the CCCs.

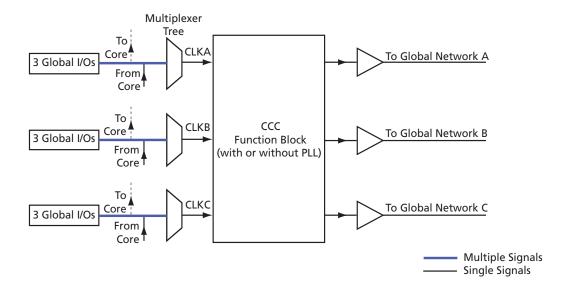


Figure 4-1 • Overview of the CCCs Offered in Fusion, IGLOO, and ProASIC3

Each CCC can implement up to three independent global buffers (with or without programmable delay) or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up to a maximum of three global outputs for a given CCC.

CCC Programming

The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or through an asynchronous interface. This asynchronous dedicated shift register interface is dynamically accessible from inside the low-power flash devices to permit parameter changes, such as PLL divide ratios and delays, during device operation.

To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is determined either by the user during the design process, with configuration data being stored in flash memory as part of the device programming procedure, or by writing data into a dedicated shift register during normal device operation.

This latter mode allows the user to dynamically reconfigure the CCC without the need for core programming. The shift register is accessed through a simple serial interface. Refer to *UJTAG Applications in Actel's Low-Power Flash Devices* or the application note *Using Global Resources in Actel Fusion Devices*.

Global Resources

Low-power flash and mixed-signal devices provide three global routing networks (GLA, GLB, and GLC) for each of the CCC locations. There are potentially many I/O locations; each global I/O location can be chosen from only one of three possibilities. This is controlled by the multiplexer tree circuitry in each global network. Once the I/O location is selected, the user has the option to utilize the CCCs before the signals are connected to the global networks. The CCC in each location (up to six) has the same structure, so generating the CCC macros is always done with an identical software GUI. The CCCs in the corner locations drive the quadrant global networks, and the CCCs in the middle of the east and west chip sides drive the chip global networks. The quadrant global networks span only a quarter of the device, while the chip global networks span the entire device. For more details on global resources offered in low-power flash devices, refer to Global Resources in Actel Low-Power Flash Devices.

A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, or CLKC-GLC) of a given CCC. A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used. Refer to the "PLL Macro Signal Descriptions" section on page 4-8 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

- 3 dedicated single-ended I/Os using a hardwired connection
- 2 dedicated differential I/Os using a hardwired connection
- The FPGA core

4-2 v1.4

CCC Support in Actel's Flash Devices

The flash FPGAs listed in Table 4-1 support the CCC feature and the functions described in this document.

Table 4-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
	IGLOO nano	The industry's lowest-power, smallest-size solution
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
anal		Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex™-M1 soft processors, and flash memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 4-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 4-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

v1.4 4-3

Global Buffers with No Programmable Delays

Access to the global / quadrant global networks can be configured directly from the global I/O buffer, bypassing the CCC functional block (as indicated by the dotted lines in Figure 4-1 on page 4-1). Internal signals driven by the FPGA core can use the global / quadrant global networks by connecting via the routed clock input of the multiplexer tree.

There are many specific CLKBUF macros supporting the wide variety of single-ended I/O inputs (CLKBUF) and differential I/O standards (CLKBUF_LVDS/LVPECL) in the low-power flash families. They are used when connecting global I/Os directly to the global/quadrant networks.

When an internal signal needs to be connected to the global/quadrant network, the CLKINT macro is used to connect the signal to the routed clock input of the network's MUX tree.

To utilize direct connection from global I/Os or from internal signals to the global/quadrant networks, CLKBUF, CLKBUF LVPECL/LVDS, and CLKINT macros are used (Figure 4-2).

- The CLKBUF and CLKBUF_LVPECL/LVDS¹ macros are composite macros that include an I/O macro driving a global buffer, which uses a hardwired connection.
- The CLKBUF, CLKBUF_LVPECL/LVDS¹ and CLKINT macros are pass-through clock sources and do not use the PLL or provide any programmable delay functionality.
- The CLKINT macro provides a global buffer function driven internally by the FPGA core.

The available CLKBUF macros are described in the *IGLOO*, *Fusion*, and *ProASIC3 Macro Library Guide*.

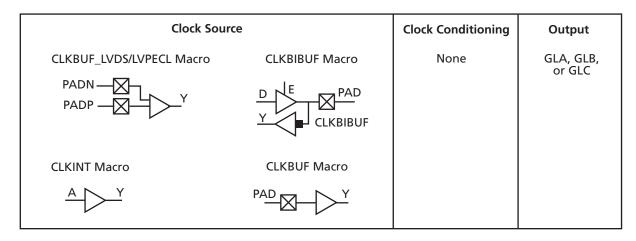
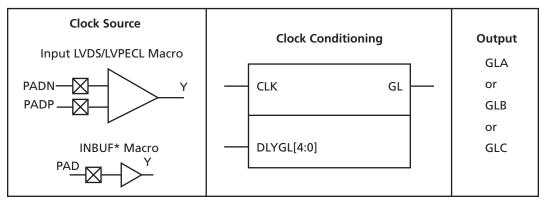


Figure 4-2 • CCC Options: Global Buffers with No Programmable Delay

Global Buffer with Programmable Delay


Clocks requiring clock adjustments can utilize the programmable delay cores before connecting to the global / quadrant global networks. A maximum of 18 CCC global buffers can be instantiated in a device—three per CCC and up to six CCCs per device.

Each CCC functional block contains a programmable delay element for each of the global networks (up to three), and users can utilize these features by using the corresponding macro (Figure 4-3 on page 4-5).

4-4 v1.4

^{1.} B-LVDS and M-LVDS are supported with the LVDS macro.

Note: For INBUF* driving a PLL macro or CLKDLY macro, the I/O will be hard-routed to the CCC; i.e., will be placed by software to a dedicated Global I/O.

Figure 4-3 • CCC Options: Global Buffers with Programmable Delay

The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to delay the clock input using a programmable delay. The CLKDLY macro takes the selected clock input and adds a user-defined delay element. This macro generates an output clock phase shift from the input clock.

The CLKDLY macro can be driven by an INBUF* macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the software will automatically place the dedicated global I/O in the appropriate locations. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards supported by the low-power flash family. The available INBUF macros are described in the IGLOO, Fusion, and ProASIC3 Macro Library Guide.

The CLKDLY macro can be driven directly from the FPGA core. The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate the clock input driven by the hardwired I/O connection.

The visual CLKDLY configuration in the SmartGen area of the Actel Libero[®] Integrated Design Environment (IDE) and Designer tools allows the user to select the desired amount of delay and configures the delay elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will automatically instantiate the special macro, PLLINT, when needed.

CLKDLY Macro Signal Descriptions

The CLKDLY macro supports one input and one output. Each signal is described in Table 4-2.

Table 4-2 • Input and Output Description of the CLKDLY Macro

Signal	Name	I/O	Description		
CLK	Reference Clock	Input	Reference clock input		
GL	Global Output	-	Primary output clock to respective global/quadrant clock networks		

v1.4 4-5

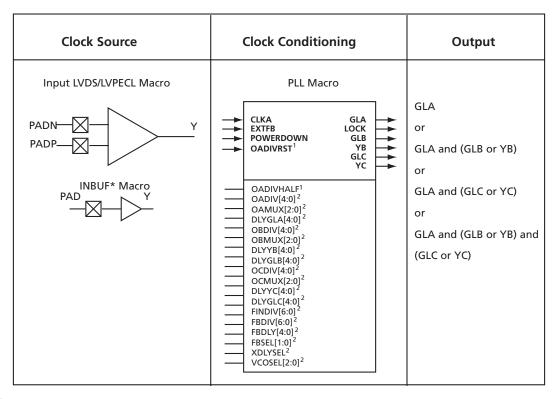
CLKDLY Macro Usage

When a CLKDLY macro is used in a CCC location, the programmable delay element is used to allow the clock delays to go to the global network. In addition, the user can bypass the PLL in a CCC location integrated with a PLL, but use the programmable delay that is associated with the global network by instantiating the CLKDLY macro. The same is true when using programmable delay elements in a CCC location with no PLLs (the user needs to instantiate the CLKDLY macro). There is no difference between the programmable delay elements used for the PLL and the CLKDLY macro. The CCC will be configured to use the programmable delay elements in accordance with the macro instantiated by the user.

As an example, if the PLL is not used in a particular CCC location, the designer is free to specify up to three CLKDLY macros in the CCC, each of which can have its own input frequency and delay adjustment options. If the PLL core is used, assuming output to only one global clock network, the other two global clock networks are free to be used by either connecting directly from the global inputs or connecting from one or two CLKDLY macros for programmable delay.

The programmable delay elements are shown in the block diagram of the PLL block shown in Figure 4-5 on page 4-10. Note that any CCC locations with no PLL present contain only the programmable delay blocks going to the global networks (labeled "Programmable Delay Type 2"). Refer to the "Clock Delay Adjustment" section on page 4-25 for a description of the programmable delay types used for the PLL. Also refer to Table 4-13 on page 4-31 for Programmable Delay Type 1 step delay values, and Table 4-14 on page 4-32 for Programmable Delay Type 2 step delay values. CCC locations with a PLL present can be configured to utilize only the programmable delay blocks (Programmable Delay Type 2) going to the global networks A, B, and C.

Global network A can be configured to use only the programmable delay element (bypassing the PLL) if the PLL is not used in the design. Figure 4-5 on page 4-10 shows a block diagram of the PLL, where the programmable delay elements are used for the global networks (Programmable Delay Type 2).


4-6 v1.4

Global Buffers with PLL Function

Clocks requiring frequency synthesis or clock adjustments can utilize the PLL core before connecting to the global / quadrant global networks. A maximum of 18 CCC global buffers can be instantiated in a device—three per CCC and up to six CCCs per device. Each PLL core can generate up to three global/quadrant clocks, while a clock delay element provides one.

The PLL functionality of the clock conditioning block is supported by the PLL macro.

Notes:

- 1. For Fusion only.
- 2. Refer to the IGLOO, Fusion, and ProASIC3 Macro Library Guide for more information.
- 3. For INBUF* driving a PLL macro or CLKDLY macro, the I/O will be hard-routed to the CCC; i.e., will be placed by software to a dedicated Global I/O.

Figure 4-4 • CCC Options: Global Buffers with PLL

The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL macro also provides power-down input and lock output signals. The additional inputs shown on the macro are configuration settings, which are configured through the use of SmartGen. For manual setting of these bits refer to the *IGLOO*, *Fusion*, *and ProASIC3 Macro Library Guide* for details.

Figure 4-5 on page 4-10 illustrates the various clock output options and delay elements.

PLL Macro Signal Descriptions

The PLL macro supports two inputs and up to six outputs. Table 4-3 gives a description of each signal.

Table 4-3 • Input and Output Signals of the PLL Block

Signal	Name	I/O	Description
CLKA	Reference Clock	Input	Reference clock input for PLL core; input clock for primary output clock, GLA
OADIVRST	Reset Signal for the Output Divider A	Input	For Fusion only. OADIVRST can be used when you bypass the PLL core (i.e., OAMUX = 001). The purpose of the OADIVRST signals is to reset the output of the final clock divider to synchronize it with the input to that divider when the PLL is bypassed. The signal is active on a low to high transition. The signal must be low for at least one divider input. If PLL core is used, this signal is "don't care" and the internal circuitry will generate the reset signal for the synchronization purpose.
OADIVHALF	Output A Division by Half	Input	For Fusion only. Active high. Division by half feature. This feature can only be used when users bypass the PLL core (i.e., OAMUX = 001) and the RC Oscillator (RCOSC) drives the CLKA input. This can be used to divide the 100 MHz RC oscillator by a factor of 1.5, 2.5, 3.5, 4.5 14.5). Refer to Table 4-17 on page 4-33 for more information.
EXTFB	External Feedback	Input	Allows an external signal to be compared to a reference clock in the PLL core's phase detector.
POWERDOWN	Power Down	Input	Active low input that selects power-down mode and disables the PLL. With the POWERDOWN signal asserted, the PLL core sends 0 V signals on all of the outputs.
GLA	Primary Output	Output	Primary output clock to respective global/quadrant clock networks
GLB	Secondary 1 Output	Output	Secondary 1 output clock to respective global/quadrant clock networks
YB	Core 1 Output	Output	Core 1 output clock to local routing network
GLC	Secondary 2 Output	Output	Secondary 2 output clock to respective global/quadrant clock networks
YC	Core 2 Output	Output	Core 2 output clock to local routing network
LOCK	PLL Lock Indicator	Output	Active high signal indicating that steady-state lock has been achieved between CLKA and the PLL feedback signal

Input Clock

The inputs to the input reference clock (CLKA) of the PLL can come from global input pins, regular I/O pins, or internally from the core. For Fusion families, the input reference clock can also be from the embedded RC oscillator or crystal oscillator.

Global Output Clocks

GLA (Primary), GLB (Secondary 1), and GLC (Secondary 2) are the outputs of Global Multiplexer 1, Global Multiplexer 2, and Global Multiplexer 3, respectively. These signals (GLx) can be used to drive the high-speed global and guadrant networks of the low-power flash devices.

A global multiplexer block consists of the input routing for selecting the input signal for the GLx clock and the output multiplexer, as well as delay elements associated with that clock.

Core Output Clocks

YB and YC are known as Core Outputs and can be used to drive internal logic without using global network resources. This is especially helpful when global network resources must be conserved and utilized for other timing-critical paths.

4-8 v1.4

YB and YC are identical to GLB and GLC, respectively, with the exception of a higher selectable final output delay. The SmartGen PLL Wizard will configure these outputs according to user specifications and can enable these signals with or without the enabling of Global Output Clocks.

The above signals can be enabled in the following output groupings in both internal and external feedback configurations of the static PLL:

- One output GLA only
- Two outputs GLA + (GLB and/or YB)
- Three outputs GLA + (GLB and/or YB) + (GLC and/or YC)

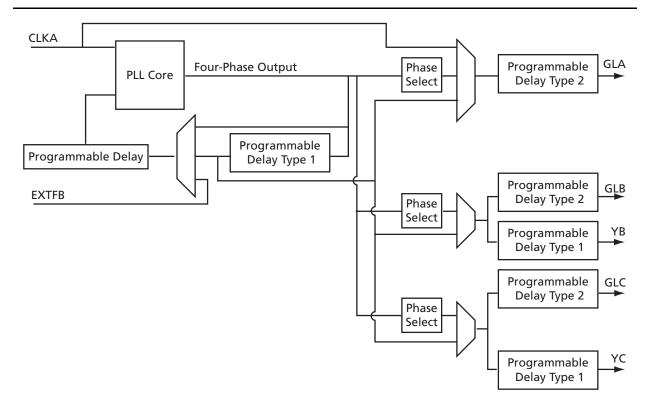
PLL Macro Block Diagram

As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these (GLB and GLC) can be routed to the B and C global network access, respectively, and/or routed to the device core (YB and YC).

There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).

There are delay elements in the feedback loop that can be used to advance the clock relative to the reference clock.

The PLL macro reference clock can be driven in the following ways:


- 1. By an INBUF* macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.
- 2. Directly from the FPGA core.
- 3. From an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described earlier.

During power-up, the PLL outputs will toggle around the maximum frequency of the voltage-controlled oscillator (VCO) gear selected. Toggle frequencies can range from 40 MHz to 250 MHz. This will continue as long as the clock input (CLKA) is constant (HIGH or LOW). This can be prevented by LOW assertion of the POWERDOWN signal.

The visual PLL configuration in SmartGen, a component of the Libero IDE and Designer tools, will derive the necessary internal divider ratios based on the input frequency and desired output frequencies selected by the user.

SmartGen also allows the user to select the various delays and phase shift values necessary to adjust the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB, GLC, YB, and YC). SmartGen allows the user to select the input clock source. SmartGen automatically instantiates the special macro, PLLINT, when needed.

Note: Clock divider and clock multiplier blocks are not shown in this figure or in SmartGen. They are automatically configured based on the user's required frequencies.

Figure 4-5 • CCC with PLL Block

Global Input Selections

Low-power flash devices provide the flexibility of choosing one of the three global input pad locations available to connect to a CCC functional block or to a global / quadrant global network. Figure 4-6 and Figure 4-7 on page 4-11 show the detailed architecture of each global input structure for 30 k gate devices and below, as well as 60 k gate devices and above, respectively. For 60 k gate devices and above (Figure 4-6), if the single-ended I/O standard is chosen, there is flexibility to choose one of the global input pads (the first, second, and fourth input). Once chosen, the other I/O locations are used as regular I/Os. If the differential I/O standard is chosen, the first and second inputs are considered as paired, and the third input is paired with a regular I/O.

The user then has the choice of selecting one of the two sets to be used as the clock input source to the CCC functional block. There is also the option to allow an internal clock signal to feed the global network or the CCC functional block. A multiplexer tree selects the appropriate global input for routing to the desired location. Note that the global I/O pads do not need to feed the global network; they can also be used as regular I/O pads.

4-10 v1.4

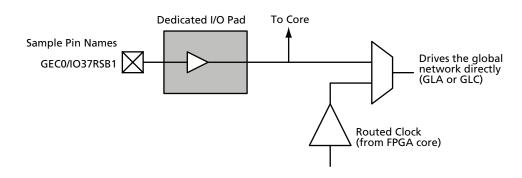
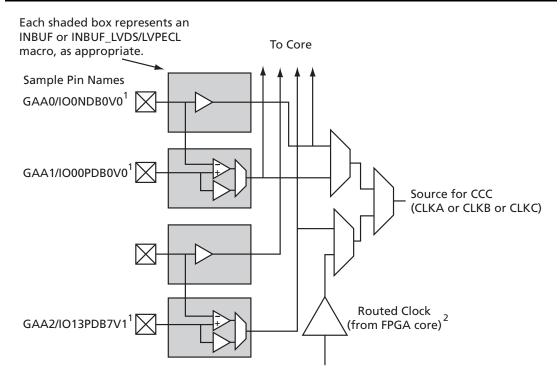



Figure 4-6 • Clock Input Sources (30 k gates devices and below)

GAA[0:2]: GA represents global in the northwest corner of the device. A[0:2]: designates specific A clock source.

Notes:

- 1. Represents the global input pins. Globals have direct access to the clock conditioning block and are not routed via the FPGA fabric. Refer to User I/O Naming Conventions in I/O Structures in IGLOO and ProASIC3 Devices.
- 2. Instantiate the routed clock source input as follows:
 - a) Connect the output of a logic element to the clock input of a PLL, CLKDLY, or CLKINT macro.
 - b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS/B-LVDS/M-LVDS/DDR) in a relevant global pin location.

Figure 4-7 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT (60 k gates devices and above)

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

- 3 dedicated single-ended I/Os using a hardwired connection
- 2 dedicated differential I/Os using a hardwired connection
- The FPGA core

Since the architecture of the devices varies as size increases, the following list details I/O types supported for globals:

IGLOO and ProASIC3

- LVDS-based clock sources are available only on 250 k gate devices and above.
- 60 k and 125 k gate devices support single-ended clock sources only.
- 15 k and 30 k gate devices support these inputs for CCC only and do not contain a PLL.
- nano devices:
 - 10 k, 15 k, and 20 k devices do not contain PLLs in the CCCs, and support only CLKBUF and CLKINT.
 - 60 k, 125 k, and 250 k devices support one PLL in the middle left CCC position. In the absence of the PLL, this CCC can be used by CLKBUF, CLKINT, and CLKDLY macros. The corner CCCs support CLKBUF, CLKINT, and CLKDLY.

Fusion

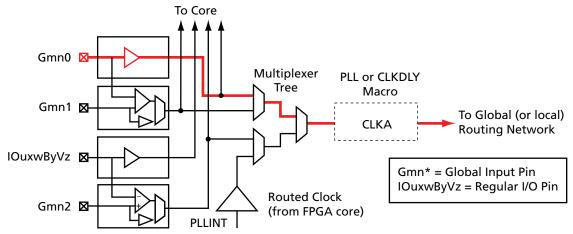
- AFS600 and AFS1500: All single-ended, differential, and voltage-referenced I/O standards (Pro I/O).
- AFS090 and AFS250: All single-ended and differential I/O standards.

Clock Sources for PLL and CLKDLY Macros

The input reference clock (CLKA for a PLL macro, CLK for a CLKDLY macro) can be accessed from different sources via the associated clock multiplexer tree. Each CCC has the option of choosing the source of the input clock from one of the following:

- Hardwired I/O
- External I/O
- Core Logic
- RC Oscillator (Fusion only)
- Crystal Oscillator (Fusion only)

The SmartGen macro builder tool allows users to easily create the PLL and CLKDLY macros with the desired settings. Actel strongly recommends using SmartGen to generate the CCC macros.


Hardwired I/O Clock Source

Hardwired I/O refers to global input pins that are hardwired to the multiplexer tree, which directly accesses the CCC global buffers. These global input pins have designated pin locations and are indicated with the I/O naming convention Gmn (m refers to any one of the positions where the PLL core is available, and n refers to any one of the three global input MUXes and the pin number of the associated global location, m). Choosing this option provides the benefit of directly connecting to the CCC reference clock input, which provides less delay. See Figure 4-8 on page 4-13 for an example illustration of the connections, shown in red. If a CLKDLY macro is initiated to utilize the programmable delay element of the CCC, the clock input can be placed at one of nine dedicated global input pin locations. In other words, if Hardwired I/O is chosen as the input source, the user can decide to place the input pin in one of the GmA0, GmA1, GmA2, GmB0, GmB1, GmB2, GmC0, GmC1, or GmC2 locations of the low-power flash devices. When a PLL macro is used to utilize the

4-12 v1.4

PLL core in a CCC location, the clock input of the PLL can only be connected to one of three GmA* global pin locations: GmA0, GmA1, or GmA2.

Note: Fusion CCCs have additional source selections (RCOSC, XTAL).

Figure 4-8 • Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 60 k Gates and Larger

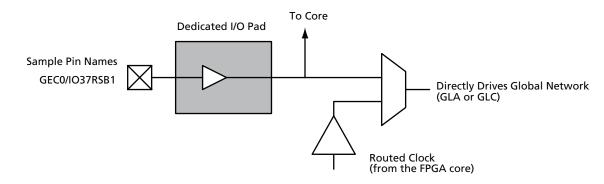


Figure 4-9 • Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 30 k Gates and Smaller

External I/O Clock Source

External I/O refers to regular I/O pins. The clock source is instantiated with one of the various INBUF options and accesses the CCCs via internal routing. The user has the option of assigning this input to any of the I/Os labeled with the I/O convention IOuxwByVz. Refer to User I/O Naming Conventions in I/O Structures in IGLOO and ProASIC3 Devices, and for Fusion, refer to the Fusion Mixed-Signal Programmable System Chip datasheet for more information. Figure 4-10 gives a brief explanation of external I/O usage. Choosing this option provides the freedom of selecting any user I/O location but introduces additional delay because the signal connects to the routed clock input through internal routing before connecting to the CCC reference clock input.

For the External I/O option, the routed signal would be instantiated with a PLLINT macro before connecting to the CCC reference clock input. This instantiation is conveniently done automatically by SmartGen when this option is selected. Actel recommends using the SmartGen tool to generate the CCC macro. The instantiation of the PLLINT macro results in the use of the routed clock input of the I/O to connect to the PLL clock input. If not using SmartGen, manually instantiate a PLLINT macro before the PLL reference clock to indicate that the regular I/O driving the PLL reference clock should be used (see Figure 4-10 on page 4-14 for an example illustration of the connections, shown in red).

In the above two options, the clock source must be instantiated with one of the various INBUF macros. The reference clock pins of the CCC functional block core macros must be driven by regular input macros (INBUFs), not clock input macros.

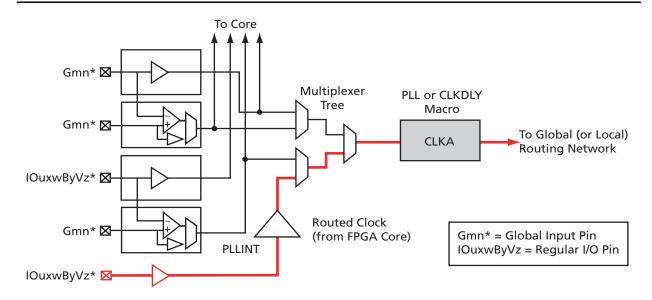


Figure 4-10 • Illustration of External I/O Usage

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input reference clock of the CCC block.

4-14 v1.4

Core Logic Clock Source

Core logic refers to internal routed nets. Internal routed signals access the CCC via the FPGA Core Fabric. Similar to the External I/O option, whenever the clock source comes internally from the core itself, the routed signal is instantiated with a PLLINT macro before connecting to the CCC clock input (see Figure 4-11 for an example illustration of the connections, shown in red).

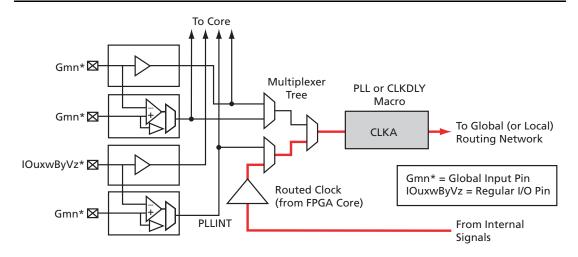


Figure 4-11 • Illustration of Core Logic Usage

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input reference clock of the CCC block.

Available I/O Standards

Table 4-4 • Available I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF_LVCMOS5
CLKBUF_LVCMOS33 ¹
CLKBUF_LVCMOS25 ²
CLKBUF_LVCMOS18
CLKBUF_LVCMOS15
CLKBUF_PCI
CLKBUF_PCIX ³
CLKBUF_GTL25 ^{2,3}
CLKBUF_GTL33 ^{2,3}
CLKBUF_GTLP25 ^{2,3}
CLKBUF_GTLP33 ^{2,3}
CLKBUF_HSTL_I ^{2,3}
CLKBUF_HSTL_II ^{2,3}
CLKBUF_SSTL3_I ^{2,3}
CLKBUF_SSTL3_II ^{2,3}
CLKBUF_SSTL2_I ^{2,3}
CLKBUF_SSTL2_II ^{2,3}
CLKBUF_LVDS ⁴
CLKBUF_LVPECL
AL /

Notes:

- 1. By default, the CLKBUF macro uses 3.3 V LVTTL I/O technology. For more details, refer to the IGLOO, Fusion, and ProASIC3 Macro Library Guide.
- 2. I/O standards only supported in ProASIC3E and IGLOOe families.
- 3. I/O standards only supported in the following Fusion devices: AFS600 and AFS1500.
- 4. B-LVDS and M-LVDS standards are supported by CLKBUF_LVDS.

Global Synthesis Constraints

The Synplify® synthesis tool, by default, allows six clocks in a design for Fusion, IGLOO, and ProASIC3. When more than six clocks are needed in the design, a user synthesis constraint attribute, syn_global_buffers, can be used to control the maximum number of clocks (up to 18) that can be inferred by the synthesis engine.

High-fanout nets will be inferred with clock buffers and/or internal clock buffers. If the design consists of CCC global buffers, they are included in the count of clocks in the design.

The subsections below discuss the clock input source (global buffers with no programmable delays) and the clock conditioning functional block (global buffers with programmable delays and/or PLL function) in detail.

4-16 v1.4

Device-Specific Layout

Two kinds of CCCs are offered in low-power flash devices: CCCs with integrated PLLs, and CCCs without integrated PLLs (simplified CCCs). Table 4-5 lists the number of CCCs in various devices.

Table 4-5 • Number of CCCs by Device Size and Package

Device			CCCs with	CCCs without Integrated
ProASIC3	IGLOO	Package	Integrated PLLs	PLLs (simplified CCC)
A3PN010	AGLN010	All	0	2
A3PN015	AGLN015	All	0	2
A3PN020	AGLN020	All	0	2
	AGLN060	CS81	0	6
A3PN060	AGLN060	All other packages	1	5
	AGLN125	CS81	0	6
A3PN125	AGLN125	All other packages	1	5
	AGLN250	CS81	0	6
A3PN250	AGLN250	All other packages	1	5
A3P015	AGL015	All	0	2
A3P030	AGL030/AGLP030	All	0	2
	AGL060/AGLP060	CS121/CS201	0	6
A3P060	AGL060/AGLP060	All other packages	1	5
A3P125	AGL125/AGLP125	All	1	5
A3P250/L	AGL250	All	1	5
A3P400	AGL400	All	1	5
A3P600/L	AGL600	All	1	5
A3P1000/L	AGL1000	All	1	5
A3PE600	AGLE600	PQ208	2	4
A3PE600/L		All other packages	6	0
A3PE1500		PQ208	2	4
A3PE1500		All other packages	6	0
A3PE3000/L		PQ208	2	4
A3PE3000/L	AGLE3000	All other packages	6	0
Fusion Devices		•		
AFS090		All	1	5
AFS250, M1AFS25	0	All	1	5
AFS600, M7AFS60	0, M1AFS600	All	2	4
AFS1500, M1AFS1	500	All	2	4
		1		1

Note: nano 10 k, 15 k, and 20 k offer 6 global MUXes instead of CCCs.

This section outlines the following device information: CCC features, PLL core specifications, functional descriptions, software configuration information, detailed usage information, recommended board-level considerations, and other considerations concerning global networks in low-power flash devices.

Clock Conditioning Circuits with Integrated PLLs

Each of the CCCs with integrated PLLs includes the following:

- 1 PLL core, which consists of a phase detector, a low-pass filter, and a four-phase voltagecontrolled oscillator
- 3 global multiplexer blocks that steer signals from the global pads and the PLL core onto the global networks
- 6 programmable delays and 1 fixed delay for time advance/delay adjustments
- 5 programmable frequency divider blocks to provide frequency synthesis (automatically configured by the SmartGen macro builder tool)

Clock Conditioning Circuits without Integrated PLLs

There are two types of simplified CCCs without integrated PLLs in low-power flash devices.

- 1. The simplified CCC with programmable delays, which is composed of the following:
 - 3 global multiplexer blocks that steer signals from the global pads and the programmable delay elements onto the global networks
 - 3 programmable delay elements to provide time delay adjustments
- 2. The simplified CCC (referred to as CCC-GL) without programmable delay elements, which is composed of the following:
 - A global multiplexer block that steer signals from the global pads onto the global networks

4-18 v1.4

CCC Locations

CCCs located in the middle of the east and west sides of the device access the three VersaNet global networks on each side (six total networks), while the four CCCs located in the four corners access three quadrant global networks (twelve total networks). See Figure 4-12.

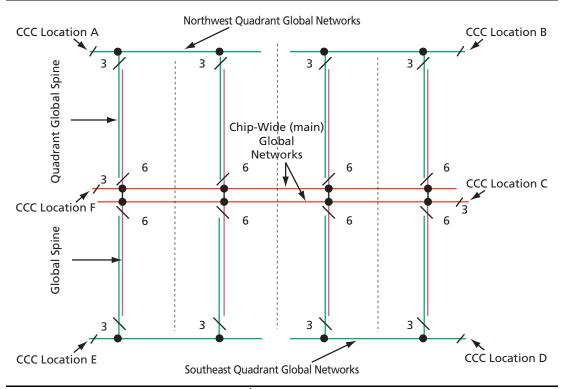


Figure 4-12 • Global Network Architecture for 60 k Gate Devices and Above

The following explains the locations of the CCCs in IGLOO and ProASIC3 devices:

In Figure 4-14 on page 4-21 through Figure 4-15 on page 4-21, CCCs with integrated PLLs are indicated in red, and simplified CCCs are indicated in yellow. There is a letter associated with each location of the CCC, in clockwise order. The upper left corner CCC is named "A," the upper right is named "B," and so on. These names finish up at the middle left with letter "F."

IGLOO and ProASIC3 CCC Locations

In all IGLOO and ProASIC3 devices (except 10 k through 30 k gate devices, which do not contain PLLs), six CCCs are located in the same positions as the IGLOOe and ProASIC3E CCCs. Only one of the CCCs has an integrated PLL and is located in the middle of the west (middle left) side of the device. The other five CCCs are simplified CCCs and are located in the four corners and the middle of the east side of the device (Figure 4-13).



Figure 4-13 • CCC Locations in IGLOO and ProASIC3 Family Devices (except 10 k through 30 k gate devices)

Note: The number and architecture of the banks are different for some devices.

10 k through 30 k gate devices do not support PLL features. In these devices, there are two CCC-GLs at the lower corners (one at the lower right, and one at the lower left). These CCC-GLs do not have programmable delays.

4-20 v1.4

IGLOOe and ProASIC3E CCC Locations

IGLOOe and ProASIC3E devices have six CCCs—one in each of the four corners and one each in the middle of the east and west sides of the device (Figure 4-14).

All six CCCs are integrated with PLLs, except in PQFP-208 package devices. PQFP-208 package devices also have six CCCs, of which two include PLLs and four are simplified CCCs. The CCCs with PLLs are implemented in the middle of the east and west sides of the device (middle right and middle left). The simplified CCCs without PLLs are located in the four corners of the device (Figure 4-15).

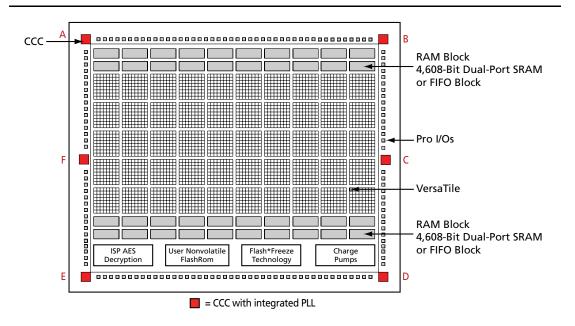


Figure 4-14 • CCC Locations in IGLOOe and ProASIC3E Family Devices (except PQFP-208 package)

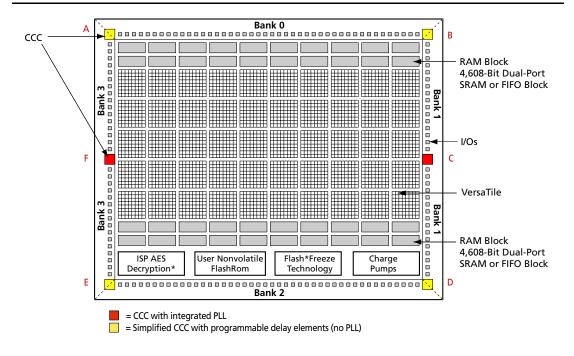


Figure 4-15 • CCC Locations in ProASIC3E Family Devices (PQFP-208 package)

Fusion CCC Locations

Fusion devices have six CCCs: one in each of the four corners and one each in the middle of the east and west sides of the device (Figure 4-16 and Figure 4-17). The device can have one integrated PLL in the middle of the west side of the device or two integrated PLLs in the middle of the east and west sides of the device (middle right and middle left).

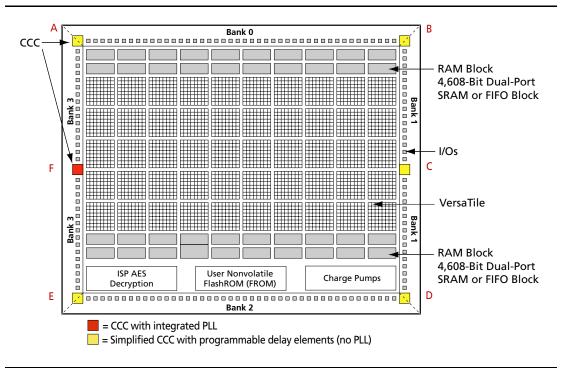


Figure 4-16 • CCC Locations in Fusion Family Devices (AFS090, AFS250, M1AFS250)

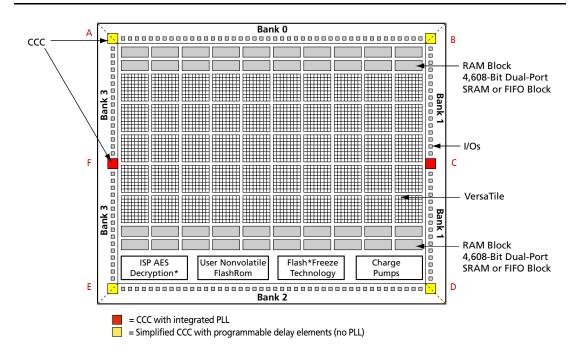


Figure 4-17 • CCC Locations in Fusion Family Devices (except AFS090, AFS250, M1AFS250)

4-22 v1.4

PLL Core Specifications

PLL core specifications can be found in the DC and Switching Characteristics chapter of the appropriate family datasheet.

Loop Bandwidth

Common design practice for systems with a low-noise input clock is to have PLLs with small loop bandwidths to reduce the effects of noise sources at the output. Table 4-6 shows the PLL loop bandwidth, providing a measure of the PLL's ability to track the input clock and jitter.

Table 4-6 • -3 dB Frequency of the PLL

	Minimum	Typical	Maximum
	$(T_a = +125^{\circ}C, V_{CCA} = 1.4 V)$	$(I_a = +25^{\circ}C, V_{CCA} = 1.5 V)$	$(I_a = -55^{\circ}C, V_{CCA} = 1.6 \text{ V})$
-3 dB Frequency	15 kHz	25 kHz	45 kHz

PLL Core Operating Principles

This section briefly describes the basic principles of PLL operation. The PLL core is composed of a phase detector (PD), a low-pass filter (LPF), and a four-phase voltage-controlled oscillator (VCO). Figure 4-18 illustrates a basic single-phase PLL core with a divider and delay in the feedback path.

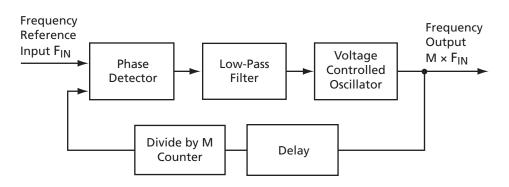


Figure 4-18 • Simplified PLL Core with Feedback Divider and Delay

The PLL is an electronic servo loop that phase-aligns the PD feedback signal with the reference input. To achieve this, the PLL dynamically adjusts the VCO output signal according to the average phase difference between the input and feedback signals.

The first element is the PD, which produces a voltage proportional to the phase difference between its inputs. A simple example of a digital phase detector is an Exclusive-OR gate. The second element, the LPF, extracts the average voltage from the phase detector and applies it to the VCO. This applied voltage alters the resonant frequency of the VCO, thus adjusting its output frequency.

Consider Figure 4-18 with the feedback path bypassing the divider and delay elements. If the LPF steadily applies a voltage to the VCO such that the output frequency is identical to the input frequency, this steady-state condition is known as lock. Note that the input and output phases are also identical. The PLL core sets a LOCK output signal HIGH to indicate this condition.

Should the input frequency increase slightly, the PD detects the frequency/phase difference between its reference and feedback input signals. Since the PD output is proportional to the phase difference, the change causes the output from the LPF to increase. This voltage change increases the resonant frequency of the VCO and increases the feedback frequency as a result. The PLL dynamically adjusts in this manner until the PD senses two phase-identical signals and steady-state lock is achieved. The opposite (decreasing PD output signal) occurs when the input frequency decreases.

Now suppose the feedback divider is inserted in the feedback path. As the division factor M (shown in Figure 4-19) is increased, the average phase difference increases. The average phase difference will cause the VCO to increase its frequency until the output signal is phase-identical to the input after undergoing division. In other words, lock in both frequency and phase is achieved when the output frequency is M times the input. Thus, clock division in the feedback path results in multiplication at the output.

A similar argument can be made when the delay element is inserted into the feedback path. To achieve steady-state lock, the VCO output signal will be delayed by the input period *less* the feedback delay. For periodic signals, this is equivalent to time-advancing the output clock by the feedback delay.

Another key parameter of a PLL system is the acquisition time. Acquisition time is the amount of time it takes for the PLL to achieve lock (i.e., phase-align the feedback signal with the input reference clock). For example, suppose there is no voltage applied to the VCO, allowing it to operate at its free-running frequency. Should an input reference clock suddenly appear, a lock would be established within the maximum acquisition time.

Functional Description

This section provides detailed descriptions of PLL block functionality: clock dividers and multipliers, clock delay adjustment, phase adjustment, and dynamic PLL configuration.

Clock Dividers and Multipliers

The PLL block contains five programmable dividers. Figure 4-19 shows a simplified PLL block.

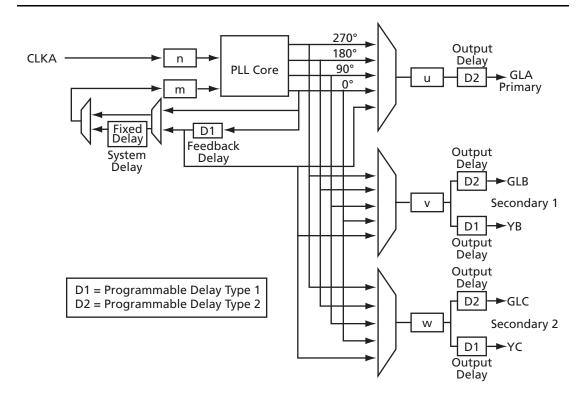


Figure 4-19 • PLL Block Diagram

4-24 v1.4

Dividers *n* and *m* (the input divider and feedback divider, respectively) provide integer frequency division factors from 1 to 128. The output dividers *u*, *v*, and *w* provide integer division factors from 1 to 32. Frequency scaling of the reference clock CLKA is performed according to the following formulas:

$$f_{GLA} = f_{CLKA} \times m / (n \times u) - GLA$$
 Primary PLL Output Clock

EQ 4-1

 $f_{GLB} = f_{YB} = f_{CLKA} \times m / (n \times v) - GLB$ Secondary 1 PLL Output Clock(s)

EQ 4-2

 $f_{GLC} = f_{YC} = f_{CLKA} \times m / (n \times w) - GLC$ Secondary 2 PLL Output Clock(s)

EQ 4-3

SmartGen provides a user-friendly method of generating the configured PLL netlist, which includes automatically setting the division factors to achieve the closest possible match to the requested frequencies. Since the five output clocks share the n and m dividers, the achievable output frequencies are interdependent and related according to the following formula:

$$f_{GLA} = f_{GLB} \times (v / u) = f_{GLC} \times (w / u)$$

EQ 4-4

Clock Delay Adjustment

There are a total of seven configurable delay elements implemented in the PLL architecture.

Two of the delays are located in the feedback path, entitled System Delay and Feedback Delay. System Delay provides a fixed delay of 2 ns (typical), and Feedback Delay provides selectable delay values from 0.6 ns to 5.56 ns in 160 ps increments (typical). For PLLs, delays in the feedback path will effectively advance the output signal from the PLL core with respect to the reference clock. Thus, the System and Feedback delays generate negative delay on the output clock. Additionally, each of these delays can be independently bypassed if necessary.

The remaining five delays perform traditional time delay and are located at each of the outputs of the PLL. Besides the fixed global driver delay of 0.755 ns for each of the global networks, the global multiplexer outputs (GLA, GLB, and GLC) each feature an additional selectable delay value from 0.025 ns to 0.76 ns in the first step, and then to 5.56 ns in 160 ps increments. The additional YB and YC signals have access to a selectable delay from 0.6 ns to 5.56 ns in 160 ps increments (typical). This is the same delay value as the CLKDLY macro. It is similar to CLKDLY, which bypasses the PLL core just to take advantage of the phase adjustment option with the delay value.

The following parameters must be taken into consideration to achieve minimum delay at the outputs (GLA, GLB, GLC, YB, and YC) relative to the reference clock: routing delays from the PLL core to CCC outputs, core outputs and global network output delays, and the feedback path delay. The feedback path delay acts as a time advance of the input clock and will offset any delays introduced beyond the PLL core output. The routing delays are determined from back-annotated simulation and are configuration-dependent.

Phase Adjustment

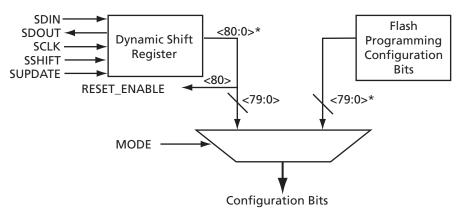
The output from the PLL core can be phase-adjusted with respect to the reference input clock, CLKA. The user can select a 0°, 90°, 180°, or 270° phase shift independently for each of the outputs YA, GLB/YB, and GLC/YC. Note that each of these phase-adjusted signals might also undergo further frequency division and/or time adjustment via the remaining dividers and delays located at the outputs of the PLL.

Dynamic PLL Configuration

The CCCs can be configured both statically and dynamically.

In addition to the ports available in the Static CCC, the Dynamic CCC has the dynamic shift register signals that enable dynamic reconfiguration of the CCC. With the Dynamic CCC, the ports CLKB and CLKC are also exposed. All three clocks (CLKA, CLKB, and CLKC) can be configured independently.

The CCC block is fully configurable. The following two sources can act as the CCC configuration bits.


Flash Configuration Bits

The flash configuration bits are the configuration bits associated with programmed flash switches. These bits are used when the CCC is in static configuration mode. Once the device is programmed, these bits cannot be modified. They provide the default operating state of the CCC.

Dynamic Shift Register Outputs

This source does not require core reprogramming and allows core-driven dynamic CCC reconfiguration. When the dynamic register drives the configuration bits, the user-defined core circuit takes full control over SDIN, SDOUT, SCLK, SSHIFT, and SUPDATE. The configuration bits can consequently be dynamically changed through shift and update operations in the serial register interface. Access to the logic core is accomplished via the dynamic bits in the specific tiles assigned to the PLLs.

Figure 4-20 illustrates a simplified block diagram of the MUX architecture in the CCCs.

* For Fusion, bit <88:81> is also needed.

Figure 4-20 • The CCC Configuration MUX Architecture

The selection between the flash configuration bits and the bits from the configuration register is made using the MODE signal shown in Figure 4-20. If the MODE signal is logic HIGH, the dynamic shift register configuration bits are selected. There are 81 control bits to configure the different functions of the CCC.

Each group of control bits is assigned a specific location in the configuration shift register. For a list of the 81 configuration bits (C[80:0]) in the CCC and a description of each, refer to "PLL Configuration Bits Description" on page 4-28. The configuration register can be serially loaded with the new configuration data and programmed into the CCC using the following ports:

- SDIN: The configuration bits are serially loaded into a shift register through this port. The LSB of the configuration data bits should be loaded first.
- SDOUT: The shift register contents can be shifted out (LSB first) through this port using the shift operation.
- SCLK: This port should be driven by the shift clock.
- SSHIFT: The active-high shift enable signal should drive this port. The configuration data will
 be shifted into the shift register if this signal is HIGH. Once SSHIFT goes LOW, the data
 shifting will be halted.

4-26 v1.4

• SUPDATE: The SUPDATE signal is used to configure the CCC with the new configuration bits when shifting is complete.

To access the configuration ports of the shift register (SDIN, SDOUT, SSHIFT, etc.), the user should instantiate the CCC macro in his design with appropriate ports. Actel recommends that users choose SmartGen to generate the CCC macros with the required ports for dynamic reconfiguration.

Users must familiarize themselves with the architecture of the CCC core and its input, output, and configuration ports to implement the desired delay and output frequency in the CCC structure. Figure 4-21 shows a model of the CCC with configurable blocks and switches.

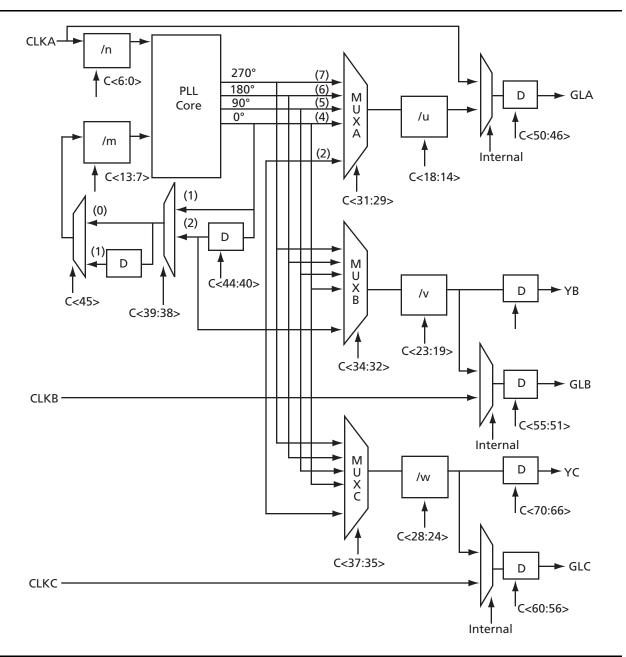


Figure 4-21 • CCC Block Control Bits – Graphical Representation of Assignments

Loading the Configuration Register

The most important part of CCC dynamic configuration is to load the shift register properly with the configuration bits. There are different ways to access and load the configuration shift register:

- JTAG interface
- Logic core
- Specific I/O tiles

JTAG Interface

The JTAG interface requires no additional I/O pins. The JTAG TAP controller is used to control the loading of the CCC configuration shift register.

Low-power flash devices provide a user interface macro between the JTAG pins and the device core logic. This macro is called UJTAG. A user should instantiate the UJTAG macro in his design to access the configuration register ports via the JTAG pins.

For more information on CCC dynamic reconfiguration using UJTAG, refer to *UJTAG Applications in Actel's Low-Power Flash Devices*.

Logic Core

If the logic core is employed, the user must design a module to provide the configuration data and control the shifting and updating of the CCC configuration shift register. In effect, this is a user-designed TAP controller, which requires additional chip resources.

Specific I/O Tiles

If specific I/O tiles are used for configuration, the user must provide the external equivalent of a TAP controller. This does not require additional core resources but does use pins.

Shifting the Configuration Data

To enter a new configuration, all 81 bits must shift in via SDIN. After all bits are shifted, SSHIFT must go LOW and SUPDATE HIGH to enable the new configuration. For simulation purposes, bits <71:73> and <77:80> are "don't care."

The SUPDATE signal must be LOW during any clock cycle where SSHIFT is active. After SUPDATE is asserted, it must go back to the LOW state until a new update is required.

PLL Configuration Bits Description

Table 4-7 • Configuration Bit Descriptions for the CCC Blocks

Config. Bits	Signal	Name	Description
<88:87>	GLMUXCFG [1:0] ¹	NGMUX configuration	The configuration bits specify the input clocks to the NGMUX (refer to Table 4-16 on page 4-32). ²
86	OCDIVHALF ¹	Division by half	When the PLL is bypassed, the 100 MHz RC oscillator can be divided by the divider factor in Table 4-17 on page 4-33.
85	OBDIVHALF ¹	Division by half	When the PLL is bypassed, the 100 MHz RC oscillator can be divided by a 0.5 factor (refer to Table 4-17 on page 4-33).
84	OADIVHALF ¹	Division by half	When the PLL is bypassed, the 100 MHz RC oscillator can be divided by certain 0.5 factor (refer to Table 4-15 on page 4-32).

Notes:

- 1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
- 2. This value depends on the input clock source, so Layout must complete before these bits can be set. After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools > Report > CCC_Configuration. The report contains the appropriate settings for these bits.

4-28 v1.4

Table 4-7 • Configuration Bit Descriptions for the CCC Blocks (continued)

Config. Bits	Signal	Name	Description
83	RXCSEL ¹	CLKC input selection	Select the CLKC input clock source between RC oscillator and crystal oscillator (refer to Table 4-15 on page 4-32). ²
82	RXBSEL ¹	CLKB input selection	Select the CLKB input clock source between RC oscillator and crystal oscillator (refer to Table 4-15 on page 4-32). ²
81	RXASEL ¹	CLKA input selection	Select the CLKA input clock source between RC oscillator and crystal oscillator (refer to Table 4-15 on page 4-32). ²
80	RESETEN	Reset Enable	Enables (active high) the synchronization of PLL output dividers after dynamic reconfiguration (SUPDATE). The Reset Enable signal is READ-ONLY and should not be modified via dynamic reconfiguration.
79	DYNCSEL	Clock Input C Dynamic Select	Configures clock input C to be sent to GLC for dynamic control. ²
78	DYNBSEL	Clock Input B Dynamic Select	Configures clock input B to be sent to GLB for dynamic control. ²
77	DYNASEL	Clock Input A Dynamic Select	Configures clock input A for dynamic PLL configuration. ²
<76:74>	VCOSEL[2:0]	VCO Gear Control	Three-bit VCO Gear Control for four frequency ranges (refer to Table 4-18 on page 4-33 and Table 4-19 on page 4-33).
73	STATCSEL	MUX Select on Input C	MUX selection for clock input C ²
72	STATBSEL	MUX Select on Input B	MUX selection for clock input B ²
71	STATASEL	MUX Select on Input A	MUX selection for clock input A ²
<70:66>	DLYC[4:0]	YC Output Delay	Sets the output delay value for YC.
<65:61>	DLYB[4:0]	YB Output Delay	Sets the output delay value for YB.
<60:56>	DLYGLC[4:0]	GLC Output Delay	Sets the output delay value for GLC.
<55:51>	DLYGLB[4:0]	GLB Output Delay	Sets the output delay value for GLB.
<50:46>	DLYGLA[4:0]	Primary Output Delay	Primary GLA output delay
45	XDLYSEL	System Delay Select	When selected, inserts System Delay in the feedback path in Figure 4-19 on page 4-24.
<44:40>	FBDLY[4:0]	Feedback Delay	Sets the feedback delay value for the feedback element in Figure 4-19 on page 4-24.
<39:38>	FBSEL[1:0]	Primary Feedback Delay Select	Controls the feedback MUX: no delay, include programmable delay element, or use external feedback.
<37:35>	OCMUX[2:0]	Secondary 2 Output Select	Selects from the VCO's four phase outputs for GLC/YC.

Notes:

- 1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
- 2. This value depends on the input clock source, so Layout must complete before these bits can be set. After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools > Report > CCC_Configuration. The report contains the appropriate settings for these bits.

Table 4-7 • Configuration Bit Descriptions for the CCC Blocks (continued)

1			
Config. Bits	Signal	Name	Description
<34:32>	OBMUX[2:0]	Secondary 1 Output Select	Selects from the VCO's four phase outputs for GLB/YB.
<31:29>	OAMUX[2:0]	GLA Output Select	Selects from the VCO's four phase outputs for GLA.
<28:24>	OCDIV[4:0]	Secondary 2 Output Divider	Sets the divider value for the GLC/YC outputs. Also known as divider w in Figure 4-19 on page 4-24. The divider value will be OCDIV[4:0] + 1.
<23:19>	OBDIV[4:0]	Secondary 1 Output Divider	Sets the divider value for the GLB/YB outputs. Also known as divider v in Figure 4-19 on page 4-24. The divider value will be OBDIV[4:0] + 1.
<18:14>	OADIV[4:0]	Primary Output Divider	Sets the divider value for the GLA output. Also known as divider u in Figure 4-19 on page 4-24. The divider value will be OADIV[4:0] + 1.
<13:7>	FBDIV[6:0]	Feedback Divider	Sets the divider value for the PLL core feedback. Also known as divider m in Figure 4-19 on page 4-24. The divider value will be FBDIV[6:0] + 1.
<6:0>	FINDIV[6:0]	Input Divider	Input Clock Divider (/n). Sets the divider value for the input delay on CLKA. The divider value will be FINDIV[6:0] + 1.

Notes:

- 1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
- 2. This value depends on the input clock source, so Layout must complete before these bits can be set. After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools > Report > CCC_Configuration. The report contains the appropriate settings for these bits.

Table 4-8 to Table 4-14 on page 4-32 provide descriptions of the configuration data for the configuration bits.

Table 4-8 • Input Clock Divider, FINDIV[6:0] (/n)

FINDIV<6:0> State	Divisor	New Frequency Factor
0	1	1.00000
1	2	0.50000
:	i i	i i
127	128	0.0078125

Table 4-9 • Feedback Clock Divider, FBDIV[6:0] (/m)

FBDIV<6:0> State	Divisor	New Frequency Factor
0	1	1
1	2	2
:	::	:
127	128	128

4-30 v1.4

Table 4-10 • Output Frequency Dividers

A Output Divider, OADIV <4:0> (/u);

B Output Divider, OBDIV <4:0> (/v);

C Output Divider, OCDIV <4:0> (/w)

OADIV<4:0>; OBDIV<4:0>; CDIV<4:0> State	Divisor	New Frequency Factor
0	1	1.00000
1	2	0.50000
:	:	:
31	32	0.03125

Table 4-11 • MUXA, MUXB, MUXC

OAMUX<2:0>; OBMUX<2:0>; OCMUX<2:0> State	MUX Input Selected
0	None. Six-input MUX and PLL are bypassed. Clock passes only through global MUX and goes directly into HC ribs.
1	Not available
2	PLL feedback delay line output
3	Not used
4	PLL VCO 0° phase shift
5	PLL VCO 90° phase shift
6	PLL VCO 180° phase shift
7	PLL VCO 270° phase shift

Table 4-12 • 2-Bit Feedback MUX

FBSEL<1:0> State	MUX Input Selected
0	Ground. Used for power-down mode in power-down logic block.
1	PLL VCO 0° phase shift
2	PLL delayed VCO 0° phase shift
3	N/A

Table 4-13 • Programmable Delay Selection for Feedback Delay and Secondary Core Output Delays

FBDLY<4:0>; DLYYB<4:0>; DLYYC<4:0> State	Delay Value		
0	Typical delay = 600 ps		
1	Typical delay = 760 ps		
2	Typical delay = 920 ps		
:	:		
31	Typical delay = 5.56 ns		

Table 4-14 • Programmable Delay Selection for Global Clock Output Delays

DLYGLA<4:0>; DLYGLB<4:0>; DLYGLC<4:0> State	Delay Value		
0	Typical delay = 225 ps		
1	Typical delay = 760 ps		
2	Typical delay = 920 ps		
:	i:		
31	Typical delay = 5.56 ns		

Table 4-15 • Fusion Dynamic CCC Clock Source Selection

RXASEL	DYNASEL	Source of CLKA
1	0	RC Oscillator
1	1	Crystal Oscillator
RXBSEL	DYNBSEL	Source of CLKB
1	0	RC Oscillator
1	1	Crystal Oscillator
RXBSEL	DYNCSEL	Source of CLKC
1	0	RC Oscillator
1	1	Crystal Oscillator

Table 4-16 • Fusion Dynamic CCC NGMUX Configuration

GLMUXCFG<1:0>	NGMUX Select Signal	Supported Input Clocks to NGMUX
00	0	GLA
	1	GLC
01	0	GLA
	1	GLINT
10	0	GLC
	1	GLINT

4-32 v1.4

Table 4-17 • Fusion Dynamic CCC Division by Half Configuration

OADIVHALF / OBDIVHALF / OCDIVHALF	OADIV<4:0> / OBDIV<4:0> / OCDIV<4:0> (in decimal)	Divider Factor	Input Clock Frequency	Output Clock Frequency (MHz)	
1	2	1.5	100 MHz RC	66.7	
	4	2.5	Oscillator	40.0	
	6	3.5		28.6	
	8	4.5		22.2	
	10	5.5		18.2	
	12	6.5		15.4	
	14	7.5		13.3	
	16	8.5		11.8	
	18	9.5		10.5	
	20	10.5		9.5	
	22	11.5		8.7	
	24	12.5		8.0	
	26	13.5		7.4	
	28	14.5		6.9	
0	0–31	1–32	Other Clock Sources	Depends on other divider settings	

Table 4-18 • Configuration Bit <76:75> / VCOSEL<2:1> Selection for All Families

	VCOSEL[2:1]							
	00		01		10		11	
Voltage	Min. (MHz)	Max. (MHz)	Min. (MHz)	Max. (MHz)	Min. (MHz)	Max. (MHz)	Min. (MHz)	Max. (MHz)
IGLOO and IGLOO P	LUS							
1.2 V ± 5%	24	35	30	70	60	140	135	160
1.5 V ± 5%	24	43.75	30	87.5	60	175	135	250
ProASIC3L, RT ProAS	ProASIC3L, RT ProASIC3, and Military ProASIC3/L							
1.2 V ± 5%	24	35	30	70	60	140	135	250
1.5 V ± 5%	24	43.75	30	70	60	175	135	350
ProASIC3 and Fusion								
1.5 V ± 5%	24	43.75	33.75	87.5	67.5	175	135	350

Table 4-19 • Configuration Bit <74> / VCOSEL<0> Selection for All Families

VCOSEL[0]	Description			
0	Fast PLL lock acquisition time with high tracking jitter. Refer to the corresponding datasheet for specific value and definition.			
1	Slow PLL lock acquisition time with low tracking jitter. Refer to the corresponding datasheet for specific value and definition.			

Software Configuration

SmartGen automatically generates the desired CCC functional block by configuring the control bits, and allows the user to select two CCC modes: Static PLL and Delayed Clock (CLKDLY).

Static PLL Configuration

The newly implemented Visual PLL Configuration Wizard feature provides the user a quick and easy way to configure the PLL with the desired settings (Figure 4-22). The user can invoke SmartGen to set the parameters and generate the netlist file with the appropriate flash configuration bits set for the CCCs. As mentioned in "PLL Macro Block Diagram" on page 4-9, the input reference clock CLKA can be configured to be driven by Hardwired I/O, External I/O, or Core Logic. The user enters the desired settings for all the parameters (output frequency, output selection, output phase adjustment, clock delay, feedback delay, and system delay). Notice that the actual values (divider values, output frequency, delay values, and phase) are shown to aid the user in reaching the desired design frequency in real time. These values are typical-case data. Best- and worst-case data can be observed through static timing analysis in SmartTime within Designer.

For dynamic configuration, the CCC parameters are defined using either the external JTAG port or an internally defined serial interface via the built-in dynamic shift register. This feature provides the ability to compensate for changes in the external environment.

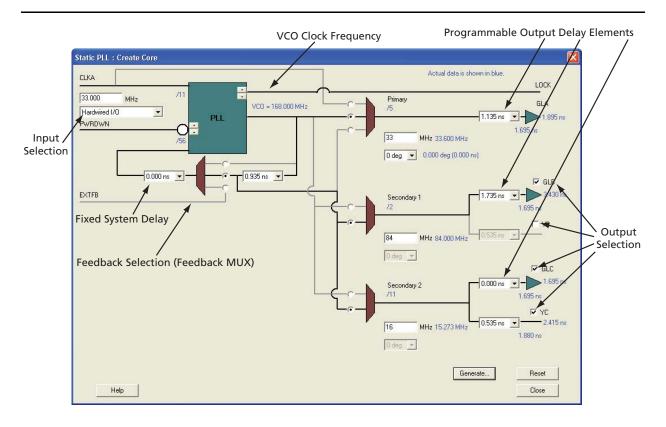


Figure 4-22 • Visual PLL Configuration Wizard

4-34 v1.4

Feedback Configuration

The PLL provides both internal and external feedback delays. Depending on the configuration, various combinations of feedback delays can be achieved.

Internal Feedback Configuration

This configuration essentially sets the feedback multiplexer to route the VCO output of the PLL core as the input to the feedback of the PLL. The feedback signal can be processed with the fixed system and the adjustable feedback delay, as shown in Figure 4-23. The dividers are automatically configured by SmartGen based on the user input.

Indicated below is the System Delay pull-down menu. The System Delay can be bypassed by setting it to 0. When set, it adds a 2 ns delay to the feedback path (which results in delay advancement of the output clock by 2 ns).

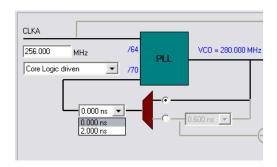


Figure 4-23 • Internal Feedback with Selectable System Delay

Figure 4-24 shows the controllable Feedback Delay. If set properly in conjunction with the fixed System Delay, the total output delay can be advanced significantly.

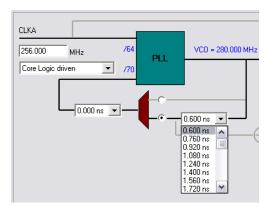


Figure 4-24 • Internal Feedback with Selectable Feedback Delay

External Feedback Configuration

For certain applications, such as those requiring generation of PCB clocks that must be matched with existing board delays, it is useful to implement an external feedback, EXTFB. The Phase Detector of the PLL core will receive CLKA and EXTFB as inputs. EXTFB may be processed by the fixed System Delay element as well as the M divider element. The EXTFB option is currently not supported.

After setting all the required parameters, users can generate one or more PLL configurations with HDL or EDIF descriptions by clicking the **Generate** button. SmartGen gives the option of saving session results and messages in a log file:

```
******
Macro Parameters
Name
                               : test_pll
                               : ProASIC3E
Family
Output Format
                               : VHDL
                              : Static PLL
Type
Input Freg(MHz)
                              : 10.000
CLKA Source
                              : Hardwired I/O
Feedback Delay Value Index
                             : 1
Feedback Mux Select
                              : 2
XDLY Mux Select
                              : No
Primary Freq(MHz)
                              : 33.000
Primary PhaseShift
Primary Delay Value Index
                              : 1
Primary Mux Select
                              : 4
Secondary1 Freq(MHz)
                              : 66.000
Use GLB
                              : YES
Use YB
                              : YES
GLB Delay Value Index
                              : 1
YB Delay Value Index
                               : 1
Secondaryl PhaseShift
Secondary1 Mux Select
Secondary2 Freq(MHz)
                               : 101.000
                              : YES
Use GLC
Use YC
                              : NO
GLC Delay Value Index
                              : 1
YC Delay Value Index
                              : 1
Secondary2 PhaseShift
                              : 0
Secondary2 Mux Select
                               : 4
Primary Clock frequency 33.333
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA 0.180
Secondaryl Clock frequency 66.667
Secondaryl Clock Phase Shift 0.000
Secondaryl Clock Global Output Delay from CLKA 0.180
Secondaryl Clock Core Output Delay from CLKA 0.625
Secondary2 Clock frequency 100.000
Secondary2 Clock Phase Shift 0.000
Secondary2 Clock Global Output Delay from CLKA 0.180
```

Below is an example Verilog HDL description of a legal PLL core configuration generated by SmartGen:

```
module test_pll(POWERDOWN,CLKA,LOCK,GLA);
```

4-36 v1.4

Clock Conditioning Circuits in Low-Power Flash Devices and Mixed-Signal FPGAs

```
input POWERDOWN, CLKA;
output LOCK, GLA;
    wire VCC, GND;
   VCC VCC_1_net(.Y(VCC));
   GND GND_1_net(.Y(GND));
    PLL Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN),
        .GLA(GLA), .LOCK(LOCK), .GLB(), .YB(), .GLC(), .YC(),
        .OADIV0(GND), .OADIV1(GND), .OADIV2(GND), .OADIV3(GND),
        .OADIV4(GND), .OAMUX0(GND), .OAMUX1(GND), .OAMUX2(VCC),
        .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND), .DLYGLA3(GND)
        , .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND),
        .OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND),
        .OBMUX2(GND), .DLYYB0(GND), .DLYYB1(GND), .DLYYB2(GND),
        .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND), .DLYGLB1(GND),
        .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND),
        .OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND),
        .OCMUX0(GND), .OCMUX1(GND), .OCMUX2(GND), .DLYYC0(GND),
        .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND),
        .DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND)
        , .DLYGLC4(GND), .FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(
        VCC), .FINDIV3(GND), .FINDIV4(GND), .FINDIV5(GND),
        .FINDIV6(GND), .FBDIV0(VCC), .FBDIV1(GND), .FBDIV2(VCC),
        .FBDIV3(GND), .FBDIV4(GND), .FBDIV5(GND), .FBDIV6(GND),
        .FBDLY0(GND), .FBDLY1(GND), .FBDLY2(GND), .FBDLY3(GND),
        .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND), .XDLYSEL(GND),
        .VCOSELO(GND), .VCOSEL1(GND), .VCOSEL2(GND));
    defparam Core.VCOFREQUENCY = 33.000;
endmodule
```

The "PLL Configuration Bits Description" section on page 4-28 provides descriptions of the PLL configuration bits for completeness. The configuration bits are shown as busses only for purposes of illustration. They will actually be broken up into individual pins in compilation libraries and all simulation models. For example, the FBSEL[1:0] bus will actually appear as pins FBSEL1 and FBSEL0. The setting of these select lines for the static PLL configuration is performed by the software and is completely transparent to the user.

Dynamic PLL Configuration

To generate a dynamically reconfigurable CCC, the user should select **Dynamic CCC** in the configuration section of the SmartGen GUI (Figure 4-25). This will generate both the CCC core and the configuration shift register / control bit MUX.

Figure 4-25 • SmartGen GUI

Even if dynamic configuration is selected in SmartGen, the user must still specify the static configuration data for the CCC (Figure 4-26). The specified static configuration is used whenever the MODE signal is set to LOW and the CCC is required to function in the static mode. The static configuration data can be used as the default behavior of the CCC where required.

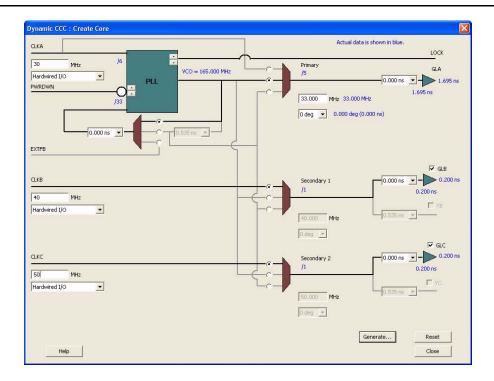


Figure 4-26 • Dynamic CCC Configuration in SmartGen

4-38 v1.4

When SmartGen is used to define the configuration that will be shifted in via the serial interface, SmartGen prints out the values of the 81 configuration bits. For ease of use, several configuration bits are automatically inferred by SmartGen when the dynamic PLL core is generated; however, <71:73> (STATASEL, STATBSEL, STATCSEL) and <77:79> (DYNASEL, DYNBSEL, DYNCSEL) depend on the input clock source of the corresponding CCC. Users must first run Layout in Designer to determine the exact setting for these ports. After Layout is complete, generate the "CCC_Configuration" report by choosing Tools > Reports > CCC_Configuration in the Designer software. Refer to "PLL Configuration Bits Description" on page 4-28 for descriptions of the PLL configuration bits. For simulation purposes, bits <71:73> and <78:80> are "don't care." Therefore, it is strongly suggested that SmartGen be used to generate the correct configuration bit settings for the dynamic PLL core.

After setting all the required parameters, users can generate one or more PLL configurations with HDL or EDIF descriptions by clicking the **Generate** button. SmartGen gives the option of saving session results and messages in a log file:

: dyn_pll_hardio Name Family : ProASIC3E Output Format : VERILOG : Dynamic CCC Type Input Freq(MHz) : 30.000 CLKA Source : Hardwired I/O Feedback Delay Value Index : 1 Feedback Mux Select : 1 XDLY Mux Select : No Primary Freq(MHz) : 33.000 Primary PhaseShift : 0 Primary Delay Value Index : 1 Primary Mux Select : 4 : 40.000 Secondary1 Freq(MHz) Use GLB : YES Use YB : NO GLB Delay Value Index : 1 YB Delay Value Index : 1 Secondaryl PhaseShift : 0 Secondary1 Mux Select Secondary1 Input Freq(MHz) : 40.000 CLKB Source : Hardwired I/O : 50.000 Secondary2 Freq(MHz) Use GLC : YES Use YC : NO GLC Delay Value Index : 1 YC Delay Value Index : 1 Secondary2 PhaseShift : 0 Secondary2 Mux Select Secondary2 Input Freq(MHz) : 50.000 CLKC Source : Hardwired I/O

Configuration Bits: FINDIV[6:0] 0000101 FBDIV[6:0] 0100000 OADIV[4:0] 00100 OBDIV[4:0] 00000 OCDIV[4:0] 00000 OAMUX[2:0] 100 OBMUX[2:0] 000 OCMUX[2:0] 000 FBSEL[1:0] 01 FBDLY[4:0] 00000 XDLYSEL DLYGLA[4:0] 00000

Clock Conditioning Circuits in Low-Power Flash Devices and Mixed-Signal FPGAs

```
DLYGLB[4:0]
               00000
DLYGLC[4:0]
               00000
DLYYB[4:0]
               00000
DLYYC[4:0]
               00000
VCOSEL[2:0]
               100
Primary Clock Frequency 33.000
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA 1.695
Secondaryl Clock Frequency 40.000
Secondaryl Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKB 0.200
Secondary2 Clock Frequency 50.000
Secondary2 Clock Phase Shift 0.000
Secondary2 Clock Global Output Delay from CLKC 0.200
######################################
# Dynamic Stream Data
```

NAME	SDIN	VALUE	TYPE
FINDIV	 [6:0]	0000101	EDIT
FBDIV	[13:7]	0100000	EDIT
OADIV	[18:14]	00100	EDIT
OBDIV	[23:19]	00000	EDIT
OCDIV	[28:24]	00000	EDIT
OAMUX	[31:29]	100	EDIT
OBMUX	[34:32]	000	EDIT
OCMUX	[37:35]	000	EDIT
FBSEL	[39:38]	01	EDIT
FBDLY	[44:40]	00000	EDIT
XDLYSEL	[45]	0	EDIT
DLYGLA	[50:46]	00000	EDIT
DLYGLB	[55:51]	00000	EDIT
DLYGLC	[60:56]	00000	EDIT
DLYYB	[65:61]	00000	EDIT
DLYYC	[70:66]	00000	EDIT
STATASEL	[71]	X	MASKED
STATBSEL	[72]	X	MASKED
STATCSEL	[73]	X	MASKED
VCOSEL	[76:74]	100	EDIT
DYNASEL	[77]	X	MASKED
DYNBSEL	[78]	X	MASKED
DYNCSEL	[79]	X	MASKED
RESETEN	[08]	1	READONLY

Below is the resultant Verilog HDL description of a legal dynamic PLL core configuration generated by SmartGen:

```
module dyn_pll_macro(POWERDOWN, CLKA, LOCK, GLA, GLB, GLC, SDIN, SCLK, SSHIFT, SUPDATE,
    MODE, SDOUT, CLKB, CLKC);

input POWERDOWN, CLKA;
output LOCK, GLA, GLB, GLC;
input SDIN, SCLK, SSHIFT, SUPDATE, MODE;
output SDOUT;
input CLKB, CLKC;

wire VCC, GND;

VCC VCC_l_net(.Y(VCC));
GND GND_l_net(.Y(GND));
```

4-40 v1.4


```
DYNCCC Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN), .GLA(GLA), .LOCK(LOCK),
  .CLKB(CLKB), .GLB(GLB), .YB(), .CLKC(CLKC), .GLC(GLC), .YC(), .SDIN(SDIN),
  .SCLK(SCLK), .SSHIFT(SSHIFT), .SUPDATE(SUPDATE), .MODE(MODE), .SDOUT(SDOUT),
  .OADIV0(GND), .OADIV1(GND), .OADIV2(VCC), .OADIV3(GND), .OADIV4(GND), .OAMUX0(GND),
  .OAMUX1(GND), .OAMUX2(VCC), .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND),
  .DLYGLA3(GND), .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND),
  .OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND), .OBMUX2(GND), .DLYYB0(GND),
  .DLYYB1(GND), .DLYYB2(GND), .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND),
  .DLYGLB1(GND), .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND),
  .OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND), .OCMUX0(GND), .OCMUX1(GND),
  .OCMUX2(GND), .DLYYC0(GND), .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND),
  .DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND), .DLYGLC4(GND),
  .FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(VCC), .FINDIV3(GND), .FINDIV4(GND),
  .FINDIV5(GND), .FINDIV6(GND), .FBDIV0(GND), .FBDIV1(GND), .FBDIV2(GND),
  .FBDIV3(GND), .FBDIV4(GND), .FBDIV5(VCC), .FBDIV6(GND), .FBDLY1(GND), .FBDLY1(GND),
  .FBDLY2(GND), .FBDLY3(GND), .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND),
  .XDLYSEL(GND), .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(VCC));
defparam Core.VCOFREQUENCY = 165.000;
```

endmodule

Delayed Clock Configuration

The CLKDLY macro can be generated with the desired delay and input clock source (Hardwired I/O, External I/O, or Core Logic), as in Figure 4-27.

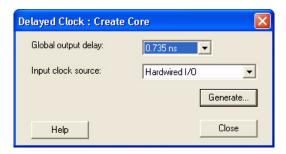


Figure 4-27 • Delayed Clock Configuration Dialog Box

After setting all the required parameters, users can generate one or more PLL configurations with HDL or EDIF descriptions by clicking the **Generate** button. SmartGen gives the option of saving session results and messages in a log file:

```
******
Macro Parameters
Name
                                : delay_macro
Family
                                : ProASIC3
Output Format
                                : Verilog
Type
                                : Delayed Clock
Delay Index
                                : 2
CLKA Source
                                : Hardwired I/O
Total Clock Delay = 0.935 ns.
The resultant CLKDLY macro Verilog netlist is as follows:
module delay_macro(GL,CLK);
output GL;
input CLK;
```


Detailed Usage Information

Clock Frequency Synthesis

Deriving clocks of various frequencies from a single reference clock is known as frequency synthesis. The PLL has an input frequency range from 1.5 to 350 MHz. This frequency is automatically divided down to a range between 1.5 MHz and 5.5 MHz by input dividers (not shown in Figure 4-18 on page 4-23) between PLL macro inputs and PLL phase detector inputs. The VCO output is capable of an output range from 24 to 350 MHz. With dividers before the input to the PLL core and following the VCO outputs, the VCO output frequency can be divided to provide the final frequency range from 0.75 to 350 MHz. Using SmartGen, the dividers are automatically set to achieve the closest possible matches to the specified output frequencies.

Users should be cautious when selecting the desired PLL input and output frequencies and the I/O buffer standard used to connect to the PLL input and output clocks. Depending on the I/O standards used for the PLL input and output clocks, the I/O frequencies have different maximum limits. Refer to the family datasheets for specifications of maximum I/O frequencies for supported I/O standards. Desired PLL input or output frequencies will not be achieved if the selected frequencies are higher than the maximum I/O frequencies allowed by the selected I/O standards. Users should be careful when selecting the I/O standards used for PLL input and output clocks. Performing post-layout simulation can help detect this type of error, which will be identified with pulse width violation errors. Users are strongly encouraged to perform post-layout simulation to ensure the I/O standard used can provide the desired PLL input or output frequencies. Users can also choose to cascade PLLs together to achieve the high frequencies needed for their applications. Details of cascading PLLs are discussed in the "Cascading CCCs" section on page 4-47.

In SmartGen, the actual generated frequency (under typical operating conditions) will be displayed beside the requested output frequency value. This provides the ability to determine the exact frequency that can be generated by SmartGen, in real time. The log file generated by SmartGen is a useful tool in determining how closely the requested clock frequencies match the user specifications. For example, assume a user specifies 101 MHz as one of the secondary output frequencies. If the best output frequency that could be achieved were 100 MHz, the log file generated by SmartGen would indicate the actual generated frequency.

Simulation Verification

The integration of the generated PLL and CLKDLY modules is similar to any VHDL component or Verilog module instantiation in a larger design; i.e., there is no special requirement that users need to take into account to successfully synthesize their designs.

For simulation purposes, users need to refer to the VITAL or Verilog library that includes the functional description and associated timing parameters. Refer to the Software Tools section of the Actel website to obtain the family simulation libraries. If Actel Designer is installed, these libraries are stored in the following locations:

```
<Designer_Installation_Directory>\lib\vtl\95\proasic3.vhd
<Designer_Installation_Directory>\lib\vtl\95\proasic3e.vhd
<Designer_Installation_Directory>\lib\vlog\proasic3.v
<Designer_Installation_Directory>\lib\vlog\proasic3e.v
```

4-42 v1.4

For Libero IDE users, there is no need to compile the simulation libraries, as they are conveniently pre-compiled in the ModelSim® Actel simulation tool.

The following is an example of a PLL configuration utilizing the clock frequency synthesis and clock delay adjustment features. The steps include generating the PLL core with SmartGen, performing simulation for verification with ModelSim, and performing static timing analysis with SmartTime in Designer.

Parameters of the example PLL configuration:

Input Frequency - 20 MHz

Primary Output Requirement - 20 MHz with clock advancement of 3.02 ns

Secondary 1 Output Requirement - 40 MHz with clock delay of 2.515 ns

Figure 4-28 shows the SmartGen settings. Notice that the overall delays are calculated automatically, allowing the user to adjust the delay elements appropriately to obtain the desired delays.

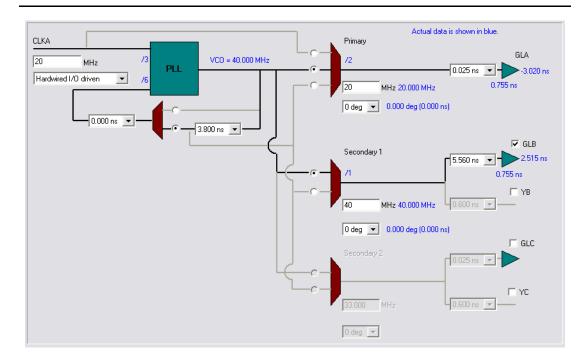


Figure 4-28 • SmartGen Settings

After confirming the correct settings, generate a structural netlist of the PLL and verify PLL core settings by checking the log file:

Name : test_pll_delays Family : ProASIC3E Output Format : VHDL Type : Static PLL : 20.000 Input Freq(MHz) CLKA Source : Hardwired I/O Feedback Delay Value Index : 21 Feedback Mux Select : 2 : No XDLY Mux Select Primary Freq(MHz) : 20.000 Primary PhaseShift : 0 Primary Delay Value Index : 1 Primary Mux Select : 4 Secondary1 Freq(MHz) : 40.000 Use GLB : YES Use YB : NO

v1.4 4-43


```
...
...
Primary Clock frequency 20.000
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA -3.020
Secondary1 Clock frequency 40.000
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKA 2.515
```

Next, perform simulation in ModelSim to verify the correct delays. Figure 4-29 shows the simulation results. The delay values match those reported in the SmartGen PLL Wizard.

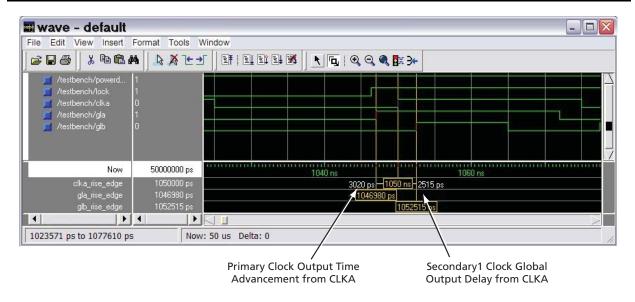


Figure 4-29 • ModelSim Simulation Results

The timing can also be analyzed using SmartTime in Designer. The user should import the synthesized netlist to Designer, perform Compile and Layout, and then invoke SmartTime. Go to Tools > Options and change the maximum delay operating conditions to Typical Case. Then expand the Clock-to-Out paths of GLA and GLB and the individual components of the path delays are shown. The path of GLA is shown in Figure 4-30 on page 4-45 displaying the same delay value.

4-44 v1.4

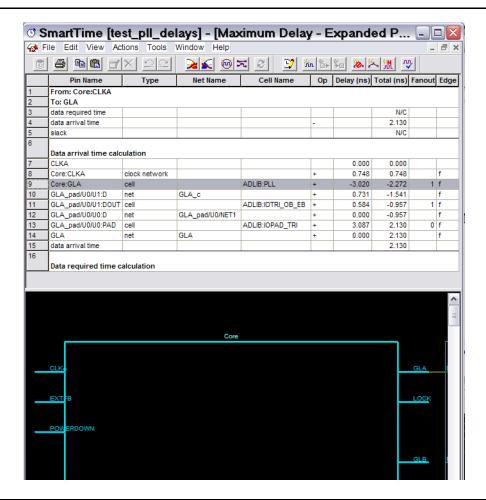


Figure 4-30 • Static Timing Analysis Using SmartTime

Place-and-Route Stage Considerations

Several considerations must be noted to properly place the CCC macros for layout.

For CCCs with clock inputs configured with the Hardwired I/O-Driven option:

- PLL macros must have the clock input pad coming from one of the GmA* locations.
- CLKDLY macros must have the clock input pad coming from one of the Global I/Os.

If a PLL with a Hardwired I/O input is used at a CCC location and a Hardwired I/O-Driven CLKDLY macro is used at the same CCC location, the clock input of the CLKDLY macro must be chosen from one of the GmB* or GmC* pin locations. If the PLL is not used or is an External I/O-Driven or Core Logic-Driven PLL, the clock input of the CLKDLY macro can be sourced from the GmA*, GmB*, or GmC* pin locations.

For CCCs with clock inputs configured with the External I/O–Driven option, the clock input pad can be assigned to any regular I/O location (IO******* pins). Note that since global I/O pins can also be used as regular I/Os, regardless of CCC function (CLKDLY or PLL), clock inputs can also be placed in any of these I/O locations.

By default, the Designer layout engine will place global nets in the design at one of the six chip globals. When the number of globals in the design is greater than six, the Designer layout engine will automatically assign additional globals to the quadrant global networks of the low-power flash devices. If the user wishes to decide which global signals should be assigned to chip globals (six available) and which to the quadrant globals (three per quadrant for a total of 12 available), the assignment can be achieved with PinEditor, ChipPlanner, or by importing a placement

v1.4 4-45

constraint file. Layout will fail if the global assignments are not allocated properly. See the "Physical Constraints for Quadrant Clocks" section for information on assigning global signals to the quadrant clock networks.

Promoted global signals will be instantiated with CLKINT macros to drive these signals onto the global network. This is automatically done by Designer when the Auto-Promotion option is selected. If the user wishes to assign the signals to the quadrant globals instead of the default chip globals, this can done by using ChipPlanner, by declaring a physical design constraint (PDC), or by importing a PDC file.

Physical Constraints for Quadrant Clocks

If it is necessary to promote global clocks (CLKBUF, CLKINT, PLL, CLKDLY) to quadrant clocks, the user can define PDCs to execute the promotion. PDCs can be created using PDC commands (precompile) or the MultiView Navigator (MVN) interface (post-compile). The advantage of using the PDC flow over the MVN flow is that the Compile stage is able to automatically promote any regular net to a global net before assigning it to a quadrant. There are three options to place a quadrant clock using PDC commands:

- Place a clock core (not hardwired to an I/O) into a quadrant clock location.
- Place a clock core (hardwired to an I/O) into an I/O location (set_io) or an I/O module location (set_location) that drives a quadrant clock location.
- Assign a net driven by a regular net or a clock net to a quadrant clock using the following command:

```
assign_local_clock -net <net name> -type quadrant <quadrant clock region>
where
```

<net name> is the name of the net assigned to the local user clock region.

<quadrant clock region> defines which quadrant the net should be assigned to. Quadrant clock regions are defined as UL (upper left), UR (upper right), LL (lower left), and LR (lower right).

Note: If the net is a regular net, the software inserts a CLKINT buffer on the net.

For example:

```
assign_local_clock -net localReset -type quadrant UR
```

Keep in mind the following when placing quadrant clocks using MultiView Navigator:

Hardwired I/O-Driven CCCs

• Find the associated clock input port under the Ports tab, and place the input port at one of the Gmn* locations using PinEditor or I/O Attribute Editor, as shown in Figure 4-31.

Figure 4-31 • Port Assignment for a CCC with Hardwired I/O Clock Input

4-46 v1.4

 Use quadrant global region assignments by finding the clock net associated with the CCC macro under the Nets tab and creating a quadrant global region for the net, as shown in Figure 4-32.

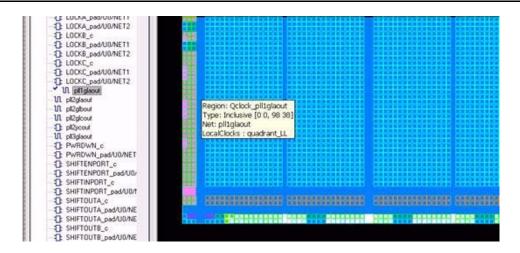


Figure 4-32 • Quadrant Clock Assignment for a Global Net

External I/O-Driven CCCs

The above-mentioned recommendation for proper layout techniques will ensure the correct assignment. It is possible that, especially with External I/O–Driven CCC macros, placement of the CCC macro in a desired location may not be achieved. For example, assigning an input port of an External I/O–Driven CCC near a particular CCC location does not guarantee global assignments to the desired location. This is because the clock inputs of External I/O–Driven CCCs can be assigned to any I/O location; therefore, it is possible that the CCC connected to the clock input will be routed to a location other than the one closest to the I/O location, depending on resource availability and placement constraints.

Clock Placer

The clock placer is a placement engine for low-power flash devices that places global signals on the chip global and quadrant global networks. Based on the clock assignment constraints for the chip global and quadrant global clocks, it will try to satisfy all constraints, as well as creating quadrant clock regions when necessary. If the clock placer fails to create the quadrant clock regions for the global signals, it will report an error and stop Layout.

The user must ensure that the constraints set to promote clock signals to quadrant global networks are valid.

Cascading CCCs

The CCCs in low-power flash devices can be cascaded. Cascading CCCs can help achieve more accurate PLL output frequency results than those achievable with a single CCC. In addition, this technique is useful when the user application requires the output clock of the PLL to be a multiple of the reference clock by an integer greater than the maximum feedback divider value of the PLL (divide by 128) to achieve the desired frequency.

For example, the user application may require a 280 MHz output clock using a 2 MHz input reference clock, as shown in Figure 4-33 on page 4-48.

v1.4 4-47

Figure 4-33 • Cascade PLL Configuration

Using internal feedback, we know from EQ 4-1 on page 4-25 that the maximum achievable output frequency from the primary output is

$$f_{GLA} = f_{CLKA} \times m / (n \times u) = 2 \text{ MHz} \times 128 / (1 \times 1) = 256 \text{ MHz}$$

EQ 4-5

Figure 4-34 shows the settings of the initial PLL. When configuring the initial PLL, specify the input to be either Hardwired I/O–Driven or External I/O–Driven. This generates a netlist with the initial PLL routed from an I/O. Do not specify the input to be Core Logic–Driven, as this prohibits the connection from the I/O pin to the input of the PLL.

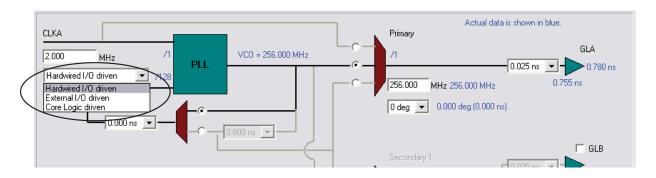


Figure 4-34 • First-Stage PLL Showing Input of 2 MHz and Output of 256 MHz

A second PLL can be connected serially to achieve the required frequency. EQ 4-1 on page 4-25 to EQ 4-3 on page 4-25 are extended as follows:

$$f_{GLA2} = f_{GLA} \times m_2 / (n_2 \times u_2) = f_{CLKA1} \times m_1 \times m_2 / (n_1 \times u_1 \times n_2 \times u_2) - \text{Primary PLL Output Clock}$$

$$EQ \text{ 4-6}$$

$$f_{GLB2} = f_{YB2} = f_{CLKA1} \times m_1 \times m_2 / (n_1 \times n_2 \times v_1 \times v_2) - \text{Secondary 1 PLL Output Clock(s)}$$

$$EQ \text{ 4-7}$$

$$f_{GLC2} = f_{YC2} = f_{CLKA1} \times m_1 \times m_2 / (n_1 \times n_2 \times w_1 \times w_2) - \text{Secondary 2 PLL Output Clock(s)}$$

$$EO \text{ 4-8}$$

In the example, the final output frequency (f_{output}) from the primary output of the second PLL will be as follows (EQ 4-9):

$$f_{output} = f_{GLA2} = f_{GLA} \times m_2 / (n_2 \times u_2) = 256 \text{ MHz} \times 70 / (64 \times 1) = 280 \text{ MHz}$$

EQ 4-9

Figure 4-35 on page 4-49 shows the settings of the second PLL. When configuring the second PLL (or any subsequent-stage PLLs), specify the input to be Core Logic–Driven. This generates a netlist with the second PLL routed internally from the core. Do not specify the input to be Hardwired I/O–Driven or External I/O–Driven, as these options prohibit the connection from the output of the first PLL to the input of the second PLL.

4-48 v1.4

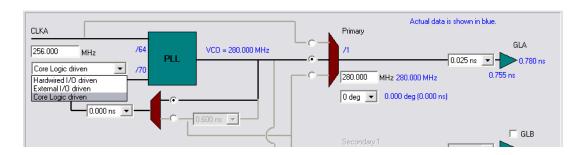


Figure 4-35 • Second-Stage PLL Showing Input of 256 MHz from First Stage and Final Output of 280 MHz

Figure 4-36 shows the simulation results, where the first PLL's output period is 3.9 ns (~256 MHz), and the stage 2 (final) output period is 3.56 ns (~280 MHz).

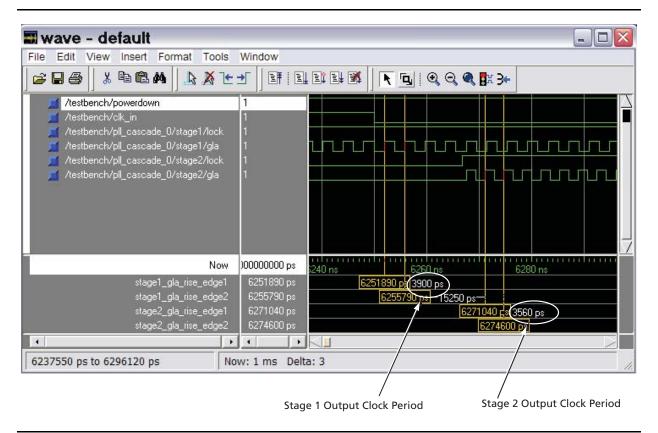


Figure 4-36 • ModelSim Simulation Results

v1.4 4-49

Recommended Board-Level Considerations

The power to the PLL core is supplied by $V_{CCPLA/B/C/D/E/F}$ ($V_{CCPLA/B}$), and the associated ground connections are supplied by $V_{COMPLA/B/C/D/E/F}$ (V_{COMPLX}). When the PLLs are not used, the Actel Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused V_{CCPLX} and V_{COMPLX} pins to ground. Optionally, the PLL can be turned on/off during normal device operation via the POWERDOWN port (see Table 4-3 on page 4-8).

PLL Power Supply Decoupling Scheme

The PLL core is designed to tolerate noise levels on the PLL power supply as specified in the datasheets. When operated within the noise limits, the PLL will meet the output peak-to-peak jitter specifications specified in the datasheets. User applications should always ensure the PLL power supply is powered from a noise-free or low-noise power source.

However, in situations where the PLL power supply noise level is higher than the tolerable limits, various decoupling schemes can be designed to suppress noise to the PLL power supply. An example is provided in Figure 4-37. The V_{CCPLx} and V_{COMPLx} pins correspond to the PLL analog power supply and ground.

Actel strongly recommends that two ceramic capacitors (10 nF in parallel with 100 nF) be placed close to the power pins (less than 1 inch away). A third generic 10 μ F electrolytic capacitor is recommended for low-frequency noise and should be placed farther away due to its large physical size. Actel recommends that a 6.8 μ H inductor be placed between the supply source and the capacitors to filter out any low-/medium- and high-frequency noise. In addition, the PCB layers should be controlled so the V_{CCPLX} and V_{COMPLX} planes have the minimum separation possible, thus generating a good-quality RF capacitor.

For more recommendations, refer to the Board-Level Considerations application note.

Recommended 100 nF capacitor:

- Producer BC Components, type X7R, 100 nF, 16 V
- BC Components part number: 0603B104K160BT
- Digi-Key part number: BC1254CT-ND
- Digi-Key part number: BC1254TR-ND

Recommended 10 nF capacitor:

- Surface-mount ceramic capacitor
- Producer BC Components, type X7R, 10 nF, 50 V
- BC Components part number: 0603B103K500BT
- Digi-Key part number: BC1252CT-ND
- Digi-Key part number: BC1252TR-ND

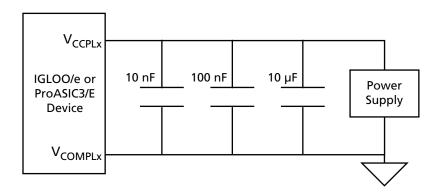


Figure 4-37 • Decoupling Scheme for One PLL (should be replicated for each PLL used)

4-50 v1.4

Conclusion

The advanced CCCs of the IGLOO and ProASIC3 devices are ideal for applications requiring precise clock management. They integrate easily with the internal low-skew clock networks and provide flexible frequency synthesis, clock deskewing, and/or time-shifting operations.

Related Documents

Application Notes

Board-Level Considerations
http://www.actel.com/documents/BoardLevelCons AN.pdf

Handbook Documents

UJTAG Applications in Actel's Low-Power Flash Devices
http://www.actel.com/documents/LPD_UJTAG_HBs.pdf
Global Resources in Actel Low-Power Flash Devices
http://www.actel.com/documents/LPD_Global_HBs.pdf
User I/O Naming Conventions in I/O Structures in IGLOO and ProASIC3 Devices
http://www.actel.com/documents/IGLOO_PA3_IO_HBs.pdf

User's Guides

IGLOO, Fusion, and ProASIC3 Macro Library Guide http://www.actel.com/documents/pa3_libguide_ug.pdf

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet, combined with content previously published as an application note describing features and functions of the device. To improve usability for customers, the device architecture information has now been combined with usage information, to reduce duplication and possible inconsistencies in published information. No technical changes were made to the datasheet content unless explicitly listed. Changes to the application note content were made only to be consistent with existing datasheet information.

Part Number 51700094-006-4 Revised December 2008

v1.4 4-51

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in the Current Version (v1.4)	Page
v1.3 (October 2008)	The "CCC Support in Actel's Flash Devices" section was updated to include IGLOO nano and ProASIC3 nano devices.	4-3
	Figure 4-2 \cdot CCC Options: Global Buffers with No Programmable Delay was revised to add the CLKBIBUF macro.	4-4
	The description of the reference clock was revised in Table 4-2 \cdot Input and Output Description of the CLKDLY Macro.	4-5
	Figure 4-6 · Clock Input Sources (30 k gates devices and below) is new. Figure 4-7 · Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT (60 k gates devices and above) applies to 60 k gate devices and above.	4-11
	The "IGLOO and ProASIC3" section was updated to include information for IGLOO nano devices.	4-12
	A note regarding Fusion CCCs was added to Figure 4-8 · Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 60 k Gates and Larger and the name of the figure was changed from Figure 4-8 · Illustration of Hardwired I/O (global input pins) Usage. Figure 4-9 · Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 30 k Gates and Smaller is new.	4-13
	Table 4-5 · Number of CCCs by Device Size and Package was updated to include IGLOO nano and ProASIC3 nano devices. Entries were added to note differences for the CS81, CS121, and CS201 packages.	4-17
	The "Clock Conditioning Circuits without Integrated PLLs" section was rewritten.	4-18
	The "IGLOO and ProASIC3 CCC Locations" section was updated for nano devices.	4-20
	Figure 4-13 · CCC Locations in the 15 k and 30 k Gate Devices was deleted.	4-20
v1.2 (June 2008)	This document was updated to include Fusion and RT ProASIC3 device information. Please review the document very carefully.	N/A
	The "CCC Support in Actel's Flash Devices" section was updated.	4-3
	In the "Global Buffer with Programmable Delay" section, the following sentence was changed from:	4-4
	"In this case, the I/O must be placed in one of the dedicated global I/O locations."	
	To "In this case, the software will automatically place the dedicated global I/O in the appropriate locations."	
	Figure 4-4 · CCC Options: Global Buffers with PLL was updated to include OADIVRST and OADIVHALF.	4-7
	In Figure 4-5 · CCC with PLL Block "fixed delay" was changed to "programmable delay".	4-7
	Table 4-3 · Input and Output Signals of the PLL Block was updated to include OADIVRST and OADIVHALF descriptions.	4-8
	Table 4-7 \cdot Configuration Bit Descriptions for the CCC Blocks was updated to include configuration bits 88 to 81. Note 2 is new. In addition, the description for bit <76:74> was updated.	4-28
	Table 4-15 · Fusion Dynamic CCC Clock Source Selection and Table 4-16 · Fusion Dynamic CCC NGMUX Configuration are new.	4-32

4-52 v1.4

Clock Conditioning Circuits in Low-Power Flash Devices and Mixed-Signal FPGAs

Previous Version	Changes in the Current Version (v1.4)	Page						
v1.2 (continued)	Table 4-17 · Fusion Dynamic CCC Division by Half Configuration and Table 4-18 · Configuration Bit <76:75> / VCOSEL<2:1> Selection for All Families are new.							
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 4-1 · Overview of the CCCs Offered in Fusion, IGLOO, and ProASIC3: • ProASIC3L was updated to include 1.5 V. • The number of PLLs for ProASIC3E was changed from five to six.	4-1						
v1.0 (January 2008)	Table 4-1 · Flash-Based FPGAs and the associated text were updated to include the IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new.	4-3						
	The "Global Input Selections" section was updated to include 15 k gate devices as supported I/O types for globals, for CCC only.	4-10						
	Table 4-5 · Number of CCCs by Device Size and Package was revised to include ProASIC3L, IGLOO PLUS, A3P015, AGL015, AGLP030, AGLP060, and AGLP125.	4-17						
	The "IGLOO and ProASIC3 CCC Locations" section was revised to include 15 k gate devices in the exception statements, as they do not contain PLLs.	4-20						
51900133-0/5.06	Information about unlocking the PLL was removed from the "Dynamic PLL Configuration" section.	4-26						
	In the "Dynamic PLL Configuration" section, information was added about running Layout and determining the exact setting of the ports.	4-38						
	In Table 4-7 \cdot Configuration Bit Descriptions for the CCC Blocks, the following bits were updated to delete "transport to the user" and reference the footnote at the bottom of the table: 79 to 71.	4-28						

Embedded Memories

5 - FlashROM in Actel's Low-Power Flash Devices

Introduction

The Fusion, IGLOO,[®] and ProASIC[®]3 families of low-power flash-based devices have a dedicated nonvolatile FlashROM memory of 1,024 bits, which provides a unique feature in the FPGA market. The FlashROM can be read, modified, and written using the JTAG (or UJTAG) interface. It can be read but not modified from the FPGA core. Only low-power flash devices contain on-chip user nonvolatile memory (NVM).

Architecture of User Nonvolatile FlashROM

Low-power flash devices have 1 kbit of user-accessible nonvolatile flash memory on-chip that can be read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits (16 bytes) during programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the FlashROM from the FPGA core. Figure 5-1 shows the FlashROM logical structure.

The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly from the FPGA core. When programming, each of the eight 128-bit banks can be selectively reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports synchronous read. The address is latched on the rising edge of the clock, and the new output data is stable after the falling edge of the same clock cycle. For more information, refer to the timing diagrams in the DC and Switching Characteristics chapter of the appropriate datasheet. The FlashROM can be read on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16 bytes in the bank is being accessed.

		Byte	e Nu	mbe	r in B	ank			4 LSE	of A	ADDF	(REA	AD)				
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
of	7																
8	6																
Number 3 MSB ADDR (READ)	5																
er 3	4																
를 N	3																
P M P	2																
Bank Number ADDR (RI	1																
ă	0																

Figure 5-1 • FlashROM Architecture

FlashROM Support in Flash-Based Devices

The flash FPGAs listed in Table 5-1 support the FlashROM feature and the functions described in this document.

Table 5-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO nano	The industry's lowest-power, smallest-size solution
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex™-M1 soft processors, and flash memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 5-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 5-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

5-2 v1.4

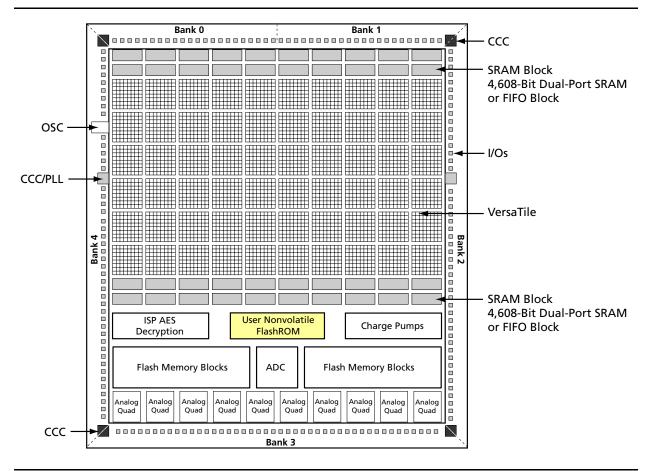


Figure 5-2 • Fusion Device Architecture Overview (AFS600)

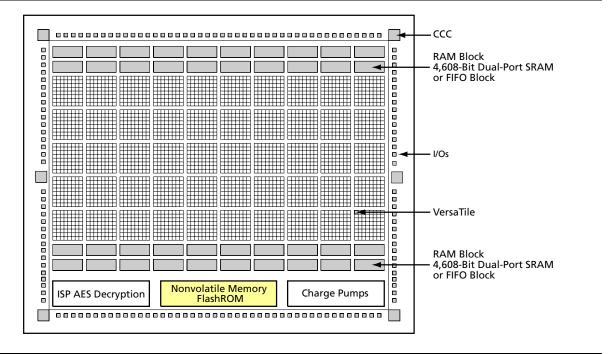


Figure 5-3 • ProASIC3 and IGLOO Device Architecture

v1.4 5-3

FlashROM Applications

The SmartGen core generator is used to configure FlashROM content. You can configure each page independently. SmartGen enables you to create and modify regions within a page; these regions can be 1 to 16 bytes long (Figure 5-4).

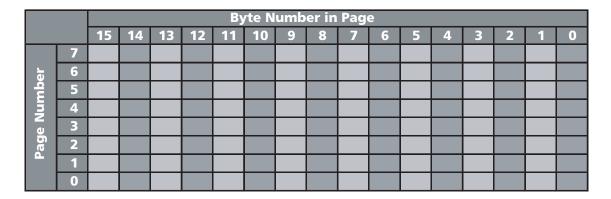


Figure 5-4 • FlashROM Configuration

The FlashROM content can be changed independently of the FPGA core content. It can be easily accessed and programmed via JTAG, depending on the security settings of the device. The SmartGen core generator enables each region to be independently updated (described in the "Programming and Accessing FlashROM" section on page 5-6). This enables you to change the FlashROM content on a per-part basis while keeping some regions "constant" for all parts. These features allow the FlashROM to be used in diverse system applications. Consider the following possible uses of FlashROM:

- Internet protocol (IP) addressing (wireless or fixed)
- System calibration settings
- Restoring configuration after unpredictable system power-down
- Device serialization and/or inventory control
- Subscription-based business models (e.g., set-top boxes)
- Secure key storage
- Asset management tracking
- Date stamping
- Version management

5-4 v1.4

FlashROM Security

Low-power flash devices have an on-chip Advanced Encryption Standard (AES) decryption core, combined with an enhanced version of the Actel flash-based lock technology (FlashLock®). Together, they provide unmatched levels of security in a programmable logic device. This security applies to both the FPGA core and FlashROM content. These devices use the 128-bit AES (Rijndael) algorithm to encrypt programming files for secure transmission to the on-chip AES decryption core. The same algorithm is then used to decrypt the programming file. This key size provides approximately 3.4×10^{38} possible 128-bit keys. A computing system that could find a DES key in a second would take approximately 149 trillion years to crack a 128-bit AES key. The 128-bit FlashLock feature in low-power flash devices works via a FlashLock security Pass Key mechanism, where the user locks or unlocks the device with a user-defined key. Refer to Security in Low-Power Flash Devices.

If the device is locked with certain security settings, functions such as device read, write, and erase are disabled. This unique feature helps to protect against invasive and noninvasive attacks. Without the correct Pass Key, access to the FPGA is denied. To gain access to the FPGA, the device first must be unlocked using the correct Pass Key. During programming of the FlashROM or the FPGA core, you can generate the security header programming file, which is used to program the AES key and/or FlashLock Pass Key. The security header programming file can also be generated independently of the FlashROM and FPGA core content. The FlashLock Pass Key is not stored in the FlashROM.

Low-power flash devices with AES-based security allow for secure remote field updates over public networks such as the Internet, and ensure that valuable intellectual property (IP) remains out of the hands of IP thieves. Figure 5-5 shows this flow diagram.

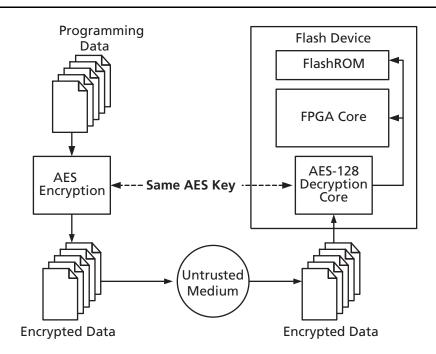


Figure 5-5 • Programming FlashROM Using AES

v1.4 5-5

Programming and Accessing FlashROM

The FlashROM content can only be programmed via JTAG, but it can be read back selectively through the JTAG programming interface, the UJTAG interface, or via direct FPGA core addressing. The pages of the FlashROM can be made secure to prevent read-back via JTAG. In that case, read-back on these secured pages is only possible by the FPGA core fabric or via UJTAG.

A 7-bit address from the FPGA core defines which of the eight pages (three MSBs) is being read, and which of the 16 bytes within the selected page (four LSBs) are being read. The FlashROM content can be read on a random basis; the access time is 10 ns for a device supporting commercial specifications. The FPGA core will be powered down during writing of the FlashROM content. FPGA power-down during FlashROM programming is managed on-chip, and FPGA core functionality is not available during programming of the FlashROM. Table 5-2 summarizes various FlashROM access scenarios.

Table 5-2 •	FlashROM Read/Write Capabilities by Access Mode
-------------	---

Access Mode	FlashROM Read	FlashROM Write
JTAG	Yes	Yes
UJTAG	Yes	No
FPGA core	Yes	No

Figure 5-6 shows the accessing of the FlashROM using the UJTAG macro. This is similar to FPGA core access, where the 7-bit address defines which of the eight pages (three MSBs) is being read and which of the 16 bytes within the selected page (four LSBs) are being read. Refer to *UJTAG Applications in Actel's Low-Power Flash Devices* for details on using the UJTAG macro to read the FlashROM.

Figure 5-7 on page 5-7 and Figure 5-8 on page 5-7 show the FlashROM access from the JTAG port. The FlashROM content can be read on a random basis. The three-bit address defines which page is being read or updated.

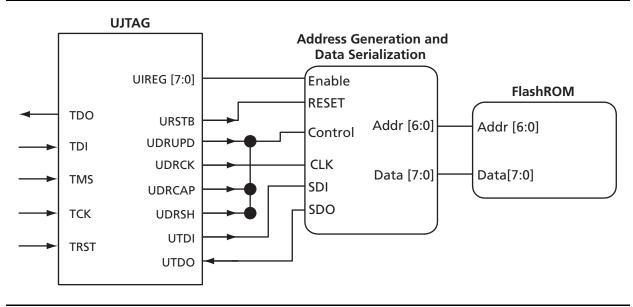


Figure 5-6 • Block Diagram of Using UJTAG to Read FlashROM Contents

5-6 v1.4

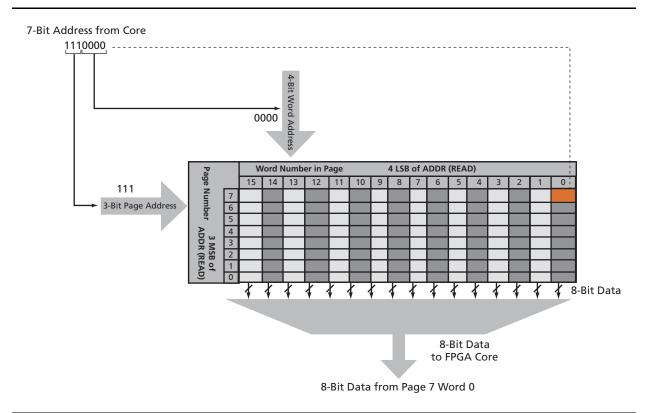


Figure 5-7 • Accessing FlashROM Using FPGA Core

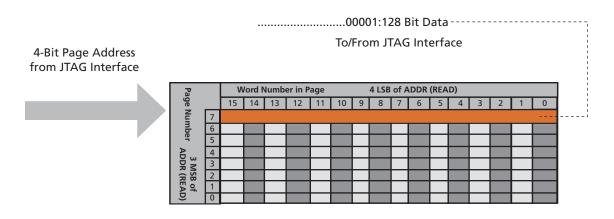


Figure 5-8 • Accessing FlashROM Using JTAG Port

v1.4 5-7

FlashROM Design Flow

The Actel Libero® Integrated Design Environment (IDE) software has extensive FlashROM support, including FlashROM generation, instantiation, simulation, and programming. Figure 5-9 shows the user flow diagram. In the design flow, there are three main steps:

- 1. FlashROM generation and instantiation in the design
- 2. Simulation of FlashROM design
- 3. Programming file generation for FlashROM design

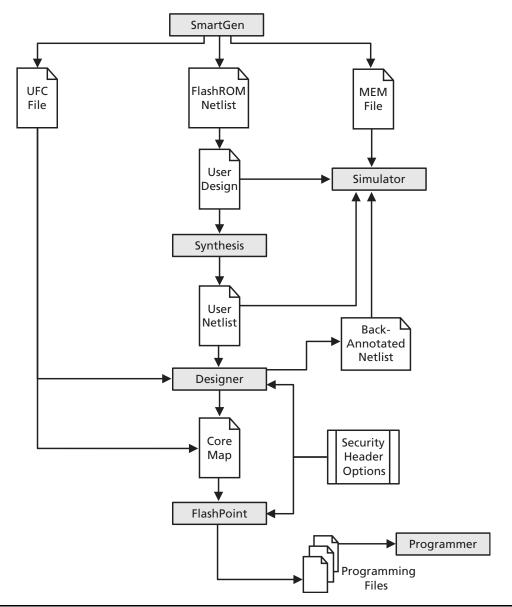


Figure 5-9 • FlashROM Design Flow

5-8 v1.4

FlashROM Generation and Instantiation in the Design

The SmartGen core generator, available in Libero IDE and Designer, is the only tool that can be used to generate the FlashROM content. SmartGen has several user-friendly features to help generate the FlashROM contents. Instead of selecting each byte and assigning values, you can create a region within a page, modify the region, and assign properties to that region. The FlashROM user interface, shown in Figure 5-10 on page 5-9, includes the configuration grid, existing regions list, and properties field. The properties field specifies the region-specific information and defines the data used for that region. You can assign values to the following properties:

- 1. Static Fixed Data—Enables you to fix the data so it cannot be changed during programming time. This option is useful when you have fixed data stored in this region, which is required for the operation of the design in the FPGA. Key storage is one example.
- 2. Static Modifiable Data—Select this option when the data in a particular region is expected to be static data (such as a version number, which remains the same for a long duration but could conceivably change in the future). This option enables you to avoid changing the value every time you enter new data.
- 3. Read from File—This provides the full flexibility of FlashROM usage to the customer. If you have a customized algorithm for generating the FlashROM data, you can specify this setting. You can then generate a text file with data for as many devices as you wish to program, and load that into the FlashPoint programming file generation software to get programming files that include all the data. SmartGen will optionally pass the location of the file where the data is stored if the file is specified in SmartGen. Each text file has only one type of data format (binary, decimal, hex, or ASCII text). The length of each data file must be shorter than or equal to the selected region length. If the data is shorter than the selected region length, the most significant bits will be padded with 0s. For multiple text files for multiple regions, the first lines are for the first device. In SmartGen, Load Sim. Value From File allows you to load the first device data in the MEM file for simulation.
- 4. Auto Increment/Decrement—This scenario is useful when you specify the contents of FlashROM for a large number of devices in a series. You can specify the step value for the serial number and a maximum value for inventory control. During programming file generation, the actual number of devices to be programmed is specified and a start value is fed to the software.

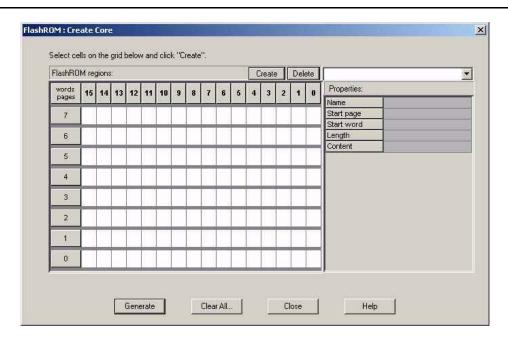


Figure 5-10 • SmartGen GUI of the FlashROM

v1.4 5-9

SmartGen allows you to generate the FlashROM netlist in VHDL, Verilog, or EDIF format. After the FlashROM netlist is generated, the core can be instantiated in the main design like other SmartGen cores. Note that the macro library name for FlashROM is UFROM. The following is a sample FlashROM VHDL netlist that can be instantiated in the main design:

```
library ieee;
use ieee.std_logic_1164.all;
library fusion;
entity FROM a is
  port( ADDR : in std_logic_vector(6 downto 0); DOUT : out std_logic_vector(7 downto 0));
end FROM a;
architecture DEF_ARCH of FROM_a is
  component UFROM
    generic (MEMORYFILE:string);
    port(D00, D01, D02, D03, D04, D05, D06, D07 : out std_logic;
      ADDRO, ADDR1, ADDR2, ADDR3, ADDR4, ADDR5, ADDR6 : in std_logic := 'U') ;
  end component;
  component GND
    port( Y : out std_logic);
  end component;
signal U_7_PIN2 : std_logic ;
begin
  GND_1_net : GND port map(Y => U_7_PIN2);
  UFROM0 : UFROM
  generic map(MEMORYFILE => "FROM_a.mem")
  port map(DO0 => DOUT(0), DO1 => DOUT(1), DO2 => DOUT(2), DO3 => DOUT(3), DO4 => DOUT(4),
    DO5 => DOUT(5), DO6 => DOUT(6), DO7 => DOUT(7), ADDR0 => ADDR(0), ADDR1 => ADDR(1),
    ADDR2 \Rightarrow ADDR(2), ADDR3 \Rightarrow ADDR(3), ADDR4 \Rightarrow ADDR(4), ADDR5 \Rightarrow ADDR(5),
    ADDR6 => ADDR(6));
end DEF_ARCH;
```

SmartGen generates the following files along with the netlist. These are located in the SmartGen folder for the Libero IDE project.

- 1. MEM (Memory Initialization) file
- 2. UFC (User Flash Configuration) file
- 3. Log file

The MEM file is used for simulation, as explained in the "Simulation of FlashROM Design" section. The UFC file, generated by SmartGen, has the FlashROM configuration for single or multiple devices and is used during STAPL generation. It contains the region properties and simulation values. Note that any changes in the MEM file will not be reflected in the UFC file. Do not modify the UFC to change FlashROM content. Instead, use the SmartGen GUI to modify the FlashROM content. See the "Programming File Generation for FlashROM Design" section on page 5-11 for a description of how the UFC file is used during the programming file generation. The log file has information regarding the file type and file location.

5-10 v1.4

Simulation of FlashROM Design

The MEM file has 128 rows of 8 bits, each representing the contents of the FlashROM used for simulation. For example, the first row represents page 0, byte 0; the next row is page 0, byte 1; and so the pattern continues. Note that the three MSBs of the address define the page number, and the four LSBs define the byte number. So, if you send address 0000100 to FlashROM, this corresponds to the page 0 and byte 4 location, which is the fifth row in the MEM file. SmartGen defaults to 0s for any unspecified location of the FlashROM. Besides using the MEM file generated by SmartGen, you can create a binary file with 128 rows of 8 bits each and use this as a MEM file. Actel recommends that you use different file names if you plan to generate multiple MEM files. During simulation, Libero IDE passes the MEM file used as the generic file in the netlist, along with the design files and testbench. If you want to use different MEM files during simulation, you need to modify the generic file reference in the netlist.

```
UFROM0: UFROM
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_a.mem")
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_b.mem")
```

The VITAL and Verilog simulation models accept the generics passed by the netlist, read the MEM file, and perform simulation with the data in the file.

Programming File Generation for FlashROM Design

FlashPoint is the programming software used to generate the programming files for flash devices. Depending on the applications, you can use the FlashPoint software to generate a STAPL file with different FlashROM contents. In each case, optional AES decryption is available. To generate a STAPL file that contains the same FPGA core content and different FlashROM contents, the FlashPoint software needs an Array Map file for the core and UFC file(s) for the FlashROM. This final STAPL file represents the combination of the logic of the FPGA core and FlashROM content.

FlashPoint generates the STAPL files you can use to program the desired FlashROM page and/or FPGA core of the FPGA device contents. FlashPoint supports the encryption of the FlashROM content and/or FPGA Array configuration data. In the case of using the FlashROM for device serialization, a sequence of unique FlashROM contents will be generated. When generating a programming file with multiple unique FlashROM contents, you can specify in FlashPoint whether to include all FlashROM content in a single STAPL file or generate a different STAPL file for each FlashROM (Figure 5-11). The programming software (FlashPro) handles the single STAPL file that contains the FlashROM content from multiple devices. It enables you to program the FlashROM content into a series of devices sequentially (Figure 5-11). See the *FlashPro User's Guide* for information on serial programming.

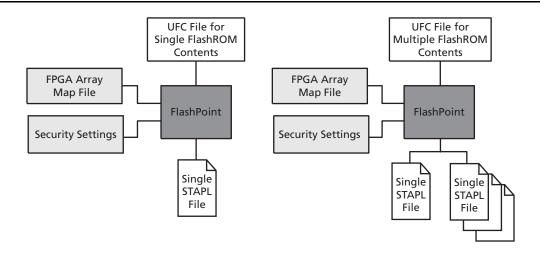


Figure 5-11 • Single or Multiple Programming File Generation

v1.4 5-11

Figure 5-12 shows the programming file generator, which enables different STAPL file generation methods. When you select **Program FlashROM** and choose the UFC file, the FlashROM Settings window appears, as shown in Figure 5-13. In this window, you can select the FlashROM page you want to program and the data value for the configured regions. This enables you to use a different page for different programming files.

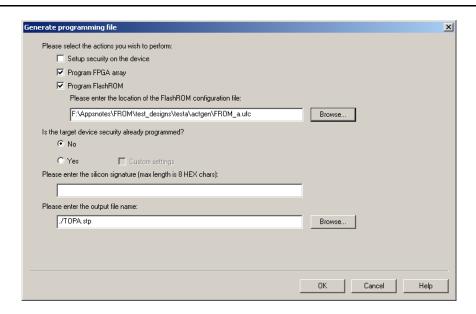


Figure 5-12 • Programming File Generator

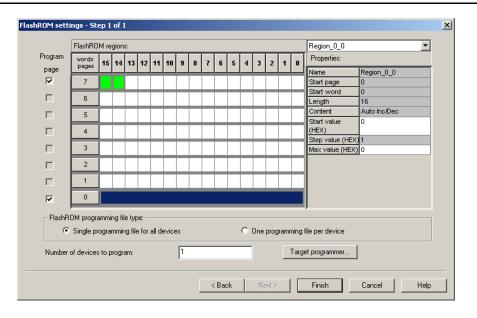


Figure 5-13 • Setting FlashROM during Programming File Generation

The programming hardware and software can load the FlashROM with the appropriate STAPL file. Programming software handles the single STAPL file that contains multiple FlashROM contents for multiple devices, and programs the FlashROM in sequential order (e.g., for device serialization).

5-12 v1.4

This feature is supported in the programming software. After programming with the STAPL file, you can run **DEVICE_INFO** to check the FlashROM content.

DEVICE_INFO displays the FlashROM content, serial number, Design Name, and checksum, as shown below:

```
EXPORT IDCODE[32] = 123261CF
EXPORT SILSIG[32] = 00000000
User information :
CHECKSUM: 61A0
Design Name:
             TOP
Programming Method: STAPL
Algorithm Version: 1
Programmer: UNKNOWN
FlashROM Information :
_____
Security Setting :
Encrypted FlashROM Programming Enabled.
Encrypted FPGA Array Programming Enabled.
_____
```

The Libero IDE file manager recognizes the UFC and MEM files and displays them in the appropriate view. Libero IDE also recognizes the multiple programming files if you choose the option to generate multiple files for multiple FlashROM contents in Designer. These features enable a user-friendly flow for the FlashROM generation and programming in Libero IDE.

Custom Serialization Using FlashROM

You can use FlashROM for device serialization or inventory control by using the Auto Inc region or Read From File region. FlashPoint will automatically generate the serial number sequence for the Auto Inc region with the **Start Value**, **Max Value**, and **Step Value** provided. If you have a unique serial number generation scheme that you prefer, the Read From File region allows you to import the file with your serial number scheme programmed into the region. See the *FlashPro User's Guide* for custom serialization file format information.

The following steps describe how to perform device serialization or inventory control using FlashROM:

- 1. Generate FlashROM using SmartGen. From the **Properties** section in the **FlashROM Settings** dialog box, select the **Auto Inc** or **Read From File** region. For the **Auto Inc** region, specify the desired step value. You will not be able to modify this value in the FlashPoint software.
- 2. Go through the regular design flow and finish place-and-route.
- 3. Select **Programming File** in Designer and open **Generate Programming File** (Figure 5-12 on page 5-12).
- 4. Click **Program FlashROM**, browse to the UFC file, and click **Next**. The FlashROM Settings window appears, as shown in Figure 5-13 on page 5-12.
- 5. Select the FlashROM page you want to program and the data value for the configured regions. The STAPL file generated will contain only the data that targets the selected FlashROM page.
- 6. Modify properties for the serialization.
 - For the Auto Inc region, specify the Start and Max values.
 - For the Read From File region, select the file name of the custom serialization file.
- 7. Select the FlashROM programming file type you want to generate from the two options below:
 - Single programming file for all devices: generates one programming file with all FlashROM values.
 - One programming file per device: generates a separate programming file for each FlashROM value.

- 8. Enter the number of devices you want to program and generate the required programming file.
- 9. Open the programming software and load the programming file. The programming software, FlashPro3 and Silicon Sculptor II, supports the device serialization feature. If, for some reason, the device fails to program a part during serialization, the software allows you to reuse or skip the serial data. Refer to the *FlashPro User's Guide* for details.

Conclusion

The Fusion, IGLOO, and ProASIC3 families are the only FPGAs that offer on-chip FlashROM support. This document presents information on the FlashROM architecture, possible applications, programming, access through the JTAG and UJTAG interface, and integration into your design. In addition, the Libero IDE tool set enables easy creation and modification of the FlashROM content.

The nonvolatile FlashROM block in the FPGA can be customized, enabling multiple applications.

Additionally, the security offered by the low-power flash devices keeps both the contents of FlashROM and the FPGA design safe from system over-builders, system cloners, and IP thieves.

Related Documents

Handbook Documents

Security in Low-Power Flash Devices
www.actel.com/documents/LPD_Security_HBs.pdf
UJTAG Applications in Actel's Low-Power Flash Devices
http://www.actel.com/documents/LPD_UJTAG_HBs.pdf

User's Guides

FlashPro User's Guide http://www.actel.com/documents/FlashPro_UG.pdf

5-14 v1.4

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet, combined with content previously published as an application note describing features and functions of the device. To improve usability for customers, the device architecture information has now been combined with usage information, to reduce duplication and possible inconsistencies in published information. No technical changes were made to the datasheet content unless explicitly listed. Changes to the application note content were made only to be consistent with existing datasheet information.

Part Number 51700094-007-4 Revised December 2008

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.4)	Page					
v1.3 (October 2008)	IGLOO nano and ProASIC3 nano devices were added to Table 5-1 · Flash-Based FPGAs.						
v1.2 (June 2008)	The "FlashROM Support in Flash-Based Devices" section was revised to include new families and make the information more concise.						
	Figure 5-2 · Fusion Device Architecture Overview (AFS600) was replaced. Figure 5-5 · Programming FlashROM Using AES was revised to change "Fusion" to "Flash Device."	5-3, 5-5					
	The FlashPoint User's Guide was removed from the "User's Guides" section, as its content is now part of the FlashPro User's Guide.	5-14					
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 5-1 · Flash-Based FPGAs: • ProASIC3L was updated to include 1.5 V. • The number of PLLs for ProASIC3E was changed from five to six.	5-2					
v1.0 (January 2008)	The chapter was updated to include the IGLOO PLUS family and information regarding 15 k gate devices. The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new.	N/A					

6 – SRAM and FIFO Memories in Actel's Low-Power Flash Devices

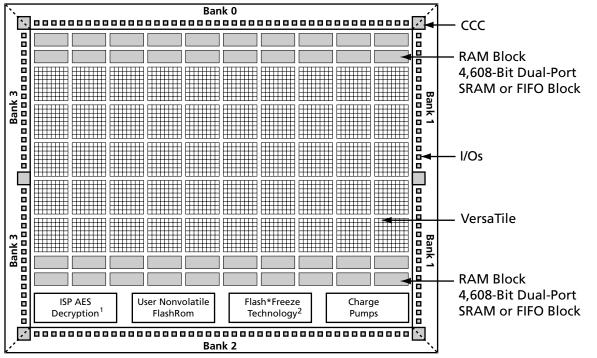
Introduction

As design complexity grows, greater demands are placed upon an FPGA's embedded memory. Actel Fusion, IGLOO, and ProASIC devices provide the flexibility of true dual-port and two-port SRAM blocks. The embedded memory, along with built-in, dedicated FIFO control logic, can be used to create cascading RAM blocks and FIFOs without using additional logic gates.

IGLOO, IGLOO PLUS, and ProASIC3L FPGAs contain an additional feature that allows the device to be put in a low-power mode called Flash*Freeze. In this mode, the core draws minimal power (on the order of 2 to 127 μ W) and still retains values on the embedded SRAM/FIFO and registers. Flash*Freeze technology allows the user to switch to Active mode on demand, thus simplifying power management and the use of SRAM/FIFOs.

Device Architecture

The low-power flash devices feature up to 504 kbits of RAM in 4,608-bit blocks (Figure 6-1 on page 6-2 and Figure 6-2 on page 6-3). The total embedded SRAM for each device can be found in the datasheets. These memory blocks are arranged along the top and bottom of the device to allow better access from the core and I/O (in some devices, they are only available on the north side of the device). Every RAM block has a flexible, hardwired, embedded FIFO controller, enabling the user to implement efficient FIFOs without sacrificing user gates.


In the IGLOO and ProASIC3 families of devices, the following memories are supported:

- 30 k gate devices and smaller do not support SRAM and FIFO.
- 60 k and 125 k gate devices support memories on the north side of the device only.
- 250 k devices and larger support memories on the north and south sides of the device.

In Fusion devices, the following memories are supported:

- AFS090 and AFS250 support memories on the north side of the device only.
- AFS600 and AFS1500 support memories on the north and south sides of the device.

Notes:

- 1. AES decryption not supported in 30 k gate devices and smaller.
- 2. Flash*Freeze is supported in all IGLOO devices and the ProASIC3L devices.

Figure 6-1 • IGLOO and ProASIC3 Device Architecture Overview

6-2 v1.5

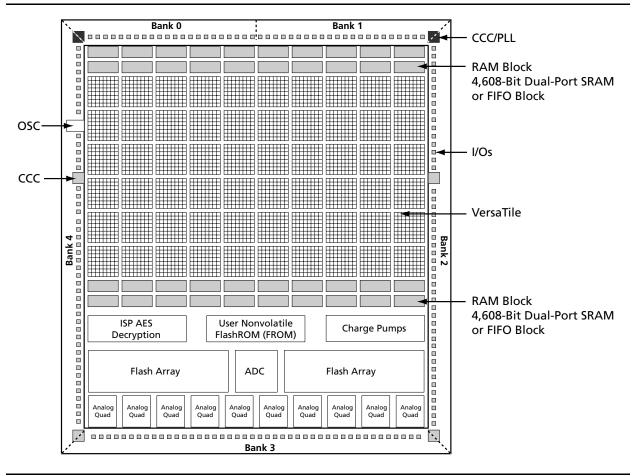


Figure 6-2 • Fusion Device Architecture Overview (AFS600)

v1.5 6-3

SRAM/FIFO Support in Flash-Based Devices

The flash FPGAs listed in Table 6-1 support SRAM and FIFO blocks and the functions described in this document.

Table 6-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO nano	The industry's lowest-power, smallest-size solution
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex™-M1 soft processors, and flash memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 6-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 6-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

6-4 v1.5

SRAM and FIFO Architecture

To meet the needs of high-performance designs, the memory blocks operate strictly in synchronous mode for both read and write operations. The read and write clocks are completely independent, and each can operate at any desired frequency up to 250 MHz.

- 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—2 read / 2 write or 1 read / 1 write)
- 512×9, 256×18 (2-port RAM—1 read / 1 write)
- Sync write, sync pipelined / nonpipelined read

Automotive ProASIC3 devices support single-port SRAM capabilities or dual-port SRAM only under specific conditions. Dual-port mode is supported if the clocks to the two SRAM ports are the same and 180° out of phase (i.e., the port A clock is the inverse of the port B clock). The Actel Libero® Integrated Design Environment (IDE) software macro libraries support a dual-port macro only. For use of this macro as a single-port SRAM, the inputs and clock of one port should be tied off (grounded) to prevent errors during design compile. For use in dual-port mode, the same clock with an inversion between the two clock pins of the macro should be used in the design to prevent errors during compile.

The memory block includes dedicated FIFO control logic to generate internal addresses and external flag logic (FULL, EMPTY, AFULL, AEMPTY).

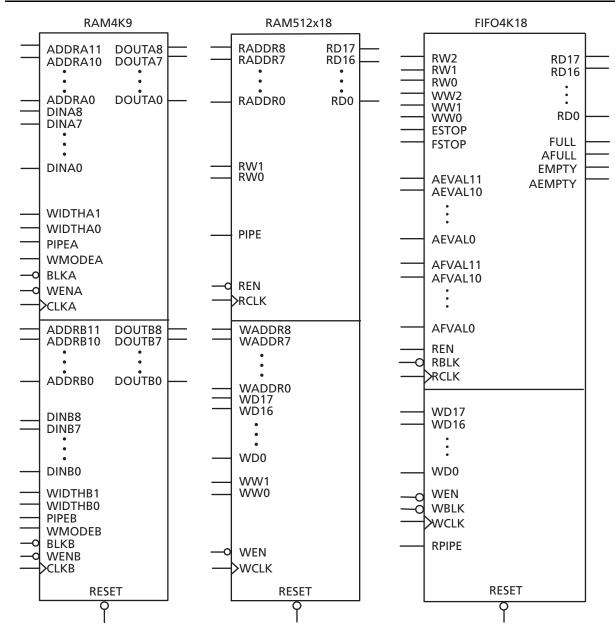
Simultaneous dual-port read/write and write/write operations at the same address are allowed when certain timing requirements are met.

During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by internal MUXes.

The low-power flash device architecture enables the read and write sizes of RAMs to be organized independently, allowing for bus conversion. For example, the write size can be set to 256×18 and the read size to 512×9 .

Both the write width and read width for the RAM blocks can be specified independently with the WW (write width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1. When widths of one, two, or four are selected, the ninth bit is unused. For example, when writing nine-bit values and reading four-bit values, only the first four bits and the second four bits of each nine-bit value are addressable for read operations. The ninth bit is not accessible.

Conversely, when writing four-bit values and reading nine-bit values, the ninth bit of a read operation will be undefined. The RAM blocks employ little-endian byte order for read and write operations.


Memory Blocks and Macros

Memory blocks can be configured with many different aspect ratios, but are generically supported in the macro libraries as one of two memory elements: RAM4K9 or RAM512X18. The RAM4K9 is configured as a true dual-port memory block, and the RAM512X18 is configured as a two-port memory block. Dual-port memory allows the RAM to both read from and write to either port independently. Two-port memory allows the RAM to read from one port and write to the other using a common clock or independent read and write clocks. If needed, the RAM4K9 blocks can be configured as two-port memory blocks. The memory block can be configured as a FIFO by combining the basic memory block with dedicated FIFO controller logic. The FIFO macro is named FIFO4KX18 (Figure 6-3 on page 6-6).

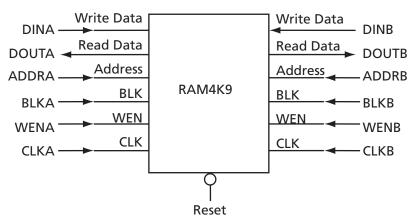
Clocks for the RAM blocks can be driven by the VersaNet (global resources) or by regular nets. When using local clock segments, the clock segment region that encompasses the RAM blocks can drive the RAMs. In the dual-port configuration (RAM4K9), each memory block port can be driven by either rising-edge or falling-edge clocks. Each port can be driven by clocks with different edges. Though only a rising-edge clock can drive the physical block itself, the Actel Designer software will automatically bubble-push the inversion to properly implement the falling-edge trigger for the RAM block.

v1.5 6-5

Note: Automotive ProASIC3 devices restrict RAM4K9 to a single port or to dual ports with the same clock 180° out of phase (inverted) between clock pins. In single-port mode, inputs to port B should be tied to ground to prevent errors during compile. For FIFO4K18, the same clock 180° out of phase (inverted) between clock pins should be used.

Figure 6-3 • Supported Basic RAM Macros

6-6 v1.5



SRAM Features

RAM4K9 Macro

RAM4K9 is the dual-port configuration of the RAM block (Figure 6-4). The RAM4K9 nomenclature refers to both the deepest possible configuration and the widest possible configuration the dual-port RAM block can assume, and does not denote a possible memory aspect ratio. The RAM block can be configured to the following aspect ratios: 4,096×1, 2,048×2, 1,024×4, and 512×9. RAM4K9 is fully synchronous and has the following features:

- Two ports that allow fully independent reads and writes at different frequencies
- Selectable pipelined or nonpipelined read
- Active-low block enables for each port
- Toggle control between read and write mode for each port
- Active-low asynchronous reset
- Pass-through write data or hold existing data on output. In pass-through mode, the data written to the write port will immediately appear on the read port.
- Designer software will automatically facilitate falling-edge clocks by bubble-pushing the inversion to previous stages.

Note: For timing diagrams of the RAM signals, refer to the appropriate family datasheet.

Figure 6-4 • RAM4K9 Simplified Configuration

Signal Descriptions for RAM4K9

Note: Automotive ProASIC3 devices support single-port SRAM capabilities, or dual-port SRAM only under specific conditions. Dual-port mode is supported if the clocks to the two SRAM ports are the same and 180° out of phase (i.e., the port A clock is the inverse of the port B clock). Since Actel Libero IDE macro libraries support a dual-port macro only, certain modifications must be made. These are detailed below.

The following signals are used to configure the RAM4K9 memory element:

WIDTHA and WIDTHB

These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 6-2 on page 6-8).

Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WIDTHB should be tied to ground.

Table 6-2 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA[1:0]	WIDTHB[1:0]	D×W
00	00	4k×1
01	01	2k×2
10	10	1k×4
11	11	512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.

BLKA and BLKB

These signals are active-low and will enable the respective ports when asserted. When a BLKx signal is deasserted, that port's outputs hold the previous value.

Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, BLKB should be tied to ground.

WENA and WENB

These signals switch the RAM between read and write modes for the respective ports. A LOW on these signals indicates a write operation, and a HIGH indicates a read.

Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WENB should be tied to ground.

CLKA and CLKB

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

Note: For Automotive ProASIC3 devices, dual-port mode is supported if the clocks to the two SRAM ports are the same and 180° out of phase (i.e., the port A clock is the inverse of the port B clock). For use of this macro as a single-port SRAM, the inputs and clock of one port should be tied off (grounded) to prevent errors during design compile.

PIPEA and **PIPEB**

These signals are used to specify pipelined read on the output. A LOW on PIPEA or PIPEB indicates a nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A HIGH indicates a pipelined read, and data appears on the corresponding output in the next clock cycle.

Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, PIPEB should be tied to ground. For use in dual-port mode, the same clock with an inversion between the two clock pins of the macro should be used in the design to prevent errors during compile.

WMODEA and **WMODEB**

These signals are used to configure the behavior of the output when the RAM is in write mode. A LOW on these signals makes the output retain data from the previous read. A HIGH indicates pass-through behavior, wherein the data being written will appear immediately on the output. This signal is overridden when the RAM is being read.

Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WMODEB should be tied to ground.

RESET

This active-low signal resets the control logic, forces the output hold state registers to zero, disables reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not reset the contents of the memory array.

While the RESET signal is active, read and write operations are disabled. As with any asynchronous reset signal, care must be taken not to assert it too close to the edges of active read and write clocks.

ADDRA and ADDRB

These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is specified, the unused high-order bits must be grounded (Table 6-3 on page 6-9).

6-8 v1.5

Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, ADDRB should be tied to ground.

Table 6-3 • Address Pins Unused/Used for Various Supported Bus Widths

	ADDRx				
D×W	Unused	Used			
4k×1	None	[11:0]			
2k×2	[11]	[10:0]			
1k×4	[11:10]	[9:0]			
512×9	[11:9]	[8:0]			

Note: The "x" in ADDRx implies A or B.

DINA and DINB

These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all configurations. When a data width less than nine is specified, unused high-order signals must be grounded (Table 6-4).

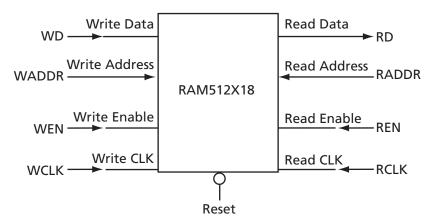
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, DINB should be tied to ground.

DOUTA and DOUTB

These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA and DINB, high-order bits may not be used (Table 6-4). The output data on unused pins is undefined.

Table 6-4 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

	DINx/DOUTx				
D×W	Unused	Used			
4k×1	[8:1]	[0]			
2k×2	[8:2]	[1:0]			
1k×4	[8:4]	[3:0]			
512×9	None	[8:0]			


Note: The "x" in DINx or DOUTx implies A or B.

RAM512X18 Macro

RAM512X18 is the two-port configuration of the same RAM block (Figure 6-5 on page 6-10). Like the RAM4K9 nomenclature, the RAM512X18 nomenclature refers to both the deepest possible configuration and the widest possible configuration the two-port RAM block can assume. In two-port mode, the RAM block can be configured to either the 512×9 aspect ratio or the 256×18 aspect ratio. RAM512X18 is also fully synchronous and has the following features:

- Dedicated read and write ports
- Active-low read and write enables
- · Selectable pipelined or nonpipelined read
- · Active-low asynchronous reset
- Designer software will automatically facilitate falling-edge clocks by bubble-pushing the inversion to previous stages.

Note: For timing diagrams of the RAM signals, refer to the appropriate family datasheet.

Figure 6-5 • 512X18 Two-Port RAM Block Diagram

Signal Descriptions for RAM512X18

RAM512X18 has slightly different behavior from RAM4K9, as it has dedicated read and write ports.

WW and RW

These signals enable the RAM to be configured in one of the two allowable aspect ratios (Table 6-5).

Table 6-5 • Aspect Ratio Settings for WW[1:0]

WW[1:0]	RW[1:0]	D×W
01	01	512×9
10	10	256×18
00, 11	00, 11	Reserved

WD and RD

These are the input and output data signals, and they are 18 bits wide. When a 512×9 aspect ratio is used for write, WD[17:9] are unused and must be grounded. If this aspect ratio is used for read, RD[17:9] are undefined.

WADDR and RADDR

These are read and write addresses, and they are nine bits wide. When the 256×18 aspect ratio is used for write or read, WADDR[8] and RADDR[8] are unused and must be grounded.

WCLK and RCLK

These signals are the write and read clocks, respectively. They can be clocked on the rising or falling edge of WCLK and RCLK.

WEN and REN

These signals are the write and read enables, respectively. They are both active-low by default. These signals can be configured as active-high.

RESET

This active-low signal resets the control logic, forces the output hold state registers to zero, disables reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not reset the contents of the memory array.

While the RESET signal is active, read and write operations are disabled. As with any asynchronous reset signal, care must be taken not to assert it too close to the edges of active read and write clocks.

6-10 v1.5

PIPE

This signal is used to specify pipelined read on the output. A LOW on PIPE indicates a nonpipelined read, and the data appears on the output in the same clock cycle. A HIGH indicates a pipelined read, and data appears on the output in the next clock cycle.

SRAM Usage

The following descriptions refer to the usage of both RAM4K9 and RAM512X18.

Clocking

The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge and by separate clocks by port. Note that for Automotive ProASIC3, the same clock, with an inversion between the two clock pins of the macro, should be used in design to prevent errors during compile.

Low-power flash devices support inversion (bubble-pushing) throughout the FPGA architecture, including the clock input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic or in the HDL code will be automatically accounted for during design compile without incurring additional delay in the clock path.

The two-port SRAM can be clocked on the rising or falling edge of WCLK and RCLK.

If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion management (bubble-pushing) is automatically used within the development tools, without performance penalty.

Modes of Operation

There are two read modes and one write mode:

- Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is
 driven onto the RD bus in the same clock cycle following RA and REN valid. The read address
 is registered on the read port clock active edge, and data appears at RD after the RAM
 access time. Setting PIPE to OFF enables this mode.
- Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock delay from address to data but enables operation at a much higher frequency. The read address is registered on the read port active clock edge, and the read data is registered and appears at RD after the second read clock edge. Setting PIPE to ON enables this mode.
- Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into the SRAM at the write address when WEN is HIGH. The setup times of the write address, write enables, and write data are minimal with respect to the write clock.

RAM Initialization

Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG mechanism. The shift register for a target block can be selected and loaded with the proper bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation.

FIFO Features

The FIFO4KX18 macro is created by merging the RAM block with dedicated FIFO logic (Figure 6-6 on page 6-12). Since the FIFO logic can only be used in conjunction with the memory block, there is no separate FIFO controller macro. As with the RAM blocks, the FIFO4KX18 nomenclature does not refer to a possible aspect ratio, but rather to the deepest possible data depth and the widest possible data width. FIFO4KX18 can be configured into the following aspect ratios: 4,096×1, 2,048×2, 1,024×4, 512×9, and 256×18. In addition to being fully synchronous, the FIFO4KX18 also has the following features:

- Four FIFO flags: Empty, Full, Almost-Empty, and Almost-Full
- Empty flag is synchronized to the read clock
- Full flag is synchronized to the write clock
- Both Almost-Empty and Almost-Full flags have programmable thresholds

- Active-low asynchronous reset
- Active-low block enable
- · Active-low write enable
- · Active-high read enable
- Ability to configure the FIFO to either stop counting after the empty or full states are reached or to allow the FIFO counters to continue
- Designer software will automatically facilitate falling-edge clocks by bubble-pushing the inversion to previous stages.

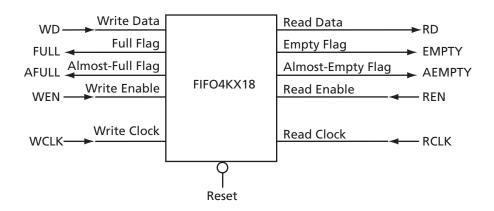


Figure 6-6 • FIFO4KX18 Block Diagram

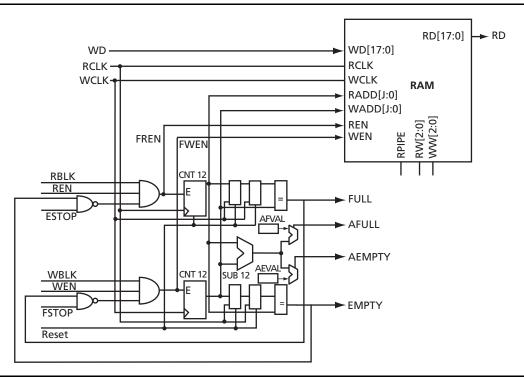


Figure 6-7 • RAM Block with Embedded FIFO Controller

The FIFOs maintain a separate read and write address. Whenever the difference between the write address and the read address is greater than or equal to the almost-full value (AFVAL), the Almost-Full flag is asserted. Similarly, the Almost-Empty flag is asserted whenever the difference between the write address and read address is less than or equal to the almost-empty value (AEVAL).

6-12 v1.5

Due to synchronization between the read and write clocks, the Empty flag will deassert after the second read clock edge from the point that the write enable asserts. However, since the Empty flag is synchronized to the read clock, it will assert after the read clock reads the last data in the FIFO. Also, since the Full flag is dependent on the actual hardware configuration, it will assert when the actual physical implementation of the FIFO is full.

For example, when a user configures a 128×18 FIFO, the actual physical implementation will be a 256×18 FIFO element. Since the actual implementation is 256×18, the Full flag will not trigger until the 256×18 FIFO is full, even though a 128×18 FIFO was requested. For this example, the Almost-Full flag can be used instead of the Full flag to signal when the 128th data word is reached.

To accommodate different aspect ratios, the almost-full and almost-empty values are expressed in terms of data bits instead of data words. SmartGen translates the user's input, expressed in data words, into data bits internally. SmartGen allows the user to select the thresholds for the Almost-Empty and Almost-Full flags in terms of either the read data words or the write data words, and makes the appropriate conversions for each flag.

After the empty or full states are reached, the FIFO can be configured so the FIFO counters either stop or continue counting. For timing numbers, refer to the appropriate family datasheet.

Signal Descriptions for FIFO4K18

The following signals are used to configure the FIFO4K18 memory element:

WW and RW

These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 6-6).

Table 6-6 • Aspect Ratio Settings for WW[2:0]

WW[2:0]	RW[2:0]	D×W
000	000	4k×1
001	001	2k×2
010	010	1k×4
011	011	512×9
100	100	256×18
101, 110, 111	101, 110, 111	Reserved

WBLK and RBLK

These signals are active-low and will enable the respective ports when LOW. When the RBLK signal is HIGH, that port's outputs hold the previous value.

WEN and REN

Read and write enables. WEN is active-low and REN is active-high by default. These signals can be configured as active-high or -low.

WCLK and RCLK

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

Note: For the Automotive ProASIC3 FIFO4K18, for the same clock, 180° out of phase (inverted) between clock pins should be used.

RPIPE

This signal is used to specify pipelined read on the output. A LOW on RPIPE indicates a nonpipelined read, and the data appears on the output in the same clock cycle. A HIGH indicates a pipelined read, and data appears on the output in the next clock cycle.

RESET

This active-low signal resets the control logic and forces the output hold state registers to zero when asserted. It does not reset the contents of the memory array (Table 6-7 on page 6-14).

While the RESET signal is active, read and write operations are disabled. As with any asynchronous RESET signal, care must be taken not to assert it too close to the edges of active read and write clocks.

WD

This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data width less than 18 is specified, unused higher-order signals must be grounded (Table 6-7).

RD

This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is undefined (Table 6-7).

Table 6-7 • Input Data Signal Usage for Different Aspect Ratios

D×W	WD/RD Unused
4k×1	WD[17:1], RD[17:1]
2k×2	WD[17:2], RD[17:2]
1k×4	WD[17:4], RD[17:4]
512×9	WD[17:9], RD[17:9]
256×18	-

ESTOP, FSTOP

ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the EMPTY flag goes HIGH). A HIGH on this signal inhibits the counting.

FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the FULL flag goes HIGH). A HIGH on this signal inhibits the counting.

For more information on these signals, refer to the "ESTOP and FSTOP Usage" section on page 6-15.

FULL, EMPTY

When the FIFO is full and no more data can be written, the FULL flag asserts HIGH. The FULL flag is synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent overflows. Since the write address is compared to a resynchronized (and thus time-delayed) version of the read address, the FULL flag will remain asserted until two WCLK active edges after a read operation eliminates the full condition.

When the FIFO is empty and no more data can be read, the EMPTY flag asserts HIGH. The EMPTY flag is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to prevent underflows. Since the read address is compared to a resynchronized (and thus time-delayed) version of the write address, the EMPTY flag will remain asserted until two RCLK active edges after a write operation removes the empty condition.

For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on page 6-15.

AFULL, AEMPTY

These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL, respectively.

When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading, the AEMPTY output will go HIGH. Likewise, when the number of words stored in the FIFO reaches the amount specified by AFVAL while writing, the AFULL output will go HIGH.

AFVAL, AEVAL

The AEVAL and AFVAL pins are used to specify the almost-empty and almost-full threshold values. They are 12-bit signals. For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on page 6-15.

6-14 v1.5

FIFO Usage

ESTOP and FSTOP Usage

The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e., the EMPTY flag goes HIGH). Likewise, the FSTOP pin is used to stop the write counter from counting any further once the FIFO is full (i.e., the FULL flag goes HIGH).

The FIFO counters in the device start the count at zero, reach the maximum depth for the configuration (e.g., 511 for a 512×9 configuration), and then restart at zero. An example application for ESTOP, where the read counter keeps counting, would be writing to the FIFO once and reading the same content over and over without doing another write.

FIFO Flag Usage Considerations

The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values. The FIFO contains separate 12-bit write address (WADDR) and read address (RADDR) counters. WADDR is incremented every time a write operation is performed, and RADDR is incremented every time a read operation is performed. Whenever the difference between WADDR and RADDR is greater than or equal to AFVAL, the AFULL output is asserted. Likewise, whenever the difference between WADDR and RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To handle different read and write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits instead of total data words. When users specify AFVAL and AEVAL in terms of read or write words, the SmartGen tool translates them into bit addresses and configures these signals automatically. SmartGen configures the AFULL flag to assert when the write address exceeds the read address by at least a predefined value. In a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag will be asserted after a write when the difference between the write address and the read address reaches 1,500 (there have been at least 1,500 more writes than reads). It will stay asserted until the difference between the write and read addresses drops below 1,500.

The AEMPTY flag is asserted when the difference between the write address and the read address is less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY flag will be asserted when a read causes the difference between the write address and the read address to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be configured with different read and write widths; in this case, the AFVAL setting is based on the number of write data entries, and the AEVAL setting is based on the number of read data entries. For aspect ratios of 512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The number of words must be multiplied by 8 and 16 instead of 9 and 18. The SmartGen tool automatically uses the proper values. To avoid halfwords being written or read, which could happen if different read and write aspect ratios were specified, the FIFO will assert FULL or EMPTY as soon as at least one word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, the FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not completely empty, because in this case, a complete word cannot be read. The same is applicable in the full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The FULL flag will remain asserted because a complete word cannot be written at this point.

Variable Aspect Ratio and Cascading

Variable aspect ratio and cascading allow users to configure the memory in the width and depth required. The memory block can be configured as a FIFO by combining the basic memory block with dedicated FIFO controller logic. The FIFO macro is named FIFO4KX18. Low-power flash device RAM can be configured as 1, 2, 4, 9, or 18 bits wide. By cascading the memory blocks, any multiple of those widths can be created. The RAM blocks can be from 256 to 4,096 bits deep, depending on the aspect ratio, and the blocks can also be cascaded to create deeper areas. Refer to the aspect ratios available for each macro cell in the "SRAM Features" section on page 6-7. The largest continuous configurable memory area is equal to half the total memory available on the device, because the RAM is separated into two groups, one on each side of the device.

The Actel SmartGen core generator will automatically configure and cascade both RAM and FIFO blocks. Cascading is accomplished using dedicated memory logic and does not consume user gates for depths up to 4,096 bits deep and widths up to 18, depending on the configuration. Deeper memory will utilize some user gates to multiplex the outputs.

Generated RAM and FIFO macros can be created as either structural VHDL or Verilog for easy instantiation into the design. Users of Actel Libero IDE can create a symbol for the macro and incorporate it into a design schematic.

Table 6-10 on page 6-17 shows the number of memory blocks required for each of the supported depth and width memory configurations, and for each depth and width combination. For example, a 256-bit deep by 32-bit wide two-port RAM would consist of two 256×18 RAM blocks. The first 18 bits would be stored in the first RAM block, and the remaining 14 bits would be implemented in the other 256×18 RAM block. This second RAM block would have four bits of unused storage. Similarly, a dual-port memory block that is 8,192 bits deep and 8 bits wide would be implemented using 16 memory blocks. The dual-port memory would be configured in a 4,096×1 aspect ratio. These blocks would then be cascaded two deep to achieve 8,192 bits of depth, and eight wide to achieve the eight bits of width.

Table 6-8 and Table 6-9 show the maximum potential width and depth configuration for each device. Note that 15 k and 30 k gate devices do not support RAM or FIFO.

<i>Table 6-8 •</i>	Memory Availabili	ty per lo	SLOO and ProASIC3 Device
	Dovice		Maximum Potantial Width

De	vice		Maximum Potential Width ¹		Maximum Potential	Depth ²
IGLOO IGLOO nano IGLOO PLUS	ProASIC3 ProASIC3 nano ProASIC3L	RAM Blocks	Depth	Width	Depth	Width
AGL060 AGLN060 AGLP060	A3P060 A3PN060	4	256	72 (4×18)	16,384 (4,096×4)	1
AGL125 AGLN125 AGLP125	A3P125 A3PN125	8	256	144 (8×18)	32,768 (4,094×8)	1
AGL250 AGLN250	A3P250/L A3PN250	8	256	144 (8×18)	32,768 (4,096×8)	1
AGL400	A3P400	12	256	216 (12×18)	49,152 (4,096×12)	1
AGL600	A3P600/L	24	256	432 (24×18)	98,304 (4,096×24)	1
AGL1000	A3P1000/L	32	256	576 (32×18)	131,072 (4,096×32)	1
AGLE600	A3PE600	24	256	432 (24×18)	98,304 (4,096×24)	1
	A3PE1500	60	256	1,080 (60×18)	245,760 (4,096×60)	1
AGLE3000	A3PE3000/L	112	256	2,016 (112×18)	458,752 (4,096×112)	1

Notes:

- 1. Maximum potential width uses the two-port configuration.
- 2. Maximum potential depth uses the dual-port configuration.

Table 6-9 • Memory Availability per Fusion Device

		Maximu	m Potential Width ¹	Maximum Potential D	epth ²
Device	RAM Blocks	Depth	Width	Depth	Width
AFS090	6	256	108 (6×18)	24,576 (4,094×6)	1
AFS250	8	256	144 (8×18)	32,768 (4,094×8)	1
AFS600	24	256	432 (24×18)	98,304 (4,096×24)	1
AFS1500	60	256	1,080 (60×18)	245,760 (4,096×60)	1

Notes:

- 1. Maximum potential width uses the two-port configuration.
- 2. Maximum potential depth uses the dual-port configuration.

6-16 v1.5

Table 6-10 • RAM and FIFO Memory Block Consumption

		Depth										
			2!	56	512	1,024	2,048	4,096	8,192	16,384	32,768	65,536
			Two-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port	Dual-Port
	1	Number Block	1	1	1	1	1	1	2	4	8	16 × 1
		Configuration	Any	Any	Any	1,024 × 4	2,048 × 2	4,096 × 1	2 × (4,096 × 1) Cascade Deep	4 × (4,096 × 1) Cascade Deep	8 × (4,096 × 1) Cascade Deep	16 × (4,096 × 1) Cascade Deep
	2	Number Block	1	1	1	1	1	2	4	8	16	32
		Configuration	Any	Any	Any	1,024×4	2,048 × 2	2 × (4,096 × 1) Cascaded Wide	4 × (4,096 × 1) Cascaded 2 Deep and 2 Wide	8 x (4,096 x 1) Cascaded 4 Deep and 2 Wide	16 x (4,096 x 1) Cascaded 8 Deep and 2 Wide	32 × (4,096 × 1) Cascaded 16 Deep and 2 Wide
	4	Number Block	1	1	1	1	2	4	8	16	32	64
		Configuration	Any	Any	Any	1,024 × 4	2 × (2,048 × 2) Cascaded Wide	4 × (4,096 × 1) Cascaded Wide	4 × (4,096 × 1) Cascaded 2 Deep and 4 Wide	16 × (4,096 × 1) Cascaded 4 Deep and 4 Wide	32 × (4,096 × 1) Cascaded 8 Deep and 4 Wide	64 × (4,096 × 1) Cascaded 16 Deep and 4 Wide
	8	Number Block	1	1	1	2	4	8	16	32	64	
		Configuration	Any	Any	Any	2 × (1,024 × 4) Cascaded Wide	4 × (2,048 × 2) Cascaded Wide	$8 \times (4,096 \times 1)$ Cascaded Wide	16 × (4,096 × 1) Cascaded 2 Deep and 8 Wide	32 × (4,096 × 1) Cascaded 4 Deep and 8 Wide	64 × (4,096 × 1) Cascaded 8 Deep and 8 Wide	
	9	Number Block	1	1	1	2	4	8	16	32		
		Configuration	Any	Any	Any	2 × (512 × 9) Cascaded Deep	4 × (512 × 9) Cascaded Deep	8 × (512 × 9) Cascaded Deep	16 × (512 × 9) Cascaded Deep	32 × (512 × 9) Cascaded Deep		
	16	Number Block	1	1	1	4	8	16	32	64		
Width		Configuration	256 × 18	256 × 18	256 × 18	4 × (1,024 × 4) Cascaded Wide	8 × (2,048 × 2) Cascaded Wide	16 × (4,096 × 1) Cascaded Wide	32 × (4,096 × 1) Cascaded 2 Deep and 16 Wide	32 × (4,096 × 1) Cascaded 4 Deep and 16 Wide		
	18	Number Block	1	2	2	4	8	18	32			
		Configuration	256 × 8	2 × (512 × 9) Cascaded Wide	2 × (512 × 9) Cascaded Wide	4 × (512 × 9) Cascaded 2 Deep and 2 Wide	8 × (512 × 9) Cascaded 4 Deep and 2 Wide	16 × (512 × 9) Cascaded 8 Deep and 2 Wide	16 × (512 × 9) Cascaded 16 Deep and 2 Wide			
	32	Number Block	2	4	4	8	16	32	64			
		Configuration	2 × (256 × 18) Cascaded Wide	4 × (512 × 9) Cascaded Wide	4 × (512 × 9) Cascaded Wide	8 × (1,024 × 4) Cascaded Wide	16 × (2,048 × 2) Cascaded Wide	32 × (4,096 × 1) Cascaded Wide	64 × (4,096 × 1) Cascaded 2 Deep and 32 Wide			
	36	Number Block	2	4	4	8	16	32				
		Configuration	2 × (256 × 18) Cascaded Wide	4 × (512 × 9) Cascaded Wide	4 × (512 × 9) Cascaded Wide	4 × (512 × 9) Cascaded 2 Deep and 4 Wide	16 × (512 × 9) Cascaded 4 Deep and 4 Wide	16 × (512 × 9) Cascaded 8 Deep and 4 Wide				
	64	Number Block	4	8	8	16	32	64				
		Configuration	4 × (256 × 18) Cascaded Wide	8 × (512 × 9) Cascaded Wide	8 × (512 × 9) Cascaded Wide	16 × (1,024 × 4) Cascaded Wide	32 × (2,048 × 2) Cascaded Wide	64 × (4,096 × 1) Cascaded Wide				
ſ	72	Number Block	4	8	8	16	32					
		Configuration	4 × (256 × 18) Cascaded Wide	8 × (512 × 9) Cascaded Wide	8 × (512 × 9) Cascaded Wide	16 × (512 × 9) Cascaded Wide	16 × (512 × 9) Cascaded 4 Deep and 8 Wide					

Note: Memory configurations represented by grayed cells are not supported.

Initializing the RAM/FIFO

The SRAM blocks can be initialized with data to use as a lookup table (LUT). Data initialization can be accomplished either by loading the data through the design logic or through the UJTAG interface. The UJTAG macro is used to allow access from the JTAG port to the internal logic in the device. By sending the appropriate initialization string to the JTAG Test Access Port (TAP) Controller, the designer can put the JTAG circuitry into a mode that allows the user to shift data into the array logic through the JTAG port using the UJTAG macro. For a more detailed explanation of the UJTAG macro, refer to UJTAG Applications in Actel's Low-Power Flash Devices.

A user interface is required to receive the user command, initialization data, and clock from the UJTAG macro. The interface must synchronize and load the data into the correct RAM block of the design. The main outputs of the user interface block are the following:

- Memory block chip select: Selects a memory block for initialization. The chip selects signals for each memory block that can be generated from different user-defined pockets or simple logic, such as a ring counter (see below).
- Memory block write address: Identifies the address of the memory cell that needs to be initialized.
- Memory block write data: The interface block receives the data serially from the UTDI port of the UJTAG macro and loads it in parallel into the write data ports of the memory blocks.
- Memory block write clock: Drives the WCLK of the memory block and synchronizes the write data, write address, and chip select signals.

Figure 6-8 shows the user interface between UJTAG and the memory blocks.

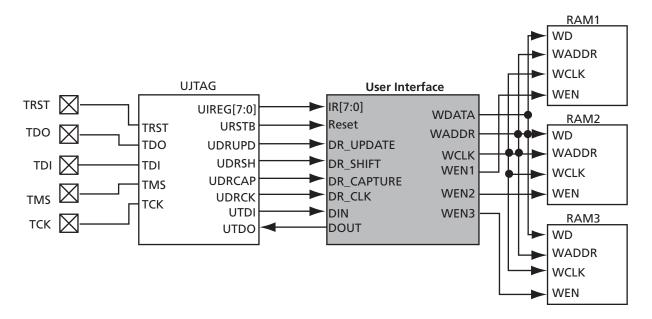


Figure 6-8 • Interfacing TAP Ports and SRAM Blocks

An important component of the interface between the UJTAG macro and the RAM blocks is a serial-in/parallel-out shift register. The width of the shift register should equal the data width of the RAM blocks. The RAM data arrives serially from the UTDI output of the UJTAG macro. The data must be shifted into a shift register clocked by the JTAG clock (provided at the UDRCK output of the UJTAG macro).

Then, after the shift register is fully loaded, the data must be transferred to the write data port of the RAM block. To synchronize the loading of the write data with the write address and write clock, the output of the shift register can be pipelined before driving the RAM block.

The write address can be generated in different ways. It can be imported through the TAP using a different instruction opcode and another shift register, or generated internally using a simple

6-18 v1.5

counter. Using a counter to generate the address bits and sweep through the address range of the RAM blocks is recommended, since it reduces the complexity of the user interface block and the board-level JTAG driver.

Moreover, using an internal counter for address generation speeds up the initialization procedure, since the user only needs to import the data through the JTAG port.

The designer may use different methods to select among the multiple RAM blocks. Using counters along with demultiplexers is one approach to set the write enable signals. Basically, the number of RAM blocks needing initialization determines the most efficient approach. For example, if all the blocks are initialized with the same data, one enable signal is enough to activate the write procedure for all of them at the same time. Another alternative is to use different opcodes to initialize each memory block. For a small number of RAM blocks, using counters is an optimal choice. For example, a ring counter can be used to select from multiple RAM blocks. The clock driver of this counter needs to be controlled by the address generation process.

Once the addressing of one block is finished, a clock pulse is sent to the (ring) counter to select the next memory block.

Figure 6-9 illustrates a simple block diagram of an interface block between UJTAG and RAM blocks.

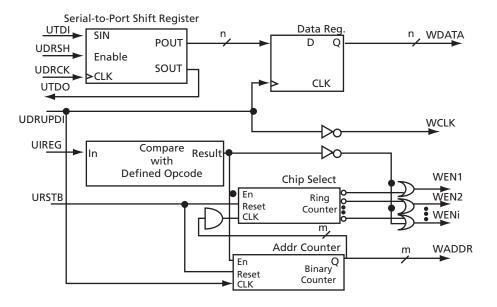


Figure 6-9 • Block Diagram of a Sample User Interface

In the circuit shown in Figure 6-9, the shift register is enabled by the UDRSH output of the UJTAG macro. The counters and chip select outputs are controlled by the value of the TAP Instruction Register. The comparison block compares the UIREG value with the "start initialization" opcode value (defined by the user). If the result is true, the counters start to generate addresses and activate the WEN inputs of appropriate RAM blocks.

The UDRUPD output of the UJTAG macro, also shown in Figure 6-9, is used for generating the write clock (WCLK) and synchronizing the data register and address counter with WCLK. UDRUPD is HIGH when the TAP Controller is in the Data Register Update state, which is an indication of completing the loading of one data word. Once the TAP Controller goes into the Data Register Update state, the UDRUPD output of the UJTAG macro goes HIGH. Therefore, the pipeline register and the address counter place the proper data and address on the outputs of the interface block. Meanwhile, WCLK is defined as the inverted UDRUPD. This will provide enough time (equal to the UDRUPD HIGH time) for the data and address to be placed at the proper ports of the RAM block before the rising edge of WCLK. The inverter is not required if the RAM blocks are clocked at the falling edge of the write clock. An example of this is described in the "Example of RAM Initialization" section on page 6-20.

Example of RAM Initialization

This section of the document presents a sample design in which a 4×4 RAM block is being initialized through the JTAG port. A test feature has been implemented in the design to read back the contents of the RAM after initialization to verify the procedure.

The interface block of this example performs two major functions: initialization of the RAM block and running a test procedure to read back the contents. The clock output of the interface is either the write clock (for initialization) or the read clock (for reading back the contents). The Verilog code for the interface block is included in the "Sample Verilog Code" section on page 6-21.

For simulation purposes, users can declare the input ports of the UJTAG macro for easier assignment in the testbench. However, the UJTAG input ports should not be declared on the top level during synthesis. If the input ports of the UJTAG are declared during synthesis, the synthesis tool will instantiate input buffers on these ports. The input buffers on the ports will cause Compile to fail in Designer.

Figure 6-10 shows the simulation results for the initialization step of the example design.

The CLK_OUT signal, which is the clock output of the interface block, is the inverted DR_UPDATE output of the UJTAG macro. It is clear that it gives sufficient time (while the TAP Controller is in the Data Register Update state) for the write address and data to become stable before loading them into the RAM block.

Figure 6-11 presents the test procedure of the example. The data read back from the memory block matches the written data, thus verifying the design functionality.

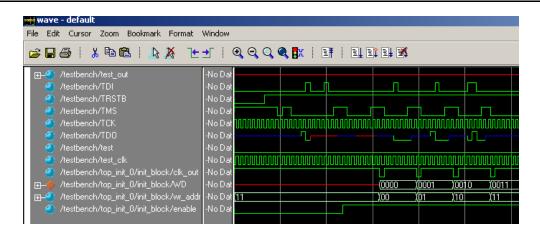


Figure 6-10 • Simulation of Initialization Step

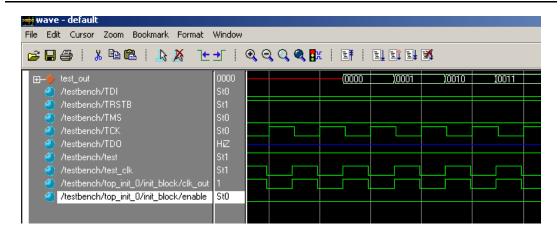


Figure 6-11 • Simulation of the Test Procedure of the Example

6-20 v1.5

The ROM emulation application is based on RAM block initialization. If the user's main design has access only to the read ports of the RAM block (RADDR, RD, RCLK, and REN), and the contents of the RAM are already initialized through the TAP, then the memory blocks will emulate ROM functionality for the core design. In this case, the write ports of the RAM blocks are accessed only by the user interface block, and the interface is activated only by the TAP Instruction Register contents.

Users should note that the contents of the RAM blocks are lost in the absence of applied power. However, the 1 kbit of flash memory, FlashROM, in low-power flash devices can be used to retain data after power is removed from the device. Refer to FlashROM in Actel's Low-Power Flash Devices for more information.

Sample Verilog Code

Interface Block

```
`define Initialize start 8'h22 //INITIALIZATION START COMMAND VALUE
`define Initialize_stop 8'h23 //INITIALIZATION START COMMAND VALUE
module interface(IR, rst_n, data_shift, clk_in, data_update, din_ser, dout_ser, test,
  test_out,test_clk,clk_out,wr_en,rd_en,write_word,read_word,rd_addr, wr_addr);
input [7:0] IR;
input [3:0] read_word; //RAM DATA READ BACK
input rst_n, data_shift, clk_in, data_update, din_ser; //INITIALIZATION SIGNALS
input test, test_clk; //TEST PROCEDURE CLOCK AND COMMAND INPUT
output [3:0] test_out; //READ DATA
output [3:0] write_word; //WRITE DATA
output [1:0] rd_addr; //READ ADDRESS
output [1:0] wr_addr; //WRITE ADDRESS
output dout_ser; //TDO DRIVER
output clk_out, wr_en, rd_en;
wire [3:0] write_word;
wire [1:0] rd_addr;
wire [1:0] wr_addr;
wire [3:0] Q_out;
wire enable, test_active;
reg clk_out;
//SELECT CLOCK FOR INITIALIZATION OR READBACK TEST
always @(enable or test_clk or data_update)
begin
  case ({test_active})
    1 : clk_out = test_clk ;
    0 : clk_out = !data_update;
    default : clk_out = 1'b1;
  endcase
end
assign test_active = test && (IR == 8'h23);
assign enable = (IR == 8'h22);
assign wr_en = !enable;
assign rd_en = !test_active;
assign test_out = read_word;
assign dout_ser = Q_out[3];
//4-bit SIN/POUT SHIFT REGISTER
shift_reg data_shift_reg (.Shiften(data_shift), .Shiftin(din_ser), .Clock(clk_in),
  .Q(Q_out));
//4-bit PIPELINE REGISTER
D_pipeline pipeline_reg (.Data(Q_out), .Clock(data_update), .Q(write_word));
```


Interface Block / UJTAG Wrapper

This example is a sample wrapper, which connects the interface block to the UJTAG and the memory blocks.

```
// WRAPPER
module top_init (TDI, TRSTB, TMS, TCK, TDO, test, test_clk, test_ out);
input TDI, TRSTB, TMS, TCK;
output TDO;
input test, test_clk;
output [3:0] test_out;
wire [7:0] IR;
wire reset, DR_shift, DR_cap, init_clk, DR_update, data_in, data_out;
wire clk_out, wen, ren;
wire [3:0] word_in, word_out;
wire [1:0] write_addr, read_addr;
UJTAG_UJTAG_U1 (.UIREG0(IR[0]), .UIREG1(IR[1]), .UIREG2(IR[2]), .UIREG3(IR[3]),
  .UIREG4(IR[4]), .UIREG5(IR[5]), .UIREG6(IR[6]), .UIREG7(IR[7]), .URSTB(reset),
  .UDRSH(DR_shift), .UDRCAP(DR_cap), .UDRCK(init_clk), .UDRUPD(DR_update),
  .UT-DI(data_in), .TDI(TDI), .TMS(TMS), .TCK(TCK), .TRSTB(TRSTB), .TDO(TDO),
  .UT-DO(data_out));
mem_block RAM_block (.DO(word_out), .RCLOCK(clk_out), .WCLOCK(clk_out), .DI(word_in),
  .WRB(wen), .RDB(ren), .WAD-DR(write_addr), .RADDR(read_addr));
interface init_block (.IR(IR), .rst_n(reset), .data_shift(DR_shift), .clk_in(init_clk),
  .data_update(DR_update), .din_ser(data_in), .dout_ser(data_out), .test(test),
  .test_out(test_out), .test_clk(test_clk), .clk_out(clk_out), .wr_en(wen),
  .rd_en(ren), .write_word(word_in), .read_word(word_out), .rd_addr(read_addr),
  .wr_addr(write_addr));
```

endmodule

Address Counter

```
module addr_counter (Clock, Q, Aset, Enable);
input Clock;
output [1:0] Q;
input Aset;
input Enable;

reg [1:0] Qaux;

always @(posedge Clock or negedge Aset)
begin
  if (!Aset) Qaux <= 2'b11;
  else if (Enable) Qaux <= Qaux + 1;
end

assign Q = Qaux;
endmodule</pre>
```

6-22 v1.5

Pipeline Register

endmodule

```
module D_pipeline (Data, Clock, Q);
input [3:0] Data;
input Clock;
output [3:0] Q;
reg [3:0] Q;
always @ (posedge Clock) Q <= Data;</pre>
```

4x4 RAM Block (created by SmartGen Core Generator)

```
module mem_block(DI,DO,WADDR,RADDR,WRB,RDB,WCLOCK,RCLOCK);
input [3:0] DI;
output [3:0] DO;
input [1:0] WADDR, RADDR;
input WRB, RDB, WCLOCK, RCLOCK;
wire WEBP, WEAP, VCC, GND;
VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
INV WEBUBBLEB(.A(WRB), .Y(WEBP));
RAM4K9 RAMBLOCKO(.ADDRA11(GND), .ADDRA10(GND), .ADDRA9(GND), .ADDRA8(GND),
      .ADDRA7(GND), .ADDRA6(GND), .ADDRA5(GND), .ADDRA4(GND), .ADDRA3(GND), .ADDRA2(GND),
      .ADDRA1(RADDR[1]), .ADDRA0(RADDR[0]), .ADDRB11(GND), .ADDRB10(GND), .ADDRB9(GND),
      .ADDRB8(GND), .ADDRB7(GND), .ADDRB6(GND), .ADDRB5(GND), .ADDRB4(GND), .ADDRB3(GND),
      .ADDRB2(GND), .ADDRB1(WADDR[1]), .ADDRB0(WADDR[0]), .DINA8(GND), .DINA7(GND),
      .DINA6(GND), .DINA5(GND), .DINA4(GND), .DINA3(GND), .DINA2(GND), .DINA1(GND),
      .DINAO(GND), .DINB8(GND), .DINB7(GND), .DINB6(GND), .DINB5(GND), .DINB4(GND),
      .DINB3(DI[3]), .DINB2(DI[2]), .DINB1(DI[1]), .DINB0(DI[0]), .WIDTHA0(GND),
      .WIDTHA1(VCC), .WIDTHB0(GND), .WIDTHB1(VCC), .PIPEA(GND), .PIPEB(GND),
      .WMODEA(GND), .WMODEB(GND), .BLKA(WEAP), .BLKB(WEBP), .WENA(VCC), .WENB(GND),
      .CLKA(RCLOCK), .CLKB(WCLOCK), .RESET(VCC), .DOUTA8(), .DOUTA7(), .DOUTA6(),
      . \verb"DOUTA5()", ... \verb"DOUTA4()", ... \verb"DOUTA3(DO[3])", ... \verb"DOUTA2(DO[2])", ... \verb"DOUTA1(DO[1])", ... "DOUTA1(DO[1])", ... 
      .DOUTA0(DO[0]), .DOUTB8(), .DOUTB7(), .DOUTB6(), .DOUTB5(), .DOUTB4(), .DOUTB3(),
       .DOUTB2(), .DOUTB1(), .DOUTB0());
INV WEBUBBLEA(.A(RDB), .Y(WEAP));
```


Software Support

The SmartGen core generator is the easiest way to select and configure the memory blocks (Figure 6-12). SmartGen automatically selects the proper memory block type and aspect ratio, and cascades the memory blocks based on the user's selection. SmartGen also configures any additional signals that may require tie-off.

SmartGen will attempt to use the minimum number of blocks required to implement the desired memory. When cascading, SmartGen will configure the memory for width before configuring for depth. For example, if the user requests a 256×8 FIFO, SmartGen will use a 512×9 FIFO configuration, not 256×18.

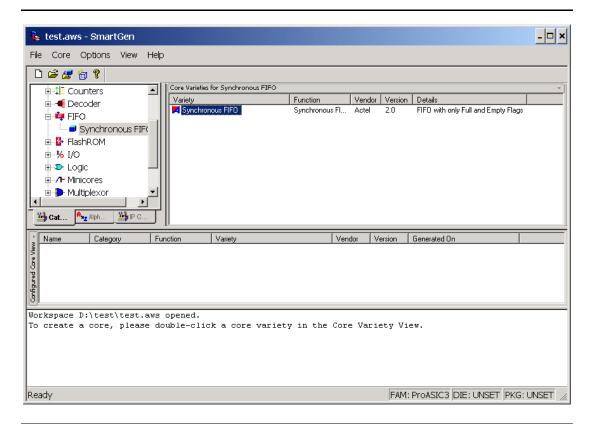


Figure 6-12 • SmartGen Core Generator Interface

6-24 v1.5

SmartGen enables the user to configure the desired RAM element to use either a single clock for read and write, or two independent clocks for read and write. The user can select the type of RAM as well as the width/depth and several other parameters (Figure 6-13).

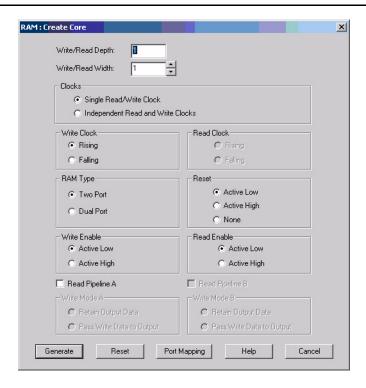


Figure 6-13 • SmartGen Memory Configuration Interface

SmartGen also has a Port Mapping option that allows the user to specify the names of the ports generated in the memory block (Figure 6-14).

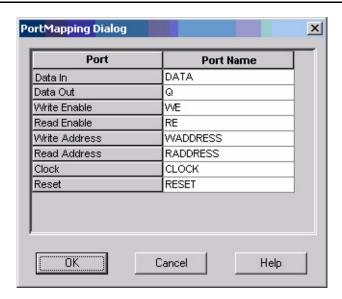


Figure 6-14 • Port Mapping Interface for SmartGen-Generated Memory

SmartGen also configures the FIFO according to user specifications. Users can select no flags, static flags, or dynamic flags. Static flag settings are configured using configuration flash and cannot be altered without reprogramming the device. Dynamic flag settings are determined by register values and can be altered without reprogramming the device by reloading the register values either from the design or through the UJTAG interface described in the "Initializing the RAM/FIFO" section on page 6-18.

SmartGen can also configure the FIFO to continue counting after the FIFO is full. In this configuration, the FIFO write counter will wrap after the counter is full and continue to write data. With the FIFO configured to continue to read after the FIFO is empty, the read counter will also wrap and re-read data that was previously read. This mode can be used to continually read back repeating data patterns stored in the FIFO (Figure 6-15).

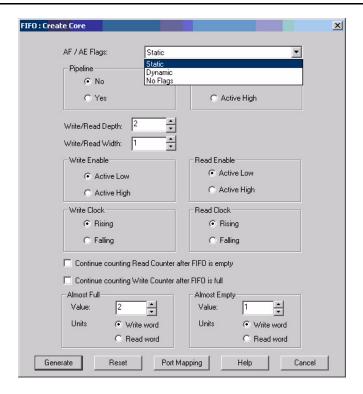


Figure 6-15 • SmartGen FIFO Configuration Interface

FIFOs configured using SmartGen can also make use of the port mapping feature to configure the names of the ports.

Limitations

Users should be aware of the following limitations when configuring SRAM blocks for low-power flash devices:

- SmartGen does not track the target device in a family, so it cannot determine if a configured memory block will fit in the target device.
- Dual-port RAMs with different read and write aspect ratios are not supported.
- Cascaded memory blocks can only use a maximum of 64 blocks of RAM.
- The Full flag of the FIFO is sensitive to the maximum depth of the actual physical FIFO block, not the depth requested in the SmartGen interface.

6-26 v1.5

Conclusion

Fusion, IGLOO, and ProASIC3 devices provide users with extremely flexible SRAM blocks for most design needs, with the ability to choose between an easy-to-use dual-port memory or a wide-word two-port memory. Used with the built-in FIFO controllers, these memory blocks also serve as highly efficient FIFOs that do not consume user gates when implemented. The Actel SmartGen core generator provides a fast and easy way to configure these memory elements for use in designs.

Related Documents

Handbook Documents

UJTAG Applications in Actel's Low-Power Flash Devices www.actel.com/documents/LPD_UJTAG_HBs.pdf FlashROM in Actel's Low-Power Flash Devices http://www.actel.com/documents/LPD_FlashROM_HBs.pdf

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet, combined with content previously published as an application note describing features and functions of the device. To improve usability for customers, the device architecture information has now been combined with usage information, to reduce duplication and possible inconsistencies in published information. No technical changes were made to the datasheet content unless explicitly listed. Changes to the application note content were made only to be consistent with existing datasheet information.

Part Number 51700094-008-5 Revised December 2008

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in the Current Version (v1.5)	Page
v1.4 (October 2008)	IGLOO nano and ProASIC3 nano devices were added to Table 6-1 · Flash-Based FPGAs.	6-4
	IGLOO nano and ProASIC3 nano devices were added to Table 6-8 · Interfacing TAP Ports and SRAM Blocks.	6-18
v1.3 (August 2008)	The "SRAM/FIFO Support in Flash-Based Devices" section was revised to include new families and make the information more concise.	6-4
	The "SRAM and FIFO Architecture" section was modified to remove "IGLOO and ProASIC3E" from the description of what the memory block includes, as this statement applies to all memory blocks.	6-5
	Wording in the "Clocking" section was revised to change "IGLOO and ProASIC3 devices support inversion" to "Low-power flash devices support inversion." The reference to IGLOO and ProASIC3 development tools in the last paragraph of the section was changed to refer to development tools in general.	6-11
	The "ESTOP and FSTOP Usage" section was updated to refer to FIFO counters in devices in general rather than only IGLOO and ProASIC3E devices.	6-15
v1.2 (June 2008)	The note was removed from Figure 6-7 · RAM Block with Embedded FIFO Controller and placed in the WCLK and RCLK description.	6-12
	The "WCLK and RCLK" description was revised.	6-13
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 6-1 · Flash-Based FPGAs:	6-4
	ProASIC3L was updated to include 1.5 V.	
	The number of PLLs for ProASIC3E was changed from five to six.	
v1.0 (January 2008)	The "Introduction" section was updated to include the IGLOO PLUS family.	6-1
	The "Device Architecture" section was updated to state that 15 k gate devices do not support SRAM and FIFO.	6-1
	The first note in Figure 6-1 · IGLOO and ProASIC3 Device Architecture Overview was updated to include mention of 15 k gate devices, and IGLOO PLUS was added to the second note.	6-3
	Table 6-1 · Flash-Based FPGAs and associated text were updated to include the IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new.	6-4
	The text introducing Table 6-8 · Memory Availability per IGLOO and ProASIC3 Device was updated to replace "A3P030 and AGL030" with "15 k and 30 k gate devices." Table 6-8 · Memory Availability per IGLOO and ProASIC3 Device was updated to remove AGL400 and AGLE1500 and include IGLOO PLUS and ProASIC3L devices.	6-16

6-28 v1.5

I/O Descriptions and Usage

7 – I/O Structures in IGLOO and ProASIC3 Devices

Introduction

Low-power flash devices feature a flexible I/O structure, supporting a range of mixed voltages (1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V) through bank-selectable voltages. IGLOO,® ProASIC3®L, and ProASIC3 families support Standard, Standard Plus, and Advanced I/Os.

Users designing I/O solutions are faced with a number of implementation decisions and configuration choices that can directly impact the efficiency and effectiveness of their final design. The flexible I/O structure, supporting a wide variety of voltages and I/O standards, enables users to meet the growing challenges of their many diverse applications. The Actel Libero[®] Integrated Design Environment (IDE) provides an easy way to implement I/Os that will result in robust I/O design.

This document first describes the two different I/O types in terms of the standards and features they support. It then explains the individual features and how to implement them in Actel's Libero IDE.

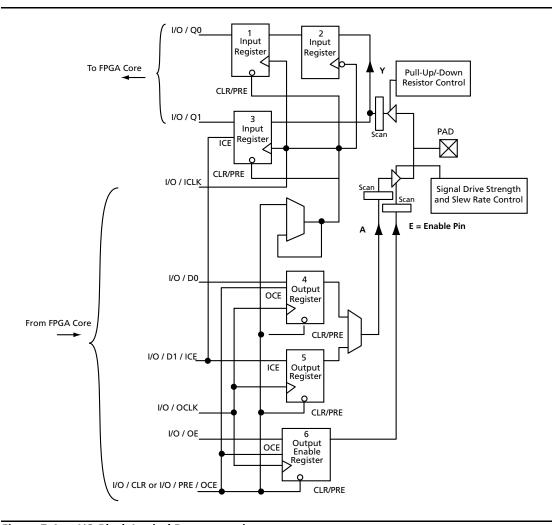


Figure 7-1 • I/O Block Logical Representation

v1.4 7-1

Low-Power Flash Device I/O Support

The low-power flash FPGAs listed in Table 7-1 support I/Os and the functions described in this document.

Table 7-1 • Flash-Based FPGAs

Series	Family*	Description		
IGLOO	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology		
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs		
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology		
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L		

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 7-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 7-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

7-2 v1.4

Advanced I/Os—IGLOO, ProASIC3L, and ProASIC3

Table 7-2 and Table 7-3 show the voltages and compatible I/O standards for the IGLOO, ProASIC3L, and ProASIC3 families.

I/Os provide programmable slew rates (except 30 k gate devices), drive strengths, and weak pull-up and pull-down circuits. 3.3 V PCI and 3.3 V PCI-X are 5 V-tolerant. See the "5 V Input Tolerance" section on page 7-20 for possible implementations of 5 V tolerance.

All I/Os are in a known state during power-up, and any power-up sequence is allowed without current impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)" section in the datasheet for more information. During power-up, before reaching activation levels, the I/O input and output buffers are disabled while the weak pull-up is enabled. Activation levels are described in the datasheet.

Table 7-2 ● Supported I/O Standards

IGLOO	AGL030	AGL060	AGL125	AGL250		AGL600	AGL1000
ProASIC3	A3P030	A3P060	A3P125	A3P250/ A3P250L	A3P400	A3P600/ A3P600L	A3P1000/ A3P1000L
Single-Ended	Single-Ended						
LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V	1	1	1	1	✓	1	✓
3.3 V PCI/PCI-X	-	√	✓	✓	✓	✓	✓
Differential							
LVPECL, LVDS, B-LVDS, M-LVDS	-	-	-	✓	✓	1	✓

I/O Banks and I/O Standards Compatibility

I/Os are grouped into I/O voltage banks.

Each I/O voltage bank has dedicated I/O supply and ground voltages (VMV/GNDQ for input buffers and V_{CCI} /GND for output buffers). This isolation is necessary to minimize simultaneous switching noise from the input and output (SSI and SSO). The switching noise (ground bounce and power bounce) is generated by the output buffers and transferred into input buffer circuits, and vice versa. Because of these dedicated supplies, only I/Os with compatible standards can be assigned to the same I/O voltage bank. Table 7-3 shows the required voltage compatibility values for each of these voltages.

There are four I/O banks on the 250 k gate through 1 M gate devices.

There are two I/O banks on the 30 k, 60 k, and 125 k gate devices.

I/O standards are compatible if their V_{CCI} and VMV values are identical. VMV and GNDQ are "quiet" input power supply pins and are not used on 30 k gate devices (Table 7-3).

Table 7-3 • V_{CCI} Voltages and Compatible IGLOO and ProASIC3 Standards

V _{CCI} and VMV (typical)	Compatible Standards		
3.3 V	LVTTL/LVCMOS 3.3, PCI 3.3, PCI-X 3.3 LVPECL		
2.5 V	LVCMOS 2.5, LVCMOS 2.5/5.0, LVDS, B-LVDS, M-LVDS		
1.8 V	LVCMOS 1.8		
1.5 V	LVCMOS 1.5		

v1.4 7-3

I/O Banks

Advanced I/Os are divided into multiple technology banks. Each device has two to four banks, and the number of banks is device-dependent as described above. The bank types have different characteristics, such as drive strength, the I/O standards supported, and timing and power differences.

There are three types of banks: Advanced I/O banks, Standard Plus I/O banks, and Standard I/O banks.

Advanced I/O banks offer single-ended and differential capabilities. These banks are available on the east and west sides of 250 k, 400 k, 600 k and 1 M gate devices.

Standard Plus I/O banks offer LVTTL/LVCMOS and PCI single-ended I/O standards. These banks are available on the north and south sides of 250 k, 400 k, 600 k, and 1 M gate devices as well as all sides of 125 k and 60 k devices.

Standard I/O banks offer LVTTL/LVCMOS single-ended I/O standards. These banks are available on all sides of 30 k gate devices.

Table 7-4 shows the I/O bank types, devices and bank locations supported, drive strength, slew rate control, and supported standards.

All inputs and disabled outputs are voltage-tolerant up to 3.3 V.

For more information about I/O and global assignments to I/O banks in a device, refer to the specific pin table for the device in the packaging section of the datasheet and the "User I/O Naming Convention" section on page 7-32.

Table 7-4 • IGLOO and ProASIC3 Bank Type Definitions and Differences

			I/O Standards Supported		ported
I/O Bank Type	Device and Bank Location	Drive Strength	LVTTL/ LVCMOS	PCI/PCI-X	LVPECL, LVDS, B-LVDS, M-LVDS
Standard	30 k gate devices (all banks)	Refer to Table 7-14 on page 7-29	✓	Not Supported	Not Supported
Standard Plus	60 k and 125 k gate devices (all banks)	Refer to Table 7-15 on page 7-29	✓	✓	Not Supported
	North and south banks of 250 k and 1 M gate devices	Refer to Table 7-15 on page 7-29	✓	✓	Not Supported
Advanced	East and west banks of 250 k and 1 M gate devices	Refer to Table 7-16 on page 7-30	✓	✓	✓

7-4 v1.4

Features Supported on Every I/O

Table 7-5 lists all features supported by transmitter/receiver for single-ended and differential I/Os. Table 7-6 on page 7-6 lists the performance of each I/O technology.

Table 7-5 ● I/O Features

Feature	Description			
All I/O	High performance (Table 7-6 on page 7-6)			
	Electrostatic discharge (ESD) protection			
	I/O register combining option			
Single-Ended Transmitter Features	Hot-swap:			
	 30 k gate devices: hot-swap in every mode 			
	 All other IGLOO and ProASIC3 devices: no hot- swap 			
	Output slew rate: 2 slew rates (except 30 k gate devices)			
	Weak pull-up and pull-down resistors			
	Output drive: 3 drive strengths			
	Programmable output loading			
	 Skew between output buffer enable/disable time: 2 ns delay on rising edge and 0 ns delay on falling edge (see the "Selectable Skew between Output Buffer Enable and Disable Times" section on page 7-25 for more information) 			
	LVTTL/LVCMOS 3.3 V outputs compatible with 5 V TTL inputs			
Single-Ended Receiver Features	• 5 V-input-tolerant receiver (Table 7-12 on page 7-19)			
	 Separate ground plane for GNDQ pin and power plane for VMV pin are used for input buffer to reduce output-induced noise. 			
Differential Receiver Features—250 k through 1 M Gate Devices	 Separate ground plane for GNDQ pin and power plane for VMV pin are used for input buffer to reduce output-induced noise. 			
CMOS-Style LVDS, B-LVDS, M-LVDS, or LVPECL Transmitter	 Two I/Os and external resistors are used to provide a CMOS-style LVDS, DDR LVDS, B-LVDS, and M-LVDS/LVPECL transmitter solution. 			
	High slew rate			
	Weak pull-up and pull-down resistors			
	Programmable output loading			

v1.4 7-5

Table 7-6 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in IGLOO and ProASIC Devices (maximum drive strength and high slew selected)

	Maximum Performance				
Specification	ProASIC3	IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage	IGLOO V2, 1.2 V DC Core Supply Voltage		
LVTTL/LVCMOS 3.3 V	200 MHz	180 MHz	TBD		
LVCMOS 2.5 V	250 MHz	230 MHz	TBD		
LVCMOS 1.8 V	200 MHz	180 MHz	TBD		
LVCMOS 1.5 V	130 MHz	120 MHz	TBD		
PCI	200 MHz	180 MHz	TBD		
PCI-X	200 MHz	180 MHz	TBD		
LVDS	350 MHz	300 MHz	TBD		
LVPECL	350 MHz	300 MHz	TBD		

7-6 v1.4

I/O Architecture

I/O Tile

The I/O tile provides a flexible, programmable structure for implementing a large number of I/O standards. In addition, the registers available in the I/O tile can be used to support high-performance register inputs and outputs, with register enable if desired (Figure 7-2). The registers can also be used to support the JESD-79C Double Data Rate (DDR) standard within the I/O structure (see *DDR for Actel's Low-Power Flash Devices* for more information). In addition, the registers available in the I/O tile can be used to support high-performance register inputs and outputs, with register enable if desired (Figure 7-2).

As depicted in Figure 7-2, all I/O registers share one CLR port. The output register and output enable register share one CLK port.

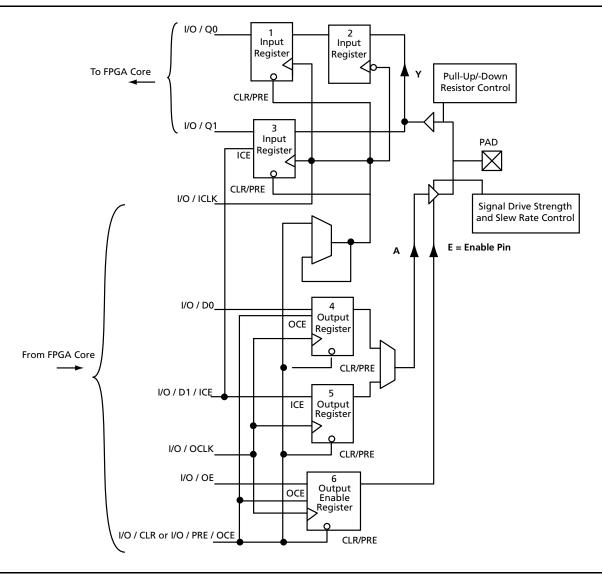


Figure 7-2 • I/O Block Logical Representation

v1.4 7-7

I/O Bank Structure

Low-power flash device I/Os are divided into multiple technology banks. The number of banks is device-dependent. The IGLOOe, ProASIC3EL, and ProASIC3E devices have eight banks (two per side); and IGLOO, ProASIC3L, and ProASIC3 devices have two to four banks. Each bank has its own V_{CCI} power supply pin. Multiple I/O standards can co-exist within a single I/O bank.

In IGLOOe, ProASIC3EL, and ProASIC3E devices, each I/O bank is subdivided into V_{REF} minibanks. These are used by voltage-referenced I/Os. V_{REF} minibanks contain 8 to 18 I/Os. All I/Os in a given minibank share a common V_{REF} line (only one V_{REF} pin is needed per V_{REF} minibank). Therefore, if an I/O in a V_{REF} minibank is configured as a V_{REF} pin, the remaining I/Os in that minibank will be able to use the voltage assigned to that pin. If the location of the V_{REF} pin is selected manually in the software, the user must satisfy V_{REF} rules (refer to I/O Software Control in Low-Power Flash Devices). If the user does not pick the V_{REF} pin manually, the software automatically assigns it.

Figure 7-3 is a snapshot of a section of the I/O ring, showing the basic elements of an I/O tile, as viewed from the Designer place-and-route tool's MultiView Navigator (MVN).

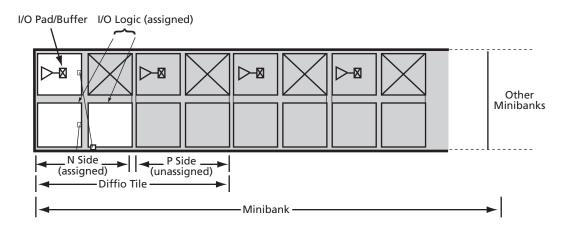


Figure 7-3 • Snapshot of an I/O Tile

Low-power flash device I/Os are implemented using two tile types: I/O and differential I/O (diffio).

The diffio tile is built up using two I/O tiles, which form an I/O pair (P side and N side). These I/O pairs are used according to differential I/O standards. Both the P and N sides of the diffio tile include an I/O buffer and two I/O logic blocks (auxiliary and main logic).

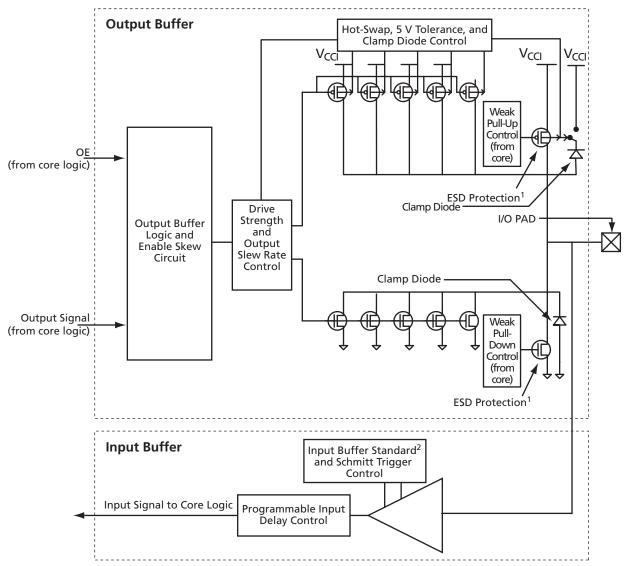

Every minibank (E devices only) is built up from multiple diffio tiles. The number of the minibank depends on the different-size dies. Refer to the "I/O Architecture" section on page 7-7 for an illustration of the minibank structure.

Figure 7-4 on page 7-9 shows a simplified diagram of the I/O buffer circuitry. The Output Enable signal (OE) enables the output buffer to pass the signal from the core logic to the pin. The output buffer contains ESD protection circuitry, an n-channel transistor that shunts all ESD surges (up to the limit of the device ESD specification) to GND. This transistor also serves as an output pull-down resistor.

Each output buffer also contains programmable slew rate, drive strength, programmable power-up state (pull-up/-down resistor), hot-swap, 5 V tolerance, and clamp diode control circuitry. Multiple flash switches (not shown in Figure 7-4 on page 7-9) are programmed by user selections in the software to activate different I/O features.

7-8 v1.4

Notes:

- 1. All NMOS transistors connected to the I/O pad serve as ESD protection.
- 2. See Table 7-2 on page 7-3 for available I/O standards.

Figure 7-4 • Simplified I/O Buffer Circuitry

I/O Registers

Each I/O module contains several input, output, and enable registers. Refer to Figure 7-4 for a simplified representation of the I/O block. The number of input registers is selected by a set of switches (not shown in Figure 7-2 on page 7-7) between registers to implement single-ended or differential data transmission to and from the FPGA core. The Designer software sets these switches for the user. A common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. Input Register 2 does not have a CLR/PRE pin, as this register is used for DDR implementation. The I/O register combining must satisfy certain rules.

v1.4 7-9

I/O Standards

Single-Ended Standards

These I/O standards use a push-pull CMOS output stage with a voltage referenced to system ground to designate logical states. The input buffer configuration, output drive, and I/O supply voltage (V_{CCI}) vary among the I/O standards (Figure 7-5).

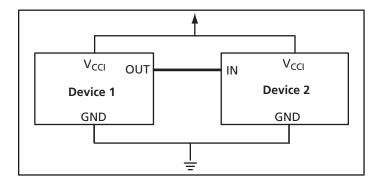


Figure 7-5 • Single-Ended I/O Standard Topology

The advantage of these standards is that a common ground can be used for multiple I/Os. This simplifies board layout and reduces system cost. Their low-edge-rate (dv/dt) data transmission causes less electromagnetic interference (EMI) on the board. However, they are not suitable for high-frequency (>200 MHz) switching due to noise impact and higher power consumption.

LVTTL (Low-Voltage TTL)

This is a general-purpose standard (EIA/JESD8-B) for 3.3 V applications. It uses an LVTTL input buffer and a push-pull output buffer. The LVTTL output buffer can have up to six different programmable drive strengths. The default drive strength is 12 mA. V_{CCI} is 3.3 V. Refer to "I/O Programmable Features" on page 7-14 for details.

LVCMOS (Low-Voltage CMOS)

The low-power flash devices provide four different kinds of LVCMOS: LVCMOS 3.3 V, LVCMOS 2.5 V, LVCMOS 1.8 V, and LVCMOS 1.5 V. LVCMOS 3.3 V is an extension of the LVCMOS standard (JESD8-B-compliant) used for general-purpose 3.3 V applications.

LVCMOS 2.5 V is an extension of the LVCMOS standard (JESD8-5–compliant) used for general-purpose 2.5 V applications. LVCMOS 2.5 V for the 30 k gate devices has a clamp diode to V_{CCI} , but for all other devices there is no clamp diode.

There is yet another standard supported by IGLOO and ProASIC3 devices (except A3P030): LVCMOS 2.5/5.0 V. This standard is similar to LVCMOS 2.5 V, with the exception that it can support up to 3.3 V on the input side (2.5 V output drive).

LVCMOS 1.8 V is an extension of the LVCMOS standard (JESD8-7–compliant) used for general-purpose 1.8 V applications. LVCMOS 1.5 V is an extension of the LVCMOS standard (JESD8-11–compliant) used for general-purpose 1.5 V applications.

The V_{CCI} values for these standards are 3.3 V, 2.5 V, 1.8 V, and 1.5 V, respectively. All these versions use a 3.3 V-tolerant CMOS input buffer and a push-pull output buffer. Like LVTTL, the output buffer has up to seven different programmable drive strengths (2, 4, 6, 8, 12, 16, and 24 mA). Refer to "I/O Programmable Features" on page 7-14 for details.

3.3 V PCI (Peripheral Component Interface)

This standard specifies support for both 33 MHz and 66 MHz PCI bus applications. It uses an LVTTL input buffer and a push-pull output buffer. With the aid of an external resistor, this I/O standard can be 5 V-compliant for low-power flash devices. It does not have programmable drive strength.

7-10 v1.4

3.3 V PCI-X (Peripheral Component Interface Extended)

An enhanced version of the PCI specification, 3.3 V PCI-X can support higher average bandwidths; it increases the speed that data can move within a computer from 66 MHz to 133 MHz. It is backward-compatible, which means devices can operate at conventional PCI frequencies (33 MHz and 66 MHz). PCI-X is more fault-tolerant than PCI. It also does not have programmable drive strength.

Voltage-Referenced Standards

I/Os using these standards are referenced to an external reference voltage (V_{REF}) and are supported on E devices only.

HSTL Class I and II (High-Speed Transceiver Logic)

These are general-purpose, high-speed 1.5 V bus standards (EIA/JESD 8-6) for signaling between integrated circuits. The signaling range is 0 V to 1.5 V, and signals can be either single-ended or differential. HSTL requires a differential amplifier input buffer and a push-pull output buffer. The reference voltage (V_{REF}) is 0.75 V. These standards are used in the memory bus interface with data switching capability of up to 400 MHz. The other advantages of these standards are low power and fewer EMI concerns.

HSTL has four classes, of which low-power flash devices support Class I and II. These classes are defined by standard EIA/JESD 8-6 from the Electronic Industries Alliance (EIA):

- Class I Unterminated or symmetrically parallel-terminated
- Class II Series-terminated
- Class III Asymmetrically parallel-terminated
- Class IV Asymmetrically double-parallel-terminated

SSTL2 Class I and II (Stub Series Terminated Logic 2.5 V)

These are general-purpose 2.5 V memory bus standards (JESD 8-9) for driving transmission lines, designed specifically for driving the DDR SDRAM modules used in computer memory. SSTL2 requires a differential amplifier input buffer and a push-pull output buffer. The reference voltage (V_{REF}) is 1.25 V.

SSTL3 Class I and II (Stub Series Terminated Logic 3.3 V)

These are general-purpose 3.3 V memory bus standards (JESD 8-8) for driving transmission lines. SSTL3 requires a differential amplifier input buffer and a push-pull output buffer. The reference voltage (V_{REF}) is 1.5 V.

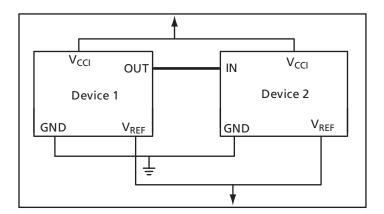


Figure 7-6 • SSTL and HSTL Topology

v1.4 7-11

GTL 2.5 V (Gunning Transceiver Logic 2.5 V)

This is a low-power standard (JESD 8.3) for electrical signals used in CMOS circuits that allows for low electromagnetic interference at high transfer speeds. It has a voltage swing between 0.4 V and 1.2 V and typically operates at speeds of between 20 and 40 MHz. V_{CCI} must be connected to 2.5 V. The reference voltage (V_{REF}) is 0.8 V.

GTL 3.3 V (Gunning Transceiver Logic 3.3 V)

This is the same as GTL 2.5 V above, except V_{CCI} must be connected to 3.3 V.

GTL+ (Gunning Transceiver Logic Plus)

This is an enhanced version of GTL that has defined slew rates and higher voltage levels. It requires a differential amplifier input buffer and an open-drain output buffer. Even though the output is open-drain, V_{CCI} must be connected to either 2.5 V or 3.3 V. The reference voltage (V_{REF}) is 1 V.

Differential Standards

These standards require two I/Os per signal (called a "signal pair"). Logic values are determined by the potential difference between the lines, not with respect to ground. This is why differential drivers and receivers have much better noise immunity than single-ended standards. The differential interface standards offer higher performance and lower power consumption than their single-ended counterparts. Two I/O pins are used for each data transfer channel. Both differential standards require resistor termination.

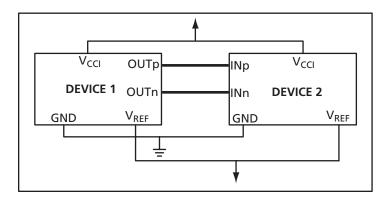


Figure 7-7 • Differential Topology

LVPECL (Low-Voltage Positive Emitter Coupled Logic)

LVPECL requires that one data bit be carried through two signal lines; therefore, two pins are needed per input or output. It also requires external resistor termination. The voltage swing between the two signal lines is approximately 850 mV. When the power supply is +3.3 V, it is commonly referred to as Low-Voltage PECL (LVPECL). Refer to the device datasheet for the full implementation of the LVPECL transmitter and receiver.

LVDS (Low-Voltage Differential Signal)

LVDS is a moderate-speed differential signaling system, in which the transmitter generates two different voltages that are compared at the receiver. LVDS uses a differential driver connected to a terminated receiver through a constant-impedance transmission line. It requires that one data bit be carried through two signal lines; therefore, the user will need two pins per input or output. It also requires external resistor termination. The voltage swing between the two signal lines is approximately 350 mV. V_{CCI} is 2.5 V. Low-power flash devices contain dedicated circuitry supporting a high-speed LVDS standard that has its own user specification. Refer to the device datasheet for the full implementation of the LVDS transmitter and receiver.

7-12 v1.4

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) refers to bus interface circuits based on LVDS technology. Multipoint LVDS (M-LVDS) specifications extend the LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Actel LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The driver requires series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus, since the driver can be located anywhere on the bus. These configurations can be implemented using TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Actel LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 7-8. The input and output buffer delays are available in the LVDS sections in the datasheet.

Example: For a bus consisting of 20 equidistant loads, the terminations given in EQ 7-1 provide the required differential voltage, in worst-case industrial operating conditions, at the farthest receiver:

R_S = 60
$$\Omega$$
, R_T = 70 Ω , given Z_O = 50 Ω (2") and Z_{stub} = 50 Ω (~1.5").

EQ 7-1

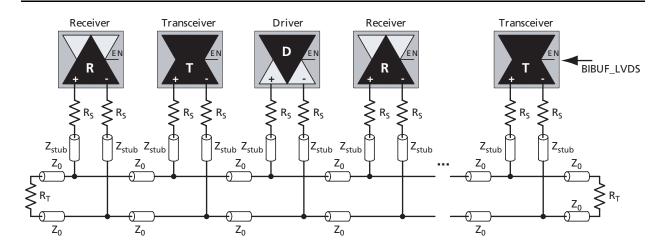


Figure 7-8 • A B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

I/O Features

Low-power flash devices support multiple I/O features that make board design easier. For example, an I/O feature like Schmitt Trigger in the ProASIC3E input buffer saves the board space that would be used by an external Schmitt trigger for a slow or noisy input signal. These features are also programmable for each I/O, which in turn gives flexibility in interfacing with other components. The following is a detailed description of all available features in low-power flash devices.

I/O Programmable Features

Low-power flash devices offer many flexible I/O features to support a wide variety of board designs. Some of the features are programmable, with a range for selection. Table 7-7 lists programmable I/O features and their ranges.

Table 7-7 • Programmable I/O Features (user control via I/O Attribute Editor)

Feature	Description	Range
Slew Control	Output slew rate	HIGH, LOW
Output Drive (mA)	Output drive strength	2, 4, 6, 8, 12, 16, 24
Skew Control	Output tristate enable delay option	ON, OFF
Resistor Pull	Resistor pull circuit	Up, Down, None
Input Delay	Input delay	OFF, 0-7
Schmitt Trigger	Schmitt trigger for input only	ON, OFF

Note: Limitations of these features with respect to different devices are discussed in later sections.

Hot-Swap Support

A pull-up clamp diode must not be present in the I/O circuitry if the hot-swap feature is used. The 3.3 V PCI standard requires a pull-up clamp diode on the I/O, so it cannot be selected if hot-swap capability is required. The A3P030 device does not support 3.3 V PCI, so it is the only device in the ProASIC3 family that supports the hot-swap feature. All devices in the ProASIC3E family are hot-swappable. All standards except LVCMOS 2.5/5.0 V and 3.3 V PCI/PCI-X support the hot-swap feature.

The hot-swap feature appears as a read-only check box in the I/O Attribute Editor that shows whether an I/O is hot-swappable or not. Refer to *Power-Upl-Down Behavior of Low-Power Flash Devices* for details on hot-swapping.

Hot-swapping (also called hot-plugging) is the operation of hot insertion or hot removal of a card in a powered-up system. The levels of hot-swap support and examples of related applications are described in Table 7-8 on page 7-15 to Table 7-11 on page 7-16. The I/Os also need to be configured in hot-insertion mode if hot-plugging compliance is required. The AGL030 and A3P030 devices have an I/O structure that allows the support of Level 3 and Level 4 hot-swap with only two levels of staging.

7-14 v1.4

Table 7-8 • Hot-Swap Level 1

Description	Cold-swap
Power Applied to Device	No
Bus State	-
Card Ground Connection	-
Device Circuitry Connected to Bus Pins	-
Example Application	System and card with Actel FPGA chip are powered down, and the card is plugged into the system. Then the power supplies are turned on for the system but not for the FPGA on the card.
Compliance of IGLOO and ProASIC3 Devices	30 k gate devices: Compliant Other IGLOO/ProASIC3 devices: Compliant if bus switch used to isolate FPGA I/Os from rest of system IGLOOe/ProASIC3E devices: Compliant I/Os can but do not have to be set to hot-insertion mode.

Table 7-9 • Hot-Swap Level 2

Description	Hot-swap while reset
Power Applied to Device	Yes
Bus State	Held in reset state
Card Ground Connection	Reset must be maintained for 1 ms before, during, and after insertion/removal.
Device Circuitry Connected to Bus Pins	-
Example Application	In the PCI hot-plug specification, reset control circuitry isolates the card busses until the card supplies are at their nominal operating levels and stable.
Compliance of IGLOO and ProASIC3 Devices	30 k gate devices, all IGLOOe/ProASIC3E devices: Compliant I/Os can but do not have to be set to hot-insertion mode. Other IGLOO/ProASIC3 devices: Compliant

Table 7-10 • Hot-Swap Level 3

Description	Hot-swap while bus idle
Power Applied to Device	Yes
Bus State	Held idle (no ongoing I/O processes during insertion/removal)
Card Ground Connection	Reset must be maintained for 1 ms before, during, and after insertion/removal.
Device Circuitry Connected to Bus Pins	Must remain glitch-free during power-up or power-down
Example Application	Board bus shared with card bus is "frozen," and there is no toggling activity on the bus. It is critical that the logic states set on the bus signal not be disturbed during card insertion/removal.
Compliance of IGLOO and ProASIC3 Devices	30 k gate devices, all IGLOOe/ProASIC3E devices: Compliant with two levels of staging (first: GND; second: all other pins) Other IGLOO/ProASIC3 devices: Compliant:
	Option A – Two levels of staging (first: GND; second: all other pins) together with bus switch on the I/Os
	Option B – Three levels of staging (first: GND; second: supplies; third: all other pins)

Table 7-11 • Hot-Swap Level 4

Description	Hot-swap on an active bus
Power Applied to Device	Yes
Bus State	Bus may have active I/O processes ongoing, but device being inserted or removed must be idle.
Card Ground Connection	Reset must be maintained for 1 ms before, during, and after insertion/removal.
Device Circuitry Connected to Bus Pins	Must remain glitch-free during power-up or power-down
Example Application	There is activity on the system bus, and it is critical that the logic states set on the bus signal not be disturbed during card insertion/removal.
Compliance of IGLOO and ProASIC3 Devices	30 k gate devices, all IGLOOe/ProASIC3E devices: Compliant with two levels of staging (first: GND; second: all other pins)
	Other IGLOO/ProASIC3 devices: Compliant:
	Option A – Two levels of staging (first: GND; second: all other pins) together with bus switch on the I/Os
	Option B – Three levels of staging (first: GND; second: supplies; third: all other pins)

7-16 v1.4

IGLOO and ProASIC3

For boards and cards with three levels of staging, card power supplies must have time to reach their final values before the I/Os are connected. Pay attention to the sizing of power supply decoupling capacitors on the card to ensure that the power supplies are not overloaded with capacitance.

Cards with three levels of staging should have the following sequence:

- Grounds
- Powers
- I/Os and other pins

For Level 3 and Level 4 compliance with the 30 k gate device, cards with two levels of staging should have the following sequence:

- Grounds
- Powers, I/Os, and other pins

Cold-Sparing Support

Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

The resistor value is calculated based on the decoupling capacitance on a given power supply. The RC constant should be greater than 3 µs.

To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with an NMOS switch) from the power supply after the supply has reached its final value. Refer to the *Power-Upl-Down Behavior of Low-Power Flash Devices* chapter of the *ProASIC3* and *ProASIC3E* handbooks for details on cold-sparing.

Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically connected to the system that is in operation. This means that all input buffers of the subsystem must present very high input impedance with no power applied so as not to disturb the operating portion of the system.

The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 7-12 on page 7-19). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from the power supply to ground should be provided. This can be done with a discharge resistor or a switched resistor. This is necessary because the 30 k gate devices do not have built-in I/O clamp diodes.

For other IGLOO and ProASIC3 devices, since the I/O clamp diode is always active, cold-sparing can be accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system or by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground every time there is an interruption of power to the device.

IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI, that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get disconnected internally when the supplies are at 0 V.

When targeting low-power applications, I/O cold-sparing may add additional current if a pin is configured with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the corresponding I/O standard.

For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is ~45 k Ω , and the resulting current is equal to 3.3 V / 45 k Ω = 73 μ A for the I/O pin. This is true also when a weak pull-down is chosen and the input pin is driven HIGH. This current can

be avoided by driving the input LOW when a weak pull-down resistor is used and driving it HIGH when a weak pull-up resistor is used.

This current draw can occur in the following cases:

- In Active and Static modes:
 - Input buffers with pull-up, driven LOW
 - Input buffers with pull-down, driven HIGH
 - Bidirectional buffers with pull-up, driven LOW
 - Bidirectional buffers with pull-down, driven HIGH
 - Output buffers with pull-up, driven LOW
 - Output buffers with pull-down, driven HIGH
 - Tristate buffers with pull-up, driven LOW
 - Tristate buffers with pull-down, driven HIGH
- In Flash*Freeze mode:
 - Input buffers with pull-up, driven LOW
 - Input buffers with pull-down, driven HIGH
 - Bidirectional buffers with pull-up, driven LOW
 - Bidirectional buffers with pull-down, driven HIGH

Electrostatic Discharge Protection

Low-power flash devices are tested per JEDEC Standard JESD22-A114-B.

These devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device pads against damage from ESD as well as from excessive voltage transients.

All IGLOO and ProASIC3 devices are tested to the following models: the Human Body Model (HBM) with a tolerance of 2,000 V, the Machine Model (MM) with a tolerance of 250 V, and the Charged Device Model (CDM) with a tolerance of 200 V.

Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative (N) side connected to V_{CCI} . The second diode has its P side connected to GND and its N side connected to the pad. During operation, these diodes are normally biased in the off state, except when transient voltage is significantly above V_{CCI} or below GND levels.

In 30 k gate devices, the first diode is always off. In other devices, the clamp diode is always on and cannot be switched off.

By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 7-12 on page 7-19 for more information about the I/O standards and the clamp diode.

The second diode is always connected to the pad, regardless of the I/O configuration selected.

7-18 v1.4

Table 7-12 •	I/O Hot-Swa	p and 5 V In	out Tolerance C	apabilities in IGLO	O and ProASIC3 Devices
--------------	-------------	--------------	-----------------	---------------------	------------------------

	Clamp Diode ¹		Hot I	nsertion	5 V Input	Tolerance ²	
I/O Assignment	AGL030 and A3P030	Other IGLOO and ProASIC3 Devices	AGL030 and A3P030	Other IGLOO and ProASIC3 Devices	AGL030 and A3P030	Other IGLOO and ProASIC3 Devices	Input and Output Buffer
3.3 V LVTTL/LVCMOS	No	Yes	Yes	Yes	Yes ²	Yes ²	Enabled/Disabled
3.3 V PCI, 3.3 V PCI-X	N/A	Yes	N/A	Yes	N/A	Yes ²	Enabled/Disabled
LVCMOS 2.5 V ⁵	No	Yes	Yes	Yes	Yes ²	Yes ⁴	Enabled/Disabled
LVCMOS 2.5 V / 5.0 V ⁶	N/A	Yes	N/A	Yes	N/A	Yes ⁴	Enabled/Disabled
LVCMOS 1.8 V	No	Yes	Yes	Yes	No	No	Enabled/Disabled
LVCMOS 1.5 V	No	Yes	Yes	Yes	No	No	Enabled/Disabled
Differential, LVDS/ B-LVDS/M-LVDS/LVPECL	N/A	Yes	N/A	Yes	N/A	No	Enabled/Disabled

Notes:

- 1. The clamp diode is always off for the AGL030 and A3P030 device and always active for other IGLOO and ProASIC3 devices.
- 2. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
- 3. Refer to Table 7-8 on page 7-15 to Table 7-11 on page 7-16 for device-compliant information.
- 4. Can be implemented with an external resistor and an internal clamp diode.
- 5. The LVCMOS 2.5 V I/O standard is supported by the 30 k gate devices only; select the LVCMOS25 macro.
- 6. The LVCMOS 2.5 V / 5.0 V I/O standard is supported by all IGLOO and ProASIC3 devices except 30 k gate devices; select the LVCMOS5 macro.

5 V Input and Output Tolerance

IGLOO and ProASIC3 devices are both 5 V-input– and 5 V-output–tolerant if certain I/O standards are selected. Table 7-5 on page 7-5 shows the I/O standards that support 5 V input tolerance. Only 3.3 V LVTTL/LVCMOS standards support 5 V output tolerance. Refer to the appropriate family datasheet for the detailed description and configuration information.

This feature is not shown in the I/O Attribute Editor.

5 V Input Tolerance

I/Os can support 5 V input tolerance when LVTTL 3.3 V, LVCMOS 3.3 V, LVCMOS 2.5 V, and LVCMOS 2.5 V / 5.0 V configurations are used (see Table 7-12 on page 7-19). There are four recommended solutions for achieving 5 V receiver tolerance (see Figure 7-9 on page 7-21 to Figure 7-12 on page 7-23 for details of board and macro setups). All the solutions meet a common requirement of limiting the voltage at the input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V, and any voltage above 3.6 V may cause long-term gate oxide failures.

Solution 1

The board-level design must ensure that the reflected waveform at the pad does not exceed the limits provided in the recommended operating conditions in the datasheet. This is a requirement to ensure long-term reliability.

This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the two external resistors as explained below. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

This solution requires two board resistors, as demonstrated in Figure 7-9 on page 7-21. Here are some examples of possible resistor values (based on a simplified simulation model with no line effects and 10 Ω transmitter output resistance, where Rtx_out_high = $(V_{CCI} - V_{OH}) / I_{OH}$ and Rtx_out_low = V_{OL} / I_{OL}).

Example 1 (high speed, high current):

```
Rtx_out_high = Rtx_out_low = 10 \Omega

R1 = 36 \Omega (±5%), P(r1)min = 0.069 \Omega

R2 = 82 \Omega (±5%), P(r2)min = 0.158 \Omega

Imax_tx = 5.5 V / (82 × 0.95 + 36 × 0.95 + 10) = 45.04 mA

t_{RISE} = t_{FALL} = 0.85 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

t_{RISE} = t_{FALL} = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)
```

Example 2 (low-medium speed, medium current):

```
\begin{split} & \text{Rtx\_out\_high} = \text{Rtx\_out\_low} = 10 \ \Omega \\ & \text{R1} = 220 \ \Omega \ (\pm 5\%), \ \text{P(r1)min} = 0.018 \ \Omega \\ & \text{R2} = 390 \ \Omega \ (\pm 5\%), \ \text{P(r2)min} = 0.032 \ \Omega \\ & \text{Imax\_tx} = 5.5 \ \text{V/} \ (220 \times 0.95 + 390 \times 0.95 + 10) = 9.17 \ \text{mA} \\ & \text{t}_{\text{RISE}} = \text{t}_{\text{FALL}} = 4 \ \text{ns} \ \text{at} \ \text{C\_pad\_load} = 10 \ \text{pF} \ \text{(includes up to 25\% safety margin)} \\ & \text{t}_{\text{RISE}} = \text{t}_{\text{FALL}} = 20 \ \text{ns} \ \text{at} \ \text{C\_pad\_load} = 50 \ \text{pF} \ \text{(includes up to 25\% safety margin)} \end{split}
```

Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the voltage at the receiving end to 2.5 V < Vin (rx) < 3.6 V when the transmitter sends a logic 1. This range of Vin_dc(rx) must be assured for any combination of transmitter supply (5 V \pm 0.5 V), transmitter output resistance, and board resistor tolerances.

7-20 v1.4

Temporary overshoots are allowed according to the overshoot and undershoot table in the datasheet.

Solution 1

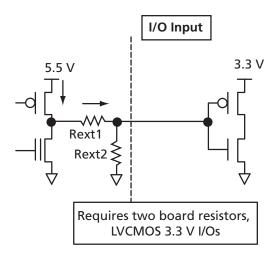


Figure 7-9 • Solution 1

Solution 2

The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term reliability.

This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the external resistors and Zener, as shown in Figure 7-10. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

Solution 2

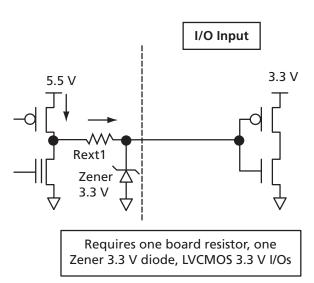


Figure 7-10 • Solution 2

Solution 3

The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term reliability.

This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the bus switch, as shown in Figure 7-11. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

Figure 7-11 • Solution 3

7-22 v1.4

Solution 4

The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term reliability.

Requires one board resistor. Available for LVCMOS 2.5 V / 5.0 V.

Figure 7-12 • Solution 4

Table 7-13 • Comparison Table for 5 V-Compliant Receiver Solutions

Solution	Board Components	Speed	Current Limitations
1	Two resistors	Low to High ¹	Limited by transmitter's drive strength
2	Resistor and Zener 3.3 V	Medium	Limited by transmitter's drive strength
3	Bus switch	High	N/A
4	Minimum resistor value ^{2,3,4,5} $R = 47 \Omega$ at $T_J = 70^{\circ}$ C $R = 150 \Omega$ at $T_J = 85^{\circ}$ C $R = 420 \Omega$ at $T_J = 100^{\circ}$ C	Medium	Maximum diode current at 100% duty cycle, signal constantly at 1 52.7 mA at $T_J = 70^{\circ}\text{C}$ / 10-year lifetime 16.5 mA at $T_J = 85^{\circ}\text{C}$ / 10-year lifetime 5.9 mA at $T_J = 100^{\circ}\text{C}$ / 10-year lifetime For duty cycles other than 100%, the currents can be increased by a factor of 1 / (duty cycle). Example: 20% duty cycle at 70°C Maximum current = $(1 / 0.2) \times 52.7$ mA = 5×52.7 mA = 263.5 mA

Notes:

- 1. Speed and current consumption increase as the board resistance values decrease.
- 2. Resistor values ensure I/O diode long-term reliability.
- 3. At 70°C, customers could still use 420 Ω on every I/O.
- 4. At 85°C, a 5 V solution on every other I/O is permitted, since the resistance is lower (150 Ω) and the current is higher. Also, the designer can still use 420 Ω and use the solution on every I/O.
- 5. At 100°C, the 5 V solution on every I/O is permitted, since 420 Ω are used to limit the current to 5.9 mA.

5 V Output Tolerance

IGLOO and ProASIC3 I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL receivers. It is also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would pull the I/O pad voltage beyond the 3.6 V absolute maximum value and consequently cause damage to the I/O.

When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, the I/Os can directly drive signals into 5 V TTL receivers. In fact, $V_{OL} = 0.4$ V and $V_{OH} = 2.4$ V in both 3.3 V LVTTL and 3.3 V LVCMOS modes exceeds the $V_{IL} = 0.8$ V and $V_{IH} = 2$ V level requirements of 5 V TTL receivers. Therefore, level 1 and level 0 will be recognized correctly by 5 V TTL receivers.

Schmitt Trigger

A Schmitt trigger is a buffer used to convert a slow or noisy input signal into a clean one before passing it to the FPGA. Using Schmitt trigger buffers guarantees a fast, noise-free input signal to the FPGA.

The Schmitt trigger is available for the LVTTL, LVCMOS, and 3.3 V PCI I/O standards.

This feature can be implemented by using a Physical Design Constraints (PDC) command (Table 7-5 on page 7-5) or by selecting a check box in the I/O Attribute Editor in Designer. The check box is cleared by default.

7-24 v1.4

Selectable Skew between Output Buffer Enable and Disable Times

Low-power flash devices have a configurable skew block in the output buffer circuitry that can be enabled to delay output buffer assertion without affecting deassertion time. Since this skew block is only available for the OE signal, the feature can be used in tristate and bidirectional buffers. A typical 1.2 ns delay is added to the OE signal to prevent potential bus contention. Refer to the appropriate family datasheet for detailed timing diagrams and descriptions.

The skew feature is available for all I/O standards.

This feature can be implemented by using a PDC command (Table 7-5 on page 7-5) or by selecting a check box in the I/O Attribute Editor in Designer. The check box is cleared by default.

The configurable skew block is used to delay output buffer assertion (enable) without affecting deassertion (disable) time.

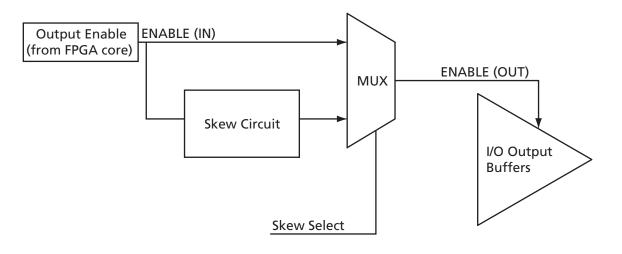


Figure 7-13 • Block Diagram of Output Enable Path

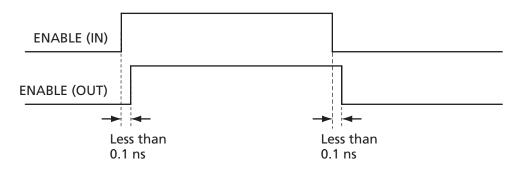


Figure 7-14 • Timing Diagram (option 1: bypasses skew circuit)

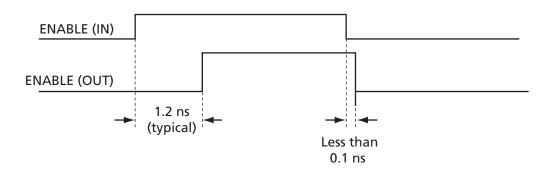


Figure 7-15 • Timing Diagram (option 2: enables skew circuit)

At the system level, the skew circuit can be used in applications where transmission activities on bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-to-transmitter current shorts. Figure 7-16 presents an example of the skew circuit implementation in a bidirectional communication system. Figure 7-17 on page 7-27 shows how bus contention is created, and Figure 7-18 on page 7-27 shows how it can be avoided with the skew circuit.

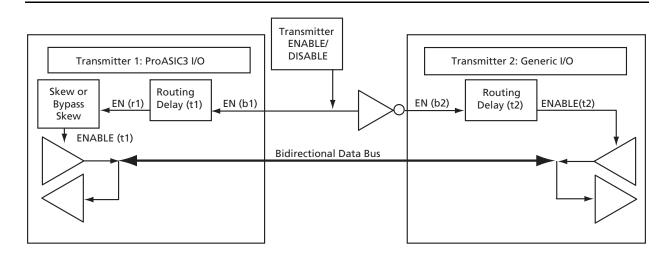


Figure 7-16 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using IGLOO or ProASIC3 Devices

7-26 v1.4

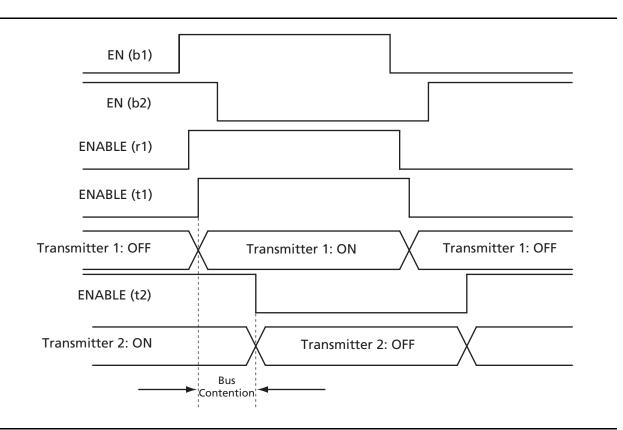


Figure 7-17 • Timing Diagram (bypasses skew circuit)

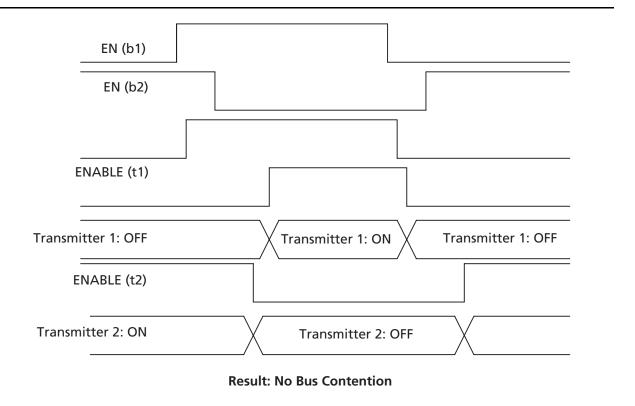


Figure 7-18 • Timing Diagram (with skew circuit selected)

I/O Register Combining

Every I/O has several embedded registers in the I/O tile that are close to the I/O pads. Rather than using the internal register from the core, the user has the option of using these registers for faster clock-to-out timing, and external hold and setup. When combining these registers at the I/O buffer, some architectural rules must be met. Provided these rules are met, the user can enable register combining globally during Compile (as shown in the "Compiling the Design" section in the I/O Software Control in Low-Power Flash Devices section of the handbook).

This feature is supported by all I/O standards.

Rules for Registered I/O Function:

- 1. The fanout between an I/O pin (D, Y, or E) and a register must be equal to one for combining to be considered on that pin.
- All registers (Input, Output, and Output Enable) connected to an I/O must share the same clear or preset function:
 - If one of the registers has a CLR pin, all the other registers that are candidates for combining in the I/O must have a CLR pin.
 - If one of the registers has a PRE pin, all the other registers that are candidates for combining in the I/O must have a PRE pin.
 - If one of the registers has neither a CLR nor a PRE pin, all the other registers that are candidates for combining must have neither a CLR nor a PRE pin.
 - If the clear or preset pins are present, they must have the same polarity.
 - If the clear or preset pins are present, they must be driven by the same signal (net).
- 3. Registers connected to an I/O on the Output and Output Enable pins must have the same clock and enable function:
 - Both the Output and Output Enable registers must have an E pin (clock enable), or none
 at all
 - If the E pins are present, they must have the same polarity. The CLK pins must also have the same polarity.

In some cases, the user may want registers to be combined with the input of a bibuf while maintaining the output as-is. This can be achieved by using PDC commands as follows:

```
set_io <signal name> -REGISTER yes -----register will combine
set_preserve <signal name> ----register will not combine
```

Weak Pull-Up and Weak Pull-Down Resistors

IGLOO and ProASIC3 devices support optional weak pull-up and pull-down resistors on each I/O pin. When the I/O is pulled up, it is connected to the V_{CCI} of its corresponding I/O bank. When it is pulled down, it is connected to GND. Refer to the datasheet for more information.

For low-power applications, configuration of the pull-up or pull-down of the I/O can be used to set the I/O to a known state while the device is in Flash*Freeze mode. Refer to Flash*Freeze Technology and Low-Power Modes in IGLOO and ProASIC3L Devices for more information.

The Flash*Freeze (FF) pin cannot be configured with a weak pull-down or pull-up I/O attribute, as the signal needs to be driven at all times.

Output Slew Rate Control

The slew rate is the amount of time an input signal takes to get from logic LOW to logic HIGH or vice versa.

It is commonly defined as the propagation delay between 10% and 90% of the signal's voltage swing. Slew rate control is available for the output buffers of low-power flash devices. The output buffer has a programmable slew rate for both HIGH-to-LOW and LOW-to-HIGH transitions. Slew rate control is available for LVTTL, LVCMOS, and PCI-X I/O standards. The other I/O standards have a preset slew value.

7-28 v1.4

The slew rate can be implemented by using a PDC command (Table 7-5 on page 7-5), setting it "High" or "Low" in the I/O Attribute Editor in Designer, or instantiating a special I/O macro. The default slew rate value is "High."

IGLOO and ProASIC3 devices support output slew rate control: high and low. Actel recommends the high slew rate option to minimize the propagation delay. This high-speed option may introduce noise into the system if appropriate signal integrity measures are not adopted. Selecting a low slew rate reduces this kind of noise but adds some delays in the system. Low slew rate is recommended when bus transients are expected.

Output Drive

The output buffers of IGLOO and ProASIC3 devices can provide multiple drive strengths to meet signal integrity requirements. The LVTTL and LVCMOS (except 1.2 V LVCMOS) standards have selectable drive strengths. Other standards have a preset value.

Drive strength should also be selected according to the design requirements and noise immunity of the system.

The output slew rate and multiple drive strength controls are available in LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V, LVCMOS 2.5 V / 5.0 V input, LVCMOS 1.8 V, and LVCMOS 1.5 V. All other I/O standards have a high output slew rate by default.

For 30 k gate devices, refer to Table 7-14. For other ProASIC3 and IGLOO devices, refer to Table 7-15 through Table 7-16 on page 7-30 for more information about the slew rate and drive strength specification. Refer to Table 7-4 on page 7-4 for I/O bank type definitions.

There will be a difference in timing between the Standard Plus I/O banks and the Advanced I/O banks. Refer to the I/O timing tables in the datasheet for the standards supported by each device.

Table 7-14 • IGLOO and ProASIC3 Output Drive and Slew for Standard I/O Bank Type (for 30 k gate devices)

I/O Standards	2 mA	4 mA	6 mA	8 mA	SI	ew
LVTTL/LVCMOS 3.3 V	✓	✓	✓	✓	High	Low
LVCMOS 2.5 V	✓	✓	✓	✓	High	Low
LVCMOS 1.8 V	✓	✓	_	-	High	Low
LVCMOS 1.5 V	✓	-	-	-	High	Low

Table 7-15 • IGLOO and ProASIC3 Output Drive and Slew for Standard Plus I/O Bank Type

I/O Standards	2 mA	4 mA	6 mA	8 mA	12 mA	16 mA	9	Slew
LVTTL	✓	✓	1	✓	✓	✓	High	Low
LVCMOS 3.3 V	✓	✓	√	✓	✓	✓	High	Low
LVCMOS 2.5 V	✓	√ *	√	√ *	✓	-	High	Low
LVCMOS 1.8 V	✓	✓	1	✓	-	-	High	Low
LVCMOS 1.5 V	✓	✓	_	_	-	-	High	Low

Note: *Not available in Automotive devices.

Table 7-16 • IGLOO and ProASIC3 Output Drive and Slew for Advanced I/O Bank Type

I/O Standards	2 mA	4 mA	6 mA	8 mA	12 mA	16 mA	24 mA	SI	ew
LVTTL	✓	✓	✓	✓	1	√	✓	High	Low
LVCMOS 3.3 V	✓	✓	✓	✓	1	√	✓	High	Low
LVCMOS 2.5 V	1	√ *	✓	√ *	1	✓	✓	High	Low
LVCMOS 2.5/5.0 V	✓	√ *	✓	√ *	1	√	✓	High	Low
LVCMOS 1.8 V	✓	✓	✓	✓	1	√	-	High	Low
LVCMOS 1.5 V	✓	✓	1	1	1	_	-	High	Low

Note: Not available in Automotive devices.

Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout

Each I/O voltage bank has a separate ground and power plane for input and output circuits (VMV/GNDQ for input buffers and V_{CCI} /GND for output buffers). This isolation is necessary to minimize simultaneous switching noise from the input and output (SSI and SSO). The switching noise (ground bounce and power bounce) is generated by the output buffers and transferred into input buffer circuits, and vice versa.

Since voltage bounce originates on the package inductance, the VMV and V_{CCI} supplies have separate package pin assignments. For the same reason, GND and GNDQ also have separate pin assignments.

The VMV and V_{CCI} pins must be shorted to each other on the board. Also, the GND and GNDQ pins must be shorted to each other on the board. This will prevent unwanted current draw from the power supply.

SSOs can cause signal integrity problems on adjacent signals that are not part of the SSO bus. Both inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce ground bounce noise and V_{CCI} dip noise. These two noise types are caused by rapidly changing currents through GND and V_{CCI} package pin inductances during switching activities (EQ 7-2 and EQ 7-3).

Ground bounce noise voltage = $L(GND) \times di/dt$

EQ 7-2

 V_{CCI} dip noise voltage = $L(V_{CCI}) \times di/dt$

EO 7-3

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The shielding should be done both on the board and inside the package unless otherwise described.

In-package shielding can be achieved in several ways; the required shielding will vary depending on whether pins next to the SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus. Also, noise generated by the SSO bus needs to be reduced inside the package.

PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time, maintaining signal integrity between devices.

Key issues that need to be considered are as follows:

- Power and ground plane design and decoupling network design
- Transmission line reflections and terminations

For extensive data per package on the SSO and PCB issues, refer to the *ProASIC3/E SSO* and *Pin Placement* and *Guidelines* chapter of the handbook.

7-30 v1.4

I/O Software Support

In Actel's Libero IDE software, default settings have been defined for the various I/O standards supported. Changes can be made to the default settings via the use of attributes; however, not all I/O attributes are applicable for all I/O standards. Table 7-17 list the valid I/O attributes that can be manipulated by the user for each I/O standard.

Single-ended I/O standards in low-power flash devices support up to five different drive strengths.

Table 7-17 • IGLOO and ProASIC3 I/O Attributes vs. I/O Standard Applications

I/O Standard	SLEW (output only)	OUT_DRIVE (output only)	SKEW (all macros with OE)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER
LVTTL/LVCMOS 3.3 V	√	✓	✓	✓	✓	✓
LVCMOS 2.5 V	✓	✓	✓	✓	✓	✓
LVCMOS 2.5/5.0 V	✓	✓	✓	✓	✓	✓
LVCMOS 1.8 V	✓	✓	✓	✓	✓	✓
LVCMOS 1.5 V	✓	✓	✓	✓	✓	✓
PCI (3.3 V)			✓		✓	✓
PCI-X (3.3 V)	√		✓		✓	✓
LVDS, B-LVDS, M-LVDS			✓			✓
LVPECL						✓

Note: Applies to all 30 k gate devices.

Table 7-18 lists the default values for the above selectable I/O attributes as well as those that are preset for that I/O standard. See Table 7-14 on page 7-29 to Table 7-16 on page 7-30 for SLEW and OUT_DRIVE settings.

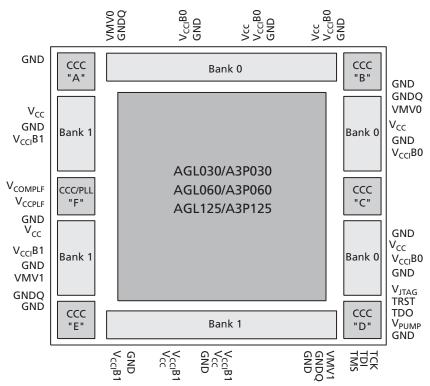
Table 7-18 • IGLOO and ProASIC3 I/O Default Attributes

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (tribuf and bibuf only)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER
LVTTL/LVCMOS 3.3 V	See	See	Off	None	35 pF	-
LVCMOS 2.5 V	Table 7-14 on page 7-29 to	Table 7-14 on page 7-29 to	Off	None	35 pF	_
LVCMOS 2.5/5.0 V	Table 7-16 on	Table 7-16 on	Off	None	35 pF	_
LVCMOS 1.8 V	page 7-30.	page 7-30.	Off	None	35 pF	_
LVCMOS 1.5 V			Off	None	35 pF	-
PCI (3.3 V)			Off	None	10 pF	_
PCI-X (3.3 V)			Off	None	10 pF	_
LVDS, B-LVDS, M-LVDS			Off	None	0 pF	-
LVPECL			Off	None	0 pF	-

User I/O Naming Convention

IGLOO and **ProASIC3**

Due to the comprehensive and flexible nature of IGLOO and ProASIC3 device user I/Os, a naming scheme is used to show the details of each I/O (Figure 7-19 on page 7-33 and Figure 7-20 on page 7-33). The name identifies to which I/O bank it belongs, as well as pairing and pin polarity for differential I/Os.


I/O Nomenclature = FF/Gmn/IOuxwBy

Gmn is only used for I/Os that also have CCC access—i.e., global pins.

- FF = Indicates the I/O dedicated for the Flash*Freeze mode activation pin in IGLOO and ProASIC3L devices only
- G = Global
- m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle)
- global input MUX and pin number of the associated Global location m—either A0, A1, A2, B0, B1, B2, C0, C1, or C2. Refer to *Global Resources in Actel Low-Power Flash Devices* for information about the three input pins per clock source MUX at CCC location m.
- u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise direction
- x = P or U (Positive), N or V (Negative) for differential pairs, or R (Regular—single-ended) for the I/Os that support single-ended and voltage-referenced I/O standards only. U (Positive) or V (Negative)—for LVDS, DDR LVDS, B-LVDS, and M-LVDS only—restricts the I/O differential pair from being selected as an LVPECL pair.
- w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out. For Differential Pairs (D), adjacency for ball grid packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements for a true differential pair.
- B = Bank
- y = Bank number (0-3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise direction.

7-32 v1.4

Note: The 30 k gate devices do not support a PLL (V_{COMPLF} and V_{CCPLF} pins).

Figure 7-19 • Naming Conventions of IGLOO and ProASIC3 Devices with Two I/O Banks - Top View

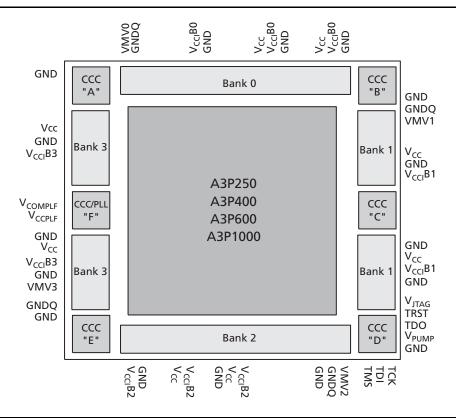


Figure 7-20 • Naming Conventions of IGLOO and ProASIC3 Devices with Four I/O Banks - Top View

Board-Level Considerations

Low-power flash devices have robust I/O features that can help in reducing board-level components. The devices offer single-chip solutions, which makes the board layout simpler and more immune to signal integrity issues. Although, in many cases, these devices resolve board-level issues, special attention should always be given to overall signal integrity. This section covers important board-level considerations to facilitate optimum device performance.

Termination

Proper termination of all signals is essential for good signal quality. Nonterminated signals, especially clock signals, can cause malfunctioning of the device.

For general termination guidelines, refer to the *Board-Level Considerations* application note for Actel FPGAs. Also refer to *Pin Descriptions* for termination requirements for specific pins.

Low-power flash I/Os are equipped with on-chip pull-up/-down resistors. The user can enable these resistors by instantiating them either in the top level of the design (refer to the IGLOO, Fusion, and ProASIC3 Macro Library Guide for the available I/O macros with pull-up/-down) or in the I/O Attribute Editor in Designer if generic input or output buffers are instantiated in the top level. Unused I/O pins are configured as inputs with pull-up resistors.

As mentioned earlier, low-power flash devices have multiple programmable drive strengths, and the user can eliminate unwanted overshoot and undershoot by adjusting the drive strengths.

Power-Up Behavior

Low-power flash devices are power-up/-down friendly; i.e., no particular sequencing is required for power-up and power-down. This eliminates extra board components for power-up sequencing, such as a power-up sequencer.

During power-up, all I/Os are tristated, irrespective of I/O macro type (input buffers, output buffers, I/O buffers with weak pull-ups or weak pull-downs, etc.). Once I/Os become activated, they are set to the user-selected I/O macros. Refer to the *Power-UpI-Down Behavior of Low-Power Flash Devices* chapter of the *ProASIC3* and *ProASIC3E* handbooks for details.

Drive Strength

Low-power flash devices have up to seven programmable output drive strengths. The user can select the drive strength of a particular output in the I/O Attribute Editor or can instantiate a specialized I/O macro, such as OUTBUF_S_12 (slew = low, out_drive = 12 mA).

The maximum available drive strength is 24 mA per I/O. Though no I/O should be forced to source or sink more than 24 mA indefinitely, I/Os may handle a higher amount of current (refer to the device IBIS model for maximum source/sink current) during signal transition (AC current). Every device package has its own power dissipation limit; hence, power calculation must be performed accurately to determine how much current can be tolerated per I/O within that limit.

I/O Interfacing

Low-power flash devices are 5 V-input- and 5 V-output-tolerant without adding any extra circuitry. Along with other low-voltage I/O macros, this 5 V tolerance makes these devices suitable for many types of board component interfacing.

7-34 v1.4

Table 7-19 shows some high-level interfacing examples using low-power flash devices.

Table 7-19 • High-Level Interface Examples

	Clock		I/O			
Interface	Туре	Frequency	Туре	Signals In	Signals Out	Data I/O
GM	Src Sync	125 MHz	LVTTL	8	8	125 Mbps
ТВІ	Src Sync	125 MHz	LVTTL	10	10	125 Mbps
XSBI	Src Sync	644 MHz	LVDS	16	16	644 Mbps
XGMI	Src Sync DDR	156 MHz	HSTL1	32	32	312 Mbps
FlexBus 3	Sys Sync	104 MHz	LVTTL	≤ 32	≤ 32	≤ 104
Pos-PHY3/SPI-3	Sys Sync	104	LVTTL	8, 16, 32	8, 16, 32	≤ 104 Mbps
FlexBus 4/SPI-4.1	Src Sync	200 MHz	HSTL1	16,64	16,64	200 Mbps
Pos-PHY4/SPI-4.2	Src Sync DDR	≥ 311 MHz	LVDS	16	16	≥ 622 Mbps
SFI-4.1	Src Sync	622 MHz	LVDS	16	16	622 Mbps
CSIX L1	Sys Sync	≤ 250 MHz	HSTL1	32,64,96,128	32,64,96,128	≤ 250 Mbps
Hyper Transport	Sys Sync DDR	≤ 800 MHz	LVDS	2,4,8,16	2,4,8,16	≤ 1.6 Gbps
Rapid I/O Parallel	Sys Sync DDR	250 MHz – 1 GHz	LVDS	8,16	8,16	≤ 2 Gbps
Star Fabric	CDR		LVDS	4	4	622 Mbps

Note: Sys Sync = System Synchronous Clocking, Src Sync = Source Synchronous Clocking, and CDR = Clock and Data Recovery.

Conclusion

IGLOO and ProASIC3 support for multiple I/O standards minimizes board-level components and makes possible a wide variety of applications. The Actel Designer software, integrated with Actel Libero IDE, presents a clear visual display of I/O assignments, allowing users to verify I/O and board-level design requirements before programming the device. The IGLOO and ProASIC3 device I/O features and functionalities ensure board designers can produce low-cost and low-power FPGA applications fulfilling the complexities of contemporary design needs.

Related Documents

Handbook Documents

Board-Level Considerations

http://www.actel.com/documents/BoardLevelCons_AN.pdf

DDR for Actel's Low-Power Flash Devices

http://www.actel.com/documents/LPD_DDR_HBs.pdf

Flash*Freeze Technology and Low-Power Modes in IGLOO and ProASIC3L Devices

http://www.actel.com/documents/LPD_FlashFreeze_HBs.pdf

Global Resources in Actel Low-Power Flash Devices

http://www.actel.com/documents/LPD_Global_HBs.pdf

Pin Descriptions

http://www.actel.com/documents/LPD_PinDescriptions_HBs.pdf

Power-Up/-Down Behavior of Low-Power Flash Devices

http://www.actel.com/documents/LPD_PowerUp_HBs.pdf

ProASIC3/E SSO and Pin Placement and Guidelines

http://www.actel.com/documents/PA3_E_SSO_HBs.pdf

User's Guides

Actel Libero IDE User's Guide

http://www.actel.com/documents/libero_ug.pdf

IGLOO, Fusion, and ProASIC3 Macro Library Guide

http://www.actel.com/documents/pa3_libguide_ug.pdf

SmartGen Core Reference Guide

http://www.actel.com/documents/genguide_ug.pdf

7-36 v1.4

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet, combined with content previously published as an application note describing features and functions of the device. To improve usability for customers, the device architecture information has now been combined with usage information, to reduce duplication and possible inconsistencies in published information. No technical changes were made to the datasheet content unless explicitly listed. Changes to the application note content were made only to be consistent with existing datasheet information.

Part Number 51700094-009-4 Revised December 2008

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v1.4)			
v1.3 (October 2008)	The terminology in the "Low-Power Flash Device I/O Support" section was revised.	7-2		
v1.2 (June 2008)	The "Low-Power Flash Device I/O Support" section was revised to include new families and make the information more concise.	7-2		
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 7-1 · Flash-Based FPGAs: • ProASIC3L was updated to include 1.5 V. • The number of PLLs for ProASIC3E was changed from five to six.	7-2		
v1.0 (January 2008)	Originally, this document contained information on all IGLOO and ProASIC3 families. With the addition of new families and to highlight the differences between the features, the document has been separated into 3 documents: This document contains information specific to IGLOO, ProASIC3, and ProASIC3L. I/O Structures in IGLOOe and ProASIC3E Devices contains information specific to IGLOOe, ProASIC3E, and ProASIC3EL I/O features. I/O Structures in IGLOO PLUS Devices contains information specific to IGLOO PLUS I/O features.	N/A		

8 – I/O Software Control in Low-Power Flash Devices

Actel Fusion,[®] IGLOO,[®] and ProASIC[®]3 I/Os provide more design flexibility, allowing the user to control specific features by enabling certain I/O standards. Some features are selectable only for certain I/O standards, whereas others are available for all I/O standards. For example, slew control is not supported by differential I/O standards. Conversely, I/O register combining is supported by all I/O standards. For detailed information about which I/O standards and features are available on each device and each I/O type, refer to the I/O Structures section of the handbook for the device you are using.

Figure 8-1 shows the various points in the software design flow where a user can provide input or control of the I/O selection and parameters. A detailed description is provided throughout this document.

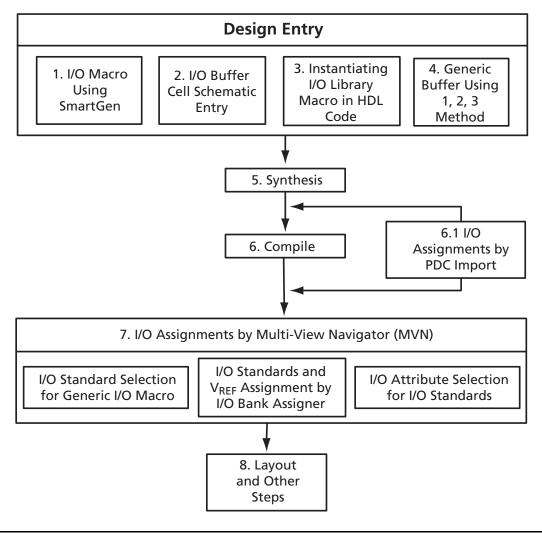


Figure 8-1 • User I/O Assignment Flow Chart

v1.4 8-1

Flash FPGAs I/O Support

The flash FPGAs listed in Table 8-1 support I/Os and the functions described in this document.

Table 8-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO nano	The industry's lowest-power, smallest-size solution
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L	
	Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000	
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex™-M1 soft processors, and flash memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 8-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 8-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

8-2 v1.4

Software-Controlled I/O Attributes

Users may modify these programmable I/O attributes using the I/O Attribute Editor. Modifying an I/O attribute may result in a change of state in Designer. Table 8-2 details which steps have to be rerun as a function of modified I/O attribute.

Table 8-2 • Designer State (resulting from I/O attribute modification)

	Designer States				
I/O Attribute	Compile	Layout	Fuse	Timing	Power
Slew Control	No	No	Yes	Yes	Yes
Output Drive (mA)	No	No	Yes	Yes	Yes
Skew Control	No	No	Yes	Yes	Yes
Resistor Pull	No	No	Yes	Yes	Yes
Input Delay	No	No	Yes	Yes	Yes
Schmitt Trigger	No	No	Yes	Yes	Yes
OUT_LOAD	No	No	No	Yes	Yes
COMBINE_REGISTER	Yes	Yes	N/A	N/A	N/A

Notes:

- 1. No = Remains the same, Yes = Re-run the step, N/A = Not applicable
- 2. Skew control and input delay do not apply to IGLOO nano, IGLOO PLUS, and ProASIC3 nano devices.

v1.4 8-3

Implementing I/Os in Actel Software

Actel Libero[®] Integrated Design Environment (IDE) is integrated with design entry tools such as the SmartGen macro builder, the ViewDraw schematic entry tool, and an HDL editor. It is also integrated with the synthesis and Designer tools. In this section, all necessary steps to implement the I/Os are discussed.

Design Entry

There are three ways to implement I/Os in a design:

- Use the SmartGen macro builder to configure I/Os by generating specific I/O library macros and then instantiating them in top-level code. This is especially useful when creating I/O bus structures.
- 2. Use an I/O buffer cell in a schematic design.
- 3. Manually instantiate specific I/O macros in the top-level code.

If technology-specific macros, such as INBUF_LVCMOS33 and OUTBUF_PCI, are used in the HDL code or schematic, the user will not be able to change the I/O standard later on in Designer. If generic I/O macros are used, such as INBUF, OUTBUF, TRIBUF, CLKBUF, and BIBUF, the user can change the I/O standard using the Designer I/O Attribute Editor tool.

Using SmartGen for I/O Configuration

The SmartGen tool in Libero IDE provides a GUI-based method of configuring the I/O attributes. The user can select certain I/O attributes while configuring the I/O macro in SmartGen. The steps to configure an I/O macro with specific I/O attributes are as follows:

- 1. Open Libero IDE.
- 2. On the left-hand side of the Catalog View, select I/O, as shown in Figure 8-2.

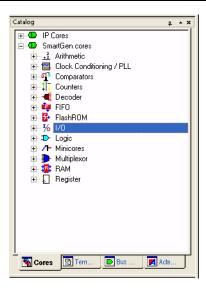


Figure 8-2 • SmartGen Catalog

8-4 v1.4

3. Expand the I/O section and double-click one of the options (Figure 8-3).

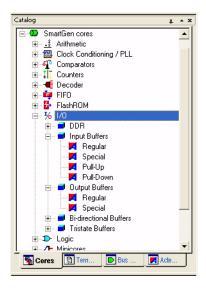


Figure 8-3 • Expanded I/O Section

4. Double-click any of the varieties. The I/O Create Core window opens (Figure 8-4).

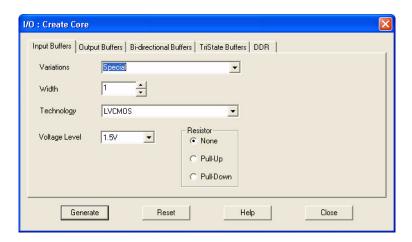


Figure 8-4 • I/O Create Core Window

As seen in Figure 8-4, there are five tabs to configure the I/O macro: Input Buffers, Output Buffers, Bidirectional Buffers, Tristate Buffers, and DDR.

Input Buffers

There are two variations: Regular and Special.

If the **Regular** variation is selected, only the Width (1 to 128) needs to be entered. The default value for Width is 1.

The **Special** variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options (see Figure 8-4). All the I/O standards and supply voltages (V_{CCI}) supported for the device family are available for selection.

v1.4 8-5

Output Buffers

There are two variations: Regular and Special.

If the **Regular** variation is selected, only the Width (1 to 128) needs to be entered. The default value for Width is 1.

The Special variation has Width, Technology, Output Drive, and Slew Rate options.

Bidirectional Buffers

There are two variations: Regular and Special.

The **Regular** variation has Enable Polarity (Active High, Active Low) in addition to the Width option.

The **Special** variation has Width, Technology, Output Drive, Slew Rate, and Resistor Pull-Up/-Down options.

Tristate Buffers

Same as Bidirectional Buffers.

DDR

There are eight variations: DDR with Regular Input Buffers, Special Input Buffers, Regular Output Buffers, Special Output Buffers, Regular Tristate Buffers, Special Tristate Buffers, Regular Bidirectional Buffers, and Special Bidirectional Buffers.

These variations resemble the options of the previous I/O macro. For example, the Special Input Buffers variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options. DDR is not available on IGLOO PLUS devices.

- 5. Once the desired configuration is selected, click the **Generate** button. The Generate Core window opens (Figure 8-5).
- 6. Enter a name for the macro. Click **OK**. The core will be generated and saved to the appropriate location within the project files (Figure 8-6 on page 8-7).

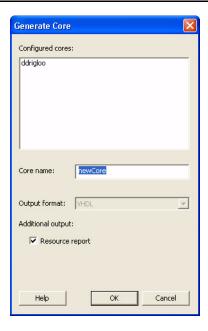


Figure 8-5 • Generate Core Window

7. Instantiate the I/O macro in the top-level code.

The user must instantiate the DDR_REG or DDR_OUT macro in the design. Use SmartGen to generate both these macros and then instantiate them in your top level. To combine the DDR macros with the I/O, the following rules must be met:

8-6 v1.4

Rules for the DDR I/O Function

- The fanout between an I/O pin (D or Y) and a DDR (DDR_REG or DDR_OUT) macro must be equal to one for the combining to happen on that pin.
- If a DDR_REG macro and a DDR_OUT macro are combined on the same bidirectional I/O, they must share the same clear signal.
- Registers will not be combined in an I/O in the presence of DDR combining on the same I/O.

Using the I/O Buffer Schematic Cell

Libero IDE includes the ViewDraw schematic entry tool. Using ViewDraw, the user can insert any supported I/O buffer cell in the top-level schematic. Figure 8-6 shows a top-level schematic with different I/O buffer cells. When synthesized, the netlist will contain the same I/O macro.

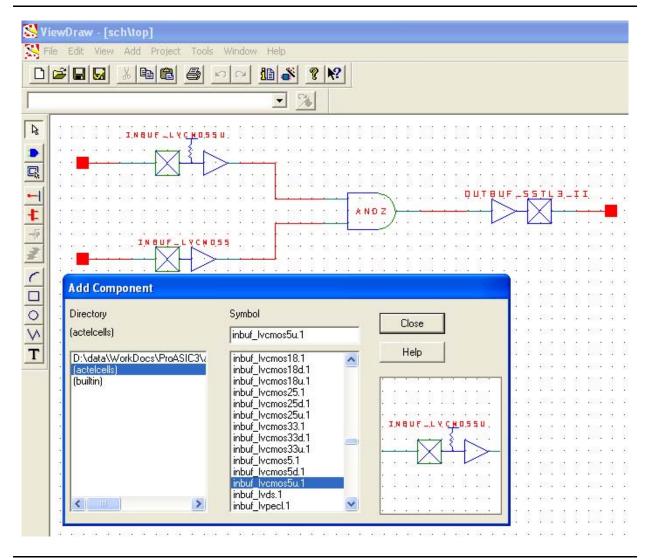


Figure 8-6 • I/O Buffer Schematic Cell Usage

v1.4 8-7

Instantiating in HDL code

All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO, Fusion, and ProASIC3 Macro Library Guide for a detailed list of all I/O macros). The following is an example:

```
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;
entity TOP is
 port(IN2, IN1 : in std_logic; OUT1 : out std_logic);
end TOP;
architecture DEF_ARCH of TOP is
  component INBUF_LVCMOS5U
    port(PAD : in std_logic := 'U'; Y : out std_logic);
  end component;
  component INBUF_LVCMOS5
   port(PAD : in std_logic := 'U'; Y : out std_logic);
  end component;
  component OUTBUF_SSTL3_II
    port(D : in std_logic := 'U'; PAD : out std_logic);
  end component;
  Other component ....
signal x, y, z.....other signals : std_logic;
begin
  i1 : INBUF_LVCMOS5U
    port map(PAD => IN1, Y =>x);
  12 : INBUF_LVCMOS5
   port map(PAD => IN2, Y => y);
  13 : OUTBUF_SSTL3_II
    port map(D => z, PAD => OUT1);
  other port mapping...
end DEF_ARCH;
```

Synthesizing the Design

Libero IDE integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with Libero IDE. Refer to the *Actel Libero IDE User's Guide* or Libero IDE online help for details on how to set up the Libero IDE tool profile with synthesis tools from other vendors.

During synthesis, the following rules apply:

- Generic macros:
 - Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
 - Synthesis will automatically infer generic I/O macros.
 - The default I/O technology for these macros is LVTTL.
 - Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if needed (see Figure 8-7 on page 8-9).
- Technology-specific I/O macros:
 - Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be instantiated in the design. Synthesis will infer these I/O macros in the netlist.

- The I/O standard of technology-specific I/O macros cannot be changed in the I/O Attribute Editor (see Figure 8-7).
- The user MUST instantiate differential I/O macros (LVDS/LVPECL) in the design. This is the only way to use these standards in the design.
- To implement the DDR I/O function, the user must instantiate a DDR_REG or DDR_OUT macro. This is the only way to use a DDR macro in the design.

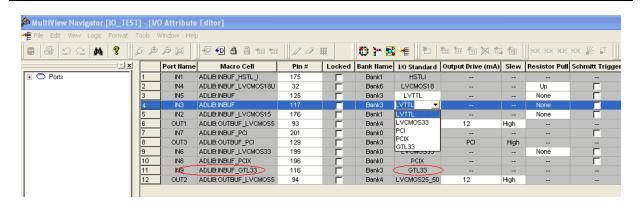


Figure 8-7 • Assigning a Different I/O Standard to the Generic I/O Macro

Performing Place-and-Route on the Design

The netlist created by the synthesis tool should now be imported into Designer and compiled. During Compile, the user can specify the I/O placement and attributes by importing the PDC file. The user can also specify the I/O placement and attributes using ChipPlanner and the I/O Attribute Editor under MVN.

Defining I/O Assignments in the PDC File

A PDC file is a Tcl script file specifying physical constraints. This file can be imported to and exported from Designer.

Table 8-3 shows I/O assignment constraints supported in the PDC file.

Table 8-3 • PDC I/O Constraints

Command	Action	Example	Comment
I/O Banks Setting			
set_iobank	Sets the I/O supply voltage, V _{CCI} , and the input reference voltage,	[-vcci vcci_voltage] [-vref vref_voltage]	Must use in case of mixed I/O voltage (V _{CCI}) design
	V _{REF} for the specified I/O bank.	set_iobank Bank7 -vcci 1.50 -vref 0.75	
set_vref	Assigns a V _{REF} pin to a bank.	<pre>set_vref -bank [bankname] [pinnum]</pre>	Must use if voltage- referenced I/Os are used
		set_vref -bank Bank0 685 704 723 742 761	

Note: Refer to the Actel Libero IDE User's Guide for detailed rules on PDC naming and syntax conventions.

v1.4 8-9

Table 8-3 • PDC I/O Constraints (continued)

Command	Action	Example	Comment
set_vref_defaults	Sets the default V_{REF} pins for the specified bank. This command is ignored if the bank does not need a V_{REF} pin.	set_vref_defaults bankname set_vref_defaults bank2	
I/O Attribute Con	straint		
set_io	Sets the attributes of an I/O	set_io portname [-pinname value] [-fixed value] [-iostd value] [-out_drive value] [-slew value] [-res_pull value] [-schmitt_trigger value] [-in_delay value] [-out_load value] [-register value] set_io IN2 -pinname 28 -fixed yes -iostd LVCMOS15 -out_drive 12 -slew high -RES_PULL None -SCHMITT_TRIGGER Off -IN_DELAY Off -skew off -REGISTER No	If the I/O macro is generic (e.g., INBUF) or technology-specific (INBUF_LVCMOS25), then all I/O attributes can be assigned using this constraint. If the netlist has an I/O macro that specifies one of its attributes, that attribute cannot be changed using this constraint, though other attributes can be changed. Example: OUTBUF_S_24 (low slew, output drive 24 mA) Slew and output drive cannot be changed.
I/O Region Placem	nent Constraints		
define_region	Defines either a rectangular region or a rectilinear region	<pre>define_region -name [region_name] -type [region_type] x1 y1 x2 y2 define_region -name test -type inclusive 0 15 2 29</pre>	If any number of I/Os must be assigned to a particular I/O region, such a region can be created with this constraint.
assign_region	Assigns a set of macros to a specified region	assign_region [region name] [macro_name] assign_region test U12	This constraint assigns I/O macros to the I/O regions. When assigning an I/O macro, PDC naming conventions must be followed if the macro name contains special characters; e.g., if the macro name is \\\$1119\ the correct use of escape characters is \\\\\$1119\\\.

Note: Refer to the Actel Libero IDE User's Guide for detailed rules on PDC naming and syntax conventions.

8-10 v1.4

Compiling the Design

During Compile, a PDC I/O constraint file can be imported along with the netlist file. If only the netlist file is compiled, certain I/O assignments need to be completed before proceeding to Layout. All constraints that can be entered in PDC can also be entered using ChipPlanner, I/O Attribute Editor, and PinEditor.

There are certain rules that must be followed in implementing I/O register combining and the I/O DDR macro (refer to the I/O Registers section of the handbook for the device that you are using and the "DDR" section on page 8-6 for details). Provided these rules are met, the user can enable or disable I/O register combining by using the PDC command <code>set_io portname -register yes|no</code> in the I/O Attribute Editor or selecting a check box in the Compile Options dialog box (see Figure 8-8). The Compile Options dialog box appears when the design is compiled for the first time. It can also be accessed by choosing **Options > Compile** during successive runs. I/O register combining is off by default. The PDC command overrides the setting in the Compile Options dialog box.

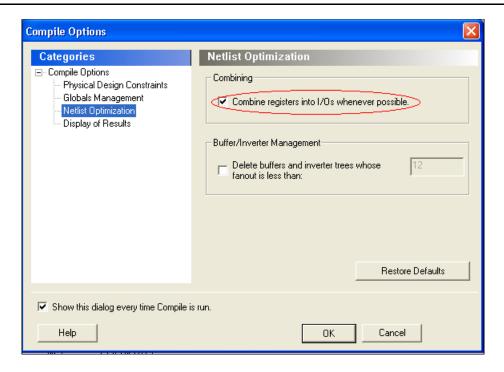


Figure 8-8 • Setting Register Combining During Compile

Understanding the Compile Report

The I/O bank report is generated during Compile and displayed in the log window. This report lists the I/O assignments necessary before Layout can proceed.

When Designer is started, the I/O Bank Assigner tool is run automatically if the Layout command is executed. The I/O Bank Assigner takes care of the necessary I/O assignments. However, these assignments can also be made manually with MVN or by importing the PDC file. Refer to the "Assigning Technologies and V_{REF} to I/O Banks" section on page 8-14 for further description.

The I/O bank report can also be extracted from Designer by choosing **Tools** > **Report** and setting the Report Type to **IOBank**.

This report has the following tables: I/O Function, I/O Technology, I/O Bank Resource Usage, and I/O Voltage Usage. This report is useful if the user wants to do I/O assignments manually.

v1.4 8-11

I/O Function

Figure 8-9 shows an example of the I/O Function table included in the I/O bank report:

Function:			
Type	w/o register	w/ regist	ter w/ DDR registe:
Input I/O	 7	 0	
Output I/O	1	1	0
Bidirectional I/O	0	0	0
Differential Input I/O Pairs	0	0	0
Differential Output I/O Pairs	0	0	1

Figure 8-9 • I/O Function Table

This table lists the number of input I/Os, output I/Os, bidirectional I/Os, and differential input and output I/O pairs that use I/O and DDR registers.

Certain rules must be met to implement registered and DDR I/O functions (refer to the I/O Structures section of the handbook for the device you are using and the "DDR" section on page 8-6).

I/O Technology

The I/O Technology table (shown in Figure 8-10) gives the values of V_{CCI} and V_{REF} (reference voltage) for all the I/O standards used in the design. The user should assign these voltages appropriately.

	Volta	ages	l	I/O:	3
I/O Standard(s)	Vcci	 Vref	 Input	 Output	 Bidirectiona
LVTTL	 3.30v	 N/A		 1	 0
LVCMOS33	3.30v	N/A	1	0	0
LVCMOS25 50	2.50v	N/A	1	1	0
LVCMOS18	1.80v	N/A	1	0	0
LVCMOS15	1.50v	N/A	1	0	0
PCIX	3.30v	N/A	1	0	0
LVDS	2.50v	N/A	0	2	0
SSTL3I (Input/Bidirectional)	3.30v	1.50v	1	0	0
GTLP33 (Input/Bidirectional)	3.30v	1.00v	1	0	0

Figure 8-10 • I/O Technology Table

8-12 v1.4

I/O Bank Resource Usage

This is an important portion of the report. The user must meet the requirements stated in this table. Figure 8-11 shows the I/O Bank Resource Usage table included in the I/O bank report:

I/O Bank Re	source (Jsage:							
!		_	-		•	/O Pairs	•		
	Vcci	Vref	Used	Total	Used	•	Used	Total	Vref Pins
 Parting			'	•					***/ *
BankO			_	25		12	N/A		N/A
Bank1		N/A		15	1 0	•		N/A	•
Bank2	N/A	N/A	0	17	0	6	N/A	N/A	N/A
Bank3	N/A	N/A	0	16	0	7	N/A	N/A	N/A
Bank4	N/A	N/A	0	15	0	7	N/A	N/A	N/A
Bank5	N/A	N/A	0	22	1 0	10	N/A	N/A	N/A
Bank6	N/A	N/A	0	19	1 0	19	N/A	N/A	N/A
Bank7	N/A	N/A	0	18	j 0	7	N/A	N/A	N/A
Warning: IC						gned any annot be	_		macro.

Figure 8-11 • I/O Bank Resource Usage Table

The example in Figure 8-11 shows that none of the I/O macros is assigned to the bank because more than one V_{CCI} is detected.

I/O Voltage Usage

The I/O Voltage Usage table provides the number of V_{REF} (E devices only) and V_{CCI} assignments required in the design. If the user decides to make I/O assignments manually (PDC or MVN), the issues listed in this table must be resolved before proceeding to Layout. As stated earlier, V_{REF} assignments must be made if there are any voltage-referenced I/Os.

Figure 8-12 shows the I/O Voltage Usage table included in the I/O bank report.

```
I/O Voltage Usage:
      Voltages
    -----|----|-----|
    Vcci | Vref | Used | Total
      ----|-----|----|
    1.50v | N/A
                | 1*
                | 1*
                       | 0
    1.80v | N/A
    2.50v | N/A
                | 4* | 0
    3.30v | N/A
                | 6* | 0
                       | 0
    3.30v | 1.00v | 1*
    3.30v | 1.50v | 1*
Warning: IOPRL3: This design has infeasible I/O voltage requirement(s),
        which are indicated with a '*' in the I/O Voltage Usage table.
        Please consider importing a Physical Design Constraint (PDC) file or
        use the MultiView Navigator (MVN) to resolve the design's voltage requirements
        before running Layout.
```

Figure 8-12 • I/O Voltage Usage Table

The table in Figure 8-12 indicates that there are two voltage-referenced I/Os used in the design. Even though both of the voltage-referenced I/O technologies have the same V_{CCI} voltage, their V_{REF} voltages are different. As a result, two I/O banks are needed to assign the V_{CCI} and V_{REF} voltages.

In addition, there are six single-ended I/Os used that have the same V_{CCI} voltage. Since two banks are already assigned with the same V_{CCI} voltage and there are enough unused bonded I/Os in those banks, the user does not need to assign the same V_{CCI} voltage to another bank. The user needs to assign the other three V_{CCI} voltages to three more banks.

Assigning Technologies and V_{REF} to I/O Banks

Low-power flash devices offer a wide variety of I/O standards, including voltage-referenced standards. Before proceeding to Layout, each bank must have the required V_{CCI} voltage assigned for the corresponding I/O technologies used for that bank. The voltage-referenced standards require the use of a reference voltage (V_{REF}). This assignment can be done manually or automatically. The following sections describe this in detail.

Manually Assigning Technologies to I/O Banks

The user can import the PDC at this point and resolve this requirement. The PDC command is set_iobank [bank name] -vcci [vcci value]

Another method is to use the I/O Bank Settings dialog box (MVN > Edit > I/O Bank Settings) to set up the V_{CCI} voltage for the bank (Figure 8-13).

Figure 8-13 • Setting V_{CCI} for a Bank

8-14 v1.4

The procedure is as follows:

- 1. Select the bank to which you want V_{CCI} to be assigned from the **Choose Bank** list.
- Select the I/O standards for that bank. If you select any standard, the tool will automatically show all compatible standards that have a common V_{CCI} voltage requirement.
- 3. Click Apply.
- 4. Repeat steps 1–3 to assign V_{CCI} voltages to other banks. Refer to Figure 8-12 on page 8-13 to find out how many I/O banks are needed for V_{CCI} bank assignment.

Manually Assigning V_{REF} Pins

Voltage-referenced inputs require an input reference voltage (V_{REF}). The user must assign V_{REF} pins before running Layout. Before assigning a V_{REF} pin, the user must set a V_{REF} technology for the bank to which the pin belongs.

V_{REF} Rules for the Implementation of Voltage-Referenced I/O Standards

The V_{REF} rules are as follows:

- 1. Any I/O (except JTAG I/Os) can be used as a V_{REF} pin.
- One V_{REF} pin can support up to 15 I/Os. It is recommended, but not required, that eight of them be on one side and seven on the other side (in other words, all 15 can still be on one side of V_{REF}).
- 3. SSTL3 (I) and (II): Up to 40 I/Os per north or south bank in any position
- 4. LVPECL / GTL+ 3.3 V / GTL 3.3 V: Up to 48 I/Os per north or south bank in any position
- 5. SSTL2 (I) and (II) / GTL+ 2.5 V / GTL 2.5 V: Up to 72 I/Os per north or south bank in any position
- 6. V_{REF} minibanks partition rule: Each I/O bank is physically partitioned into V_{REF} minibanks. The V_{REF} pins within a V_{REF} minibank are interconnected internally, and consequently, only one V_{REF} voltage can be used within each V_{REF} minibank. If a bank does not require a V_{REF} signal, the V_{REF} pins of that bank are available as user I/Os.
- 7. The first V_{REF} minibank includes all I/Os starting from one end of the bank to the first power triple and eight more I/Os after the power triple. Therefore, the first V_{REF} minibank may contain (0 + 8), (2 + 8), (4 + 8), (6 + 8), or (8 + 8) I/Os.

The second V_{REF} minibank is adjacent to the first V_{REF} minibank and contains eight I/Os, a power triple, and eight more I/Os after the triple. An analogous rule applies to all other V_{REF} minibanks but the last.

The last V_{REF} minibank is adjacent to the previous one but contains eight I/Os, a power triple, and all I/Os left at the end of the bank. This bank may also contain (8 + 0), (8 + 4), (8 + 6), or (8 + 8) available I/Os.

Example:

```
4 I/Os \rightarrow Triple \rightarrow 8 I/Os, 8 I/Os \rightarrow Triple \rightarrow 8 I/Os, 8 I/Os \rightarrow Triple \rightarrow 2 I/Os
```

That is, minibank A = (4 + 8) I/Os, minibank B = (8 + 8) I/Os, minibank C = (8 + 2) I/Os.

Assigning the V_{REF} Voltage to a Bank

When importing the PDC file, the V_{REF} voltage can be assigned to the I/O bank. The PDC command is as follows:

```
set_iobank -vref [value]
```

Another method for assigning V_{REF} is by using MVN > Edit > I/O Bank Settings (Figure 8-14 on page 8-16).

v1.4 8-15

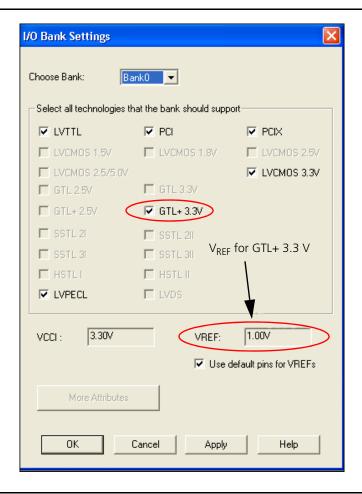


Figure 8-14 • Selecting V_{REF} Voltage for the I/O Bank

Assigning V_{REF} Pins for a Bank

The user can use default pins for V_{REF} In this case, select the **Use default pins for VREFs** check box (Figure 8-14). This option guarantees full V_{REF} coverage of the bank. The equivalent PDC command is as follows:

```
set_vref_default [bank name]
```

To be able to choose V_{REF} pins, adequate V_{REF} pins must be created to allow legal placement of the compatible voltage-referenced I/Os.

To assign V_{REF} pins manually, the PDC command is as follows:

```
set_vref -bank [bank name] [package pin numbers]
```

For ChipPlanner/PinEditor to show the range of a V_{REF} pin, perform the following steps:

- 1. Assign V_{CCI} to a bank using MVN > Edit > I/O Bank Settings.
- 2. Open ChipPlanner. Zoom in on an I/O package pin in that bank.
- 3. Highlight the pin and then right-click. Choose Use Pin for VREF.

8-16 v1.4

4. Right-click and then choose **Highlight VREF range**. All the pins covered by that V_{REF} pin will be highlighted (Figure 8-15).

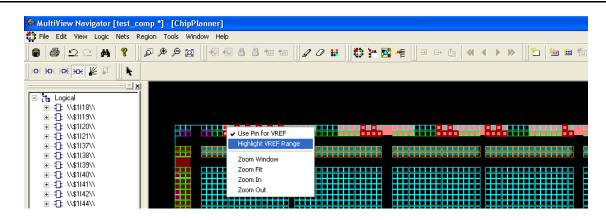


Figure 8-15 • V_{REF} Range

Using PinEditor or ChipPlanner, V_{REF} pins can also be assigned (Figure 8-16).

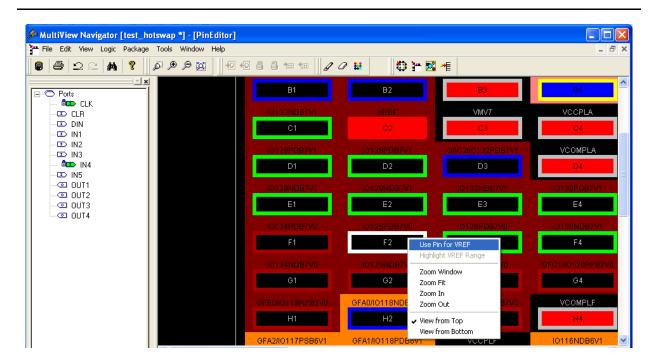


Figure 8-16 • Assigning V_{REF} from PinEditor

To unassign a V_{REF} pin:

- 1. Select the pin to unassign.
- Right-click and choose Use Pin for VREF. The check mark next to the command disappears.
 The V_{REF} pin is now a regular pin.

Resetting the pin may result in unassigning I/O cores, even if they are locked. In this case, a warning message appears so you can cancel the operation.

After you assign the V_{REF} pins, right-click a V_{REF} pin and choose **Highlight VREF Range** to see how many I/Os are covered by that pin. To unhighlight the range, choose **Unhighlight All** from the **Edit** menu.

v1.4 8-17

Automatically Assigning Technologies to I/O Banks

The I/O Bank Assigner (IOBA) tool runs automatically when you run Layout. You can also use this tool from within the MultiView Navigator (Figure 8-18). The IOBA tool automatically assigns technologies and V_{REF} pins (if required) to every I/O bank that does not currently have any technologies assigned to it. This tool is available when at least one I/O bank is unassigned.

To automatically assign technologies to I/O banks, choose I/O Bank Assigner from the Tools menu (or click the I/O Bank Assigner's toolbar button, shown in Figure 8-17).

Figure 8-17 • I/O Bank Assigner's Toolbar Button

Messages will appear in the Output window informing you when the automatic I/O bank assignment begins and ends. If the assignment is successful, the message "I/O Bank Assigner completed successfully" appears in the Output window, as shown in Figure 8-18.

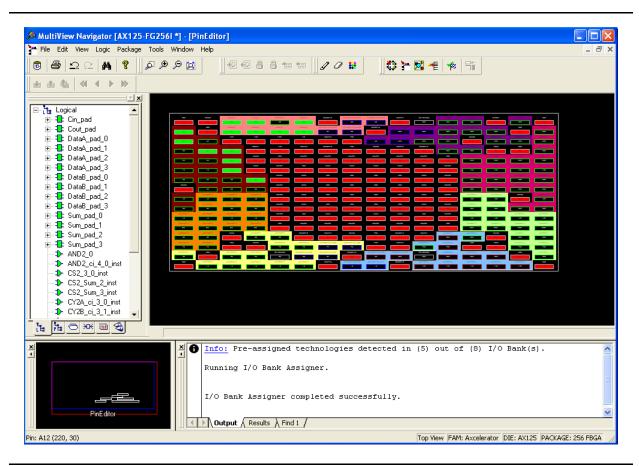


Figure 8-18 • I/O Bank Assigner Displays Messages in Output Window

8-18 v1.4

If the assignment is not successful, an error message appears in the Output window.

To undo the I/O bank assignments, choose **Undo** from the **Edit** menu. Undo removes the I/O technologies assigned by the IOBA. It does not remove the I/O technologies previously assigned.

To redo the changes undone by the Undo command, choose Redo from the Edit menu.

To clear I/O bank assignments made before using the Undo command, manually unassign or reassign I/O technologies to banks. To do so, choose I/O Bank Settings from the Edit menu to display the I/O Bank Settings dialog box.

Conclusion

Actel Fusion, IGLOO, and ProASIC3 support for multiple I/O standards minimizes board-level components and makes possible a wide variety of applications. The Actel Designer software, integrated with Actel Libero IDE, presents a clear visual display of I/O assignments, allowing users to verify I/O and board-level design requirements before programming the device. The device I/O features and functionalities ensure board designers can produce low-cost and low-power FPGA applications fulfilling the complexities of contemporary design needs.

Related Documents

Handbook Documents

DDR for Actel's Low-Power Flash Devices

http://www.actel.com/documents/LPD_DDR_HBs.pdf

Flash*Freeze Technology and Low-Power Modes in IGLOO and ProASIC3L Devices

http://www.actel.com/documents/LPD_FlashFreeze_HBs.pdf

Global Resources in Actel Low-Power Flash Devices

http://www.actel.com/documents/LPD_Global_HBs.pdf

I/O Structures in IGLOO and ProASIC3 Devices

http://www.actel.com/documents/IGLOO_PA3_IO_HBs.pdf

I/O Structures in IGLOO PLUS Devices

http://www.actel.com/documents/IGLOOPLUS_IO_HBs.pdf

I/O Structures in IGLOOe and ProASIC3E Devices

http://www.actel.com/documents/IGLOOe_PA3E_IO_HBs.pdf

Pin Descriptions

http://www.actel.com/documents/LPD_PinDescriptions_HBs.pdf

Power-Up/-Down Behavior of Low-Power Flash Devices

http://www.actel.com/documents/LPD_PowerUp_HBs.pdf

ProASIC3/E SSO and Pin Placement and Guidelines

http://www.actel.com/documents/PA3_E_SSO_HBs.pdf

User's Guides

Actel Libero IDE User's Guide

http://www.actel.com/documents/libero_ug.pdf

IGLOO, Fusion, and ProASIC3 Macro Library Guide

http://www.actel.com/documents/pa3_libguide_ug.pdf

SmartGen Core Reference Guide

http://www.actel.com/documents/genguide_ug.pdf

v1.4 8-19

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet, combined with content previously published as an application note describing features and functions of the device. To improve usability for customers, the device architecture information has now been combined with usage information, to reduce duplication and possible inconsistencies in published information. No technical changes were made to the datasheet content unless explicitly listed. Changes to the application note content were made only to be consistent with existing datasheet information.

Part Number 51700094-026-3 Revised December 2008

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v1.4)	Page
v1.3 (October 2008)	IGLOO nano and ProASIC3 nano devices were added to Table 8-1 · Flash-Based FPGAs.	8-2
	The notes for Table 8-2 · Designer State (resulting from I/O attribute modification) were revised to indicate that skew control and input delay do not apply to nano devices.	8-3
v1.2 (June 2008)	The "Flash FPGAs I/O Support" section was revised to include new families and make the information more concise.	8-2
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 8-1 · Flash-Based FPGAs: • ProASIC3L was updated to include 1.5 V. • The number of PLLs for ProASIC3E was changed from five to six.	8-2
v1.0 (January 2008)	This document was previously part of the I/O Structures in IGLOO and ProASIC3 Devices document. The content was separated and made into a new document.	N/A
	Table 8-2 · Designer State (resulting from I/O attribute modification) was updated to include note 2 for IGLOO PLUS.	8-3

8-20 v1.4

9 - DDR for Actel's Low-Power Flash Devices

Introduction

The I/Os in Fusion, IGLOO,® and ProASIC®3 devices support Double Data Rate (DDR) mode. In this mode, new data is present on every transition (or clock edge) of the clock signal. This mode doubles the data transfer rate compared with Single Data Rate (SDR) mode, where new data is present on one transition (or clock edge) of the clock signal. Low-power flash devices have DDR circuitry built into the I/O tiles. I/Os are configured to be DDR receivers or transmitters by instantiating the appropriate special macros (examples shown in Figure 9-4 on page 9-6 and Figure 9-5 on page 9-7) and buffers (DDR_OUT or DDR_REG) in the RTL design. This document discusses the options the user can choose to configure the I/Os in this mode and how to instantiate them in the design.

Double Data Rate (DDR) Architecture

Low-power flash devices support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity requirements, making them very efficient for implementing very high-speed systems. High-speed DDR interfaces can be implemented using LVDS. In IGLOOe, ProASIC3E, AFS600, and AFS1500 devices, DDR interfaces can also be implemented using the HSTL, SSTL, and LVPECL I/O standards. The DDR feature is primarily implemented in the FPGA core periphery and is not tied to a specific I/O technology or limited to any I/O standard.

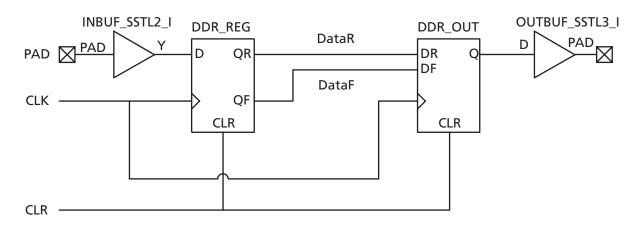


Figure 9-1 • DDR Support in Low-Power Flash Devices

DDR Support in Flash-Based Devices

The flash FPGAs listed in Table 9-1 support the DDR feature and the functions described in this document.

Table 9-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO nano	The industry's lowest-power, smallest-size solution
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex [™] -M1 soft processors, and flash memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 9-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 9-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

9-2 v1.4

I/O Cell Architecture

Low-power flash devices support DDR in the I/O cells in four different modes: Input, Output, Tristate, and Bidirectional pins. For each mode, different I/O standards are supported, with most I/O standards having special sub-options. For the ProASIC3 nano and IGLOO nano devices, DDR is supported only in the 60 k, 125 k, and 250 k logic densities. Refer to Table 9-2 for a sample of the available I/O options. Additional I/O options can be found in the relevant family datasheet.

Table 9-2 • DDR I/O Options

DDR Register Type	I/O Type	I/O Standard	Sub-Options	Comments
Receive Register	Input	Normal	None	3.3 V TTL (default)
		LVCMOS	Voltage	1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V default)
			Pull-Up	None (default)
		PCI/PCI-X	None	
		GTL/GTL+	Voltage	2.5 V, 3.3 V (3.3 V default)
		HSTL	Class	I / II (I default)
		SSTL2/SSTL3	Class	I / II (I default)
		LVPECL	None	
		LVDS	None	
Transmit Register	Output	Normal	None	3.3 V TTL (default)
		LVTTL	Output Drive	2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA default)
			Slew Rate	Low/high (high default)
		LVCMOS	Voltage	1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V default)
		PCI/PCI-X	None	
		GTL/GTL+	Voltage	1.8 V, 2.5 V, 3.3 V (3.3 V default)
		HSTL	Class	I / II (I default)
		SSTL2/SSTL3	Class	I / II (I default)
		LVPECL	None	
		LVDS	None	

Table 9-2 • DDR I/O Options (continued)

DDR Register Type	I/O Type	I/O Standard	Sub-Options	Comments
Transmit Register	Tristate	Normal	Enable Polarity	Low/high (low default)
(continued)	Buffer	LVTTL	Output Drive	2, 4, 6, 8, 12,16, 24, 36 mA (8 mA default)
			Slew Rate	Low/high (high default)
			Enable Polarity	Low/high (low default)
			Pull-Up/-Down	None (default)
		LVCMOS	Voltage	1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V default)
			Output Drive	2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA default)
			Slew Rate	Low/high (high default)
			Enable Polarity	Low/high (low default)
			Pull-Up/-Down	None (default)
		PCI/PCI-X	Enable Polarity	Low/high (low default)
		GTL/GTL+	Voltage	1.8 V, 2.5 V, 3.3 V (3.3 V default)
			Enable Polarity	Low/high (low default)
		HSTL	Class	I / II (I default)
			Enable Polarity	Low/high (low default)
		SSTL2/SSTL3	Class	I / II (I default)
			Enable Polarity	Low/high (low default)
	Bidirectional	Normal	Enable Polarity	Low/high (low default)
	Buffer	LVTTL	Output Drive	2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA default)
			Slew Rate	Low/high (high default)
			Enable Polarity	Low/high (low default)
			Pull-Up/-Down	None (default)
		LVCMOS	Voltage	1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V default)
			Enable Polarity	Low/high (low default)
			Pull-Up	None (default)
		PCI/PCI-X	None	
			Enable Polarity	Low/high (low default)
		GTL/GTL+	Voltage	1.8 V, 2.5 V, 3.3 V (3.3 V default)
			Enable Polarity	Low/high (low default)
		HSTL	Class	I / II (I default)
			Enable Polarity	Low/high (low default)
		SSTL2/SSTL3	Class	I / II (I default)
			Enable Polarity	Low/high (low default)

9-4 v1.4

Input Support for DDR

The basic structure to support a DDR input is shown in Figure 9-2. Three input registers are used to capture incoming data, which is presented to the core on each rising edge of the I/O register clock. Each I/O tile supports DDR inputs.

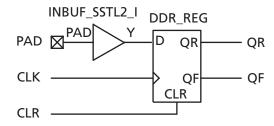


Figure 9-2 • DDR Input Register Support in Low-Power Flash Devices

Output Support for DDR

The basic DDR output structure is shown in Figure 9-1 on page 9-1. New data is presented to the output every half clock cycle.

Note: DDR macros and I/O registers do not require additional routing. The combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR macro.

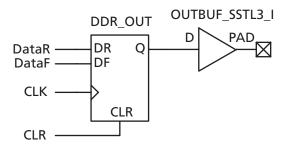


Figure 9-3 • DDR Output Register (SSTL3 Class I)

v1.4 9-5

Instantiating DDR Registers

Using SmartGen is the simplest way to generate the appropriate RTL files for use in the design. Figure 9-4 shows an example of using SmartGen to generate a DDR SSTL2 Class I input register. SmartGen provides the capability to generate all of the DDR I/O cells as described. The user, through the graphical user interface, can select from among the many supported I/O standards. The output formats supported are Verilog, VHDL, and EDIF.

Figure 9-5 on page 9-7 through Figure 9-8 on page 9-10 show the I/O cell configured for DDR using SSTL2 Class I technology. For each I/O standard, the I/O pad is buffered by a special primitive that indicates the I/O standard type.

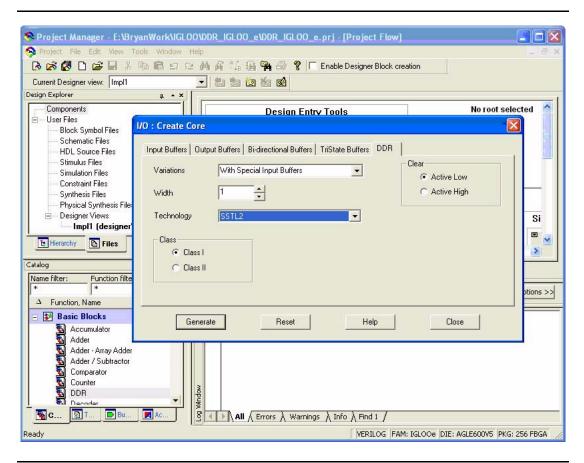


Figure 9-4 • Example of Using SmartGen to Generate a DDR SSTL2 Class I Input Register

9-6 v1.4

DDR Input Register

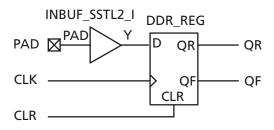


Figure 9-5 • DDR Input Register (SSTL2 Class I)

The corresponding structural representations, as generated by SmartGen, are shown below:

Verilog

```
module DDR_InBuf_SSTL2_I(PAD,CLR,CLK,QR,QF);
       PAD, CLR, CLK;
output QR, QF;
wire Y;
  INBUF_SSTL2_I INBUF_SSTL2_I_0_inst(.PAD(PAD),.Y(Y));
  DDR_REG_ DDR_REG_0_inst(.D(Y),.CLK(CLK),.CLR(CLR),.QR(QR),.QF(QF));
endmodule
VHDL
library ieee;
use ieee.std_logic_1164.all;
-- The correct library will be inserted automatically by SmartGen
library proasic3; use proasic3.all;
--library fusion; use fusion.all;
--library igloo; use igloo.all;
entity DDR_InBuf_SSTL2_I is
  port(PAD, CLR, CLK : in std_logic; QR, QF : out std_logic);
end DDR_InBuf_SSTL2_I;
architecture DEF_ARCH of DDR_InBuf_SSTL2_I is
  component INBUF_SSTL2_I
   port(PAD : in std_logic := 'U'; Y : out std_logic) ;
  end component;
  component DDR_REG
    port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic);
  end component;
signal Y : std_logic ;
begin
  INBUF_SSTL2_I_0_inst : INBUF_SSTL2_I
  port map(PAD => PAD, Y => Y);
  DDR_REG_0_inst : DDR_REG
  port map(D => Y, CLK => CLK, CLR => CLR, QR => QR, QF => QF);
end DEF_ARCH;
```

v1.4 9-7

DDR Output Register

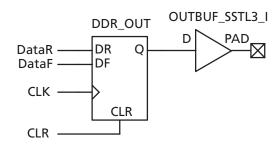


Figure 9-6 • DDR Output Register (SSTL3 Class I)

Verilog

```
module DDR_OutBuf_SSTL3_I(DataR,DataF,CLR,CLK,PAD);
        DataR, DataF, CLR, CLK;
input
output PAD;
wire Q, VCC;
  VCC VCC_1_net(.Y(VCC));
  DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
  OUTBUF_SSTL3_I OUTBUF_SSTL3_I_O_inst(.D(Q),.PAD(PAD));
endmodule
VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;
entity DDR_OutBuf_SSTL3_I is
 port(DataR, DataF, CLR, CLK : in std_logic; PAD : out std_logic) ;
end DDR_OutBuf_SSTL3_I;
architecture DEF_ARCH of DDR_OutBuf_SSTL3_I is
  component DDR_OUT
   port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic);
  end component;
  component OUTBUF_SSTL3_I
   port(D : in std_logic := 'U'; PAD : out std_logic) ;
  end component;
  component VCC
   port( Y : out std_logic);
  end component;
signal Q, VCC_1_net : std_logic ;
begin
  VCC_2_net : VCC port map(Y => VCC_1_net);
  DDR_OUT_0_inst : DDR_OUT
  port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
  OUTBUF_SSTL3_I_0_inst : OUTBUF_SSTL3_I
  port map(D => Q, PAD => PAD);
end DEF_ARCH;
```

9-8 v1.4

DDR Tristate Output Register

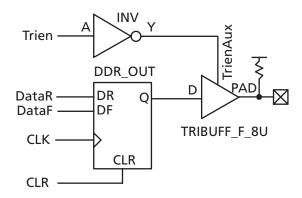


Figure 9-7 • DDR Tristate Output Register, LOW Enable, 8 mA, Pull-Up (LVTTL)

Verilog

```
module DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp(DataR, DataF, CLR, CLK, Trien,
  PAD);
input.
       DataR, DataF, CLR, CLK, Trien;
output PAD;
wire TrienAux, Q;
  INV Inv_Tri(.A(Trien),.Y(TrienAux));
  DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
  TRIBUFF_F_8U TRIBUFF_F_8U_0_inst(.D(Q),.E(TrienAux),.PAD(PAD));
endmodule
VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;
entity DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp is
  port(DataR, DataF, CLR, CLK, Trien : in std_logic; PAD : out std_logic);
end DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp;
\verb|architecture| DEF_ARCH of DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp is \\
  component INV
   port(A : in std_logic := 'U'; Y : out std_logic);
  end component;
  component DDR OUT
    port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic);
  end component;
  component TRIBUFF_F_8U
    port(D, E : in std_logic := 'U'; PAD : out std_logic);
  end component;
signal TrienAux, Q : std_logic ;
begin
  Inv_Tri : INV
```

v1.4 9-9


```
port map(A => Trien, Y => TrienAux);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
TRIBUFF_F_8U_0_inst : TRIBUFF_F_8U
port map(D => Q, E => TrienAux, PAD => PAD);
end DEF_ARCH;
```

DDR Bidirectional Buffer

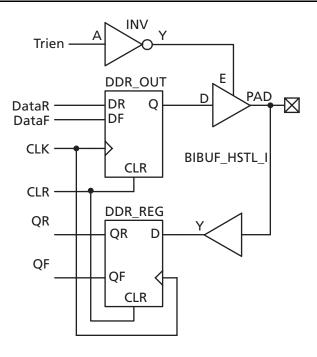


Figure 9-8 • DDR Bidirectional Buffer, LOW Output Enable (HSTL Class II)

Verilog

```
module DDR_BiDir_HSTL_I_LowEnb(DataR,DataF,CLR,CLK,Trien,QR,QF,PAD);
input DataR, DataF, CLR, CLK, Trien;
output QR, QF;
inout PAD;

wire TrienAux, D, Q;

INV Inv_Tri(.A(Trien), .Y(TrienAux));
   DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
   DDR_REG DDR_REG_0_inst(.D(D),.CLK(CLK),.CLR(CLR),.QR(QR),.QF(QF));
   BIBUF_HSTL_I BIBUF_HSTL_I_0_inst(.PAD(PAD),.D(Q),.E(TrienAux),.Y(D));
endmodule
```

9-10 v1.4

VHDL

```
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;
entity DDR_BiDir_HSTL_I_LowEnb is
  port(DataR, DataF, CLR, CLK, Trien : in std_logic; QR, QF : out std_logic;
    PAD : inout std_logic) ;
end DDR_BiDir_HSTL_I_LowEnb;
architecture DEF_ARCH of DDR_BiDir_HSTL_I_LowEnb is
  component INV
    port(A : in std_logic := 'U'; Y : out std_logic);
  end component;
  component DDR_OUT
    port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic);
  end component;
  component DDR_REG
    port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic);
  end component;
  component BIBUF_HSTL_I
    port(PAD : inout std_logic := 'U'; D, E : in std_logic := 'U'; Y : out std_logic);
  end component;
signal TrienAux, D, Q : std_logic ;
begin
  Inv_Tri : INV
  port map(A => Trien, Y => TrienAux);
  DDR_OUT_0_inst : DDR_OUT
  port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
  DDR_REG_0_inst : DDR_REG
  \texttt{port map}(\texttt{D} \Rightarrow \texttt{D}, \texttt{CLK} \Rightarrow \texttt{CLK}, \texttt{CLR} \Rightarrow \texttt{CLR}, \texttt{QR} \Rightarrow \texttt{QR}, \texttt{QF} \Rightarrow \texttt{QF});
  BIBUF_HSTL_I_0_inst : BIBUF_HSTL_I
  port map(PAD => PAD, D => Q, E => TrienAux, Y => D);
end DEF_ARCH;
```

v1.4 9-11

Design Example

Figure 9-9 shows a simple example of a design using both DDR input and DDR output registers. The user can copy the HDL code in Actel Libero[®] Integrated Design Environment (IDE) and go through the design flow. Figure 9-10 and Figure 9-11 on page 9-13 show the netlist and ChipPlanner views of the ddr_test design. Diagrams may vary slightly for different families.

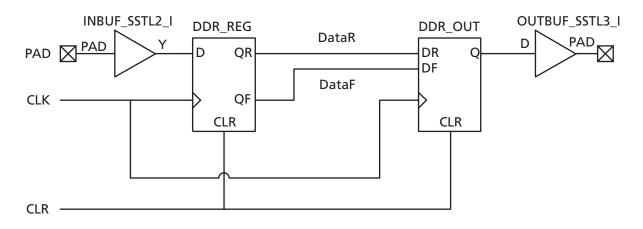


Figure 9-9 • Design Example

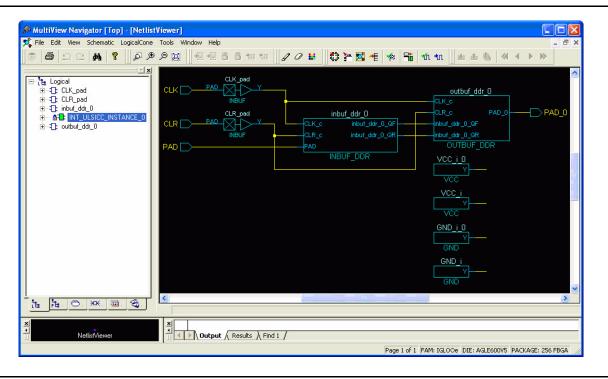


Figure 9-10 • DDR Test Design as Seen by NetlistViewer for IGLOO/e Devices

9-12 v1.4

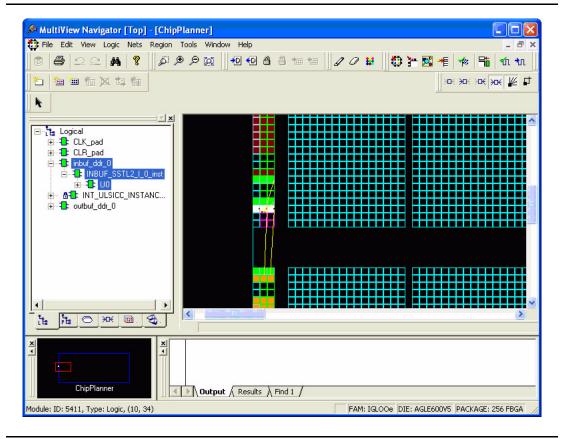


Figure 9-11 • DDR Input/Output Cells as Seen by ChipPlanner for IGLOO/e Devices

Verilog

```
module Inbuf_ddr(PAD,CLR,CLK,QR,QF);
input PAD, CLR, CLK;
output QR, QF;
wire Y;

DDR_REG DDR_REG_0_inst(.D(Y), .CLK(CLK), .CLR(CLR), .QR(QR), .QF(QF));
INBUF INBUF_0_inst(.PAD(PAD), .Y(Y));
endmodule

module Outbuf_ddr(DataR,DataF,CLR,CLK,PAD);
input DataR, DataF, CLR, CLK;
output PAD;
wire Q, VCC;

VCC VCC_1_net(.Y(VCC));
DDR_OUT DDR_OUT_0_inst(.DR(DataR), .DF(DataF), .CLK(CLK), .CLR(CLR), .Q(Q));
OUTBUF OUTBUF_0_inst(.D(Q), .PAD(PAD));
endmodule
```

v1.4 9-13


```
module ddr_test(DIN, CLK, CLR, DOUT);
input DIN, CLK, CLR;
output DOUT;

Inbuf_ddr Inbuf_ddr (.PAD(DIN), .CLR(clr), .CLK(clk), .QR(qr), .QF(qf));
Outbuf_ddr Outbuf_ddr (.DataR(qr),.DataF(qf), .CLR(clr), .CLK(clk),.PAD(DOUT));
INBUF INBUF_CLR (.PAD(CLR), .Y(clr));
INBUF INBUF_CLK (.PAD(CLK), .Y(clk));
endmodule
```

Simulation Consideration

Actel DDR simulation models use inertial delay modeling by default (versus transport delay modeling). As such, pulses that are shorter than the actual gate delays should be avoided, as they will not be seen by the simulator and may be an issue in post-routed simulations. The user must be aware of the default delay modeling and must set the correct delay model in the simulator as needed.

Conclusion

Fusion, IGLOO, and ProASIC3 devices support a wide range of DDR applications with different I/O standards and include built-in DDR macros. The powerful capabilities provided by SmartGen and its GUI can simplify the process of including DDR macros in designs and minimize design errors. Additional considerations should be taken into account by the designer in design floorplanning and placement of I/O flip-flops to minimize datapath skew and to help improve system timing margins. Other system-related issues to consider include PLL and clock partitioning.

9-14 v1.4

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet, combined with content previously published as an application note describing features and functions of the device. To improve usability for customers, the device architecture information has now been combined with usage information, to reduce duplication and possible inconsistencies in published information. No technical changes were made to the datasheet content unless explicitly listed. Changes to the application note content were made only to be consistent with existing datasheet information.

Part Number 51700094-010-4 Revised December 2008

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in the Current Version (v1.4)	Page
v1.3 (October 2008)	IGLOO nano and ProASIC3 nano devices were added to Table 9-1 \cdot Flash-Based FPGAs.	9-2
	The "I/O Cell Architecture" section was updated with information applicable to nano devices.	9-3
	The output buffer (OUTBUF_SSTL3_I) input was changed to D, instead of Q, in Figure 9-1 · DDR Support in Low-Power Flash Devices, Figure 9-3 · DDR Output Register (SSTL3 Class I), Figure 9-6 · DDR Output Register (SSTL3 Class I), Figure 9-7 · DDR Tristate Output Register, LOW Enable, 8 mA, Pull-Up (LVTTL), and the output from the DDR_OUT macro was connected to the input of the TRIBUFF macro in Figure 9-7 · DDR Tristate Output Register, LOW Enable, 8 mA, Pull-Up (LVTTL).	9-1, 9-5, 9-8, 9-9
v1.2 (June 2008)	The "Double Data Rate (DDR) Architecture" section was updated to include mention of the AFS600 and AFS1500 devices.	9-1
	The "DDR Support in Flash-Based Devices" section was revised to include new families and make the information more concise.	9-2
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 9-1 · Flash-Based FPGAs: • ProASIC3L was updated to include 1.5 V. • The number of PLLs for ProASIC3E was changed from five to six.	9-2
v1.0 (January 2008)	The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new.	9-2

Packaging and Pin Descriptions

10 – Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

V_{CC} Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V for ProASIC®3/E devices, 1.5 V for IGLOO®/e V5 devices, and 1.2 V or 1.5 V for IGLOO/e V2 and ProASIC3L devices. V_{CC} is required for powering the JTAG state machine in addition to V_{JTAG} . Even when a device is in bypass mode in a JTAG chain of interconnected devices, both V_{CC} and V_{JTAG} must remain powered to allow JTAG signals to pass through the device.

For IGLOO/e V2 and ProASIC3L devices, V_{CC} can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming (ISP) when V_{CC} is at 1.5 V and the benefit of low-power operation when V_{CC} is at 1.2 V.

V_{CCI}Bx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low-power flash devices plus a dedicated V_{JTAG} bank. Each bank can have a separate V_{CCI} connection. All I/Os in a bank will run off the same V_{CCI} Bx supply. V_{CCI} can be 1.2 V (not supported on ProASIC3/E devices), 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding V_{CCI} pins tied to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer V_{CCI} domain. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V (ProASIC3L and IGLOO/e devices only), 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and V_{CCI} should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding V_{CCI} pins of the same bank (i.e., VMV0 to V_{CCI} B0, VMV1 to V_{CCI} B1, etc.).

V_{CCPLA/B/C/D/E/F} PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V or 1.2 V, depending on the device family.

- 1.5 V for IGLOO V5, IGLOOe V5, ProASIC3, and ProASIC3E devices
- 1.2 V or 1.5 V for IGLOO V2, IGLOOe V2, ProASIC3L, and ProASIC3EL devices

When the PLLs are not used, the Actel Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused V_{CCPLx} and V_{COMPLx} pins to ground. Actel recommends tying V_{CCPLx} to V_{CC} and using proper filtering circuits to decouple V_{CC} noise from the PLLs. Refer to the PLL Power Supply Decoupling section of *Clock Conditioning Circuits in IGLOO and ProASIC3 Devices* for a complete board solution for the PLL analog power supply and ground.

- There is one V_{CCPLF} pin on IGLOO, IGLOO PLUS, ProASIC3L, and ProASIC3 devices.
- There are six V_{CCPLX} pins on IGLOOe, ProASIC3EL, and ProASIC3E devices.

V_{COMPLA/B/C/D/E/F} PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Actel Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused V_{CCPLx} and V_{COMPLx} pins to ground.

- There is one V_{COMPLF} pin on IGLOO, ProASIC3L, and ProASIC3 devices.
- There are six V_{COMPL} pins (PLL ground) on IGLOOe, ProASIC3EL, and ProASIC3E devices.

V_{JTAG} JTAG Supply Voltage

Low-power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the V_{JTAG} pin together with the TRST pin could be tied to GND. It should be noted that V_{CC} is required to be powered for JTAG operation; V_{JTAG} alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both V_{JTAG} and V_{CC} to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Actel recommends that V_{PUMP} and V_{JTAG} power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

V_{PUMP} Programming Supply Voltage

IGLOO, ProASIC3L, and ProASIC3 devices support single-voltage ISP of the configuration flash and FlashROM. For programming, V_{PUMP} should be 3.3 V nominal. During normal device operation, V_{PUMP} can be left floating or can be tied (pulled up) to any voltage between 0 V and the V_{PUMP} maximum. Programming power supply voltage (V_{PUMP}) range is listed in the datasheet.

When the V_{PUMP} pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across V_{PUMP} and GND, and positioned as close to the FPGA pins as possible.

Actel recommends that V_{PUMP} and V_{JTAG} power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User-Defined Supply Pins

V_{RFF} I/O Voltage Reference

Reference voltage for I/O minibanks in IGLOOe, ProASIC3EL, and ProASIC3E devices. V_{REF} pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One V_{REF} pin can support the number of I/Os available in its minibank.

10-2 v1.3

User Pins

/O User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to V_{CCI} . With V_{CCI} , VMV, and V_{CC} supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in Clock Conditioning Circuits in IGLOO and ProASIC3 Devices. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure section of the handbook for the device you are using for an explanation of the naming of global pins.

FF Flash*Freeze Mode Activation Pin

Flash*Freeze is available on IGLOO, ProASIC3L, and RT ProASIC3 devices. It is not supported on ProASIC3/E devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active-low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O. For IGLOOe, ProASIC3EL, and RT ProASIC3 only, the FF pin can be configured as a Schmitt trigger input.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

v1.3 10-3

Table 10-1 shows the Flash*Freeze pin location on the available packages for IGLOO and ProASIC3L devices. The Flash*Freeze pin location is independent of device (except for a PQ208 package), allowing migration to larger or smaller IGLOO devices while maintaining the same pin location on the board. Refer to Flash*Freeze Technology and Low-Power Modes in IGLOO and ProASIC3L Devices for more information on I/O states during Flash*Freeze mode.

Table 10-1 • Flash*Freeze Pin Location in IGLOO and ProASIC3L Family Packages (device-independent)

IGLOO and ProASIC3L Packages	Flash*Freeze Pin
CS81/UC81	H2
CS121	J5
CS196	P3
QN48	14
QN68	18
QN132	B12
CS281	W2
CS201	R4
CS289	U1
VQ100	27
VQ128	34
VQ176	47
FG144	L3
FG256	T3
FG484	W6
CG/LG484 (package available only for RT ProASIC3 devices)	W6
FG896	AH4
CG/LG896 (package available only for RT ProASIC3 devices)	TBD
PQ208 (package available only for ProASIC3L devices)	
PQ208-A3P250	56
PQ208-A3P600L	55
PQ2097-A3P1000L	55
PQ208-A3PE3000L	58

10-4 v1.3

JTAG Pins

Low-power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). V_{CC} must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; V_{JTAG} alone is insufficient. Both V_{JTAG} and V_{CC} to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the V_{JTAG} pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Actel recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all V_{JTAG} voltages, 500 Ω to 1 $k\Omega$ will satisfy the requirements. Refer to Table 10-2 for more information.

Table 10-2 • Recommended Tie-Off Values for the TCK and TRST Pins

V _{JTAG}	Tie-Off Resistance
V _{JTAG} at 3.3 V	200 Ω to 1 kΩ
V _{JTAG} at 2.5 V	200 Ω to 1 k Ω
V _{JTAG} at 1.8 V	500 Ω to 1 kΩ
V _{JTAG} at 1.5 V	500 Ω to 1 kΩ

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 10-2 and must satisfy the parallel resistance value requirement. The values in Table 10-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Actel recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all V_{JTAG} voltages, 500 Ω to 1 $k\Omega$ will satisfy the requirements.

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Related Documents

Handbook Documents

Clock Conditioning Circuits in IGLOO and ProASIC3 Devices

http://www.actel.com/documents/LPD_CCC_HBs.pdf

I/O Structures in IGLOO PLUS Devices

http://www.actel.com/documents/IGLOOPLUS_IO_HBs.pdf

I/O Structures in IGLOO and ProASIC3 Devices

http://www.actel.com/documents/IGLOO_PA3_IO_HBs.pdf

I/O Structures in IGLOOe and ProASIC3E Devices

http://www.actel.com/documents/IGLOOe_PA3E_IO_HBs.pdf

Flash*Freeze Technology and Low-Power Modes in IGLOO and ProASIC3L Devices

http://www.actel.com/documents/LPD_FlashFreeze_HBs.pdf

10-6 v1.3

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet. To improve usability for customers, the device architecture information has now been split into handbook sections, which also include usage information. No technical changes were made to the content unless explicitly listed.

Part Number 51700094-011-3 Revised December 2008

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.3)			
v1.2 (October 2008)	Table 10-1 · Flash*Freeze Pin Location in IGLOO and ProASIC3L Family Packages (device-independent) was updated as follows:			
	The QN48, VQ128, and VQ176 packages were added.			
	The note that CS201 and CS289 packages are available only for IGLOO PLUS devices was removed.			
	U1 was designated as the Flash*Freeze pin for the CS289 package.			
v1.1 (March 2008)	The "FF Flash*Freeze Mode Activation Pin" section was updated to include RT ProASIC3 devices.			
	CG/LG484 and CG/LG896 were added to Table 10-1 · Flash*Freeze Pin Location in IGLOO and ProASIC3L Family Packages (device-independent).	10-4		
v1.0 (January 2008)	The "VCCIBx I/O Supply Voltage" section was revised to note that 1.2 V is not supported for ProASIC3/E devices. The "VMVx I/O Supply Voltage (quiet)" section was updated to state that VMVx can also be 1.2 V nominal voltage on ProASIC3L and IGLOO/e devices.			
	The "Handbook Documents" section was revised to include the three different I/O Structures chapters for IGLOO and ProASIC3 device families.	10-6		
	The "V _{CCPLA/B/C/D/E/F} PLL Supply Voltage" section and "V _{COMPLA/B/C/D/E/F} PLL Ground" section were revised. The "V _{CCPLF} PLL Supply Voltage" section and "V _{COMPLF} PLL Ground" section were removed.	10-1 to 10-2		
	The following packages were added to Table 10-1 · Flash*Freeze Pin Location in IGLOO and ProASIC3L Family Packages (device-independent): UC81, QN68, CS201, and CS289. Flash*Freeze pin W2 was specified for the CS281 package. The PG208 package was changed to the correct designation of PQ208.	10-4		

11 – Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Actel consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Actel IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Actel offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

The following documents provide packaging information and device selection for low-power flash devices.

Product Catalog

http://www.actel.com/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.actel.com/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Actel. Use the bookmarks to navigate to the package mechanical drawings.

Related Documents

Additional packaging materials are available at http://www.actel.com/products/solutions/package/docs.aspx.

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet, combined with content previously published as an application note describing features and functions of the device. To improve usability for customers, the device architecture information has now been combined with usage information, to reduce duplication and possible inconsistencies in published information. No technical changes were made to the datasheet content unless explicitly listed. Changes to the application note content were made only to be consistent with existing datasheet information.

Part Number 5170009-012-1

Revised February 2009

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.1)				
v1.0 (January 2008)	This document now references the Product Catalog, which replaced the Product Selector Guide.	1			

Design Migration

12 – Migrating Designs in ProASIC3 Devices from Higher-Density to Mid-Density Devices

Introduction

The purpose of this document is to assist in migrating designs in ProASIC®3 A3P1000, A3P600, and A3P400 devices from higher-density to mid-density devices. There are three possible migration paths:

- A3P1000 to A3P600
- A3P1000 to A3P400
- A3P600 to A3P400

Since one of the key factors is pin compatibility, this document addresses pin compatibility for all available packages common to the A3P1000, A3P600, and A3P400 devices.

Design Migration

ProASIC3 family devices are architecturally compatible with each other. However, designers must pay attention to a few key areas when migrating a design. The specific issues discussed throughout this application note are as follows:

- "Design and Device Evaluation"
- "Device and Package Compatibility" on page 12-2
- "Migration and Implementation Methodologies" on page 12-3
- "I/O Banks and Standards" on page 12-4
- "Power Supply and Board-Level Considerations" on page 12-4
- "Pin Migration and Compatibility" on page 12-5

Design and Device Evaluation

When migrating a design, the primary task should be to compare the available resources between the two devices. The designer should evaluate effective gate count, RAM size, I/O banks, and number of I/Os (Table 12-1). In addition, necessary design timing analysis and simulations should be validated when porting designs to new ProASIC3 derivatives.

Table 12-1 • Device Information

	A3P1000	A3P600	A3P400
System Gates	1 M	600 k	400 k
Tiles (D-flip-flop)	24,576	13,824	9,126
RAM (kbits)	144	108	54
RAM Blocks (4,608 bits)	32	24	12
I/O Banks (+ JTAG)	4	4	4
Maximum User I/Os per Package			
PQ208	154/35	154/35	151/34
FG144	97/25	97/25	97/25
FG256	177/44	177/43	178/38
FG484	300/74	235/60	194/38

Note: Maximum user I/O is listed as single-ended/double-ended.

v1.1 12-1

Device and Package Compatibility

ProASIC3 devices and packaging were designed to allow considerable footprint compatibility for smoother migration.

Common and Convertible I/Os between A3P400, A3P600, and A3P1000 Devices

Table 12-2 shows the number of I/Os that are common between any two of these devices, as well as the number of I/Os that will require conversion per the suggested design migration rules given in the "Migration and Implementation Methodologies" section on page 12-3.

Table 12-2 • Common and Convertible I/Os

	A3P1000 A3P600		_	1000 2400	A3P600 A3P400		
Package	Common I/Os	Convertible I/Os	Common I/Os	Convertible I/Os	Common I/Os	Convertible I/Os	
PQ208	154	0	154	5	151	5	
FG144	97	0	97	0	98	0	
FG256	178	31	177	59	177	33	
FG484	236	96	192	75	236	166	

12-2 v1.1

Migration and Implementation Methodologies

Table 12-3 lists some possible migration combinations and the recommended implementation rules for compatible design conversions from higher-density to lower-density devices. Refer to the "Related Documents" section on page 12-40 for other relevant Actel documentation. The "Pin Migration and Compatibility" section on page 12-5 contains tables that list the required rules for different pin combinations. If "Rule x" is mentioned for a pin combination, that combination requires the implementation methodology given in Table 12-3. Note that many combinations of high-density/low-density pins do not require these rules; the pins have complete type compatibility. These pins are marked in the pin tables with "None."

Table 12-3 • Migration Rules from Higher-Density to Mid-Density Devices

Migration	Issue		
Rule	Higher Density	Lower Density	Implementation Methodology
1	I/O or global I/O	NC	Leave this pin floating OR program I/Os as unused (software cannot program NC to usable I/O).
2	Single-ended I/O	Global I/O	Instantiate the I/O buffer as a global single-ended I/O.
3	Global I/O	Single-ended I/O	Use the physical design constraint (PDC) to promote the single-ended I/O to a global pin. There is an additional delay that affects the setup time on the board. Or, do not use this pin as a global input on the higher-density device.
4	V _{CC} or V _{CCI} B(x) ^{1,3}	NC	Leave pin connected to board V _{CC} or V _{CCI} Bx plane.
5	V _{CCI} B(x) ¹	V _{CCI} B(y) ²	Make sure the two bank voltage levels are the same. Tie the pin to the board's corresponding $V_{\text{CCI}}Bx/VMVx$ plane.
6	VMV(x) ¹	VMV(y) ²	Make sure the two bank voltage levels are the same. Tie pin to the board's corresponding $V_{\text{CCI}}Bx/VMVx$ plane.
7	VMV(x) ²	I/O or global I/O	Leave the pin tied to the board $V_{CCI}Bx/VMVx$ plane. Instantiate the I/Os as tristate buffers with OE = 0 and no weak pull-ups/-downs.
8	GNDQ	Global I/O	Leave both pins tied to board GNDQ plane. Instantiate the I/O as tristate buffer with OE = 0 and no weak pull-ups/-downs.
9	GNDQ	NC	GNDQ and NC need to be connected to GND.

Notes:

- 1. (x) = 1, 2, 3, or 4
- 2. (y) = 1, 2, 3, or 4
- 3. Refer to I/O Structures in IGLOO® and ProASIC3 Devices for I/O naming conventions.

v1.1 12-3

I/O Banks and Standards

ProASIC3 I/Os are partitioned into multiple I/O voltage banks. The number of banks is device-dependent. There are four I/O banks in A3P1000, A3P600, and A3P400 devices.

Package V_{CCI}Bx pins are routed through the corresponding banks of the devices.

The banks have dedicated supplies; therefore, only I/Os with compatible voltage standards can be assigned to the same I/O voltage bank.

Power Supply and Board-Level Considerations

I/O power supply requirements are one of the key aspects to consider for design migration. Since the migration is within the ProASIC3 family, there is no issue with respect to the core voltage, V_{CC} . Pins that must be appropriately connected are V_{CC} Bx (bank supply voltage to I/O output buffer and I/O logic), VMVx (quiet I/O supply voltage), GNDQ (quiet GND), and GND. An important function of GNDQ and VMVx is to decouple simultaneous switching noise for outputs (SSOs) to enhance signal integrity and improve noise immunity.

The following are the key rules of migration for the above-mentioned pins:

- VMVx and V_{CCI}Bx must be at the same voltage level for a given bank.
- V_{CCI}Bx pins and VMVx pins in unused banks must be connected to GND.
- Unused I/Os are automatically disabled by software.

A specific power-supply sequence at power-up is not required.

Any incorrect connection during the migration may affect overall dynamic or inrush power consumption and might even result in device malfunction.

Additionally, the I/O naming convention in ProASIC3 devices has significant embedded information (i.e., pin location, bank number, signal type, polarity, and clock conditioning). For a detailed explanation, refer to the "User I/O Naming Convention" section in the I/O Structures in IGLOO and ProASIC3 Devices. This datasheet also contains additional information on power issues.

12-4 v1.1

Pin Migration and Compatibility

PQ208 Package

Table 12-4 • Pin Compatibility and Migration Table for the PQ208 Package

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
1	GND	GND	GND	None	None	None
2	GAA2/IO225PDB3	GAA2/IO170PDB3	GAA2/IO155UDB3	None	None	None
3	IO225NDB3	IO170NDB3	IO155VDB3	None	None	None
4	GAB2/IO224PDB3	GAB2/IO169PDB3	GAB2/IO154UDB3	None	None	None
5	IO224NDB3	IO169NDB3	IO154VDB3	None	None	None
6	GAC2/IO223PDB3	GAC2/IO168PDB3	GAC2/IO153UDB3	None	None	None
7	IO223NDB3	IO168NDB3	IO153VDB3	None	None	None
8	IO222PDB3	IO167PDB3	IO152UDB3	None	None	None
9	IO222NDB3	IO167NDB3	IO152VDB3	None	None	None
10	IO220PDB3	IO166PDB3	IO151UDB3	None	None	None
11	IO220NDB3	IO166NDB3	IO151VDB3	None	None	None
12	IO218PDB3	IO165PDB3	IO150PDB3	None	None	None
13	IO218NDB3	IO165NDB3	IO150NDB3	None	None	None
14	IO216PDB3	IO164PDB3	IO149PDB3	None	None	None
15	IO216NDB3	IO164NDB3	IO149NDB3	None	None	None
16	V _{CC}	V _{CC}	V _{CC}	None	None	None
17	GND	GND	GND	None	None	None
18	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
19	IO212PDB3	IO163PDB3	IO148PDB3	None	None	None
20	IO212NDB3	IO163NDB3	IO148NDB3	None	None	None
21	GFC1/IO209PDB3	GFC1/IO161PDB3	GFC1/IO147PDB3	None	None	None
22	GFC0/IO209NDB3	GFC0/IO161NDB3	GFC0/IO147NDB3	None	None	None
23	GFB1/IO208PDB3	GFB1/IO160PDB3	GFB1/IO146PDB3	None	None	None
24	GFB0/IO208NDB3	GFB0/IO160NDB3	GFB0/IO146NDB3	None	None	None
25	V_{COMPLF}	V _{COMPLF}	V _{COMPLF}	None	None	None
26	GFA0/IO207NPB3	GFA0/IO159NPB3	GFA0/IO145NPB3	None	None	None
27	V_{CCPLF}	V_{CCPLF}	V_{CCPLF}	None	None	None
28	GFA1/IO207PPB3	GFA1/IO159PPB3	GFA1/IO145PPB3	None	None	None
29	GND	GND	GND	None	None	None

Table 12-4 • Pin Compatibility and Migration Table for the PQ208 Package (continued)

		-		Migration Rule	Migration Rule	Migration Rule
				between A3P1000	between A3P1000	between A3P600
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	and A3P600	and A3P400	and A3P400
30	GFA2/IO206PDB3	GFA2/IO158PDB3	GFA2/IO144PDB3	None	None	None
31	IO206NDB3	IO158NDB3	IO144NDB3	None	None	None
32	GFB2/IO205PDB3	GFB2/IO157PDB3	GFB2/IO143PDB3	None	None	None
33	IO205NDB3	IO157NDB3	IO143NDB3	None	None	None
34	GFC2/IO204PDB3	GFC2/IO156PDB3	GFC2/IO142PDB3	None	None	None
35	IO204NDB3	IO156NDB3	IO142NDB3	None	None	None
36	V _{CC}	V _{CC}	NC	None	Rule 4	Rule 4
37	IO199PDB3	IO147PDB3	IO141PSB3	None	None	None
38	IO199NDB3	IO147NDB3	IO140PDB3	None	None	None
39	IO197PSB3	IO146PSB3	IO140NDB3	None	None	None
40	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
41	GND	GND	GND	None	None	None
42	IO191PDB3	IO145PDB3	IO138PDB3	None	None	None
43	IO191NDB3	IO145NDB3	IO138NDB3	None	None	None
44	GEC1/IO190PDB3	GEC1/IO144PDB3	GEC1/IO137PDB3	None	None	None
45	GEC0/IO190NDB3	GEC0/IO144NDB3	GEC0/IO137NDB3	None	None	None
46	GEB1/IO189PDB3	GEB1/IO143PDB3	GEB1/IO136PDB3	None	None	None
47	GEB0/IO189NDB3	GEB0/IO143NDB3	GEB0/IO136NDB3	None	None	None
48	GEA1/IO188PDB3	GEA1/IO142PDB3	GEA1/IO135PDB3	None	None	None
49	GEA0/IO188NDB3	GEA0/IO142NDB3	GEA0/IO135NDB3	None	None	None
50	VMV3	VMV3	VMV3	None	None	None
51	GNDQ	GNDQ	GNDQ	None	None	None
52	GND	GND	GND	None	None	None
53	VMV2	VMV2	VMV2	None	None	None
54	GEA2/IO187RSB2	GEA2/IO141RSB2	NC	None	Rule 1	Rule 1
55	GEB2/IO186RSB2	GEB2/IO140RSB2	GEA2/IO134RSB2	None	None	None
56	GEC2/IO185RSB2	GEC2/IO139RSB2	GEB2/IO133RSB2	None	None	None
57	IO184RSB2	IO138RSB2	GEC2/IO132RSB2	None	Rule 2	Rule 2
58	IO183RSB2	IO137RSB2	IO131RSB2	None	None	None
59	IO182RSB2	IO136RSB2	IO130RSB2	None	None	None
60	IO181RSB2	IO135RSB2	IO129RSB2	None	None	None
61	IO180RSB2	IO134RSB2	IO128RSB2	None	None	None
62	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None

12-6 v1.1

Table 12-4 • Pin Compatibility and Migration Table for the PQ208 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
				A3P1000	A3P1000	A3P600
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	and A3P600	and A3P400	and A3P400
63	IO178RSB2	IO133RSB2	IO125RSB2	None	None	None
64	IO176RSB2	IO131RSB2	IO123RSB2	None	None	None
65	GND	GND	GND	None	None	None
66	IO174RSB2	IO129RSB2	IO121RSB2	None	None	None
67	IO172RSB2	IO127RSB2	IO119RSB2	None	None	None
68	IO170RSB2	IO125RSB2	IO117RSB2	None	None	None
69	IO168RSB2	IO123RSB2	IO115RSB2	None	None	None
70	IO166RSB2	IO121RSB2	IO113RSB2	None	None	None
71	V _{CC}	V _{CC}	V _{CC}	None	None	None
72	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
73	IO162RSB2	IO118RSB2	IO112RSB2	None	None	None
74	IO160RSB2	IO117RSB2	IO111RSB2	None	None	None
75	IO158RSB2	IO116RSB2	IO110RSB2	None	None	None
76	IO156RSB2	IO115RSB2	IO109RSB2	None	None	None
77	IO154RSB2	IO114RSB2	IO108RSB2	None	None	None
78	IO152RSB2	IO113RSB2	IO107RSB2	None	None	None
79	IO150RSB2	IO112RSB2	IO106RSB2	None	None	None
80	IO148RSB2	IO110RSB2	IO104RSB2	None	None	None
81	GND	GND	GND	None	None	None
82	IO143RSB2	IO109RSB2	IO102RSB2	None	None	None
83	IO141RSB2	IO108RSB2	IO101RSB2	None	None	None
84	IO139RSB2	IO107RSB2	IO100RSB2	None	None	None
85	IO137RSB2	IO106RSB2	IO99RSB2	None	None	None
86	IO135RSB2	IO105RSB2	IO98RSB2	None	None	None
87	IO133RSB2	IO104RSB2	IO97RSB2	None	None	None
88	V _{CC}	V _{CC}	V _{CC}	None	None	None
89	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
90	IO128RSB2	IO102RSB2	IO94RSB2	None	None	None
91	IO126RSB2	IO100RSB2	IO92RSB2	None	None	None
92	IO124RSB2	IO98RSB2	IO90RSB2	None	None	None
93	IO122RSB2	IO96RSB2	IO88RSB2	None	None	None
94	IO120RSB2	IO94RSB2	IO86RSB2	None	None	None
95	IO118RSB2	IO90RSB2	IO84RSB2	None	None	None

Table 12-4 • Pin Compatibility and Migration Table for the PQ208 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
96	GDC2/IO116RSB2	GDC2/IO89RSB2	GDC2/IO82RSB2	None	None	None
97	GND	GND	GND	None	None	None
98	GDB2/IO115RSB2	GDB2/IO88RSB2	GDB2/IO81RSB2	None	None	None
99	GDA2/IO114RSB2	GDA2/IO87RSB2	GDA2/IO80RSB2	None	None	None
100	GNDQ	GNDQ	GNDQ	None	None	None
101	TCK	TCK	TCK	None	None	None
102	TDI	TDI	TDI	None	None	None
103	TMS	TMS	TMS	None	None	None
104	VMV2	VMV2	VMV2	None	None	None
105	GND	GND	GND	None	None	None
106	V _{PUMP}	V _{PUMP}	V_{PUMP}	None	None	None
107	GNDQ	GNDQ	NC	None	Rule 8	Rule 8
108	TDO	TDO	TDO	None	None	None
109	TRST	TRST	TRST	None	None	None
110	V_{JTAG}	V_{JTAG}	V_{JTAG}	None	None	None
111	GDA0/IO113NDB1	GDA0/IO86NDB1	GDA0/IO79VDB1	None	None	None
112	GDA1/IO113PDB1	GDA1/IO86PDB1	GDA1/IO79UDB1	None	None	None
113	GDB0/IO112NDB1	GDB0/IO85NDB1	GDB0/IO78VDB1	None	None	None
114	GDB1/IO112PDB1	GDB1/IO85PDB1	GDB1/IO78UDB1	None	None	None
115	GDC0/IO111NDB1	GDC0/IO84NDB1	GDC0/IO77VDB1	None	None	None
116	GDC1/IO111PDB1	GDC1/IO84PDB1	GDC1/IO77UDB1	None	None	None
117	IO109NDB1	IO82NDB1	IO76VDB1	None	None	None
118	IO109PDB1	IO82PDB1	IO76UDB1	None	None	None
119	IO106NDB1	IO80NDB1	IO75NDB1	None	None	None
120	IO106PDB1	IO80PDB1	IO75PDB1	None	None	None
121	IO104PSB1	IO79PSB1	IO74RSB1	None	None	None
122	GND	GND	GND	None	None	None
123	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
124	IO99NDB1	IO75NDB1	NC	None	Rule 1	Rule 1
125	IO99PDB1	IO75PDB1	NC	None	Rule 1	Rule 1
126	NC	NC	V _{CC}	None	Rule 4	Rule 4
127	IO96NDB1	IO73NDB1	IO72NDB1	None	None	None
128	GCC2/IO96PDB1	GCC2/IO73PDB1	GCC2/IO72PDB1	None	None	None

12-8 v1.1

Table 12-4 • Pin Compatibility and Migration Table for the PQ208 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
129	GCB2/IO95PSB1	GCB2/IO72PSB1	GCB2/IO71PSB1	None	None	None
130	GND	GND	GND	None	None	None
131	GCA2/IO94PSB1	GCA2/IO71PSB1	GCA2/IO70PSB1	None	None	None
132	GCA1/IO93PDB1	GCA1/IO70PDB1	GCA1/IO69PDB1	None	None	None
133	GCA0/IO93NDB1	GCA0/IO70NDB1	GCA0/IO69NDB1	None	None	None
134	GCB0/IO92NDB1	GCB0/IO69NDB1	GCB0/IO68NDB1	None	None	None
135	GCB1/IO92PDB1	GCB1/IO69PDB1	GCB1/IO68PDB1	None	None	None
136	GCC0/IO91NDB1	GCC0/IO68NDB1	GCC0/IO67NDB1	None	None	None
137	GCC1/IO91PDB1	GCC1/IO68PDB1	GCC1/IO67PDB1	None	None	None
138	IO88NDB1	IO66NDB1	IO66NDB1	None	None	None
139	IO88PDB1	IO66PDB1	IO66PDB1	None	None	None
140	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
141	GND	GND	GND	None	None	None
142	V _{CC}	V _{CC}	V _{CC}	None	None	None
143	IO86PSB1	IO65PSB1	IO65RSB1	None	None	None
144	IO84NDB1	IO64NDB1	IO64NDB1	None	None	None
145	IO84PDB1	IO64PDB1	IO64PDB1	None	None	None
146	IO82NDB1	IO63NDB1	IO63NDB1	None	None	None
147	IO82PDB1	IO63PDB1	IO63PDB1	None	None	None
148	IO80NDB1	IO62NDB1	IO62NDB1	None	None	None
149	GBC2/IO80PDB1	GBC2/IO62PDB1	GBC2/IO62PDB1	None	None	None
150	IO79NDB1	IO61NDB1	IO61NDB1	None	None	None
151	GBB2/IO79PDB1	GBB2/IO61PDB1	GBB2/IO61PDB1	None	None	None
152	IO78NDB1	IO60NDB1	IO60NDB1	None	None	None
153	GBA2/IO78PDB1	GBA2/IO60PDB1	GBA2/IO60PDB1	None	None	None
154	VMV1	VMV1	VMV1	None	None	None
155	GNDQ	GNDQ	GNDQ	None	None	None
156	GND	GND	GND	None	None	None
157	VMV0	VMV0	VMV0	None	None	None
158	GBA1/IO77RSB0	GBA1/IO59RSB0	GBA1/IO59RSB0	None	None	None
159	GBA0/IO76RSB0	GBA0/IO58RSB0	GBA0/IO58RSB0	None	None	None
160	GBB1/IO75RSB0	GBB1/IO57RSB0	GBB1/IO57RSB0	None	None	None
161	GBB0/IO74RSB0	GBB0/IO56RSB0	GBB0/IO56RSB0	None	None	None

Table 12-4 • Pin Compatibility and Migration Table for the PQ208 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
162	GND	GND	GND	None	None	None
163	GBC1/IO73RSB0	GBC1/IO55RSB0	GBC1/IO55RSB0	None	None	None
164	GBC0/IO72RSB0	GBC0/IO54RSB0	GBC0/IO54RSB0	None	None	None
165	IO70RSB0	IO52RSB0	IO52RSB0	None	None	None
166	IO67RSB0	IO50RSB0	IO49RSB0	None	None	None
167	IO63RSB0	IO48RSB0	IO46RSB0	None	None	None
168	IO60RSB0	IO46RSB0	IO43RSB0	None	None	None
169	IO57RSB0	IO44RSB0	IO40RSB0	None	None	None
170	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
171	V _{CC}	V _{CC}	V _{CC}	None	None	None
172	IO54RSB0	IO36RSB0	IO36RSB0	None	None	None
173	IO51RSB0	IO35RSB0	IO35RSB0	None	None	None
174	IO48RSB0	IO34RSB0	IO34RSB0	None	None	None
175	IO45RSB0	IO33RSB0	IO33RSB0	None	None	None
176	IO42RSB0	IO32RSB0	IO32RSB0	None	None	None
177	IO40RSB0	IO31RSB0	IO31RSB0	None	None	None
178	GND	GND	GND	None	None	None
179	IO38RSB0	IO29RSB0	IO29RSB0	None	None	None
180	IO35RSB0	IO28RSB0	IO28RSB0	None	None	None
181	IO33RSB0	IO27RSB0	IO27RSB0	None	None	None
182	IO31RSB0	IO26RSB0	IO26RSB0	None	None	None
183	IO29RSB0	IO25RSB0	IO25RSB0	None	None	None
184	IO27RSB0	IO24RSB0	IO24RSB0	None	None	None
185	IO25RSB0	IO23RSB0	IO23RSB0	None	None	None
186	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
187	V _{CC}	V _{CC}	V _{CC}	None	None	None
188	IO22RSB0	IO20RSB0	IO21RSB0	None	None	None
189	IO20RSB0	IO19RSB0	IO20RSB0	None	None	None
190	IO18RSB0	IO18RSB0	IO19RSB0	None	None	None
191	IO16RSB0	IO17RSB0	IO18RSB0	None	None	None
192	IO15RSB0	IO16RSB0	IO17RSB0	None	None	None
193	IO14RSB0	IO14RSB0	IO16RSB0	None	None	None
194	IO13RSB0	IO12RSB0	IO15RSB0	None	None	None

12-10 v1.1

Table 12-4 • Pin Compatibility and Migration Table for the PQ208 Package (continued)

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
195	GND	GND	GND	None	None	None
196	IO12RSB0	IO10RSB0	IO13RSB0	None	None	None
197	IO11RSB0	IO09RSB0	IO11RSB0	None	None	None
198	IO10RSB0	IO08RSB0	IO09RSB0	None	None	None
199	IO09RSB0	IO07RSB0	IO07RSB0	None	None	None
200	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
201	GAC1/IO05RSB0	GAC1/IO05RSB0	GAC1/IO05RSB0	None	None	None
202	GAC0/IO04RSB0	GAC0/IO04RSB0	GAC0/IO04RSB0	None	None	None
203	GAB1/IO03RSB0	GAB1/IO03RSB0	GAB1/IO03RSB0	None	None	None
204	GAB0/IO02RSB0	GAB0/IO02RSB0	GAB0/IO02RSB0	None	None	None
205	GAA1/IO01RSB0	GAA1/IO01RSB0	GAA1/IO01RSB0	None	None	None
206	GAA0/IO00RSB0	GAA0/IO00RSB0	GAA0/IO00RSB0	None	None	None
207	GNDQ	GNDQ	GNDQ	None	None	None
208	VMV0	VMV0	VMV0	None	None	None

FG144 Package

Table 12-5 • Pin Compatibility and Migration Table for the FG144 Package

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
A1	GNDQ	GNDQ	GNDQ	None	None	None
A2	VMV0	VMV0	VMV0	None	None	None
A3	GAB0/IO02RSB0	GAB0/IO02RSB0	GAB0/IO02RSB0	None	None	None
A4	GAB1/IO03RSB0	GAB1/IO03RSB0	GAB1/IO03RSB0	None	None	None
A5	IO10RSB0	IO10RSB0	IO16RSB0	None	None	None
A6	GND	GND	GND	None	None	None
A7	IO44RSB0	IO44RSB0	IO30RSB0	None	None	None
A8	V _{CC}	V _{CC}	V _{CC}	None	None	None
A9	IO69RSB0	IO69RSB0	IO34RSB0	None	None	None
A10	GBA0/IO76RSB0	GBA0/IO76RSB0	GBA0/IO58RSB0	None	None	None
A11	GBA1/IO77RSB0	GBA1/IO77RSB0	GBA1/IO59RSB0	None	None	None
A12	GNDQ	GNDQ	GNDQ	None	None	None
B1	GAB2/IO224PDB3	GAB2/IO224PDB3	GAB2/IO154UDB3	None	None	None
B2	GND	GND	GND	None	None	None
В3	GAA0/IO00RSB0	GAA0/IO00RSB0	GAA0/IO00RSB0	None	None	None
B4	GAA1/IO01RSB0	GAA1/IO01RSB0	GAA1/IO01RSB0	None	None	None
B5	IO13RSB0	IO13RSB0	IO14RSB0	None	None	None
В6	IO26RSB0	IO26RSB0	IO19RSB0	None	None	None
В7	IO35RSB0	IO35RSB0	IO23RSB0	None	None	None
B8	IO60RSB0	IO60RSB0	IO31RSB0	None	None	None
В9	GBB0/IO74RSB0	GBB0/IO74RSB0	GBB0/IO56RSB0	None	None	None
B10	GBB1/IO75RSB0	GBB1/IO75RSB0	GBB1/IO57RSB0	None	None	None
B11	GND	GND	GND	None	None	None
B12	VMV1	VMV1	VMV1	None	None	None
C1	IO224NDB3	IO224NDB3	IO154VDB3	None	None	None
C2	GFA2/IO206PPB3	GFA2/IO206PPB3	GFA2/IO144PPB3	None	None	None
C3	GAC2/IO223PDB3	GAC2/IO223PDB3	GAC2/IO153UDB3	None	None	None
C4	V _{CC}	V _{CC}	V _{CC}	None	None	None
C5	IO16RSB0	IO16RSB0	IO12RSB0	None	None	None
C6	IO29RSB0	IO29RSB0	IO17RSB0	None	None	None
C7	IO32RSB0	IO32RSB0	IO25RSB0	None	None	None

12-12 v1.1

Table 12-5 • Pin Compatibility and Migration Table for the FG144 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
C8	IO63RSB0	IO63RSB0	IO32RSB0	None	None	None
C9	IO66RSB0	IO66RSB0	IO53RSB0	None	None	None
C10	GBA2/IO78PDB1	GBA2/IO78PDB1	GBA2/IO60PDB1	None	None	None
C11	IO78NDB1	IO78NDB1	IO60NDB1	None	None	None
C12	GBC2/IO80PPB1	GBC2/IO80PPB1	GBC2/IO62PPB1	None	None	None
D1	IO213PDB3	IO213PDB3	IO149NDB3	None	None	None
D2	IO213NDB3	IO213NDB3	IO149PDB3	None	None	None
D3	IO223NDB3	IO223NDB3	IO153VDB3	None	None	None
D4	GAA2/IO225PPB3	GAA2/IO225PPB3	GAA2/IO155UPB3	None	None	None
D5	GAC0/IO04RSB0	GAC0/IO04RSB0	GAC0/IO04RSB0	None	None	None
D6	GAC1/IO05RSB0	GAC1/IO05RSB0	GAC1/IO05RSB0	None	None	None
D7	GBC0/IO72RSB0	GBC0/IO72RSB0	GBC0/IO54RSB0	None	None	None
D8	GBC1/IO73RSB0	GBC1/IO73RSB0	GBC1/IO55RSB0	None	None	None
D9	GBB2/IO79PDB1	GBB2/IO79PDB1	GBB2/IO61PDB1	None	None	None
D10	IO79NDB1	IO79NDB1	IO61NDB1	None	None	None
D11	IO80NPB1	IO80NPB1	IO62NPB1	None	None	None
D12	GCB1/IO92PPB1	GCB1/IO92PPB1	GCB1/IO68PPB1	None	None	None
E1	V _{CC}	V _{CC}	V _{CC}	None	None	None
E2	GFC0/IO209NDB3	GFC0/IO209NDB3	GFC0/IO147NDB3	None	None	None
E3	GFC1/IO209PDB3	GFC1/IO209PDB3	GFC1/IO147PDB3	None	None	None
E4	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
E5	IO225NPB3	IO225NPB3	IO155VPB3	None	None	None
E6	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
E7	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
E8	GCC1/IO91PDB1	GCC1/IO91PDB1	GCC1/IO67PDB1	None	None	None
E9	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
E10	V _{CC}	V _{CC}	V _{CC}	None	None	None
E11	GCA0/IO93NDB1	GCA0/IO93NDB1	GCA0/IO69NDB1	None	None	None
E12	IO94NDB1	IO94NDB1	IO70NDB1	None	None	None
F1	GFB0/IO208NPB3	GFB0/IO208NPB3	GFB0/IO146NPB3	None	None	None
F2	V _{COMPLF}	V _{COMPLF}	V _{COMPLF}	None	None	None
F3	GFB1/IO208PPB3	GFB1/IO208PPB3	GFB1/IO146PPB3	None	None	None
F4	IO206NPB3	IO206NPB3	IO144NPB3	None	None	None

Table 12-5 • Pin Compatibility and Migration Table for the FG144 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
F5	GND	GND	GND	None	None	None
F6	GND	GND	GND	None	None	None
F7	GND	GND	GND	None	None	None
F8	GCC0/IO91NDB1	GCC0/IO91NDB1	GCC0/IO67NDB1	None	None	None
F9	GCB0/IO92NPB1	GCB0/IO92NPB1	GCB0/IO68NPB1	None	None	None
F10	GND	GND	GND	None	None	None
F11	GCA1/IO93PDB1	GCA1/IO93PDB1	GCA1/IO69PDB1	None	None	None
F12	GCA2/IO94PDB1	GCA2/IO94PDB1	GCA2/IO70PDB1	None	None	None
G1	GFA1/IO207PPB3	GFA1/IO207PPB3	GFA1/IO145PPB3	None	None	None
G2	GND	GND	GND	None	None	None
G3	V_{CCPLF}	V_{CCPLF}	V_{CCPLF}	None	None	None
G4	GFA0/IO207NPB3	GFA0/IO207NPB3	GFA0/IO145NPB3	None	None	None
G5	GND	GND	GND	None	None	None
G6	GND	GND	GND	None	None	None
G7	GND	GND	GND	None	None	None
G8	GDC1/IO111PPB1	GDC1/IO111PPB1	GDC1/IO77UPB1	None	None	None
G9	IO96NDB1	IO96NDB1	IO72NDB1	None	None	None
G10	GCC2/IO96PDB1	GCC2/IO96PDB1	GCC2/IO72PDB1	None	None	None
G11	IO95NDB1	IO95NDB1	IO71NDB1	None	None	None
G12	GCB2/IO95PDB1	GCB2/IO95PDB1	GCB2/IO71PDB1	None	None	None
H1	V _{CC}	V _{CC}	V _{CC}	None	None	None
H2	GFB2/IO205PDB3	GFB2/IO205PDB3	GFB2/IO143PDB3	None	None	None
H3	GFC2/IO204PSB3	GFC2/IO204PSB3	GFC2/IO142PSB3	None	None	None
H4	GEC1/IO190PDB3	GEC1/IO190PDB3	GEC1/IO137PDB3	None	None	None
H5	V _{CC}	V _{CC}	V _{CC}	None	None	None
H6	IO105PDB1	IO105PDB1	IO75PDB1	None	None	None
H7	IO105NDB1	IO105NDB1	IO75NDB1	None	None	None
H8	GDB2/IO115RSB2	GDB2/IO115RSB2	GDB2/IO81RSB2	None	None	None
H9	GDC0/IO111NPB1	GDC0/IO111NPB1	GDC0/IO77VPB1	None	None	None
H10	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
H11	IO101PSB1	IO101PSB1	IO73PSB1	None	None	None
H12	V _{CC}	V _{CC}	V _{CC}	None	None	None
J1	GEB1/IO189PDB3	GEB1/IO189PDB3	GEB1/IO136PDB3	None	None	None

12-14 v1.1

Table 12-5 • Pin Compatibility and Migration Table for the FG144 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
J2	IO205NDB3	IO205NDB3	IO143NDB3	None	None	None
J3	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
J4	GEC0/IO190NDB3	GEC0/IO190NDB3	GEC0/IO137NDB3	None	None	None
J5	IO160RSB2	IO160RSB2	IO125RSB2	None	None	None
J6	IO157RSB2	IO157RSB2	IO116RSB2	None	None	None
J7	V _{CC}	V _{CC}	V _{CC}	None	None	None
J8	TCK	TCK	TCK	None	None	None
J9	GDA2/IO114RSB2	GDA2/IO114RSB2	GDA2/IO80RSB2	None	None	None
J10	TDO	TDO	TDO	None	None	None
J11	GDA1/IO113PDB1	GDA1/IO113PDB1	GDA1/IO79UDB1	None	None	None
J12	GDB1/IO112PDB1	GDB1/IO112PDB1	GDB1/IO78UDB1	None	None	None
K1	GEB0/IO189NDB3	GEB0/IO189NDB3	GEB0/IO136NDB3	None	None	None
K2	GEA1/IO188PDB3	GEA1/IO188PDB3	GEA1/IO135PDB3	None	None	None
K3	GEA0/IO188NDB3	GEA0/IO188NDB3	GEA0/IO135NDB3	None	None	None
K4	GEA2/IO187RSB2	GEA2/IO187RSB2	GEA2/IO134RSB2	None	None	None
K5	IO169RSB2	IO169RSB2	IO127RSB2	None	None	None
K6	IO152RSB2	IO152RSB2	IO121RSB2	None	None	None
K7	GND	GND	GND	None	None	None
K8	IO117RSB2	IO117RSB2	IO104RSB2	None	None	None
K9	GDC2/IO116RSB2	GDC2/IO116RSB2	GDC2/IO82RSB2	None	None	None
K10	GND	GND	GND	None	None	None
K11	GDA0/IO113NDB1	GDA0/IO113NDB1	GDA0/IO79VDB1	None	None	None
K12	GDB0/IO112NDB1	GDB0/IO112NDB1	GDB0/IO78VDB1	None	None	None
L1	GND	GND	GND	None	None	None
L2	VMV3	VMV3	VMV3	None	None	None
L3	GEB2/IO186RSB2	GEB2/IO186RSB2	GEB2/IO133RSB2	None	None	None
L4	IO172RSB2	IO172RSB2	IO128RSB2	None	None	None
L5	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
L6	IO153RSB2	IO153RSB2	IO119RSB2	None	None	None
L7	IO144RSB2	IO144RSB2	IO114RSB2	None	None	None
L8	IO140RSB2	IO140RSB2	IO110RSB2	None	None	None
L9	TMS	TMS	TMS	None	None	None
L10	V_{JTAG}	V _{JTAG}	V_{JTAG}	None	None	None

Table 12-5 • Pin Compatibility and Migration Table for the FG144 Package (continued)

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
L11	VMV2	VMV2	VMV2	None	None	None
L12	TRST	TRST	TRST	None	None	None
M1	GNDQ	GNDQ	GNDQ	None	None	None
M2	GEC2/IO185RSB2	GEC2/IO185RSB2	GEC2/IO132RSB2	None	None	None
M3	IO173RSB2	IO173RSB2	IO129RSB2	None	None	None
M4	IO168RSB2	IO168RSB2	IO126RSB2	None	None	None
M5	IO161RSB2	IO161RSB2	IO124RSB2	None	None	None
M6	IO156RSB2	IO156RSB2	IO122RSB2	None	None	None
M7	IO145RSB2	IO145RSB2	IO117RSB2	None	None	None
M8	IO141RSB2	IO141RSB2	IO115RSB2	None	None	None
M9	TDI	TDI	TDI	None	None	None
M10	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
M11	V _{PUMP}	V _{PUMP}	V _{PUMP}	None	None	None
M12	GNDQ	GNDQ	GNDQ	None	None	None

12-16 v1.1

FG256 Package

Table 12-6 • Pin Compatibility and Migration Table for the FG256 Package

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
A1	GND	GND	GND	None	None	None
A2	GAA0/IO00RSB0	GAA0/IO00RSB0	GAA0/IO00RSB0	None	None	None
A3	GAA1/IO01RSB0	GAA1/IO01RSB0	GAA1/IO01RSB0	None	None	None
A4	GAB0/IO02RSB0	GAB0/IO02RSB0	GAB0/IO02RSB0	None	None	None
A5	IO16RSB0	IO11RSB0	IO16RSB0	None	None	None
A6	IO22RSB0	IO16RSB0	IO17RSB0	None	None	None
A7	IO28RSB0	IO18RSB0	IO22RSB0	None	None	None
A8	IO35RSB0	IO28RSB0	IO28RSB0	None	None	None
A9	IO45RSB0	IO34RSB0	IO34RSB0	None	None	None
A10	IO50RSB0	IO37RSB0	IO37RSB0	None	None	None
A11	IO55RSB0	IO41RSB0	IO41RSB0	None	None	None
A12	IO61RSB0	IO43RSB0	IO43RSB0	None	None	None
A13	GBB1/IO75RSB0	GBB1/IO57RSB0	GBB1/IO57RSB0	None	None	None
A14	GBA0/IO76RSB0	GBA0/IO58RSB0	GBA0/IO58RSB0	None	None	None
A15	GBA1/IO77RSB0	GBA1/IO59RSB0	GBA1/IO59RSB0	None	None	None
A16	GND	GND	GND	None	None	None
B1	GAB2/IO224PDB3	GAB2/IO173PDB3	GAB2/IO154UDB3	None	None	None
B2	GAA2/IO225PDB3	GAA2/IO174PDB3	GAA2/IO155UDB3	None	None	None
В3	GNDQ	GNDQ	IO12RSB0	None	Rule 8	Rule 8
B4	GAB1/IO03RSB0	GAB1/IO03RSB0	GAB1/IO03RSB0	None	None	None
B5	IO17RSB0	IO13RSB0	IO13RSB0	None	None	None
В6	IO21RSB0	IO14RSB0	IO14RSB0	None	None	None
В7	IO27RSB0	IO21RSB0	IO21RSB0	None	None	None
B8	IO34RSB0	IO27RSB0	IO27RSB0	None	None	None
В9	IO44RSB0	IO32RSB0	IO32RSB0	None	None	None
B10	IO51RSB0	IO38RSB0	IO38RSB0	None	None	None
B11	IO57RSB0	IO42RSB0	IO42RSB0	None	None	None
B12	GBC1/IO73RSB0	GBC1/IO55RSB0	GBC1/IO55RSB0	None	None	None
B13	GBB0/IO74RSB0	GBB0/IO56RSB0	GBB0/IO56RSB0	None	None	None
B14	IO71RSB0	IO52RSB0	IO44RSB0	None	None	None
B15	GBA2/IO78PDB1	GBA2/IO60PDB1	GBA2/IO60PDB1	None	None	None

Table 12-6 • Pin Compatibility and Migration Table for the FG256 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
B16	IO81PDB1	IO60NDB1	IO60NDB1	None	None	None
C1	IO224NDB3	IO173NDB3	IO154VDB3	None	None	None
C2	IO225NDB3	IO174NDB3	IO155VDB3	None	None	None
C3	VMV3	VMV3	IO11RSB0	None	Rule 7	Rule 7
C4	IO11RSB0	IO07RSB0	IO07RSB0	None	None	None
C5	GAC0/IO04RSB0	GAC0/IO04RSB0	GAC0/IO04RSB0	None	None	None
C6	GAC1/IO05RSB0	GAC1/IO05RSB0	GAC1/IO05RSB0	None	None	None
C7	IO25RSB0	IO20RSB0	IO20RSB0	None	None	None
C8	IO36RSB0	IO24RSB0	IO24RSB0	None	None	None
C9	IO42RSB0	IO33RSB0	IO33RSB0	None	None	None
C10	IO49RSB0	IO39RSB0	IO39RSB0	None	None	None
C11	IO56RSB0	IO44RSB0	IO45RSB0	None	None	None
C12	GBC0/IO72RSB0	GBC0/IO54RSB0	GBC0/IO54RSB0	None	None	None
C13	IO62RSB0	IO51RSB0	IO48RSB0	None	None	None
C14	VMV0	VMV0	VMV0	None	None	None
C15	IO78NDB1	IO61NPB1	IO61NPB1	None	None	None
C16	IO81NDB1	IO63PDB1	IO63PDB1	None	None	None
D1	IO222NDB3	IO171NDB3	IO151VDB3	None	None	None
D2	IO222PDB3	IO171PDB3	IO151UDB3	None	None	None
D3	GAC2/IO223PDB3	GAC2/IO172PDB3	GAC2/IO153UDB3	None	None	None
D4	IO223NDB3	IO06RSB0	IO06RSB0	None	None	None
D5	GNDQ	GNDQ	GNDQ	None	None	None
D6	IO23RSB0	IO10RSB0	IO10RSB0	None	None	None
D7	IO29RSB0	IO19RSB0	IO19RSB0	None	None	None
D8	IO33RSB0	IO26RSB0	IO26RSB0	None	None	None
D9	IO46RSB0	IO30RSB0	IO30RSB0	None	None	None
D10	IO52RSB0	IO40RSB0	IO40RSB0	None	None	None
D11	IO60RSB0	IO45RSB0	IO46RSB0	None	None	None
D12	GNDQ	GNDQ	GNDQ	None	None	None
D13	IO80NDB1	IO50RSB0	IO47RSB0	None	None	None
D14	GBB2/IO79PDB1	GBB2/IO61PPB1	GBB2/IO61PPB1	None	None	None
D15	IO79NDB1	IO53RSB0	IO53RSB0	None	None	None
D16	IO82NSB1	IO63NDB1	IO63NDB1	None	None	None

12-18 v1.1

Table 12-6 • Pin Compatibility and Migration Table for the FG256 Package (continued)

				Migration Rule between A3P1000	Migration Rule between A3P1000	Migration Rule between A3P600
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	and A3P600	and A3P400	and A3P400
E1	IO217PDB3	IO166PDB3	IO150PDB3	None	None	None
E2	IO218PDB3	IO167NPB3	IO08RSB0	None	None	None
E3	IO221NDB3	IO172NDB3	IO153VDB3	None	None	None
E4	IO221PDB3	IO169NDB3	IO152VDB3	None	None	None
E5	VMV0	VMV0	VMV0	None	None	None
E6	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
E7	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
E8	IO38RSB0	IO25RSB0	IO25RSB0	None	None	None
E9	IO47RSB0	IO31RSB0	IO31RSB0	None	None	None
E10	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
E11	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
E12	VMV1	VMV1	VMV1	None	None	None
E13	GBC2/IO80PDB1	GBC2/IO62PDB1	GBC2/IO62PDB1	None	None	None
E14	IO83PPB1	IO67PPB1	IO65RSB1	None	None	None
E15	IO86PPB1	IO64PPB1	IO52RSB0	None	None	None
E16	IO87PDB1	IO66PDB1	IO66PDB1	None	None	None
F1	IO217NDB3	IO166NDB3	IO150NDB3	None	None	None
F2	IO218NDB3	IO168NPB3	IO149NPB3	None	None	None
F3	IO216PDB3	IO167PPB3	IO09RSB0	None	None	None
F4	IO216NDB3	IO169PDB3	IO152UDB3	None	None	None
F5	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
F6	GND	GND	GND	None	None	None
F7	V _{CC}	V _{CC}	V _{CC}	None	None	None
F8	V _{CC}	V _{CC}	V _{CC}	None	None	None
F9	V _{CC}	V _{CC}	V _{CC}	None	None	None
F10	V _{CC}	V _{CC}	V _{CC}	None	None	None
F11	GND	GND	GND	None	None	None
F12	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
F13	IO83NPB1	IO62NDB1	IO62NDB1	None	None	None
F14	IO86NPB1	IO64NPB1	IO49RSB0	None	None	None
F15	IO90PPB1	IO65PPB1	IO64PPB1	None	None	None
F16	IO87NDB1	IO66NDB1	IO66NDB1	None	None	None
G1	IO210PSB3	IO165NDB3	IO148NDB3	None	None	None

Table 12-6 • Pin Compatibility and Migration Table for the FG256 Package (continued)

				Migration Rule between A3P1000	Migration Rule between A3P1000	Migration Rule between A3P600
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	and A3P600	and A3P400	and A3P400
G2	IO213NDB3	IO165PDB3	IO148PDB3	None	None	None
G3	IO213PDB3	IO168PPB3	IO149PPB3	None	None	None
G4	GFC1/IO209PPB3	GFC1/IO164PPB3	GFC1/IO147PPB3	None	None	None
G5	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
G6	V _{CC}	V _{CC}	V _{CC}	None	None	None
G7	GND	GND	GND	None	None	None
G8	GND	GND	GND	None	None	None
G9	GND	GND	GND	None	None	None
G10	GND	GND	GND	None	None	None
G11	V _{CC}	V _{CC}	V _{CC}	None	None	None
G12	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
G13	GCC1/IO91PPB1	GCC1/IO69PPB1	GCC1/IO67PPB1	None	None	None
G14	IO90NPB1	IO65NPB1	IO64NPB1	None	None	None
G15	IO88PDB1	IO75PDB1	IO73PDB1	None	None	None
G16	IO88NDB1	IO75NDB1	IO73NDB1	None	None	None
H1	GFB0/IO208NPB3	GFB0/IO163NPB3	GFB0/IO146NPB3	None	None	None
H2	GFA0/IO207NDB3	GFA0/IO162NDB3	GFA0/IO145NDB3	None	None	None
Н3	GFB1/IO208PPB3	GFB1/IO163PPB3	GFB1/IO146PPB3	None	None	None
H4	V _{COMPLF}	V _{COMPLF}	V _{COMPLF}	None	None	None
H5	GFC0/IO209NPB3	GFC0/IO164NPB3	GFC0/IO147NPB3	None	None	None
Н6	V _{CC}	V _{CC}	V _{CC}	None	None	None
H7	GND	GND	GND	None	None	None
H8	GND	GND	GND	None	None	None
Н9	GND	GND	GND	None	None	None
H10	GND	GND	GND	None	None	None
H11	V _{CC}	V _{CC}	V _{CC}	None	None	None
H12	GCC0/IO91NPB1	GCC0/IO69NPB1	GCC0/IO67NPB1	None	None	None
H13	GCB1/IO92PPB1	GCB1/IO70PPB1	GCB1/IO68PPB1	None	None	None
H14	GCA0/IO93NPB1	GCA0/IO71NPB1	GCA0/IO69NPB1	None	None	None
H15	IO96NPB1	IO67NPB1	NC	None	Rule 1	Rule 1
H16	GCB0/IO92NPB1	GCB0/IO70NPB1	GCB0/IO68NPB1	None	None	None
J1	GFA2/IO206PSB3	GFA2/IO161PPB3	GFA2/IO144PPB3	None	None	None
J2	GFA1/IO207PDB3	GFA1/IO162PDB3	GFA1/IO145PDB3	None	None	None

12-20 v1.1

Table 12-6 • Pin Compatibility and Migration Table for the FG256 Package (continued)

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
J3	V_{CCPLF}	V_{CCPLF}	V_{CCPLF}	None	None	None
J4	IO205NDB3	IO160NDB3	IO143NDB3	None	None	None
J5	GFB2/IO205PDB3	GFB2/IO160PDB3	GFB2/IO143PDB3	None	None	None
J6	V _{CC}	V _{CC}	V _{CC}	None	None	None
J7	GND	GND	GND	None	None	None
18	GND	GND	GND	None	None	None
J9	GND	GND	GND	None	None	None
J10	GND	GND	GND	None	None	None
J11	V _{CC}	V _{CC}	V _{CC}	None	None	None
J12	GCB2/IO95PPB1	GCB2/IO73PPB1	GCB2/IO71PPB1	None	None	None
J13	GCA1/IO93PPB1	GCA1/IO71PPB1	GCA1/IO69PPB1	None	None	None
J14	GCC2/IO96PPB1	GCC2/IO74PPB1	GCC2/IO72PPB1	None	None	None
J15	IO100PPB1	IO80PPB1	NC	None	Rule 1	Rule 1
J16	GCA2/IO94PSB1	GCA2/IO72PDB1	GCA2/IO70PDB1	None	None	None
K1	GFC2/IO204PDB3	GFC2/IO159PDB3	GFC2/IO142PDB3	None	None	None
K2	IO204NDB3	IO161NPB3	IO144NPB3	None	None	None
K3	IO203NDB3	IO156PPB3	IO141PPB3	None	None	None
K4	IO203PDB3	IO129RSB2	IO120RSB2	None	None	None
K5	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
K6	V _{CC}	V _{CC}	V _{CC}	None	None	None
K7	GND	GND	GND	None	None	None
K8	GND	GND	GND	None	None	None
K9	GND	GND	GND	None	None	None
K10	GND	GND	GND	None	None	None
K11	V _{CC}	V _{CC}	V _{CC}	None	None	None
K12	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
K13	IO95NPB1	IO73NPB1	IO71NPB1	None	None	None
K14	IO100NPB1	IO80NPB1	IO74RSB1	None	None	None
K15	IO102NDB1	IO74NPB1	IO72NPB1	None	None	None
K16	IO102PDB1	IO72NDB1	IO70NDB1	None	None	None
L1	IO202NDB3	IO159NDB3	IO142NDB3	None	None	None
L2	IO202PDB3	IO156NPB3	IO141NPB3	None	None	None
L3	IO196PPB3	IO151PPB3	IO125RSB2	None	None	None

Table 12-6 • Pin Compatibility and Migration Table for the FG256 Package (continued)

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
L4	IO193PPB3	IO158PSB3	IO139RSB3	None	None	None
L5	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
L6	GND	GND	GND	None	None	None
L7	V _{CC}	V _{CC}	V _{CC}	None	None	None
L8	V _{CC}	V _{CC}	V _{CC}	None	None	None
L9	V _{CC}	V _{CC}	V _{CC}	None	None	None
L10	V _{CC}	V _{CC}	V _{CC}	None	None	None
L11	GND	GND	GND	None	None	None
L12	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
L13	GDB0/IO112NPB1	GDB0/IO87NPB1	GDB0/IO78VPB1	None	None	None
L14	IO106NDB1	IO85NDB1	IO76VDB1	None	None	None
L15	IO106PDB1	IO85PDB1	IO76UDB1	None	None	None
L16	IO107PDB1	IO84PDB1	IO75PDB1	None	None	None
M1	IO197NSB3	IO150PDB3	IO140PDB3	None	None	None
M2	IO196NPB3	IO151NPB3	IO130RSB2	None	None	None
M3	IO193NPB3	IO147NPB3	IO138NPB3	None	None	None
M4	GEC0/IO190NPB3	GEC0/IO146NPB3	GEC0/IO137NPB3	None	None	None
M5	VMV3	VMV3	VMV3	None	None	None
M6	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
M7	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
M8	IO147RSB2	IO117RSB2	IO108RSB2	None	None	None
M9	IO136RSB2	IO110RSB2	IO101RSB2	None	None	None
M10	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
M11	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
M12	VMV2	VMV2	VMV2	None	None	None
M13	IO110NDB1	IO94RSB2	IO83RSB2	None	None	None
M14	GDB1/IO112PPB1	GDB1/IO87PPB1	GDB1/IO78UPB1	None	None	None
M15	GDC1/IO111PDB1	GDC1/IO86PDB1	GDC1/IO77UDB1	None	None	None
M16	IO107NDB1	IO84NDB1	IO75NDB1	None	None	None
N1	IO194PSB3	IO150NDB3	IO140NDB3	None	None	None
N2	IO192PPB3	IO147PPB3	IO138PPB3	None	None	None
N3	GEC1/IO190PPB3	GEC1/IO146PPB3	GEC1/IO137PPB3	None	None	None
N4	IO192NPB3	IO140RSB2	IO131RSB2	None	None	None

12-22 v1.1

Table 12-6 • Pin Compatibility and Migration Table for the FG256 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
N5	GNDQ	GNDQ	GNDQ	None	None	None
N6	GEA2/IO187RSB2	GEA2/IO143RSB2	GEA2/IO134RSB2	None	None	None
N7	IO161RSB2	IO126RSB2	IO117RSB2	None	None	None
N8	IO155RSB2	IO120RSB2	IO111RSB2	None	None	None
N9	IO141RSB2	IO108RSB2	IO99RSB2	None	None	None
N10	IO129RSB2	IO103RSB2	IO94RSB2	None	None	None
N11	IO124RSB2	IO99RSB2	IO87RSB2	None	None	None
N12	GNDQ	GNDQ	GNDQ	None	None	None
N13	IO110PDB1	IO92RSB2	IO93RSB2	None	None	None
N14	V_{JTAG}	V_{JTAG}	V_{JTAG}	None	None	None
N15	GDC0/IO111NDB1	GDC0/IO86NDB1	GDC0/IO77VDB1	None	None	None
N16	GDA1/IO113PDB1	GDA1/IO88PDB1	GDA1/IO79UDB1	None	None	None
P1	GEB1/IO189PDB3	GEB1/IO145PDB3	GEB1/IO136PDB3	None	None	None
P2	GEB0/IO189NDB3	GEB0/IO145NDB3	GEB0/IO136NDB3	None	None	None
P3	VMV2	VMV2	VMV2	None	None	None
P4	IO179RSB2	IO138RSB2	IO129RSB2	None	None	None
P5	IO171RSB2	IO136RSB2	IO128RSB2	None	None	None
P6	IO165RSB2	IO131RSB2	IO122RSB2	None	None	None
P7	IO159RSB2	IO124RSB2	IO115RSB2	None	None	None
P8	IO151RSB2	IO119RSB2	IO110RSB2	None	None	None
P9	IO137RSB2	IO107RSB2	IO98RSB2	None	None	None
P10	IO134RSB2	IO104RSB2	IO95RSB2	None	None	None
P11	IO128RSB2	IO97RSB2	IO88RSB2	None	None	None
P12	VMV1	VMV1	IO84RSB2	None	Rule 7	Rule 7
P13	TCK	TCK	TCK	None	None	None
P14	V _{PUMP}	V _{PUMP}	V _{PUMP}	None	None	None
P15	TRST	TRST	TRST	None	None	None
P16	GDA0/IO113NDB1	GDA0/IO88NDB1	GDA0/IO79VDB1	None	None	None
R1	GEA1/IO188PDB3	GEA1/IO144PDB3	GEA1/IO135PDB3	None	None	None
R2	GEA0/IO188NDB3	GEA0/IO144NDB3	GEA0/IO135NDB3	None	None	None
R3	IO184RSB2	IO139RSB2	IO127RSB2	None	None	None
R4	GEC2/IO185RSB2	GEC2/IO141RSB2	GEC2/IO132RSB2	None	None	None
R5	IO168RSB2	IO132RSB2	IO123RSB2	None	None	None

Table 12-6 • Pin Compatibility and Migration Table for the FG256 Package (continued)

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
R6	IO163RSB2	IO127RSB2	IO118RSB2	None	None	None
R7	IO157RSB2	IO121RSB2	IO112RSB2	None	None	None
R8	IO149RSB2	IO114RSB2	IO106RSB2	None	None	None
R9	IO143RSB2	IO109RSB2	IO100RSB2	None	None	None
R10	IO138RSB2	IO105RSB2	IO96RSB2	None	None	None
R11	IO131RSB2	IO98RSB2	IO89RSB2	None	None	None
R12	IO125RSB2	IO96RSB2	IO85RSB2	None	None	None
R13	GDB2/IO115RSB2	GDB2/IO90RSB2	GDB2/IO81RSB2	None	None	None
R14	TDI	TDI	TDI	None	None	None
R15	GNDQ	GNDQ	NC	None	Rule 8	Rule 8
R16	TDO	TDO	TDO	None	None	None
T1	GND	GND	GND	None	None	None
T2	IO183RSB2	IO137RSB2	IO126RSB2	None	None	None
T3	GEB2/IO186RSB2	GEB2/IO142RSB2	GEB2/IO133RSB2	None	None	None
T4	IO172RSB2	IO134RSB2	IO124RSB2	None	None	None
T5	IO170RSB2	IO125RSB2	IO116RSB2	None	None	None
Т6	IO164RSB2	IO123RSB2	IO113RSB2	None	None	None
T7	IO158RSB2	IO118RSB2	IO107RSB2	None	None	None
T8	IO153RSB2	IO115RSB2	IO105RSB2	None	None	None
Т9	IO142RSB2	IO111RSB2	IO102RSB2	None	None	None
T10	IO135RSB2	IO106RSB2	IO97RSB2	None	None	None
T11	IO130RSB2	IO102RSB2	IO92RSB2	None	None	None
T12	GDC2/IO116RSB2	GDC2/IO91RSB2	GDC2/IO82RSB2	None	None	None
T13	IO120RSB2	IO93RSB2	IO86RSB2	None	None	None
T14	GDA2/IO114RSB2	GDA2/IO89RSB2	GDA2/IO80RSB2	None	None	None
T15	TMS	TMS	TMS	None	None	None
T16	GND	GND	GND	None	None	None

12-24 v1.1

FG484 Package

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
A1	GND	GND	GND	None	None	None
A2	GND	GND	GND	None	None	None
A3	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
A4	IO07RSB0	NC	NC	Rule 1	Rule 1	None
A5	IO09RSB0	NC	NC	Rule 1	Rule 1	None
A6	IO13RSB0	IO09RSB0	IO15RSB0	None	None	None
A7	IO18RSB0	IO15RSB0	IO18RSB0	None	None	None
A8	IO20RSB0	NC	NC	Rule 1	Rule 1	None
A9	IO26RSB0	NC	NC	Rule 1	Rule 1	None
A10	IO32RSB0	IO22RSB0	IO23RSB0	None	None	None
A11	IO40RSB0	IO23RSB0	IO29RSB0	None	None	None
A12	IO41RSB0	IO29RSB0	IO35RSB0	None	None	None
A13	IO53RSB0	IO35RSB0	IO36RSB0	None	None	None
A14	IO59RSB0	NC	NC	Rule 1	Rule 1	None
A15	IO64RSB0	NC	NC	Rule 1	Rule 1	None
A16	IO65RSB0	IO46RSB0	IO50RSB0	None	None	None
A17	IO67RSB0	IO48RSB0	IO51RSB0	None	None	None
A18	IO69RSB0	NC	NC	Rule 1	Rule 1	None
A19	NC	NC	NC	None	None	None
A20	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
A21	GND	GND	GND	None	None	None
A22	GND	GND	GND	None	None	None
AA1	GND	GND	GND	None	None	None
AA2	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
AA3	NC	NC	NC	None	None	None
AA4	IO181RSB2	NC	NC	Rule 1	Rule 1	None
AA5	IO178RSB2	NC	NC	Rule 1	Rule 1	None
AA6	IO175RSB2	IO135RSB2	NC	None	Rule 1	Rule 1
AA7	IO169RSB2	IO133RSB2	NC	None	Rule 1	Rule 1
AA8	IO166RSB2	NC	NC	Rule 1	Rule 1	None
AA9	IO160RSB2	NC	NC	Rule 1	Rule 1	None

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

				Migration Rule between A3P1000	Migration Rule between A3P1000	Migration Rule between A3P600
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	and A3P600	and A3P400	and A3P400
AA10	IO152RSB2	NC	NC	Rule 1	Rule 1	None
AA11	IO146RSB2	NC	NC	Rule 1	Rule 1	None
AA12	IO139RSB2	NC	NC	Rule 1	Rule 1	None
AA13	IO133RSB2	NC	NC	Rule 1	Rule 1	None
AA14	NC	NC	NC	None	None	None
AA15	NC	NC	NC	None	None	None
AA16	IO122RSB2	IO101RSB2	NC	None	Rule 1	Rule 1
AA17	IO119RSB2	NC	NC	Rule 1	Rule 1	None
AA18	IO117RSB2	NC	NC	Rule 1	Rule 1	None
AA19	NC	NC	NC	None	None	None
AA20	NC	NC	NC	None	None	None
AA21	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
AA22	GND	GND	GND	None	None	None
AB1	GND	GND	GND	None	None	None
AB2	GND	GND	GND	None	None	None
AB3	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
AB4	IO180RSB2	NC	NC	Rule 1	Rule 1	None
AB5	IO176RSB2	NC	NC	Rule 1	Rule 1	None
AB6	IO173RSB2	IO130RSB2	IO121RSB2	None	None	None
AB7	IO167RSB2	IO128RSB2	IO119RSB2	None	None	None
AB8	IO162RSB2	IO122RSB2	IO114RSB2	None	None	None
AB9	IO156RSB2	IO116RSB2	IO109RSB2	None	None	None
AB10	IO150RSB2	NC	NC	Rule 1	Rule 1	None
AB11	IO145RSB2	NC	NC	Rule 1	Rule 1	None
AB12	IO144RSB2	IO113RSB2	IO104RSB2	None	None	None
AB13	IO132RSB2	IO112RSB2	IO103RSB2	None	None	None
AB14	IO127RSB2	NC	NC	Rule 1	Rule 1	None
AB15	IO126RSB2	NC	NC	Rule 1	Rule 1	None
AB16	IO123RSB2	IO100RSB2	IO91RSB2	None	None	None
AB17	IO121RSB2	IO95RSB2	IO90RSB2	None	None	None
AB18	IO118RSB2	NC	NC	Rule 1	Rule 1	None
AB19	NC	NC	NC	None	None	None
AB20	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None

12-26 v1.1

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
AB21	GND	GND	GND	None	None	None
AB22	GND	GND	GND	None	None	None
B1	GND	GND	GND	None	None	None
B2	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
В3	NC	NC	NC	None	None	None
B4	IO06RSB0	NC	NC	Rule 1	Rule 1	None
B5	IO08RSB0	NC	NC	Rule 1	Rule 1	None
В6	IO12RSB0	IO08RSB0	NC	None	Rule 1	Rule 1
В7	IO15RSB0	IO12RSB0	NC	None	Rule 1	Rule 1
B8	IO19RSB0	NC	NC	Rule 1	Rule 1	None
В9	IO24RSB0	NC	NC	Rule 1	Rule 1	None
B10	IO31RSB0	IO17RSB0	NC	None	Rule 1	Rule 1
B11	IO39RSB0	NC	NC	Rule 1	Rule 1	None
B12	IO48RSB0	NC	NC	Rule 1	Rule 1	None
B13	IO54RSB0	IO36RSB0	NC	None	Rule 1	Rule 1
B14	IO58RSB0	NC	NC	Rule 1	Rule 1	None
B15	IO63RSB0	NC	NC	Rule 1	Rule 1	None
B16	IO66RSB0	IO47RSB0	NC	None	Rule 1	Rule 1
B17	IO68RSB0	IO49RSB0	NC	None	Rule 1	Rule 1
B18	IO70RSB0	NC	NC	Rule 1	Rule 1	None
B19	NC	NC	NC	None	None	None
B20	NC	NC	NC	None	None	None
B21	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
B22	GND	GND	GND	None	None	None
C1	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
C2	IO220PDB3	NC	NC	Rule 1	Rule 1	None
C3	NC	NC	NC	None	None	None
C4	NC	NC	NC	None	None	None
C5	GND	GND	GND	None	None	None
C6	IO10RSB0	NC	NC	Rule 1	Rule 1	None
C7	IO14RSB0	NC	NC	Rule 1	Rule 1	None
C8	V _{CC}	V _{CC}	V _{CC}	None	None	None
C9	V _{CC}	V _{CC}	V _{CC}	None	None	None

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

				Migration Rule between A3P1000	Migration Rule between A3P1000	Migration Rule between A3P600
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	and A3P600	and A3P400	and A3P400
C10	IO30RSB0	NC	NC	Rule 1	Rule 1	None
C11	IO37RSB0	NC	NC	Rule 1	Rule 1	None
C12	IO43RSB0	NC	NC	Rule 1	Rule 1	None
C13	NC	NC	NC	None	None	None
C14	V _{CC}	V _{CC}	V _{CC}	None	None	None
C15	V _{CC}	V _{CC}	V _{CC}	None	None	None
C16	NC	NC	NC	None	None	None
C17	NC	NC	NC	None	None	None
C18	GND	GND	GND	None	None	None
C19	NC	NC	NC	None	None	None
C20	NC	NC	NC	None	None	None
C21	NC	NC	NC	None	None	None
C22	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
D1	IO219PDB3	NC	NC	Rule 1	Rule 1	None
D2	IO220NDB3	NC	NC	Rule 1	Rule 1	None
D3	NC	NC	NC	None	None	None
D4	GND	GND	GND	None	None	None
D5	GAA0/IO00RSB0	GAA0/IO00RSB0	GAA0/IO00RSB0	None	None	None
D6	GAA1/IO01RSB0	GAA1/IO01RSB0	GAA1/IO01RSB0	None	None	None
D7	GAB0/IO02RSB0	GAB0/IO02RSB0	GAB0/IO02RSB0	None	None	None
D8	IO16RSB0	IO11RSB0	IO16RSB0	None	None	None
D9	IO22RSB0	IO16RSB0	IO17RSB0	None	None	None
D10	IO28RSB0	IO18RSB0	IO22RSB0	None	None	None
D11	IO35RSB0	IO28RSB0	IO28RSB0	None	None	None
D12	IO45RSB0	IO34RSB0	IO34RSB0	None	None	None
D13	IO50RSB0	IO37RSB0	IO37RSB0	None	None	None
D14	IO55RSB0	IO41RSB0	IO41RSB0	None	None	None
D15	IO61RSB0	IO43RSB0	IO43RSB0	None	None	None
D16	GBB1/IO75RSB0	GBB1/IO57RSB0	GBB1/IO57RSB0	None	None	None
D17	GBA0/IO76RSB0	GBA0/IO58RSB0	GBA0/IO58RSB0	None	None	None
D18	GBA1/IO77RSB0	GBA1/IO59RSB0	GBA1/IO59RSB0	None	None	None
D19	GND	GND	GND	None	None	None
D20	NC	NC	NC	None	None	None

12-28 v1.1

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
D21	NC	NC	NC	None	None	None
D22	NC	NC	NC	None	None	None
E1	IO219NDB3	NC	NC	Rule 1	Rule 1	None
E2	NC	NC	NC	None	None	None
E3	GND	GND	GND	None	None	None
E4	GAB2/IO224PDB3	GAB2/IO173PDB3	GAB2/IO154UDB3	None	None	None
E5	GAA2/IO225PDB3	GAA2/IO174PDB3	GAA2/IO155UDB3	None	None	None
E6	GNDQ	GNDQ	IO12RSB0	None	Rule 8	Rule 8
E7	GAB1/IO03RSB0	GAB1/IO03RSB0	GAB1/IO03RSB0	None	None	None
E8	IO17RSB0	IO13RSB0	IO13RSB0	None	None	None
E9	IO21RSB0	IO14RSB0	IO14RSB0	None	None	None
E10	IO27RSB0	IO21RSB0	IO21RSB0	None	None	None
E11	IO34RSB0	IO27RSB0	IO27RSB0	None	None	None
E12	IO44RSB0	IO32RSB0	IO32RSB0	None	None	None
E13	IO51RSB0	IO38RSB0	IO38RSB0	None	None	None
E14	IO57RSB0	IO42RSB0	IO42RSB0	None	None	None
E15	GBC1/IO73RSB0	GBC1/IO55RSB0	GBC1/IO55RSB0	None	None	None
E16	GBB0/IO74RSB0	GBB0/IO56RSB0	GBB0/IO56RSB0	None	None	None
E17	IO71RSB0	IO52RSB0	IO44RSB0	None	None	None
E18	GBA2/IO78PDB1	GBA2/IO60PDB1	GBA2/IO60PDB1	None	None	None
E19	IO81PDB1	IO60NDB1	IO60NDB1	None	None	None
E20	GND	GND	GND	None	None	None
E21	NC	NC	NC	None	None	None
E22	IO84PDB1	NC	NC	Rule 1	Rule 1	None
F1	NC	NC	NC	None	None	None
F2	IO215PDB3	NC	NC	Rule 1	Rule 1	None
F3	IO215NDB3	NC	NC	Rule 1	Rule 1	None
F4	IO224NDB3	IO173NDB3	IO154VDB3	None	None	None
F5	IO225NDB3	IO174NDB3	IO155VDB3	None	None	None
F6	VMV3	VMV3	IO11RSB0	None	Rule 7	Rule 7
F7	IO11RSB0	IO07RSB0	IO07RSB0	None	None	None
F8	GAC0/IO04RSB0	GAC0/IO04RSB0	GAC0/IO04RSB0	None	None	None
F9	GAC1/IO05RSB0	GAC1/IO05RSB0	GAC1/IO05RSB0	None	None	None

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
D.	4304000	4.30000	4.30400	A3P1000	A3P1000	A3P600
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	and A3P600	and A3P400	and A3P400
F10	IO25RSB0	IO20RSB0	IO20RSB0	None	None	None
F11	IO36RSB0	IO24RSB0	IO24RSB0	None	None	None
F12	IO42RSB0	IO33RSB0	IO33RSB0	None	None	None
F13	IO49RSB0	IO39RSB0	IO39RSB0	None	None	None
F14	IO56RSB0	IO44RSB0	IO45RSB0	None	None	None
F15	GBC0/IO72RSB0	GBC0/IO54RSB0	GBC0/IO54RSB0	None	None	None
F16	IO62RSB0	IO51RSB0	IO48RSB0	None	None	None
F17	VMV0	VMV0	VMV0	None	None	None
F18	IO78NDB1	IO61NPB1	IO61NPB1	None	None	None
F19	IO81NDB1	IO63PDB1	IO63PDB1	None	None	None
F20	IO82PPB1	NC	NC	Rule 1	Rule 1	None
F21	NC	NC	NC	None	None	None
F22	IO84NDB1	NC	NC	Rule 1	Rule 1	None
G1	IO214NDB3	IO170NDB3	NC	None	Rule 1	Rule 1
G2	IO214PDB3	IO170PDB3	NC	None	Rule 1	Rule 1
G3	NC	NC	NC	None	None	None
G4	IO222NDB3	IO171NDB3	IO151VDB3	None	None	None
G5	IO222PDB3	IO171PDB3	IO151UDB3	None	None	None
G6	GAC2/IO223PDB3	GAC2/IO172PDB3	GAC2/IO153UDB3	None	None	None
G7	IO223NDB3	IO06RSB0	IO06RSB0	None	None	None
G8	GNDQ	GNDQ	GNDQ	None	None	None
G9	IO23RSB0	IO10RSB0	IO10RSB0	None	None	None
G10	IO29RSB0	IO19RSB0	IO19RSB0	None	None	None
G11	IO33RSB0	IO26RSB0	IO26RSB0	None	None	None
G12	IO46RSB0	IO30RSB0	IO30RSB0	None	None	None
G13	IO52RSB0	IO40RSB0	IO40RSB0	None	None	None
G14	IO60RSB0	IO45RSB0	IO46RSB0	None	None	None
G15	GNDQ	GNDQ	GNDQ	None	None	None
G16	IO80NDB1	IO50RSB0	IO47RSB0	None	None	None
G17	GBB2/IO79PDB1	GBB2/IO61PPB1	GBB2/IO61PPB1	None	None	None
G18	IO79NDB1	IO53RSB0	IO53RSB0	None	None	None
G19	IO82NPB1	IO63NDB1	IO63NDB1	None	None	None
G20	IO85PDB1	NC	NC	Rule 1	Rule 1	None

12-30 v1.1

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
G21	IO85NDB1	NC	NC	Rule 1	Rule 1	None
G22	NC	NC	NC	None	None	None
H1	NC	NC	NC	None	None	None
H2	NC	NC	NC	None	None	None
H3	V _{CC}	V _{CC}	V _{CC}	None	None	None
H4	IO217PDB3	IO166PDB3	IO150PDB3	None	None	None
H5	IO218PDB3	IO167NPB3	IO08RSB0	None	None	None
H6	IO221NDB3	IO172NDB3	IO153VDB3	None	None	None
H7	IO221PDB3	IO169NDB3	IO152VDB3	None	None	None
H8	VMV0	VMV0	VMV0	None	None	None
H9	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
H10	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
H11	IO38RSB0	IO25RSB0	IO25RSB0	None	None	None
H12	IO47RSB0	IO31RSB0	IO31RSB0	None	None	None
H13	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
H14	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
H15	VMV1	VMV1	VMV1	None	None	None
H16	GBC2/IO80PDB1	GBC2/IO62PDB1	GBC2/IO62PDB1	None	None	None
H17	IO83PPB1	IO67PPB1	IO65RSB1	None	None	None
H18	IO86PPB1	IO64PPB1	IO52RSB0	None	None	None
H19	IO87PDB1	IO66PDB1	IO66PDB1	None	None	None
H20	V _{CC}	V _{CC}	V _{CC}	None	None	None
H21	NC	NC	NC	None	None	None
H22	NC	NC	NC	None	None	None
J1	IO212NDB3	NC	NC	Rule 1	Rule 1	None
J2	IO212PDB3	NC	NC	Rule 1	Rule 1	None
J3	NC	NC	NC	None	None	None
J4	IO217NDB3	IO166NDB3	IO150NDB3	None	None	None
J5	IO218NDB3	IO168NPB3	IO149NPB3	None	None	None
J6	IO216PDB3	IO167PPB3	IO09RSB0	None	None	None
J7	IO216NDB3	IO169PDB3	IO152UDB3	None	None	None
J8	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
J9	GND	GND	GND	None	None	None

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
J10	V _{CC}	V _{CC}	V _{CC}	None	None	None
J11	V _{CC}	V _{CC}	V _{CC}	None	None	None
J12	V _{CC}	V _{CC}	V _{CC}	None	None	None
J13	V _{CC}	V _{CC}	V _{CC}	None	None	None
J14	GND	GND	GND	None	None	None
J15	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
J16	IO83NPB1	IO62NDB1	IO62NDB1	None	None	None
J17	IO86NPB1	IO64NPB1	IO49RSB0	None	None	None
J18	IO90PPB1	IO65PPB1	IO64PPB1	None	None	None
J19	IO87NDB1	IO66NDB1	IO66NDB1	None	None	None
J20	NC	NC	NC	None	None	None
J21	IO89PDB1	IO68PDB1	NC	None	Rule 1	Rule 1
J22	IO89NDB1	IO68NDB1	NC	None	Rule 1	Rule 1
K1	IO211PDB3	IO157PDB3	NC	None	Rule 1	Rule 1
K2	IO211NDB3	IO157NDB3	NC	None	Rule 1	Rule 1
K3	NC	NC	NC	None	None	None
K4	IO210PPB3	IO165NDB3	IO148NDB3	None	None	None
K5	IO213NDB3	IO165PDB3	IO148PDB3	None	None	None
K6	IO213PDB3	IO168PPB3	IO149PPB3	None	None	None
K7	GFC1/IO209PPB3	GFC1/IO164PPB3	GFC1/IO147PPB3	None	None	None
K8	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
K9	V _{CC}	V _{CC}	V _{CC}	None	None	None
K10	GND	GND	GND	None	None	None
K11	GND	GND	GND	None	None	None
K12	GND	GND	GND	None	None	None
K13	GND	GND	GND	None	None	None
K14	V _{CC}	V _{CC}	V _{CC}	None	None	None
K15	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
K16	GCC1/IO91PPB1	GCC1/IO69PPB1	GCC1/IO67PPB1	None	None	None
K17	IO90NPB1	IO65NPB1	IO64NPB1	None	None	None
K18	IO88PDB1	IO75PDB1	IO73PDB1	None	None	None
K19	IO88NDB1	IO75NDB1	IO73NDB1	None	None	None
K20	IO94NPB1	NC	NC	Rule 1	Rule 1	None

12-32 v1.1

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
K21	IO98NDB1	IO76NDB1	NC	None	Rule 1	Rule 1
K22	IO98PDB1	IO76PDB1	NC	None	Rule 1	Rule 1
L1	NC	NC	NC	None	None	None
L2	IO200PDB3	IO155PDB3	NC	None	Rule 1	Rule 1
L3	IO210NPB3	NC	NC	Rule 1	Rule 1	None
L4	GFB0/IO208NPB3	GFB0/IO163NPB3	GFB0/IO146NPB3	None	None	None
L5	GFA0/IO207NDB3	GFA0/IO162NDB3	GFA0/IO145NDB3	None	None	None
L6	GFB1/IO208PPB3	GFB1/IO163PPB3	GFB1/IO146PPB3	None	None	None
L7	V _{COMPLF}	V _{COMPLF}	V _{COMPLF}	None	None	None
L8	GFC0/IO209NPB3	GFC0/IO164NPB3	GFC0/IO147NPB3	None	None	None
L9	V _{CC}	V _{CC}	V _{CC}	None	None	None
L10	GND	GND	GND	None	None	None
L11	GND	GND	GND	None	None	None
L12	GND	GND	GND	None	None	None
L13	GND	GND	GND	None	None	None
L14	V _{CC}	V _{CC}	V _{CC}	None	None	None
L15	GCC0/IO91NPB1	GCC0/IO69NPB1	GCC0/IO67NPB1	None	None	None
L16	GCB1/IO92PPB1	GCB1/IO70PPB1	GCB1/IO68PPB1	None	None	None
L17	GCA0/IO93NPB1	GCA0/IO71NPB1	GCA0/IO69NPB1	None	None	None
L18	IO96NPB1	IO67NPB1	NC	None	Rule 1	Rule 1
L19	GCB0/IO92NPB1	GCB0/IO70NPB1	GCB0/IO68NPB1	None	None	None
L20	IO97PDB1	IO77PDB1	NC	None	Rule 1	Rule 1
L21	IO97NDB1	IO77NDB1	NC	None	Rule 1	Rule 1
L22	IO99NPB1	IO78NPB1	NC	None	Rule 1	Rule 1
M1	NC	NC	NC	None	None	None
M2	IO200NDB3	IO155NDB3	NC	None	Rule 1	Rule 1
M3	IO206NDB3	IO158NPB3	NC	None	Rule 1	Rule 1
M4	GFA2/IO206PDB3	GFA2/IO161PPB3	GFA2/IO144PPB3	None	None	None
M5	GFA1/IO207PDB3	GFA1/IO162PDB3	GFA1/IO145PDB3	None	None	None
M6	V_{CCPLF}	V_{CCPLF}	V_{CCPLF}	None	None	None
M7	IO205NDB3	IO160NDB3	IO143NDB3	None	None	None
M8	GFB2/IO205PDB3	GFB2/IO160PDB3	GFB2/IO143PDB3	None	None	None
M9	V _{CC}	V _{CC}	V _{CC}	None	None	None

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
M10	GND	GND	GND	None	None	None
M11	GND	GND	GND	None	None	None
M12	GND	GND	GND	None	None	None
M13	GND	GND	GND	None	None	None
M14	V _{CC}	V _{CC}	V _{CC}	None	None	None
M15	GCB2/IO95PPB1	GCB2/IO73PPB1	GCB2/IO71PPB1	None	None	None
M16	GCA1/IO93PPB1	GCA1/IO71PPB1	GCA1/IO69PPB1	None	None	None
M17	GCC2/IO96PPB1	GCC2/IO74PPB1	GCC2/IO72PPB1	None	None	None
M18	IO100PPB1	IO80PPB1	NC	None	Rule 1	Rule 1
M19	GCA2/IO94PPB1	GCA2/IO72PDB1	GCA2/IO70PDB1	None	None	None
M20	IO101PPB1	IO79PPB1	NC	None	Rule 1	Rule 1
M21	IO99PPB1	IO78PPB1	NC	None	Rule 1	Rule 1
M22	NC	NC	NC	None	None	None
N1	IO201NDB3	IO154NDB3	NC	None	Rule 1	Rule 1
N2	IO201PDB3	IO154PDB3	NC	None	Rule 1	Rule 1
N3	NC	NC	NC	None	None	None
N4	GFC2/IO204PDB3	GFC2/IO159PDB3	GFC2/IO142PDB3	None	None	None
N5	IO204NDB3	IO161NPB3	IO144NPB3	None	None	None
N6	IO203NDB3	IO156PPB3	IO141PPB3	None	None	None
N7	IO203PDB3	IO129RSB2	IO120RSB2	None	None	None
N8	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
N9	V _{CC}	V _{CC}	V _{CC}	None	None	None
N10	GND	GND	GND	None	None	None
N11	GND	GND	GND	None	None	None
N12	GND	GND	GND	None	None	None
N13	GND	GND	GND	None	None	None
N14	V _{CC}	V _{CC}	V _{CC}	None	None	None
N15	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
N16	IO95NPB1	IO73NPB1	IO71NPB1	None	None	None
N17	IO100NPB1	IO80NPB1	IO74RSB1	None	None	None
N18	IO102NDB1	IO74NPB1	IO72NPB1	None	None	None
N19	IO102PDB1	IO72NDB1	IO70NDB1	None	None	None
N20	NC	NC	NC	None	None	None

12-34 v1.1

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
N21	IO101NPB1	IO79NPB1	NC	None	Rule 1	Rule 1
N22	IO103PDB1	NC	NC	Rule 1	Rule 1	None
P1	NC	NC	NC	None	None	None
P2	IO199PDB3	IO153PDB3	NC	None	Rule 1	Rule 1
Р3	IO199NDB3	IO153NDB3	NC	None	Rule 1	Rule 1
P4	IO202NDB3	IO159NDB3	IO142NDB3	None	None	None
P5	IO202PDB3	IO156NPB3	IO141NPB3	None	None	None
P6	IO196PPB3	IO151PPB3	IO125RSB2	None	None	None
P7	IO193PPB3	IO158PPB3	IO139RSB3	None	None	None
P8	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
P9	GND	GND	GND	None	None	None
P10	V _{CC}	V _{CC}	V _{CC}	None	None	None
P11	V _{CC}	V _{CC}	V _{CC}	None	None	None
P12	V _{CC}	V _{CC}	V _{CC}	None	None	None
P13	V _{CC}	V _{CC}	V _{CC}	None	None	None
P14	GND	GND	GND	None	None	None
P15	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None
P16	GDB0/IO112NPB1	GDB0/IO87NPB1	GDB0/IO78VPB1	None	None	None
P17	IO106NDB1	IO85NDB1	IO76VDB1	None	None	None
P18	IO106PDB1	IO85PDB1	IO76UDB1	None	None	None
P19	IO107PDB1	IO84PDB1	IO75PDB1	None	None	None
P20	NC	NC	NC	None	None	None
P21	IO104PDB1	IO81PDB1	NC	None	Rule 1	Rule 1
P22	IO103NDB1	NC	NC	Rule 1	Rule 1	None
R1	NC	NC	NC	None	None	None
R2	IO197PPB3	NC	NC	Rule 1	Rule 1	None
R3	V _{CC}	V _{CC}	V _{CC}	None	None	None
R4	IO197NPB3	IO150PDB3	IO140PDB3	None	None	None
R5	IO196NPB3	IO151NPB3	IO130RSB2	None	None	None
R6	IO193NPB3	IO147NPB3	IO138NPB3	None	None	None
R7	GEC0/IO190NPB3	GEC0/IO146NPB3	GEC0/IO137NPB3	None	None	None
R8	VMV3	VMV3	VMV3	None	None	None
R9	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
R10	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
R11	IO147RSB2	IO117RSB2	IO108RSB2	None	None	None
R12	IO136RSB2	IO110RSB2	IO101RSB2	None	None	None
R13	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
R14	V _{CCI} B2	V _{CCI} B2	V _{CCI} B2	None	None	None
R15	VMV2	VMV2	VMV2	None	None	None
R16	IO110NDB1	IO94RSB2	IO83RSB2	None	None	None
R17	GDB1/IO112PPB1	GDB1/IO87PPB1	GDB1/IO78UPB1	None	None	None
R18	GDC1/IO111PDB1	GDC1/IO86PDB1	GDC1/IO77UDB1	None	None	None
R19	IO107NDB1	IO84NDB1	IO75NDB1	None	None	None
R20	V _{CC}	V _{CC}	V _{CC}	None	None	None
R21	IO104NDB1	IO81NDB1	NC	None	Rule 1	Rule 1
R22	IO105PDB1	IO82PDB1	NC	None	Rule 1	Rule 1
T1	IO198PDB3	IO152PDB3	NC	None	Rule 1	Rule 1
T2	IO198NDB3	IO152NDB3	NC	None	Rule 1	Rule 1
T3	NC	NC	NC	None	None	None
T4	IO194PPB3	IO150NDB3	IO140NDB3	None	None	None
T5	IO192PPB3	IO147PPB3	IO138PPB3	None	None	None
T6	GEC1/IO190PPB3	GEC1/IO146PPB3	GEC1/IO137PPB3	None	None	None
T7	IO192NPB3	IO140RSB2	IO131RSB2	None	None	None
T8	GNDQ	GNDQ	GNDQ	None	None	None
T9	GEA2/IO187RSB2	GEA2/IO143RSB2	GEA2/IO134RSB2	None	None	None
T10	IO161RSB2	IO126RSB2	IO117RSB2	None	None	None
T11	IO155RSB2	IO120RSB2	IO111RSB2	None	None	None
T12	IO141RSB2	IO108RSB2	IO99RSB2	None	None	None
T13	IO129RSB2	IO103RSB2	IO94RSB2	None	None	None
T14	IO124RSB2	IO99RSB2	IO87RSB2	None	None	None
T15	GNDQ	GNDQ	GNDQ	None	None	None
T16	IO110PDB1	IO92RSB2	IO93RSB2	None	None	None
T17	V_{JTAG}	V_{JTAG}	V_{JTAG}	None	None	None
T18	GDC0/IO111NDB1	GDC0/IO86NDB1	GDC0/IO77VDB1	None	None	None
T19	GDA1/IO113PDB1	GDA1/IO88PDB1	GDA1/IO79UDB1	None	None	None
T20	NC	NC	NC	None	None	None

12-36 v1.1

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400	
T21	IO108PDB1	IO83PDB1	NC	None	Rule 1	Rule 1	
T22	IO105NDB1	IO82NDB1	NC	None	Rule 1	Rule 1	
U1	IO195PDB3	IO149PDB3	NC	None	Rule 1	Rule 1	
U2	IO195NDB3	IO149NDB3	NC	None	Rule 1	Rule 1	
U3	IO194NPB3	NC	NC	Rule 1	Rule 1	None	
U4	GEB1/IO189PDB3	GEB1/IO145PDB3	GEB1/IO136PDB3	None	None	None	
U5	GEB0/IO189NDB3	GEB0/IO145NDB3	GEB0/IO136NDB3	None	None	None	
U6	VMV2	VMV2	VMV2	None	None	None	
U7	IO179RSB2	IO138RSB2	IO129RSB2	None	None	None	
U8	IO171RSB2	IO136RSB2	IO128RSB2	None	None	None	
U9	IO165RSB2	IO131RSB2	IO122RSB2	None	None	None	
U10	IO159RSB2	IO124RSB2	IO115RSB2	None	None	None	
U11	IO151RSB2	IO119RSB2	IO110RSB2	None	None	None	
U12	IO137RSB2	IO107RSB2	IO98RSB2	None	None	None	
U13	IO134RSB2	IO104RSB2	IO95RSB2	None	None	None	
U14	IO128RSB2	IO97RSB2	IO88RSB2	None	None	None	
U15	VMV1	VMV1	IO84RSB2	None	Rule 7	Rule 7	
U16	TCK	TCK	TCK	None	None	None	
U17	V_{PUMP}	V_{PUMP}	V _{PUMP}	None	None	None	
U18	TRST	TRST	TRST	None	None	None	
U19	GDA0/IO113NDB1	GDA0/IO88NDB1	GDA0/IO79VDB1	None	None	None	
U20	NC	NC	NC	None	None	None	
U21	IO108NDB1	IO83NDB1	NC	None	Rule 1	Rule 1	
U22	IO109PDB1	NC	NC	Rule 1	Rule 1	None	
V1	NC	NC	NC	None	None	None	
V2	NC	NC	NC	None	None	None	
V3	GND	GND	GND	None	None	None	
V4	GEA1/IO188PDB3	GEA1/IO144PDB3	GEA1/IO135PDB3	None	None	None	
V5	GEA0/IO188NDB3	GEA0/IO144NDB3	GEA0/IO135NDB3	None	None	None	
V6	IO184RSB2	IO139RSB2	IO127RSB2	None	None	None	
V7	GEC2/IO185RSB2	GEC2/IO141RSB2	GEC2/IO132RSB2	None	None	None	
V8	IO168RSB2	IO132RSB2	IO123RSB2	None	None	None	
V9	IO163RSB2	IO127RSB2	IO118RSB2	None	None	None	

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

				Migration Rule between	Migration Rule between	Migration Rule between
Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	A3P1000 and A3P600	A3P1000 and A3P400	A3P600 and A3P400
V10	IO157RSB2	IO121RSB2	IO112RSB2	None	None	None
V11	IO149RSB2	IO114RSB2	IO106RSB2	None	None	None
V12	IO143RSB2	IO109RSB2	IO100RSB2	None	None	None
V13	IO138RSB2	IO105RSB2	IO96RSB2	None	None	None
V14	IO131RSB2	IO98RSB2	IO89RSB2	None	None	None
V15	IO125RSB2	IO96RSB2	IO85RSB2	None	None	None
V16	GDB2/IO115RSB2	GDB2/IO90RSB2	GDB2/IO81RSB2	None	None	None
V17	TDI	TDI	TDI	None	None	None
V18	GNDQ	GNDQ	NC	None	Rule 8	Rule 8
V19	TDO	TDO	TDO	None	None	None
V20	GND	GND	GND	None	None	None
V21	NC	NC	NC	None	None	None
V22	IO109NDB1	NC	NC	Rule 1	Rule 1	None
W1	NC	NC	NC	None	None	None
W2	IO191PDB3	IO148PDB3	NC	None	Rule 1	Rule 1
W3	NC	NC	NC	None	None	None
W4	GND	GND	GND	None	None	None
W5	IO183RSB2	IO137RSB2	IO126RSB2	None	None	None
W6	GEB2/IO186RSB2	GEB2/IO142RSB2	GEB2/IO133RSB2	None	None	None
W7	IO172RSB2	IO134RSB2	IO124RSB2	None	None	None
W8	IO170RSB2	IO125RSB2	IO116RSB2	None	None	None
W9	IO164RSB2	IO123RSB2	IO113RSB2	None	None	None
W10	IO158RSB2	IO118RSB2	IO107RSB2	None	None	None
W11	IO153RSB2	IO115RSB2	IO105RSB2	None	None	None
W12	IO142RSB2	IO111RSB2	IO102RSB2	None	None	None
W13	IO135RSB2	IO106RSB2	IO97RSB2	None	None	None
W14	IO130RSB2	IO102RSB2	IO92RSB2	None	None	None
W15	GDC2/IO116RSB2	GDC2/IO91RSB2	GDC2/IO82RSB2	None	None	None
W16	IO120RSB2	IO93RSB2	IO86RSB2	None	None	None
W17	GDA2/IO114RSB2	GDA2/IO89RSB2	GDA2/IO80RSB2	None	None	None
W18	TMS	TMS	TMS	None	None	None
W19	GND	GND	GND	None	None	None
W20	NC	NC	NC	None	None	None

12-38 v1.1

Table 12-7 • Pin Compatibility and Migration Table for the FG484 Package (continued)

Pin Number	A3P1000 Function	A3P600 Function	A3P400 Function	Migration Rule between A3P1000 and A3P600	Migration Rule between A3P1000 and A3P400	Migration Rule between A3P600 and A3P400
W21	NC	NC	NC	None	None	None
W22	NC	NC	NC	None	None	None
Y1	V _{CCI} B3	V _{CCI} B3	V _{CCI} B3	None	None	None
Y2	IO191NDB3	IO148NDB3	NC	None	Rule 1	Rule 1
Y3	NC	NC	NC	None	None	None
Y4	IO182RSB2	NC	NC	Rule 1	Rule 1	None
Y5	GND	GND	GND	None	None	None
Y6	IO177RSB2	NC	NC	Rule 1	Rule 1	None
Y7	IO174RSB2	NC	NC	Rule 1	Rule 1	None
Y8	V _{CC}	V _{CC}	V _{CC}	None	None	None
Y9	V _{CC}	V _{CC}	V _{CC}	None	None	None
Y10	IO154RSB2	NC	NC	Rule 1	Rule 1	None
Y11	IO148RSB2	NC	NC	Rule 1	Rule 1	None
Y12	IO140RSB2	NC	NC	Rule 1	Rule 1	None
Y13	NC	NC	NC	None	None	None
Y14	V _{CC}	V _{CC}	V _{CC}	None	None	None
Y15	V _{CC}	V _{CC}	V _{CC}	None	None	None
Y16	NC	NC	NC	None	None	None
Y17	NC	NC	NC	None	None	None
Y18	GND	GND	GND	None	None	None
Y19	NC	NC	NC	None	None	None
Y20	NC	NC	NC	None	None	None
Y21	NC	NC	NC	None	None	None
Y22	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	None	None	None

Conclusion

This application note describes design migration among ProASIC3 family devices with an emphasis on package pin compatibility. The ProASIC3 family of devices shares numerous common architectural features. During a system migration, care should be taken regarding the architectural features of each core. Additionally, a key requirement is running functional simulation before and after the migration, using Actel tools. Actel will be updating this application note with additional packages in the future.

Related Documents

Handbook Documents

I/O Structures in IGLOO and ProASIC3 Devices
http://www.actel.com/documents/IGLOO_PA3_IO_HBs.pdf

Part Number and Revision Date

This document was previously published as an application note describing features and functions of the device, and as such has now been incorporated into the device handbook format. No technical changes have been made to the content.

Part Number 51700094-017-1 Revised March 2008

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.1)	Page
v1.0 (January 2008)	The part number for this document was changed from 51700094-016-0 to 51700094-017-1.	N/A
51900143-1/10.07	In Table 12-4 · Pin Compatibility and Migration Table for the PQ208 Package, pin 107 was updated to include Rule 8.	12-5
51900143-0/7.06	The title of the document and the "Introduction" section were updated to clarify the topics covered in the application note.	12-1
	The "Design Migration" section was updated to match and cross-reference the sections of the document in sequence.	12-1
	The title of Table 12-1 · Device Information was updated.	12-1
	Table 12-3 · Migration Rules from Higher-Density to Mid-Density Devices and Table 4 were combined and a table note was added to refer to the datasheet for I/O naming conventions.	12-3
	In the "Power Supply and Board-Level Considerations" section, the following bullet was removed: "Since each bank independently supports 1.5 V to 3.3 V, I/Os must be connected to the V _{CCI} Bx of their own banks."	12-4
	The "Related Documents" section was added.	12-40

12-40 v1.1

13 – Migrating Designs from A3P250 to Lower-Logic-Density Devices

Introduction

The purpose of this document is to assist you in migrating designs from a high-density ProASIC®3 device (A3P250) to lower-density devices (A3P125, A3P060, and A3P030). Since one of the key factors is pin compatibility for a given package among the devices within the family, the primary focus of this document will be to address the pin compatibility issue.

Design Migration

ProASIC3 family devices are architecturally compatible with each other. However, customers must pay attention to a few key areas when migrating a design. The specific issues discussed throughout this application note are as follows:

- "Design and Device Evaluation"
- "Device and Package Compatibility" on page 13-2
- "Migration and Implementation Methodologies" on page 13-2
- "I/O Banks and Standards" on page 13-3
- "Power Supply Considerations" on page 13-4
- "Pin Migration and Compatibility" on page 13-5

Design and Device Evaluation

When migrating a design, the primary task should be to compare the available resources between two devices. You need to evaluate effective gate count, RAM size, I/O banks, and the number of I/Os. In addition, when porting designs to new ProASIC3 derivatives, timing analysis and simulations should also be validated. Table 13-1 gives a summary of device resources for the A3P250 device and its smaller migration targets.

Table 13-1 • Device Information

	A3P250	A3P125	A3P060	A3P030
System Gates	250 k	125 k	60 k	30 k
Tiles (D-flip-flops)	6,144	3,072	1,536	768
RAM (kbits)	36	36	18	-
RAM Blocks (4,608 bits)	8	8	4	-
I/O Banks (+ JTAG)	4	2	2	2
User I/Os per Package:				
VQ100	68/13	71	71	77
QN132	87/19	84	80	81
TQ144		100	91	
FG144	97/24	97	96	
PQ208	151/34	133		
FG256	157/38			

Note: User I/O is given as X (single-ended) or X/Y (single-ended/double-ended).

Device and Package Compatibility

ProASIC3 devices and packaging were designed to allow considerable footprint compatibility for smoother migration.

Common and Convertible I/Os among A3P030, A3P060, A3P125, and A3P250

Table 13-2 shows the number of I/Os that are common between any two of the above four devices. In addition, the table indicates the number of I/Os that require the necessary conversion (convertible I/Os) using suggested design migration rules in the "Migration and Implementation Methodologies" section.

Table 13-2 • Common and Convertible I/Os

	A3P A3P		A3P250 A3P060		A3P250 A3P030		A3P125 A3P060		A3P125 A3P030		A3P060 A3P030	
Package	Common I/Os	Convertible I/Os	Common I/Os	Convertible I/Os	Common I/Os	Convertible I/Os	Common I/Os	Convertible I/Os	Common I/Os	Convertible I/Os	Common I/Os	Convertible I/Os
VQ100	68	7	67	5	69	46	69	4	72	46	71	46
QN132	84	13	80	25	64	72	80	14	66	70	61	75
FG144	97	-	96	-	N/A	N/A	96	-	N/A	N/A	N/A	N/A
PQ208	134	18	N/A									
TQ144	N/A	N/A	N/A	N/A	N/A	N/A	90	19	N/A	N/A	N/A	N/A

Migration and Implementation Methodologies

Table 13-3 on page 13-3 lists some possible migration combinations and the recommended implementation rules for compatible design conversions from higher-density to lower-density devices. The "Pin Migration and Compatibility" section on page 13-5 contains tables that list the required rules for different pin combinations. If "Rule x" is mentioned for a pin combination, that combination requires the implementation methodology given in Table 13-3 on page 13-3. Note that many combinations of high-density/low-density pins require none of these rules; the pins have complete type compatibility. These pins are marked in the pin tables with "None."

13-2 v1.0

Table 13-3 • Migration Rules from Higher-Density Device to Lower-Density Device

Migration	lss	ue	
Rule	Higher Density	Lower Density	Implementation Methodology
1	I/O or Global I/O	NC	Leave this pin floating OR program the I/O as unused (software
	NC	I/O or Global I/O	cannot program NC to usable I/O).
2	I/O	Global I/O	Instantiate the global I/O as an I/O buffer (works as a single-ended I/O).
3	Global I/O	I/O	Use the PDC constraint to promote the single-ended I/O to a global pin. There will be some additional delay.
4	V _{CC} or V _{CCI}	NC	The pin can remain connected to the board's V _{CC} , V _{CCI} , VMV,
	GNDQ	NC	V _{COMPLF} , or GNDQ plane, as applicable.
	VMV	NC	
	V _{COMPLF}	NC	
5	V _{CCI} B(x) ¹	V _{CCI} B(y) ²	Make sure the two bank voltage levels are same.
	VMV(x) ¹	VMV(y) ²	Tie the pin to the board's corresponding V _{CCI} /VMV plane.
6	VMV0	I/O or Global I/O	Leave the pin connected to the board's V_{CC} , V_{CCI} , VMV,
	GNDQ	I/O	V _{COMPLF} , or GNDQ plane, as applicable. Instantiate the I/O as a tristate buffer with OE = 0 and no weak
	GNDQ	Global I/O	pull-ups/-downs.
	I/O	V _{CC}	
	V _{CC}	I/O	
	V _{COMPLF}	I/O	
	V_{CCPLF}	I/O	

- 1. "x" is a bank number designator and can be 0–3 for ProASIC3 and 0–7 for ProASIC3E.
- 2. "y" is a bank number designator and can be 0-3 for ProASIC3 and 0-7 for ProASIC3E.

I/O Banks and Standards

ProASIC3 I/Os are partitioned into multiple I/O voltage banks. The number of banks is device-dependent. There are four I/O banks in the A3P250 device and two I/O banks in the A3P030, A3P060, and A3P125 devices.

Package pins routed to banks 0 and 1 in the A3P250 device are routed to bank 0 in the A3P030, A3P060, and A3P125 devices, and banks 2 and 3 in the A3P250 device are routed to bank 1 in the A3P030, A3P060, and A3P125 devices.

The banks have dedicated supplies; therefore, only I/Os with compatible voltage standards can be assigned to the same I/O voltage bank.

Note that the A3P250 device supports double-ended I/Os; however, the A3P030, A3P060, and A3P125 devices do not support double-ended I/Os.

v1.0 13-3

Power Supply Considerations

I/O power supply requirements are very important for design migration. Since the migration is within the ProASIC3 family, there is no issue with respect to the core voltage V_{CC}. Pins that must be appropriately connected are V_{CCI}Bx (bank supply voltage to I/O output buffer and I/O logic), VMVx (quiet I/O supply voltage), GNDQ (quiet GND), and GND. GNDQ and VMVx are important to decouple simultaneous switching noise (SSO) for I/Os—enhancing signal integrity and improving noise immunity.

The key rules of migration for the above-mentioned pins are as follows:

- VMV and V_{CCI} values of the higher-density device in a given bank must correspond to the same VMV and V_{CCI} values in the smaller device's migrating bank.
- Since banks 0 and 1 are connected to bank 0 in the smaller device—and banks 2 and 3 are connected to bank 1 in the smaller device—this implies that banks 0 and 1 in the A3P250 device must have identical VMV and identical V_{CCI}. Similarly, the VMV and V_{CCI} voltages in banks 2 and 3 of the A3P250 device must be identical.
- V_{CCI}Bx pins in unused banks and VMV pins in unused banks must be connected to GND.
- Unused I/Os should be left alone, since the software automatically configures them as inputs with pull-ups.

Any inappropriate connection during the migration may affect overall dynamic or inrush power consumption and might even result in device malfunction.

Additionally, the I/O naming convention in ProASIC3 devices has significant embedded information (e.g., pin location, bank number, signal type, polarity, and clock conditioning). For a detailed explanation, refer to the "User I/O Naming Convention" section of I/O Structures in IGLOO® and ProASIC3 Devices. For additional information on power issues, refer to the relevant datasheet.

13-4 v1.0

Pin Migration and Compatibility

VQ100 Package

Table 13-4 • Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with VQ100 Packaging

Pin No.	A3P030 Function	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P125	Migration Rule between A3P060 and A3P030	Migration Rule between A3P125 and A3P030	Migration Rule between A3P250 and A3P030
1	GND	GND	GND	GND	None	None	None	None	None	None
2	IO03RSB1	GAA2/ IO51RSB1	GAA2/ IO67RSB1	GAA2/ IO118UDB3	None	None	None	Rule 3	Rule 3	Rule 3
3	IO02RSB1	IO52RSB1	IO68RSB1	IO118VDB3	None	None	None	None	None	None
4	IO01RSB1	GAB2/ IO53RSB1	GAB2/ IO69RSB1	GAB2/ IO117UDB3	None	None	None	Rule 3	Rule 3	Rule 3
5	IO00RSB1	IO95RSB1	IO132RSB1	IO117VDB3	None	None	None	None	None	None
6	IO82RSB1	GAC2/ IO94RSB1	GAC2/ IO131RSB1	GAC2/ IO116UDB3	None	None	None	Rule 3	Rule 3	Rule 3
7	IO81RSB1	IO93RSB1	IO130RSB1	IO116VDB3	None	None	None	None	None	None
8	IO80RSB1	IO92RSB1	IO129RSB1	IO112PSB3	None	None	None	None	None	None
9	GND	GND	GND	GND	None	None	None	None	None	None
10	IO79RSB1	GFB1/ IO87RSB1	GFB1/ IO124RSB1	GFB1/ IO109PDB3	None	None	None	Rule 3	Rule 3	Rule 3
11	IO78RSB1	GFB0/ IO86RSB1	GFB0/ IO123RSB1	GFB0/ IO109NDB3	None	None	None	Rule 3	Rule 3	Rule 3
12	GEC0/ IO77RSB1	V _{COMPLF}	V _{COMPLF}	V _{COMPLF}	None	None	None	Rule 6	Rule 6	Rule 6
13	GEA0/ IO76RSB1	GFA0/ IO85RSB1	GFA0/ IO122RSB1	GFA0/ IO108NPB3	None	None	None	None	None	None
14	GEB0/ IO75RSB1	V _{CCPLF}	V _{CCPLF}	V _{CCPLF}	None	None	None	Rule 6	Rule 6	Rule 6
15	IO74RSB1	GFA1/ IO84RSB1	GFA1/ IO121RSB1	GFA1/ IO108PPB3	None	None	None	Rule 3	Rule 3	Rule 3
16	IO73RSB1	GFA2/ IO83RSB1	GFA2/ IO120RSB1	GFA2/ IO107PSB3	None	None	None	Rule 3	Rule 3	Rule 3
17	V _{CC}	V _{CC}	V _{CC}	V _{CC}	None	None	None	None	None	None
18	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	V _{CCI} B3	None	None	None	None	None	None
19	IO72RSB1	GEC1/ IO77RSB1	GEC0/ IO111RSB1	GFC2/ IO105PSB3	None	None	None	Rule 3	Rule 3	Rule 3

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

Table 13-4 • Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with VQ100 Packaging (continued)

					Migration Rule between A3P125	Migration Rule between A3P250	Migration Rule between A3P250	Migration Rule between A3P060	Migration Rule between A3P125	Migration Rule between A3P250
Pin No.	A3P030 Function	A3P060 Function	A3P125 Function	A3P250 Function	and A3P060	and A3P060	and A3P125	and A3P030	and A3P030	and A3P030
20	IO71RSB1	GEB1/ IO75RSB1	GEB1/ IO110RSB1	GEC1/ IO100PDB3	None	None	None	Rule 3	Rule 3	Rule 3
21	IO70RSB1		GEB0/ IO109RSB1	GEC0/ IO100NDB3	None	None	None	Rule 3	Rule 3	Rule 3
22	IO69RSB1	GEA1/ IO73RSB1	GEA1/ IO108RSB1	GEA1/ IO98PDB3	None	None	None	Rule 3	Rule 3	Rule 3
23	IO68RSB1	GEA0/ IO72RSB1	GEA0/ IO107RSB1	GEA0/ IO98NDB3	None	None	None	Rule 3	Rule 3	Rule 3
24	IO67RSB1	VMV1	VMV1	VMV3	None	None	None	Rule 6	Rule 6	Rule 6
25	IO66RSB1	GNDQ	GNDQ	GNDQ	None	None	None	Rule 6	Rule 6	Rule 6
26	IO65RSB1	GEA2/ IO71RSB1	GEA2/ IO106RSB1	GEA2/ IO97RSB2	None	None	None	Rule 3	Rule 3	Rule 3
27	IO64RSB1		GEB2/ IO105RSB1	GEB2/ IO96RSB2	None	None	None	Rule 3	Rule 3	Rule 3
28	IO63RSB1		GEC2/ IO104RSB1	GEC2/ IO95RSB2	None	None	None	Rule 3	Rule 3	Rule 3
29	IO62RSB1	IO68RSB1	IO102RSB1	IO93RSB2	None	None	None	None	None	None
30	IO61RSB1	IO67RSB1	IO100RSB1	IO92RSB2	None	None	None	None	None	None
31	IO60RSB1	IO66RSB1	IO99RSB1	IO91RSB2	None	None	None	None	None	None
32	IO59RSB1	IO65RSB1	IO97RSB1	IO90RSB2	None	None	None	None	None	None
33	IO58RSB1	IO64RSB1	IO96RSB1	IO88RSB2	None	None	None	None	None	None
34	IO57RSB1	IO63RSB1	IO95RSB1	IO86RSB2	None	None	None	None	None	None
35	IO56RSB1	IO62RSB1	IO94RSB1	IO85RSB2	None	None	None	None	None	None
36		IO61RSB1	IO93RSB1	IO84RSB2	None	None	None	None	None	None
37	V _{CC}	V _{CC}	V _{CC}	V _{CC}	None	None	None	None	None	None
38	GND	GND	GND	GND	None	None	None	None	None	None
39	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	V _{CCI} B2	None	None	None	None	None	None
40	IO53RSB1	IO60RSB1	IO87RSB1	IO77RSB2	None	None	None	None	None	None
41	IO51RSB1	IO59RSB1	IO84RSB1	IO74RSB2	None	None	None	None	None	None
42	IO50RSB1	IO58RSB1	IO81RSB1	IO71RSB2	None	None	None	None	None	None
43	IO49RSB1	IO57RSB1	IO75RSB1	GDC2/ IO63RSB2	None	Rule 2	Rule 3	None	None	Rule 3

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

13-6 v1.0

Table 13-4 • Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with VQ100 Packaging (continued)

Pin No.	A3P030 Function	A3P060 Function	A3P125 Function	A3P250 Function GDB2/	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P125	Migration Rule between A3P060 and A3P030 Rule 3	Migration Rule between A3P125 and A3P030 Rule 3	Migration Rule between A3P250 and A3P030
		IO56RSB1	IO72RSB1	IO62RSB2						
45	IO47RSB1	GDB2/ IO55RSB1	GDB2/ IO71RSB1	GDA2/ IO61RSB2	None	None	None	Rule 3	Rule 3	Rule 3
46	IO46RSB1	GDA2/ IO54RSB1	GDA2/ IO70RSB1	GNDQ	None	Rule 10	Rule 10	Rule 3	Rule 3	Rule 6
47	TCK	TCK	TCK	TCK	None	None	None	None	None	None
48	TDI	TDI	TDI	TDI	None	None	None	None	None	None
49	TMS	TMS	TMS	TMS	None	None	None	None	None	None
50	NC	VMV1	VMV1	VMV2	None	None	None	Rule 4	Rule 4	Rule 4
51	GND	GND	GND	GND	None	None	None	None	None	None
52	V_{PUMP}	V_{PUMP}	V_{PUMP}	V_{PUMP}	None	None	None	None	None	None
53	NC	NC	NC	NC	None	None	None	None	None	None
54	TDO	TDO	TDO	TDO	None	None	None	None	None	None
55	TRST	TRST	TRST	TRST	None	None	None	None	None	None
56	V_{JTAG}	V_{JTAG}	V_{JTAG}	V_{JTAG}	None	None	None	None	None	None
57	IO45RSB0	GDA1/ IO49RSB0	GDA1/ IO65RSB0	GDA1/ IO60USB1	None	None	None	Rule 3	Rule 3	Rule 3
58	IO44RSB0		GDC0/ IO62RSB0	GDC0/ IO58VDB1	None	None	None	Rule 3	Rule 3	Rule 3
59	IO43RSB0		GDC1/ IO61RSB0	GDC1/ IO58UDB1	None	None	None	Rule 3	Rule 3	Rule 3
	IO42RSB0		GCC2/ IO59RSB0	IO52NDB1	None	Rule 2	Rule 2	Rule 3	Rule 3	None
61	IO41RSB0		GCB2/ IO58RSB0	GCB2/ IO52PDB1	None	None	None	Rule 3	Rule 3	Rule 3
62	IO40RSB0		GCA0/ IO56RSB0	GCA1/ IO50PDB1	None	None	None	Rule 3	Rule 3	Rule 3
63	GDB0/ IO38RSB0	GCA1/ IO39RSB0	GCA1/ IO55RSB0	GCA0/ IO50NDB1	None	None	None	None	None	None
64	GDA0/ IO37RSB0	GCC0/ IO36RSB0	GCC0/ IO52RSB0	GCC0/ IO48NDB1	None	None	None	None	None	None
65	GDC0/ IO36RSB0	GCC1/ IO35RSB0	GCC1/ IO51RSB0	GCC1/ IO48PDB1	None	None	None	None	None	None

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

Table 13-4 • Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with VQ100 Packaging (continued)

					n.a				n.a	n.a
Pin No.	A3P030 Function	A3P060 Function	A3P125 Function	A3P250 Function	Rule between A3P125 and A3P060	Rule Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P125	Rule Rule between A3P060 and A3P030	Rule between A3P125 and A3P030	Rule between A3P250 and A3P030
66	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	V _{CCI} B1	None	None	None	None	None	None
67	GND	GND	GND	GND	None	None	None	None	None	None
68	V _{CC}	V _{CC}	V _{CC}	V _{CC}	None	None	None	None	None	None
69	IO35RSB0	IO31RSB0	IO47RSB0	IO43NDB1	None	None	None	None	None	None
70	IO34RSB0		GBC2/ IO45RSB0	GBC2/ IO43PDB1	None	None	None	Rule 3	Rule 3	Rule 3
71	IO33RSB0	GBB2/ IO27RSB0	GBB2/ IO43RSB0	GBB2/ IO42PSB1	None	None	None	Rule 3	Rule 3	Rule 3
72	IO32RSB0	IO26RSB0	IO42RSB0	IO41NDB1	None	None	None	None	None	None
73	IO31RSB0		GBA2/ IO41RSB0	GBA2/ IO41PDB1	None	None	None	Rule 3	Rule 3	Rule 3
74	IO30RSB0	VMV0	VMV0	VMV1	None	None	None	Rule 6	Rule 6	Rule 6
75	IO29RSB0	GNDQ	GNDQ	GNDQ	None	None	None	Rule 6	Rule 6	Rule 6
76	IO28RSB0	GBA1/ IO24RSB0	GBA1/ IO40RSB0	GBA1/ IO40RSB0	None	None	None	Rule 3	Rule 3	Rule 3
77	IO27RSB0		GBA0/ IO39RSB0	GBA0/ IO39RSB0	None	None	None	Rule 3	Rule 3	Rule 3
78	IO26RSB0	GBB1/ IO22RSB0	GBB1/ IO38RSB0	GBB1/ IO38RSB0	None	None	None	Rule 3	Rule 3	Rule 3
79	IO25RSB0		GBB0/ IO37RSB0	GBB0/ IO37RSB0	None	None	None	Rule 3	Rule 3	Rule 3
80	IO24RSB0		GBC1/ IO36RSB0	GBC1/ IO36RSB0	None	None	None	Rule 3	Rule 3	Rule 3
81	IO23RSB0	GBC0/ IO19RSB0	GBC0/ IO35RSB0	GBC0/ IO35RSB0	None	None	None	Rule 3	Rule 3	Rule 3
82	IO22RSB0	IO18RSB0	IO32RSB0	IO29RSB0	None	None	None	None	None	None
83	IO21RSB0	IO17RSB0	IO28RSB0	IO27RSB0	None	None	None	None	None	None
84	IO20RSB0	IO15RSB0	IO25RSB0	IO25RSB0	None	None	None	None	None	None
85	IO19RSB0	IO13RSB0	IO22RSB0	IO23RSB0	None	None	None	None	None	None
86	IO18RSB0	IO11RSB0	IO19RSB0	IO21RSB0	None	None	None	None	None	None
87	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None	None	None	None
88	GND	GND	GND	GND	None	None	None	None	None	None
89	V _{CC}	V _{CC}	V _{CC}	V_{CC}	None	None	None	None	None	None

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

13-8 v1.0

Table 13-4 • Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with VQ100 Packaging (continued)

Pin No.	A3P030 Function	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P125	Migration Rule between A3P060 and A3P030	Migration Rule between A3P125 and A3P030	Migration Rule between A3P250 and A3P030
90	IO16RSB0	IO10RSB0	IO15RSB0	IO15RSB0	None	None	None	None	None	None
91	IO14RSB0	IO09RSB0	IO13RSB0	IO13RSB0	None	None	None	None	None	None
92	IO12RSB0	IO08RSB0	IO11RSB0	IO11RSB0	None	None	None	None	None	None
93	IO11RSB0	GAC1/ IO07RSB0	IO09RSB0	GAC1/ IO05RSB0	Rule 2	None	Rule 3	Rule 3	None	Rule 3
94	IO10RSB0	GAC0/ IO06RSB0	IO07RSB0	GAC0/ IO04RSB0	Rule 2	None	Rule 3	Rule 3	None	Rule 3
95	IO09RSB0		GAC1/ IO05RSB0	GAB1/ IO03RSB0	None	None	None	Rule 3	Rule 3	Rule 3
96	IO08RSB0		GAC0/ IO04RSB0	GAB0/ IO02RSB0	None	None	None	Rule 3	Rule 3	Rule 3
97	IO07RSB0	GAA1/ IO03RSB0	GAB1/ IO03RSB0	GAA1/ IO01RSB0	None	None	None	Rule 3	Rule 3	Rule 3
98	IO06RSB0	GAA0/ IO02RSB0	GAB0/ IO02RSB0	GAA0/ IO00RSB0	None	None	None	Rule 3	Rule 3	Rule 3
99	IO05RSB0	IO01RSB0	GAA1/ IO01RSB0	GNDQ	Rule 3	Rule 9	Rule 10	None	Rule 3	Rule 6
100	IO04RSB0	IO00RSB0	GAA0/ IO00RSB0	VMV0	Rule 3	Rule 8	Rule 8	None	Rule 3	Rule 6

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

v1.0 13-9

QFN132 Package

Table 13-5 • Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with QFN132 Packaging

Pin No.	A3P030 Function	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P030	Migration Rule between A3P125 and A3P030	Migration Rule between A3P060 and A3P030
Α1	IO01RSB1		GAB2/ IO69RSB1	GAB2/ IO117UPB3	None	None	None	Rule 3	Rule 3	Rule 3
A2	IO81RSB1	IO93RSB1	IO130RSB1	IO117VPB3	None	None	None	None	None	None
A3	NC	V _{CCI} B1	V _{CCI} B1	V _{CCI} B3	Rule 5	None	Rule 5	Rule 4	Rule 4	Rule 4
Α4	IO80RSB1		GFC1/ IO126RSB1	GFC1/ IO110PDB3	None	None	None	Rule 3	Rule 3	Rule 3
A5	GEC0/ IO77RSB1	GFB0/ IO86RSB1	GFB0/ IO123RSB1	GFB0/ IO109NPB3	None	None	None	None	None	None
A6	NC	V_{CCPLF}	V_{CCPLF}	V_{CCPLF}	None	None	None	Rule 4	Rule 4	Rule 4
Α7	GEB0/ IO75RSB1	GFA1/ IO84RSB1	GFA1/ IO121RSB1	GFA1/ IO108PPB3	None	None	None	None	None	None
A8	IO73RSB1		GFC2/ IO118RSB1	GFC2/ IO105PPB3	None	None	None	Rule 3	Rule 3	Rule 3
A9	NC	IO78RSB1	IO115RSB1	IO103NDB3	None	None	None	Rule 1	Rule 1	Rule 1
A10	V _{CC}	V _{CC}	V _{CC}	V _{CC}	None	None	None	None	None	None
A11	IO71RSB1	GEB1/ IO75RSB1	GEB1/ IO110RSB1	GEA1/ IO98PPB3	None	None	None	Rule 3	Rule 3	Rule 3
A12	IO68RSB1		GEA0/ IO107RSB1	GEA0/ IO98NPB3	None	None	None	Rule 3	Rule 3	Rule 3
A13	IO63RSB1		GEC2/ IO104RSB1	GEC2/ IO95RSB2	None	None	None	Rule 3	Rule 3	Rule 3
A14	IO60RSB1	IO65RSB1	IO100RSB1	IO91RSB2	None	None	None	None	None	None
A15	NC	V _{CC}	V _{CC}	V _{CC}	None	None	None	None	None	None
A16	IO59RSB1	IO64RSB1	IO99RSB1	IO90RSB2	None	None	None	None	None	None
A17	IO57RSB1	IO63RSB1	IO96RSB1	IO87RSB2	None	None	None	None	None	None
A18	V _{CC}	IO62RSB1	IO94RSB1	IO85RSB2	None	None	None	Rule 6	Rule 6	Rule 6
A19	IO54RSB1	IO61RSB1	IO91RSB1	IO82RSB2	None	None	None	None	None	None
A20	IO52RSB1	IO58RSB1	IO85RSB1	IO76RSB2	None	None	None	None	None	None
A21	IO49RSB1	GDB2/ IO55RSB1	IO79RSB1	IO70RSB2	None	Rule 2	Rule 2	None	None	Rule 3

Notes

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. D pins are corner pins per the package specification.
- 3. "None" implies that the pins can be connected without any change.

13-10 v1.0

Table 13-5 • Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with QFN132 Packaging (continued)

Pin No.	A3P030 Function	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P030	Migration Rule between A3P125 and A3P030	Migration Rule between A3P060 and A3P030
A22	IO48RSB1	NC	V _{CC}	V _{CC}	None	Rule 4	Rule 4	Rule 6	Rule 6	Rule 1
A23	IO47RSB1	GDA2/ IO54RSB1	GDB2/ IO71RSB1	GDB2/ IO62RSB2	None	None	None	Rule 3	Rule 3	Rule 3
A24	TDI	TDI	TDI	TDI	None	None	None	None	None	None
A25	TRST	TRST	TRST	TRST	None	None	None	None	None	None
A26	IO44RSB0		GDC1/ IO61RSB0	GDC1/ IO58UDB1	None	None	None	Rule 3	Rule 3	Rule 3
A27	NC	V _{CC}	V_{CC}	V _{CC}	None	None	None	Rule 4	Rule 4	Rule 4
A28	IO43RSB0	IO47RSB0	IO60RSB0	IO54NDB1	None	None	None	None	None	None
A29	IO42RSB0		GCC2/ IO59RSB0	IO52NDB1	None	None	Rule 2	None	Rule 3	Rule 3
A30	IO40RSB0		GCA2/ IO57RSB0	GCA2/ IO51PPB1	None	None	None	Rule 3	Rule 3	Rule 3
A31	IO39RSB0		GCA0/ IO56RSB0	GCA0/ IO50NPB1	None	None	None	Rule 3	Rule 3	Rule 3
A32		GCB1/ IO40RSB0	GCB1/ IO53RSB0	GCB1/ IO49PDB1	None	None	None	None	None	None
A33	NC	IO36RSB0	IO49RSB0	IO47NSB1	None	None	None	Rule 1	Rule 1	Rule 1
A34	V _{CC}	V _{CC}	V _{CC}	V _{CC}	None	None	None	None	None	None
A35	IO34RSB0	IO31RSB0	IO44RSB0	IO41NPB1	None	None	None	None	None	None
A36	IO31RSB0	GBA2/ IO28RSB0	GBA2/ IO41RSB0	GBA2/ IO41PPB1	None	None	None	Rule 3	Rule 3	Rule 3
A37	IO26RSB0	GBB1/ IO25RSB0	GBB1/ IO38RSB0	GBB1/ IO38RSB0	None	None	None	Rule 3	Rule 3	Rule 3
A38	IO23RSB0		GBC0/ IO35RSB0	GBC0/ IO35RSB0	None	None	None	Rule 3	Rule 3	Rule 3
A39	NC	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None	Rule 4	Rule 4	Rule 4
A40	IO22RSB0	IO21RSB0	IO28RSB0	IO28RSB0	None	None	None	None	None	None
A41	IO20RSB0	IO18RSB0	IO22RSB0	IO22RSB0	None	None	None	None	None	None
A42	IO18RSB0	IO15RSB0	IO18RSB0	IO18RSB0	None	None	None	None	None	None
A43	V _{CC}	IO14RSB0	IO14RSB0	IO14RSB0	None	None	None	Rule 6	Rule 6	Rule 6
A44	IO15RSB0	IO11RSB0	IO11RSB0	IO11RSB0	None	None	None	None	None	None

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. D pins are corner pins per the package specification.
- 3. "None" implies that the pins can be connected without any change.

Table 13-5 • Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with QFN132 Packaging (continued)

Pin No.	A3P030 Function	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P030	Migration Rule between A3P125 and A3P030	Migration Rule between A3P060 and A3P030
A45	IO12RSB0	GAB1/ IO08RSB0	IO07RSB0	IO07RSB0	None	Rule 2	Rule 2	None	None	Rule 3
A46	IO10RSB0	NC	V _{CC}	V _{CC}	None	Rule 4	Rule 4	Rule 6	Rule 6	Rule 1
A47	IO09RSB0	GAB0/ IO07RSB0	GAC1/ IO05RSB0	GAC1/ IO05RSB0	None	None	None	Rule 3	Rule 3	Rule 3
A48	IO06RSB0	IO04RSB0	GAB0/ IO02RSB0	GAB0/ IO02RSB0	None	Rule 3	Rule 3	Rule 3	Rule 3	None
В1	IO02RSB1	IO01RSB1	IO68RSB1	IO118VDB3	None	None	None	None	None	None
B2	IO82RSB1		GAC2/ IO131RSB1	GAC2/ IO116UDB3	None	None	None	Rule 3	Rule 3	Rule 3
В3	GND	GND	GND	GND	None	None	None	None	None	None
B4	IO79RSB1		GFC0/ IO125RSB1	GFC0/ IO110NDB3	None	None	None	Rule 3	Rule 3	Rule 3
В5	NC	V _{COMPLF}	V _{COMPLF}	V _{COMPLF}	None	None	None	Rule 4	Rule 4	Rule 4
В6	GND	GND	GND	GND	None	None	None	None	None	None
В7	IO74RSB1		GFB2/ IO119RSB1	GFB2/ IO106PSB3	None	None	None	Rule 3	Rule 3	Rule 3
В8	NC	IO79RSB1	IO116RSB1	IO103PDB3	None	None	None	Rule 1	Rule 1	Rule 1
В9	GND	GND	GND	GND	None	None	None	None	None	None
B10	IO70RSB1		GEB0/ IO109RSB1	GEB0/ IO99NDB3	None	None	None	Rule 3	Rule 3	Rule 3
B11	IO67RSB1	VMV1	VMV1	VMV3	Rule 6	None	Rule 5	Rule 6	Rule 6	Rule 6
B12	IO64RSB1	GEB2/ IO70RSB1	GEB2/ IO105RSB1	GEB2/ IO96RSB2	None	None	None	Rule 3	Rule 3	Rule 3
B13	IO61RSB1	IO67RSB1	IO101RSB1	IO92RSB2	None	None	None	None	None	None
B14	GND	GND	GND	GND	None	None	None	None	None	None
B15	IO58RSB1	NC	IO98RSB1	IO89RSB2	None	Rule 1	Rule 1	None	None	Rule 1
B16	IO56RSB1	NC	IO95RSB1	IO86RSB2	None	Rule 1	Rule 1	None	None	Rule 1
B17	GND	GND	GND	GND	None	None	None	None	None	None
B18	IO53RSB1	IO59RSB1	IO87RSB1	IO78RSB2	None	None	None	None	None	None
B19	IO50RSB1	GDC2/ IO56RSB1	IO81RSB1	IO72RSB2	None	Rule 2	Rule 2	None	None	Rule 3

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. D pins are corner pins per the package specification.
- 3. "None" implies that the pins can be connected without any change.

13-12 v1.0

Table 13-5 • Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with QFN132 Packaging (continued)

Pin No.	A3P030 Function	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P030	Migration Rule between A3P125 and A3P030	Migration Rule between A3P060 and A3P030
B20	GND	GND	GND	GND	None	None	None	None	None	None
B21	IO46RSB1	GNDQ	GNDQ	GNDQ	None	None	None	Rule 6	Rule 6	Rule 8
B22	TMS	TMS	TMS	TMS	None	None	None	None	None	None
B23	TDO	TDO	TDO	TDO	None	None	None	None	None	None
B24	IO45RSB0	GDC0/ IO49RSB0	GDC0/ IO62RSB0	GDC0/ IO58VDB1	None	None	None	Rule 3	Rule 3	Rule 3
B25	GND	GND	GND	GND	None	None	None	None	None	None
B26	NC	NC	NC	IO54PDB1	Rule 1	None	Rule 1	Rule 1	None	None
B27	IO41RSB0	GCB2/ IO45RSB0	GCB2/ IO58RSB0	GCB2/ IO52PDB1	None	None	None	Rule 3	Rule 3	Rule 3
B28	GND	GND	GND	GND	None	None	None	None	None	None
B29	GDA0/ IO37RSB0	GCB0/ IO41RSB0	GCB0/ IO54RSB0	GCB0/ IO49NDB1	None	None	None	None	None	None
B30	NC	GCC1/ IO38RSB0	GCC1/ IO51RSB0	GCC1/ IO48PDB1	None	None	None	Rule 1	Rule 1	Rule 1
B31	GND	GND	GND	GND	None	None	None	None	None	None
B32	IO33RSB0	GBB2/ IO30RSB0	GBB2/ IO43RSB0	GBB2/ IO42PDB1	None	None	None	Rule 3	Rule 3	Rule 3
B33	IO30RSB0	VMV0	VMV0	VMV1	Rule 5	None	Rule 5	Rule 6	Rule 6	Rule 7
B34	IO27RSB0	GBA0/ IO26RSB0	GBA0/ IO39RSB0	GBA0/ IO39RSB0	None	None	None	Rule 3	Rule 3	Rule 3
B35	IO24RSB0	GBC1/ IO23RSB0	GBC1/ IO36RSB0	GBC1/ IO36RSB0	None	None	None	Rule 3	Rule 3	Rule 3
B36	GND	GND	GND	GND	None	None	None	None	None	None
B37	IO21RSB0	IO20RSB0	IO26RSB0	IO26RSB0	None	None	None	None	None	None
B38	IO19RSB0	IO17RSB0	IO21RSB0	IO21RSB0	None	None	None	None	None	None
B39	GND	GND	GND	GND	None	None	None	None	None	None
B40	IO16RSB0	IO12RSB0	IO13RSB0	IO13RSB0	None	None	None	None	None	None
B41	IO13RSB0	GAC0/ IO09RSB0	IO08RSB0	IO08RSB0	None	Rule 2	Rule 2	None	None	Rule 3
B42	GND	GND	GND	GND	None	None	None	None	None	None

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. D pins are corner pins per the package specification.
- 3. "None" implies that the pins can be connected without any change.

Table 13-5 • Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with QFN132 Packaging (continued)

Pin No.	A3P030 Function	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P030	Migration Rule between A3P125 and A3P030	Migration Rule between A3P060 and A3P030
B43	IO08RSB0		GAC0/ IO04RSB0	GAC0/ IO04RSB0	None	None	None	Rule 3	Rule 3	Rule 3
B44	IO05RSB0	GNDQ	GNDQ	GNDQ	None	None	None	Rule 6	Rule 6	Rule 6
C1	IO03RSB1	GAA2/ IO02RSB1	GAA2/ IO67RSB1	GAA2/ IO118UDB3	None	None	None	Rule 3	Rule 3	Rule 3
C2	IO00RSB1	IO95RSB1	IO132RSB1	IO116VDB3	None	None	None	None	None	None
C3	NC	V _{CC}	V _{CC}	V _{CC}	None	None	None	Rule 4	Rule 4	Rule 4
C4	IO78RSB1		GFB1/ IO124RSB1	GFB1/ IO109PPB3	None	None	None	Rule 3	Rule 3	Rule 3
C5	GEA0/ IO76RSB1	GFA0/ IO85RSB1	GFA0/ IO122RSB1	GFA0/ IO108NPB3	None	None	None	None	None	None
C6	NC	GFA2/ IO83RSB1	GFA2/ IO120RSB1	GFA2/ IO107PSB3	None	None	None	Rule 1	Rule 1	Rule 1
C 7	NC	IO80RSB1	IO117RSB1	IO105NPB3	None	None	None	Rule 1	Rule 1	Rule 1
C8	V _{CCI} B1	V _{CCI} B1	V _{CCI} B1	V _{CCI} B3	Rule 5	None	Rule 5	Rule 5	Rule 5	Rule 5
C9	IO69RSB1	GEA1/ IO73RSB1	GEA1/ IO108RSB1	GEB1/ IO99PDB3	None	None	None	Rule 3	Rule 3	Rule 3
C10	IO66RSB1	GNDQ	GNDQ	GNDQ	None	None	None	Rule 6	Rule 6	Rule 6
C11	IO65RSB1	GEA2/ IO71RSB1	GEA2/ IO106RSB1	GEA2/ IO97RSB2	None	None	None	Rule 3	Rule 3	Rule 3
C12	IO62RSB1	IO68RSB1	IO103RSB1	IO94RSB2	None	None	None	None	None	None
C13	NC	V _{CCI} B1	V _{CCI} B1	V _{CCI} B2	Rule 5	None	Rule 5	Rule 4	Rule 4	Rule 4
C14	NC	NC	IO97RSB1	IO88RSB2	None	Rule 1	Rule 1	Rule 1	Rule 1	None
	IO55RSB1		IO93RSB1	IO84RSB2	None	Rule 1	Rule 1	None	None	Rule 1
C16	V _{CCI} B1	IO60RSB1	IO89RSB1	IO80RSB2	None	None	None	Rule 6	Rule 6	Rule 6
C17	IO51RSB1	IO57RSB1	IO83RSB1	IO74RSB2	None	None	None	None	None	None
C18		NC	V _{CCI} B1	V _{CCI} B2	Rule 5	Rule 4				
C19	TCK	TCK	TCK	TCK	None	None	None	None	None	None
C20	NC	VMV1	VMV1	VMV2	None	None	None	Rule 4	Rule 4	Rule 4
C21	V _{PUMP}	V_{PUMP}	V_{PUMP}	V_{PUMP}	None	None	None	None	None	None
C22	V_{JTAG}	V_{JTAG}	V_{JTAG}	V_{JTAG}	None	None	None	None	None	None

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. D pins are corner pins per the package specification.
- 3. "None" implies that the pins can be connected without any change.

13-14 v1.0

Table 13-5 • Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with QFN132 Packaging (continued)

Pin No.	A3P030 Function	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P030	Migration Rule between A3P125 and A3P030	Migration Rule between A3P060 and A3P030
C23	NC	V _{CCI} B0	V _{CCI} B0	V _{CCI} B1	Rule 5	None	Rule 5	Rule 4	Rule 4	Rule 4
C24	NC	NC	NC	IO53NSB1	Rule 1	None	Rule 1	Rule 1	None	None
C25	NC	NC	NC	IO51NPB1	Rule 1	None	Rule 1	Rule 1	None	None
C26		GCA1/ IO42RSB0	GCA1/ IO55RSB0	GCA1/ IO50PPB1	None	None	None	None	None	None
C27	NC	GCC0/ IO39RSB0	GCC0/ IO52RSB0	GCC0/ IO48NDB1	None	None	None	Rule 1	Rule 1	Rule 1
C28	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	V _{CCI} B1	Rule 5	None	Rule 5	Rule 5	Rule 5	None
C29	IO32RSB0	IO29RSB0	IO42RSB0	IO42NDB1	None	None	None	None	None	None
C30	IO29RSB0	GNDQ	GNDQ	GNDQ	None	None	None	Rule 6	Rule 6	Rule 6
C31	IO28RSB0		GBA1/ IO40RSB0	GBA1/ IO40RSB0	None	None	None	Rule 3	Rule 3	Rule 3
C32	IO25RSB0		GBB0/ IO37RSB0	GBB0/ IO37RSB0	None	None	None	Rule 3	Rule 3	Rule 3
C33	NC	V _{CC}	V _{CC}	V _{CC}	None	None	None	Rule 4	Rule 4	Rule 4
C34	NC	IO19RSB0	IO24RSB0	IO24RSB0	None	None	None	Rule 3	Rule 3	Rule 3
C35	V _{CCI} B0	IO16RSB0	IO19RSB0	IO19RSB0	None	None	None	Rule 1	Rule 1	Rule 1
C36	IO17RSB0	IO13RSB0	IO16RSB0	IO16RSB0	None	None	None	None	None	None
C37	IO14RSB0	GAC1/ IO10RSB0	IO10RSB0	IO10RSB0	None	Rule 2	Rule 2	None	None	Rule 3
C38	IO11RSB0	NC	V _{CCI} B0	V _{CCI} B0	Rule 5	Rule 4	Rule 4	Rule 6	Rule 6	Rule 1
C39	IO07RSB0		GAB1/ IO03RSB0	GAB1/ IO03RSB0	None	None	None	Rule 3	Rule 3	Rule 3
C40	IO04RSB0	VMV0	VMV0	VMV0	None	None	None	Rule 6	Rule 6	Rule 6
D1	GND	GND	GND	GND	None	None	None	None	None	None
D2	GND	GND	GND	GND	None	None	None	None	None	None
D3	GND	GND	GND	GND	None	None	None	None	None	None
D4	GND	GND	GND	GND	None	None	None	None	None	None

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. D pins are corner pins per the package specification.
- 3. "None" implies that the pins can be connected without any change.

TQ144 Package

Table 13-6 • Pin Compatibility and Migration Table for ProASIC3 A3P060 and A3P125 with TQ144 Packaging

Pin Number	A3P060 Function	A3P125 Function	Migration Rule between A3P125 and A3P060
1	GAA2/IO51RSB1	GAA2/IO67RSB1	None
2	IO52RSB1	IO68RSB1	None
3	GAB2/IO53RSB1	GAB2/IO69RSB1	None
4	IO95RSB1	IO132RSB1	None
5	GAC2/IO94RSB1	GAC2/IO131RSB1	None
6	IO93RSB1	IO130RSB1	None
7	IO92RSB1	IO129RSB1	None
8	IO91RSB1	IO128RSB1	None
9	V _{CC}	V _{CC}	None
10	GND	GND	None
11	V _{CCI} B1	V _{CCI} B1	None
12	IO90RSB1	IO127RSB1	None
13	GFC1/IO89RSB1	GFC1/IO126RSB1	None
14	GFC0/IO88RSB1	GFC0/IO125RSB1	None
15	GFB1/IO87RSB1	GFB1/IO124RSB1	None
16	GFB0/IO86RSB1	GFB0/IO123RSB1	None
17	V_{COMPLF}	V_{COMPLF}	None
18	GFA0/IO85RSB1	GFA0/IO122RSB1	None
19	V_{CCPLF}	V_{CCPLF}	None
20	GFA1/IO84RSB1	GFA1/IO121RSB1	None
21	GFA2/IO83RSB1	GFA2/IO120RSB1	None
22	GFB2/IO82RSB1	GFB2/IO119RSB1	None
23	GFC2/IO81RSB1	GFC2/IO118RSB1	None
24	IO80RSB1	IO117RSB1	None
25	IO79RSB1	IO116RSB1	None
26	IO78RSB1	IO115RSB1	None
27	GND	GND	None
28	V _{CCI} B1	V _{CCI} B1	None
29	GEC1/IO77RSB1	GEC1/IO112RSB1	None
30	GEC0/IO76RSB1	GECO/IO111RSB1	None
31	GEB1/IO75RSB1	GEB1/IO110RSB1	None
32	GEB0/IO74RSB1	GEB0/IO109RSB1	None
33	GEA1/IO73RSB1	GEA1/IO108RSB1	None
34	GEA0/IO72RSB1	GEA0/IO107RSB1	None
35	VMV1	VMV1	None

Notes:

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

13-16 v1.0

Table 13-6 • Pin Compatibility and Migration Table for ProASIC3 A3P060 and A3P125 with TQ144 Packaging (continued)

Pin Number	A3P060 Function	A3P125 Function	Migration Rule between A3P125 and A3P060
36	GNDQ	GNDQ	None
37	NC	NC	None
38	GEA2/IO71RSB1	GEA2/IO106RSB1	None
39	GEB2/IO70RSB1	GEB2/IO105RSB1	None
40	GEC2/IO69RSB1	GEC2/IO104RSB1	None
41	IO68RSB1	IO103RSB1	None
42	IO67RSB1	IO102RSB1	None
43	IO66RSB1	IO101RSB1	None
44	IO65RSB1	IO100RSB1	None
45	V _{CC}	V _{CC}	None
46	GND	GND	None
47	V _{CCI} B1	V _{CCI} B1	None
48	NC	IO99RSB1	Rule 1
49	IO64RSB1	IO97RSB1	None
50	NC	IO95RSB1	Rule 1
51	IO63RSB1	IO93RSB1	None
52	NC	IO92RSB1	Rule 1
53	IO62RSB1	IO90RSB1	None
54	NC	IO88RSB1	Rule 1
55	IO61RSB1	IO86RSB1	None
56	NC	IO84RSB1	Rule 1
57	NC	IO83RSB1	Rule 1
58	IO60RSB1	IO82RSB1	None
59	IO59RSB1	IO81RSB1	None
60	IO58RSB1	IO80RSB1	None
61	IO57RSB1	IO79RSB1	None
62	NC	V _{CC}	Rule 4
63	GND	GND	None
64	NC	V _{CCI} B1	Rule 4
65	GDC2/IO56RSB1	GDC2/IO72RSB1	None
66	GDB2/IO55RSB1	GDB2/IO71RSB1	None
67	GDA2/IO54RSB1	GDA2/IO70RSB1	None
68	GNDQ	GNDQ	None
69	TCK	TCK	None
70	TDI	TDI	None
71	TMS	TMS	None
72	VMV1	VMV1	None

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

Table 13-6 • Pin Compatibility and Migration Table for ProASIC3 A3P060 and A3P125 with TQ144 Packaging (continued)

Pin Number	A3P060 Function	A3P125 Function	Migration Rule between A3P125 and A3P060	
73	V_{PUMP}	V_{PUMP}	None	
74	NC	NC	None	
75	TDO	TDO	None	
76	TRST	TRST	None	
77	V_{JTAG}	V_{JTAG}	None	
78	GDA0/IO50RSB0	GDA0/IO66RSB0	None	
79	GDB0/IO48RSB0	GDB0/IO64RSB0	None	
80	GDB1/IO47RSB0	GDB1/IO63RSB0	None	
81	V _{CCI} B0	V _{CCI} B0	None	
82	GND	GND	None	
83	IO44RSB0	IO60RSB0	None	
84	GCC2/IO43RSB0	GCC2/IO59RSB0	None	
85	GCB2/IO42RSB0	GCB2/IO58RSB0	None	
86	GCA2/IO41RSB0	GCA2/IO57RSB0	None	
87	GCA0/IO40RSB0	GCA0/IO56RSB0	None	
88	GCA1/IO39RSB0	GCA1/IO55RSB0	None	
89	GCB0/IO38RSB0	GCB0/IO54RSB0	None	
90	GCB1/IO37RSB0	GCB1/IO53RSB0	None	
91	GCC0/IO36RSB0	GCC0/IO52RSB0	None	
92	GCC1/IO35RSB0	GCC1/IO51RSB0	None	
93	IO34RSB0	IO50RSB0	None	
94	IO33RSB0	IO49RSB0	None	
95	NC	NC	None	
96	NC	NC	None	
97	NC	NC	None	
98	V _{CCI} B0	V _{CCI} B0	None	
99	GND	GND	None	
100	V _{CC}	V _{CC}	None	
101	IO30RSB0	IO47RSB0	None	
102	GBC2/IO29RSB0	GBC2/IO45RSB0	None	
103	IO28RSB0	IO44RSB0	None	
104	GBB2/IO27RSB0	GBB2/IO43RSB0	None	
105	IO26RSB0	IO42RSB0	None	
106	GBA2/IO25RSB0	GBA2/IO41RSB0	None	
107	VMV0	VMV0	None	
108	GNDQ	GNDQ	None	
109	NC	GBA1/IO40RSB0	Rule 1	

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

13-18 v1.0

Table 13-6 • Pin Compatibility and Migration Table for ProASIC3 A3P060 and A3P125 with TQ144 Packaging (continued)

Pin Number	A3P060 Function	A3P125 Function	Migration Rule between A3P125 and A3P060
110	NC	GBA0/IO39RSB0	Rule 1
111	GBA1/IO24RSB0	GBB1/IO38RSB0	None
112	GBA0/IO23RSB0	GBB0/IO37RSB0	None
113	GBB1/IO22RSB0	GBC1/IO36RSB0	None
114	GBB0/IO21RSB0	GBC0/IO35RSB0	None
115	GBC1/IO20RSB0	IO34RSB0	Rule 2
116	GBC0/IO19RSB0	IO33RSB0	Rule 2
117	V _{CCI} B0	V _{CCI} B0	None
118	GND	GND	None
119	V _{CC}	V _{CC}	None
120	IO18RSB0	IO29RSB0	None
121	IO17RSB0	IO28RSB0	None
122	IO16RSB0	IO27RSB0	None
123	IO15RSB0	IO25RSB0	None
124	IO14RSB0	IO23RSB0	None
125	IO13RSB0	IO21RSB0	None
126	IO12RSB0 IO19RSB0		None
127	IO11RSB0	IO17RSB0	None
128	NC	IO16RSB0	Rule 1
129	IO10RSB0	IO14RSB0	None
130	IO09RSB0	IO12RSB0	None
131	IO08RSB0	IO10RSB0	None
132	GAC1/IO07RSB0	IO08RSB0	Rule 2
133	GAC0/IO06RSB0	IO06RSB0	Rule 2
134	NC	V _{CCI} B0	Rule 4
135	GND	GND	None
136	NC	V _{CC}	Rule 4
137	GAB1/IO05RSB0	GAC1/IO05RSB0	None
138	GAB0/IO04RSB0	GAC0/IO04RSB0	None
139	GAA1/IO03RSB0	GAB1/IO03RSB0	None
140	GAA0/IO02RSB0	GAB0/IO02RSB0	None
141	IO01RSB0	GAA1/IO01RSB0	Rule 3
142	IO00RSB0	GAA0/IO00RSB0	Rule 3
143	GNDQ	GNDQ	None
144	VMV0	VMV0	None

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

PQ208 Package

Table 13-7 • Pin Compatibility and Migration Table for ProASIC3 A3P125 and A3P250 with PQ208 Packaging

Pin Number	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125
1	GND	GND	None
2	GAA2/IO67RSB1	GAA2/IO118UDB3	None
3	IO68RSB1	IO118VDB3	None
4	GAB2/IO69RSB1	GAB2/IO117UDB3	None
5	IO132RSB1	IO117VDB3	None
6	GAC2/IO131RSB1	GAC2/IO116UDB3	None
7	NC	IO116VDB3	Rule 1
8	NC	IO115UDB3	Rule 1
9	IO130RSB1	IO115VDB3	None
10	IO129RSB1	IO114UDB3	None
11	NC	IO114VDB3	Rule 1
12	IO128RSB1	IO113PDB3	None
13	NC	IO113NDB3	Rule 1
14	NC	IO112PDB3	Rule 1
15	NC	IO112NDB3	Rule 1
16	V _{CC}	V _{CC}	None
17	GND	GND	None
18	V _{CCI} B1	V _{CCI} B3	Rule 5
19	IO127RSB1	IO111PDB3	None
20	NC	IO111NDB3	Rule 1
21	GFC1/IO126RSB1	GFC1/IO110PDB3	None
22	GFC0/IO125RSB1	GFC0/IO110NDB3	None
23	GFB1/IO124RSB1	GFB1/IO109PDB3	None
24	GFB0/IO123RSB1	GFB0/IO109NDB3	None
25	V_{COMPLF}	V_{COMPLF}	None
26	GFA0/IO122RSB1	GFA0/IO108NPB3	None
27	V_{CCPLF}	V _{CCPLF}	None
28	GFA1/IO121RSB1	GFA1/IO108PPB3	None
29	GND	GND	None
30	GFA2/IO120RSB1	GFA2/IO107PDB3	None
31	NC	IO107NDB3	Rule 1
32	GFB2/IO119RSB1	GFB2/IO106PDB3	None
33	NC	IO106NDB3	Rule 1

Notes:

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

13-20 v1.0

Table 13-7 • Pin Compatibility and Migration Table for ProASIC3 A3P125 and A3P250 with PQ208 Packaging (continued)

Pin Number	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125
34	GFC2/IO118RSB1	GFC2/IO105PDB3	None
35	IO117RSB1	IO105NDB3	None
36	NC	NC	None
37	IO116RSB1	IO104PDB3	None
38	IO115RSB1	IO104NDB3	None
39	NC	IO103PSB3	Rule 1
40	V _{CCI} B1	V _{CCI} B3	Rule 5
41	GND	GND	None
42	IO114RSB1	IO101PDB3	None
43	IO113RSB1	IO101NDB3	None
44	GEC1/IO112RSB1	GEC1/IO100PDB3	None
45	GEC0/IO111RSB1	GEC0/IO100NDB3	None
46	GEB1/IO110RSB1	GEB1/IO99PDB3	None
47	GEB0/IO109RSB1	GEB0/IO99NDB3	None
48	GEA1/IO108RSB1	GEA1/IO98PDB3	None
49	GEA0/IO107RSB1	GEA0/IO98NDB3	None
50	VMV1	VMV3	Rule 5
51	GNDQ	GNDQ	None
52	GND	GND	None
53	NC	NC	None
54	NC	NC	None
55	GEA2/IO106RSB1	GEA2/IO97RSB2	None
56	GEB2/IO105RSB1	GEB2/IO96RSB2	None
57	GEC2/IO104RSB1	GEC2/IO95RSB2	None
58	IO103RSB1	IO94RSB2	None
59	IO102RSB1	IO93RSB2	None
60	IO101RSB1	IO92RSB2	None
61	IO100RSB1	IO91RSB2	None
62	V _{CCI} B1	V _{CCI} B2	Rule 5
63	IO99RSB1	IO90RSB2	None
64	IO98RSB1	IO89RSB2	None
65	GND	GND	None
66	IO97RSB1	IO88RSB2	None
67	IO96RSB1	IO87RSB2	None

Notes.

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

Table 13-7 • Pin Compatibility and Migration Table for ProASIC3 A3P125 and A3P250 with PQ208 Packaging (continued)

Pin Number	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125	
68	IO95RSB1	IO86RSB2	None	
69	IO94RSB1	IO85RSB2	None	
70	IO93RSB1	IO84RSB2	None	
71	V _{CC}	V _{CC}	None	
72	V _{CCI} B1	V _{CCI} B2	Rule 5	
73	IO92RSB1	IO83RSB2	None	
74	IO91RSB1	IO82RSB2	None	
75	IO90RSB1	IO81RSB2	None	
76	IO89RSB1	IO80RSB2	None	
77	IO88RSB1	IO79RSB2	None	
78	IO87RSB1	IO78RSB2	None	
79	IO86RSB1	IO77RSB2	None	
80	IO85RSB1	IO76RSB2	None	
81	GND	GND	None	
82	IO84RSB1	IO75RSB2	None	
83	IO83RSB1	IO74RSB2	None	
84	IO82RSB1	IO73RSB2	None	
85	IO81RSB1	IO72RSB2	None	
86	IO80RSB1	IO71RSB2	None	
87	IO79RSB1	IO70RSB2	None	
88	V _{CC}	V _{CC}	None	
89	V _{CCI} B1	V _{CCI} B2	Rule 5	
90	IO78RSB1	IO69RSB2	None	
91	IO77RSB1	IO68RSB2	None	
92	IO76RSB1	IO67RSB2	None	
93	IO75RSB1	IO66RSB2	None	
94	IO74RSB1	IO65RSB2	None	
95	IO73RSB1	IO64RSB2	None	
96	GDC2/IO72RSB1	GDC2/IO63RSB2	None	
97	GND	GND	None	
98	GDB2/IO71RSB1	GDB2/IO62RSB2	None	
99	GDA2/IO70RSB1	GDA2/IO61RSB2	None	
100	GNDQ	GNDQ	None	
101	TCK	TCK	None	

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

13-22 v1.0

Table 13-7 • Pin Compatibility and Migration Table for ProASIC3 A3P125 and A3P250 with PQ208 Packaging (continued)

Pin Number	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125	
102	TDI	TDI	None	
103	TMS	TMS	None	
104	VMV1	VMV2	Rule 5	
105	GND	GND	None	
106	V_{PUMP}	V_{PUMP}	None	
107	NC	NC	None	
108	TDO	TDO	None	
109	TRST	TRST	None	
110	V_{JTAG}	$V_{ m JTAG}$	None	
111	GDA0/IO66RSB0	GDA0/IO60VDB1	None	
112	GDA1/IO65RSB0	GDA1/IO60UDB1	None	
113	GDB0/IO64RSB0	GDB0/IO59VDB1	None	
114	GDB1/IO63RSB0	GDB1/IO59UDB1	None	
115	GDC0/IO62RSB0	GDC0/IO58VDB1	None	
116	GDC1/IO61RSB0	GDC1/IO58UDB1	None	
117	NC	IO57VDB1	Rule 1	
118	NC	IO57UDB1	Rule 1	
119	NC	IO56NDB1	Rule 1	
120	NC	IO56PDB1	Rule 1	
121	NC	IO55RSB1	Rule 1	
122	GND	GND	None	
123	V _{CCI} B0	V _{CCI} B1	Rule 5	
124	NC	NC	None	
125	NC	NC	None	
126	V _{CC}	V _{CC}	None	
127	IO60RSB0	IO53NDB1	None	
128	GCC2/IO59RSB0	GCC2/IO53PDB1	None	
129	GCB2/IO58RSB0	GCB2/IO52PSB1	None	
130	GND	GND	None	
131	GCA2/IO57RSB0	GCA2/IO51PSB1	None	
132	GCA0/IO56RSB0	GCA1/IO50PDB1	None	
133	GCA1/IO55RSB0	GCA0/IO50NDB1	None	
134	GCB0/IO54RSB0	GCB0/IO49NDB1	None	
135	GCB1/IO53RSB0	GCB1/IO49PDB1	None	

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

Table 13-7 • Pin Compatibility and Migration Table for ProASIC3 A3P125 and A3P250 with PQ208 Packaging (continued)

Pin Number	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125	
136	GCC0/IO52RSB0	D52RSB0 GCC0/IO48NDB1		
137	GCC1/IO51RSB0	GCC1/IO48PDB1	None	
138	IO50RSB0	IO47NDB1	None	
139	IO49RSB0	IO47PDB1	None	
140	V _{CCI} B0	V _{CCI} B1	Rule 5	
141	GND	GND	None	
142	V _{CC}	V _{CC}	None	
143	IO48RSB0	IO46RSB1	None	
144	IO47RSB0	IO45NDB1	None	
145	IO46RSB0	IO45PDB1	None	
146	NC	IO44NDB1	Rule 1	
147	NC	IO44PDB1	Rule 1	
148	NC	IO43NDB1	Rule 1	
149	GBC2/IO45RSB0	GBC2/IO43PDB1	None	
150	IO44RSB0	IO42NDB1	None	
151	GBB2/IO43RSB0	GBB2/IO42PDB1	None	
152	IO42RSB0	IO41NDB1	None	
153	GBA2/IO41RSB0	GBA2/IO41PDB1	None	
154	VMV0	VMV1	Rule 5	
155	GNDQ	GNDQ	None	
156	GND	GND	None	
157	NC	NC	None	
158	GBA1/IO40RSB0	GBA1/IO40RSB0	None	
159	GBA0/IO39RSB0	GBA0/IO39RSB0	None	
160	GBB1/IO38RSB0	GBB1/IO38RSB0	None	
161	GBB0/IO37RSB0	GBB0/IO37RSB0	None	
162	GND	GND	None	
163	GBC1/IO36RSB0	GBC1/IO36RSB0	None	
164	GBC0/IO35RSB0	GBC0/IO35RSB0	None	
165	IO34RSB0	IO34RSB0	None	
166	IO33RSB0	IO33RSB0	None	
167	IO32RSB0	IO32RSB0	None	
168	IO31RSB0	IO31RSB0	None	
169	IO30RSB0	IO30RSB0	None	

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

13-24 v1.0

Table 13-7 • Pin Compatibility and Migration Table for ProASIC3 A3P125 and A3P250 with PQ208 Packaging (continued)

Pin Number	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125	
170	V _{CCI} B0	V _{CCI} B0	None	
171	V _{CC}	V _{CC}	None	
172	IO29RSB0	IO29RSB0	None	
173	IO28RSB0	IO28RSB0	None	
174	IO27RSB0	IO27RSB0	None	
175	IO26RSB0	IO26RSB0	None	
176	IO25RSB0	IO25RSB0	None	
177	IO24RSB0	IO24RSB0	None	
178	GND	GND	None	
179	IO23RSB0	IO23RSB0	None	
180	IO22RSB0	IO22RSB0	None	
181	IO21RSB0	IO21RSB0	None	
182	IO20RSB0	IO20RSB0	None	
183	IO19RSB0	IO19RSB0	None	
184	IO18RSB0	IO18RSB0	None	
185	IO17RSB0	IO17RSB0	None	
186	V _{CCI} B0	V _{CCI} B0	None	
187	V _{CC}	V _{CC}	None	
188	IO16RSB0	IO16RSB0	None	
189	IO15RSB0	IO15RSB0	None	
190	IO14RSB0	IO14RSB0	None	
191	IO13RSB0	IO13RSB0	None	
192	IO12RSB0	IO12RSB0	None	
193	IO11RSB0	IO11RSB0	None	
194	IO10RSB0	IO10RSB0	None	
195	GND	GND	None	
196	IO09RSB0	IO09RSB0	None	
197	IO08RSB0	IO08RSB0	None	
198	IO07RSB0	IO07RSB0	None	
199	IO06RSB0	IO06RSB0	None	
200	V _{CCI} B0	V _{CCI} B0	None	
201	GAC1/IO05RSB0	GAC1/IO05RSB0	None	
202	GAC0/IO04RSB0	GAC0/IO04RSB0	None	
203	GAB1/IO03RSB0	GAB1/IO03RSB0	None	
			1	

Notes.

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

Table 13-7 • Pin Compatibility and Migration Table for ProASIC3 A3P125 and A3P250 with PQ208 Packaging (continued)

Pin Number	A3P125 Function	A3P250 Function	Migration Rule between A3P250 and A3P125
204	GAB0/IO02RSB0	GAB0/IO02RSB0	None
205	GAA1/IO01RSB0	GAA1/IO01RSB0	None
206	GAA0/IO00RSB0	GAA0/IO00RSB0	None
207	GNDQ	GNDQ	None
208	VMV0	VMV0	None

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

13-26 v1.0

FG144 Package

Table 13-8 • Pin Compatibility and Migration Table for ProASIC3 A3P060, A3P125, and A3P250 with FG144 Packaging

Pin No.	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P125
A1	GNDQ	GNDQ	GNDQ	None	None	None
A2	VMV0	VMV0	VMV0	None	None	None
А3	GAB0/IO04RSB0	GAB0/IO02RSB0	GAB0/IO02RSB0	None	None	None
A4	GAB1/IO05RSB0	GAB1/IO03RSB0	GAB1/IO03RSB0	None	None	None
A5	IO08RSB0	IO11RSB0	IO16RSB0	None	None	None
A6	GND	GND	GND	None	None	None
A7	IO11RSB0	IO18RSB0	IO29RSB0	None	None	None
A8	V _{CC}	V _{CC}	V _{CC}	None	None	None
A9	IO16RSB0	IO25RSB0	IO33RSB0	None	None	None
A10	GBA0/IO23RSB0	GBA0/IO39RSB0	GBA0/IO39RSB0	None	None	None
A11	GBA1/IO24RSB0	GBA1/IO40RSB0	GBA1/IO40RSB0	None	None	None
A12	GNDQ	GNDQ	GNDQ	None	None	None
B1	GAB2/IO53RSB1	GAB2/IO69RSB1	GAB2/IO117UDB3	None	None	None
B2	GND	GND	GND	None	None	None
В3	GAA0/IO02RSB0	GAA0/IO00RSB0	GAA0/IO00RSB0	None	None	None
B4	GAA1/IO03RSB0	GAA1/IO01RSB0	GAA1/IO01RSB0	None	Rule 6	Rule 6
В5	IO00RSB0	IO08RSB0	IO14RSB0	None	None	None
В6	IO10RSB0	IO14RSB0	IO19RSB0	None	None	None
В7	IO12RSB0	IO19RSB0	IO22RSB0	None	None	None
В8	IO14RSB0	IO22RSB0	IO30RSB0	None	None	None
В9	GBB0/IO21RSB0	GBB0/IO37RSB0	GBB0/IO37RSB0	None	None	None
B10	GBB1/IO22RSB0	GBB1/IO38RSB0	GBB1/IO38RSB0	None	None	None
B11	GND	GND	GND	None	None	None
B12	VMV0	VMV0	VMV1	None	None	None
C1	IO95RSB1	IO132RSB1	IO117VDB3	None	None	None
C2	GFA2/IO83RSB1	GFA2/IO120RSB1	GFA2/IO107PPB3	None	None	None
C3	GAC2/IO94RSB1	GAC2/IO131RSB1	GAC2/IO116UDB3	None	None	None
C4	V _{CC}	V _{CC}	V _{CC}	None	None	None
C5	IO01RSB0	IO10RSB0	IO12RSB0	None	None	None

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

Table 13-8 • Pin Compatibility and Migration Table for ProASIC3 A3P060, A3P125, and A3P250 with FG144 Packaging (continued)

Pin No.	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P125
C6	IO09RSB0	IO12RSB0	IO17RSB0	None	None	None
C 7	IO13RSB0	IO21RSB0	IO24RSB0	None	None	None
C8	IO15RSB0	IO24RSB0	IO31RSB0	None	None	None
C9	IO17RSB0	IO27RSB0	IO34RSB0	None	None	None
C10	GBA2/IO25RSB0	GBA2/IO41RSB0	GBA2/IO41PDB1	None	None	None
C11	IO26RSB0	IO42RSB0	IO41NDB1	None	None	None
C12	GBC2/IO29RSB0	GBC2/IO45RSB0	GBC2/IO43PPB1	None	None	None
D1	IO91RSB1	IO128RSB1	IO112NDB3	None	None	None
D2	IO92RSB1	IO129RSB1	IO112PDB3	None	None	None
D3	IO93RSB1	IO130RSB1	IO116VDB3	None	None	None
D4	GAA2/IO51RSB1	GAA2/IO67RSB1	GAA2/IO118UPB3	None	None	None
D5	GAC0/IO06RSB0	GAC0/IO04RSB0	GAC0/IO04RSB0	None	None	None
D6	GAC1/IO07RSB0	GAC1/IO05RSB0	GAC1/IO05RSB0	None	None	None
D7	GBC0/IO19RSB0	GBC0/IO35RSB0	GBC0/IO35RSB0	None	None	None
D8	GBC1/IO20RSB0	GBC1/IO36RSB0	GBC1/IO36RSB0	None	None	None
D9	GBB2/IO27RSB0	GBB2/IO43RSB0	GBB2/IO42PDB1	None	None	None
D10	IO18RSB0	IO28RSB0	IO42NDB1	None	None	None
D11	IO28RSB0	IO44RSB0	IO43NPB1	None	None	None
D12	GCB1/IO37RSB0	GCB1/IO53RSB0	GCB1/IO49PPB1	None	None	None
E1	V _{CC}	V _{CC}	V _{CC}	None	None	None
E2	GFC0/IO88RSB1	GFC0/IO125RSB1	GFC0/IO110NDB3	None	None	None
E3	GFC1/IO89RSB1	GFC1/IO126RSB1	GFC1/IO110PDB3	None	None	None
E4	V _{CCI} B1	V _{CCI} B1	V _{CCI} B3	None	Rule 5	Rule 5
E5	IO52RSB1	IO68RSB1	IO118VPB3	None	None	None
E6	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
E7	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	None	None	None
E8	GCC1/IO35RSB0	GCC1/IO51RSB0	GCC1/IO48PDB1	None	None	None
E9	V _{CCI} B0	V _{CCI} B0	V _{CCI} B1	None	Rule 5	Rule 5
E10	V _{CC}	V _{CC}	V _{CC}	None	None	None
E11	GCA0/IO40RSB0	GCA0/IO56RSB0	GCA0/IO50NDB1	None	None	None
E12	IO30RSB0	IO46RSB0	IO51NDB1	None	None	None

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

13-28 v1.0

Table 13-8 • Pin Compatibility and Migration Table for ProASIC3 A3P060, A3P125, and A3P250 with FG144 Packaging (continued)

Pin No.	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P125
F1	GFB0/IO86RSB1	GFB0/IO123RSB1	GFB0/IO109NPB3	None	None	None
F2	V_{COMPLF}	V_{COMPLF}	V _{COMPLF}	None	None	None
F3	GFB1/IO87RSB1	GFB1/IO124RSB1	GFB1/IO109PPB3	None	None	None
F4	IO90RSB1	IO127RSB1	IO107NPB3	None	None	None
F5	GND	GND	GND	None	None	None
F6	GND	GND	GND	None	None	None
F7	GND	GND	GND	None	None	None
F8	GCC0/IO36RSB0	GCC0/IO52RSB0	GCC0/IO48NDB1	None	None	None
F9	GCB0/IO38RSB0	GCB0/IO54RSB0	GCB0/IO49NPB1	None	None	None
F10	GND	GND	GND	None	None	None
F11	GCA1/IO39RSB0	GCA1/IO55RSB0	GCA1/IO50PDB1	None	None	None
F12	GCA2/IO41RSB0	GCA2/IO57RSB0	GCA2/IO51PDB1	None	None	None
G1	GFA1/IO84RSB1	GFA1/IO121RSB1	GFA1/IO108PPB3	None	None	None
G2	GND	GND	GND	None	None	None
G3	V _{CCPLF}	V _{CCPLF}	V_{CCPLF}	None	None	None
G4	GFA0/IO85RSB1	GFA0/IO122RSB1	GFA0/IO108NPB3	None	None	None
G5	GND	GND	GND	None	None	None
G6	GND	GND	GND	None	None	None
G7	GND	GND	GND	None	None	None
G8	GDC1/IO45RSB0	GDC1/IO61RSB0	GDC1/IO58UPB1	None	None	None
G9	IO32RSB0	IO48RSB0	IO53NDB1	None	None	None
G10	GCC2/IO43RSB0	GCC2/IO59RSB0	GCC2/IO53PDB1	None	None	None
G11	IO31RSB0	IO47RSB0	IO52NDB1	None	None	None
G12	GCB2/IO42RSB0	GCB2/IO58RSB0	GCB2/IO52PDB1	None	None	None
H1	V _{CC}	V _{CC}	V _{CC}	None	None	None
H2	GFB2/IO82RSB1	GFB2/IO119RSB1	GFB2/IO106PDB3	None	None	None
Н3	GFC2/IO81RSB1	GFC2/IO118RSB1	GFC2/IO105PSB3	None	None	None
H4	GEC1/IO77RSB1	GEC1/IO112RSB1	GEC1/IO100PDB3	None	None	None
H5	V _{CC}	V _{CC}	V _{CC}	None	None	None
Н6	IO34RSB0	IO50RSB0	IO79RSB2	None	None	None
H7	IO44RSB0	IO60RSB0	IO65RSB2	None	None	None

Notes:

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

Table 13-8 • Pin Compatibility and Migration Table for ProASIC3 A3P060, A3P125, and A3P250 with FG144 Packaging (continued)

Pin No.	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P125
H8	GDB2/IO55RSB1	GDB2/IO71RSB1	GDB2/IO62RSB2	None	None	None
H9	GDC0/IO46RSB0	GDC0/IO62RSB0	GDC0/IO58VPB1	None	None	None
H10	V _{CCI} B0	V _{CCI} B0	V _{CCI} B1	None	Rule 5	Rule 5
H11	IO33RSB0	IO49RSB0	IO54PSB1	None	None	None
H12	V _{CC}	V _{CC}	V _{CC}	None	None	None
J1	GEB1/IO75RSB1	GEB1/IO110RSB1	GEB1/IO99PDB3	None	None	None
J2	IO78RSB1	IO115RSB1	IO106NDB3	None	None	None
J3	V _{CCI} B1	V _{CCI} B1	V _{CCI} B3	None	Rule 5	Rule 5
J4	GEC0/IO76RSB1	GEC0/IO111RSB1	GEC0/IO100NDB3	None	None	None
J5	IO79RSB1	IO116RSB1	IO88RSB2	None	None	None
J6	IO80RSB1	IO117RSB1	IO81RSB2	None	None	None
J7	V _{CC}	V _{CC}	V _{CC}	None	None	None
J8	TCK	TCK	TCK	None	None	None
J9	GDA2/IO54RSB1	GDA2/IO70RSB1	GDA2/IO61RSB2	None	None	None
J10	TDO	TDO	TDO	None	None	None
J11	GDA1/IO49RSB0	GDA1/IO65RSB0	GDA1/IO60UDB1	None	None	None
J12	GDB1/IO47RSB0	GDB1/IO63RSB0	GDB1/IO59UDB1	None	None	None
K1	GEB0/IO74RSB1	GEB0/IO109RSB1	GEB0/IO99NDB3	None	None	None
K2	GEA1/IO73RSB1	GEA1/IO108RSB1	GEA1/IO98PDB3	None	None	None
К3	GEA0/IO72RSB1	GEA0/IO107RSB1	GEA0/IO98NDB3	None	None	None
K4	GEA2/IO71RSB1	GEA2/IO106RSB1	GEA2/IO97RSB2	None	None	None
K5	IO65RSB1	IO100RSB1	IO90RSB2	None	None	None
K6	IO64RSB1	IO98RSB1	IO84RSB2	None	None	None
K7	GND	GND	GND	None	None	None
K8	IO57RSB1	IO73RSB1	IO66RSB2	None	None	None
К9	GDC2/IO56RSB1	GDC2/IO72RSB1	GDC2/IO63RSB2	None	None	None
K10	GND	GND	GND	None	None	None
K11	GDA0/IO50RSB0	GDA0/IO66RSB0	GDA0/IO60VDB1	None	None	None
K12	GDB0/IO48RSB0	GDB0/IO64RSB0	GDB0/IO59VDB1	None	None	None
L1	GND	GND	GND	None	None	None
L2	VMV1	VMV1	VMV3	None	Rule 5	Rule 5

Notes:

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

13-30 v1.0

Table 13-8 • Pin Compatibility and Migration Table for ProASIC3 A3P060, A3P125, and A3P250 with FG144 Packaging (continued)

Pin No.	A3P060 Function	A3P125 Function	A3P250 Function	Migration Rule between A3P125 and A3P060	Migration Rule between A3P250 and A3P060	Migration Rule between A3P250 and A3P125
L3	GEB2/IO70RSB1	GEB2/IO105RSB1	GEB2/IO96RSB2	None	None	None
L4	IO67RSB1	IO102RSB1	IO91RSB2	None	None	None
L5	V _{CCI} B1	V _{CCI} B1	V _{CCI} B2	None	Rule 5	Rule 5
L6	IO62RSB1	IO95RSB1	IO82RSB2	None	None	None
L7	IO59RSB1	IO85RSB1	IO80RSB2	None	None	None
L8	IO58RSB1	IO74RSB1	IO72RSB2	None	None	None
L9	TMS	TMS	TMS	None	None	None
L10	V_{JTAG}	V_{JTAG}	V_{JTAG}	None	None	None
L11	VMV1	VMV1	VMV2	None	Rule 5	Rule 5
L12	TRST	TRST	TRST	None	None	None
M1	GNDQ	GNDQ	GNDQ	None	None	None
M2	GEC2/IO69RSB1	GEC2/IO104RSB1	GEC2/IO95RSB2	None	None	None
М3	IO68RSB1	IO103RSB1	IO92RSB2	None	None	None
M4	IO66RSB1	IO101RSB1	IO89RSB2	None	None	None
M5	IO63RSB1	IO97RSB1	IO87RSB2	None	None	None
M6	IO61RSB1	IO94RSB1	IO85RSB2	None	None	None
M7	IO60RSB1	IO86RSB1	IO78RSB2	None	None	None
M8	NC	IO75RSB1	IO76RSB2	Rule 1	Rule 1	None
М9	TDI	TDI	TDI	None	None	None
M10	V _{CCI} B1	V _{CCI} B1	V _{CCI} B2	None	Rule 5	Rule 5
M11	V _{PUMP}	V _{PUMP}	V _{PUMP}	None	None	None
M12	GNDQ	GNDQ	GNDQ	None	None	None

Notes:

- 1. See Table 13-3 on page 13-3 for the high-density/low-density pin combination guidelines.
- 2. "None" implies that the pins can be connected without any change.

Conclusion

This application note describes the design migration among ProASIC3 family devices with an emphasis on package pin compatibility. Devices in the ProASIC3 family share numerous common architectural features. However, not all architectural features of family members are identical; use the datasheet to identify differences. Additionally, a key requirement is running functional simulation before and after the migration using Actel tools. Actel will continue to update this application note with additional packages.

Related Documents

Handbook Documents

I/O Structures in IGLOO and ProASIC3 Devices
http://www.actel.com/documents/IGLOO_PA3_IO_HBs.pdf

Part Number and Revision Date

This document was previously published as an application note describing features and functions of the device, and as such has now been incorporated into the device handbook format. No technical changes have been made to the content.

Part Number 51700094-018-0 Revised January 2008

13-32 v1.0

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.0)				
51900135-2/12.06	In Table 13-1 · Device Information, A3P250 device information was updated.	13-1			
	In Table 13-2 \cdot Common and Convertible I/Os, I/O counts for the VQ100 package were updated.	13-2			
	In Table 13-4 · Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with VQ100 Packaging, the A3P030 pin function information was updated. Several rules changed throughout the table.	13-5			
51900135-1/12.06	Table 13-1 · Device Information was updated to include A3P030 device information.				
	Table 13-2 · Common and Convertible I/Os was updated.	13-2			
	The "Migration and Implementation Methodologies" section was updated.	13-2			
	Table 13-3 · Migration Rules from Higher-Density Device to Lower-Density Device was updated.	13-3			
	In Table 13-4 · Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with VQ100 Packaging, the A3P030 pin information was updated. Several rules changed throughout the table.	13-5			
	In Table 13-5 · Pin Compatibility and Migration Table for A3P030, A3P060, A3P125, and A3P250 with QFN132 Packaging, all pin data was updated. Several rules changed throughout the table.	13-10			
	In Table 13-7 · Pin Compatibility and Migration Table for ProASIC3 A3P125 and A3P250 with PQ208 Packaging, the rules were updated for the following pins: 50, 104, and 154.	13-20			
	In Table 13-8 · Pin Compatibility and Migration Table for ProASIC3 A3P060, A3P125, and A3P250 with FG144 Packaging, the rules were updated for the following pins: L2 and L11.	13-27			
51900135-0/5.06	QN132 information was added to Table 13-1 · Device Information.	13-1			
	QN132 information was added to Table 13-2 · Common and Convertible I/Os.	13-2			
	Table 13-6 \cdot Pin Compatibility and Migration Table for ProASIC3 A3P060 and A3P125 with TQ144 Packaging is new.	13-16			

Programming and Security

14 - Programming Flash Devices

Introduction

This document provides an overview of the various programming options available for the Actel flash families. The electronic version of this document includes active links to all programming resources, which are available at http://www.actel.com/products/hardware/default.aspx. For Actel antifuse devices, refer to the *Programming Antifuse Devices* document.

Summary of Programming Support

FlashPro3 is a high-performance in-system programming (ISP) tool targeted at the latest generation of low-power flash devices offered by Actel: Fusion, IGLOO,® and ProASIC®3, including ARM®-enabled devices. FlashPro3 offers extremely high performance through the use of USB 2.0, is high-speed compliant for full use of the 480 Mbps bandwidth, and can program ProASIC3 devices in under 30 seconds. Powered exclusively via USB, FlashPro3 provides a V_{PUMP} voltage of 3.3 V for programming these devices.

Silicon Sculptor 3 is an easy-to-use, single-site programming tool for Actel FPGAs that delivers high data throughput and promotes ease of use while lowering the overall cost of ownership. Silicon Sculptor 3 includes a high-speed USB 2.0 interface that allows a customer to connect as many as 12 programmers to a single PC. Furthermore, Silicon Sculptor 3 is compatible with adapter modules from Silicon Sculptor II, thereby preserving a customer's investment and enabling a seamless upgrade to this latest generation of the tool.

For details of programmer support for each device, refer to Table 14-6 on page 14-10.

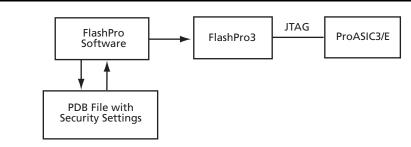


Figure 14-1 • FlashPro Programming Setup

Programming Support in Flash Devices

The flash FPGAs listed in Table 14-1 support flash in-system programming and the functions described in this document.

Table 14-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO nano	The industry's lowest-power, smallest-size solution
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex™-M1 soft processors, and flash memory into a monolithic device
ProASIC	ProASIC	First generation ProASIC devices
	ProASIC ^{PLUS}	Second generation ProASIC devices

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 14-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 14-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

14-2 v1.3

General Flash Programming Information

Programming Basics

When choosing a programming solution, there are a number of options available. This section provides a brief overview of those options. The next sections provide more detail on those options as they apply to Actel FPGAs.

Reprogrammable or One-Time-Programmable (OTP)

Depending on the technology chosen, devices may be reprogrammable or one-time-programmable. As the name implies, a reprogrammable device can be programmed many times. Generally, the contents of such a device will be completely overwritten when it is reprogrammed. All Actel flash devices are reprogrammable.

An OTP device is programmable one time only. Once programmed, no more changes can be made to the contents. Actel flash devices provide the option of disabling the reprogrammability for security purposes. This combines the convenience of reprogrammability during design verification with the security of an OTP technology for highly sensitive designs.

Device Programmer or In-System Programming

There are two fundamental ways to program an FPGA: using a device programmer or, if the technology permits, using in-system programming. A device programmer is a piece of equipment in a lab or on the production floor that is used for programming devices. The devices are placed into a socket mounted in a programming adapter module, and the appropriate electrical interface is applied. The device can then be placed on the board. A typical programmer, used during development, programs a single device at a time and is referred to as a single-site engineering programmer.

With ISP, the device is already mounted onto the board when programming occurs, most typically via the JTAG pins. The JTAG pins can be controlled either by an on-board resource, such as a microprocessor, or by an off-board programmer through a header connection. Once mounted, it can be programmed repeatedly. If the application requires it, the system can be designed to reprogram itself using a microprocessor, without the use of any external programmer.

For production, high-volume multi-site production programmers handle designs that require device programmers. In addition, Actel can preprogram devices for production, negating the need for further programming. This service is referred to as in-house programming (IHP).

Live at Power-Up (LAPU) or Boot PROM

Utilizing the technology of the FPGA significantly impacts board-level power-up considerations. Some technologies are nonvolatile and are considered functional, or "live," as soon as power reaches the operational level. All Actel FPGA technologies are live at power-up. By contrast, SRAM technology is volatile, and devices built using SRAM cells lose their contents when power cycling occurs. These devices must be reprogrammed every time power is applied. Such a design must include nonvolatile storage for the contents as well as the means to reprogram. There is a delay before SRAM devices are functional; other parts of the board must come alive first to reprogram these types of FPGAs. Therefore, such devices can never be part of critical boot circuits.

Design Security

Design security is a growing concern for systems designers. The choice of programming methodology and technology affects system security. Use of Actel programming technology is the most secure option available, providing much better protection than SRAM-based devices and ASICs. Actel provides a number of ways to ensure designs are protected. General information on design security can be found on the Actel website:

http://www.actel.com/products/solutions/security/default.aspx

v1.3 14-3

Programming Features for Actel Devices

Actel provides two types of FPGAs: flash and antifuse (Table 14-2). Some programming methods are common to both and some are exclusive to flash. This document describes only the programming solutions supported for flash devices.

Table 14-2 • Programming Features for Actel Devices

Feature	Flash	Antifuse
Reprogrammable	Yes	No
In-system programmable	Yes	No
One-time programmable	Yes (option)	Yes
Live at power-up	Yes	Yes
Secure	Yes	Yes
Single-site programmer support	Yes	Yes
Multi-site programmer support	Yes	Yes
In-house programming support	Yes	Yes

Flash Devices

The flash devices supplied by Actel are reprogrammable by either a generic device programmer or ISP. Actel supports ISP using JTAG, which is supported by the FlashPro3, FlashPro Lite, FlashPro, Silicon Sculptor 3, and Silicon Sculptor II programmers.

Levels of ISP support vary depending on the device chosen:

- All Fusion, IGLOO, and ProASIC3 devices support ISP.
- IGLOO, IGLOOe, IGLOO nano V5, and IGLOO PLUS devices can be programmed in-system when the device is using a 1.5 V supply voltage to the FPGA core.
- All IGLOO V2 and ProASIC3L devices can be operated at any voltage between 1.2 V and 1.5 V; the Designer software allows 50 mV increments in the voltage. Although the device can operate at 1.2 V core voltage, the device can only be reprogrammed when the core voltage is 1.5 V. Voltage switching is required in-system to switch from a 1.2 V supply (V_{CC}, V_{CCI}, and V_{JTAG}) to 1.5 V for programming.

Since flash devices are nonvolatile, they are live at power-up. This is different from an SRAM-based device, which loads its programming information when it is powered up. SRAM devices require a time on the order of hundreds of milliseconds before the system is active.

There are multiple levels of security available in flash devices. Use of a security key will lock the device. The device can then only be reprogrammed by first unlocking the device with the appropriate security key. It can also be locked permanently, which means there is no key that can access the device. The command to secure the device is embedded within the programming file, optionally enabled by the programming software. This is also referred to as the OTP version of flash, allowing for only a single programming instance. This is discussed in more detail in the Implementation of Security in Actel's ProASIC and ProASIC** Flash-Based FPGAs application note, and in the Security in Low-Power Flash Devices handbook section.

Flash devices can also be programmed using single-site or multi-site programmers as well as volume programming services from Actel or other vendors.

14-4 v1.3

Types of Programming for Flash Devices

The number of devices to be programmed will influence the optimal programming methodology. Those available are listed below:

- In-system programming
 - Using a programmer
 - Using a microprocessor or microcontroller
- Device programmers
 - Single-site programmers
 - Multi-site programmers, batch programmers, or gang programmers
 - Automated production (robotic) programmers
- Volume programming services
 - Actel in-house programming
 - Programming centers

In-System Programming

Device Type Supported: Flash

ISP refers to programming the FPGA after it has been mounted on the system board. The FPGA may be preprogrammed and later reprogrammed using ISP.

The advantage of using ISP is the ability to update the FPGA design many times without any changes to the board. This eliminates the requirement of using a socket for the FPGA, saving cost and improving reliability. It also reduces programming hardware expenses, as the ISP methodology is die-/package-independent.

There are two methods of in-system programming: external and internal.

- Programmer ISP—Refer to In-System Programming (ISP) of Actel's Low-Power Flash Devices
 Using FlashPro3 for more information.
 - Using an external programmer and a cable, the device can be programmed through a header on the system board. In Actel documentation, this is referred to as external ISP. Actel provides FlashPro3, FlashPro Lite, FlashPro, or Silicon Sculptor 3 to perform external ISP. Note that Silicon Sculptor II and Silicon Sculptor 3 can only provide ISP for ProASIC and ProASIC PLUS® families, not for Fusion, IGLOO, or ProASIC3.
 - Advantages: Allows local control of programming and data files for maximum security.
 The programming algorithms and hardware are available from Actel. The only hardware required on the board is a programming header.
 - Limitations: A negligible board space requirement for the programming header and JTAG signal routing
- Microprocessor ISP—Refer to Microprocessor Programming of Actel's Low-Power Flash Devices for more information.
 - Using a microprocessor and an external or internal memory, you can store the program in memory and use the microprocessor to perform the programming. In Actel documentation, this is referred to as internal ISP. Both the code for the programming algorithm and the FPGA programming file must be stored in memory on the board. Programming voltages must also be generated on the board.
 - Advantages: The programming code is stored in the system memory. An external programmer is not required during programming.
 - Limitations: This is the approach that requires the most design work, since some way of getting and/or storing the data is needed; a system interface to the device must be designed; and the low-level API to the programming firmware must be written and linked into the code provided by Actel. While there are benefits to this methodology, serious thought and planning should go into the decision.

v1.3 14-5

Device Programmers

Device Type Supported: Flash and Antifuse

Device programmers are used to program a device before it is mounted on the system board.

The advantage of using device programmers is that no programming hardware is required on the system board. Therefore, no additional components or board space are required.

If devices are to be reprogrammed multiple times, or if the quantity of devices to be programmed is relatively low, a single-site device programmer is the simplest solution. For applications in which design security is paramount (often the case in military or space designs), the use of on-site programming maintains design security at all times.

Adapter modules are purchased with the programmers to support the FPGA packages used. The FPGA is placed in the adapter module and the programming software is run from a PC. Actel supplies the programming software for all of the Actel programmers. The software allows for the selection of the correct die/package and programming files. It will then program and verify the device.

Single-site programmers

A single-site programmer programs one device at a time. Actel offers Silicon Sculptor 3 as a single-site programmer.

- Advantages: Lower cost than multi-site programmers. No additional overhead for programming on the system board. Allows local control of programming and data files for maximum security. Allows on-demand programming on-site.
- Limitations: Only programs one device at a time.
- Multi-site programmers

Often referred to as batch or gang programmers, multi-site programmers can program multiple devices at the same time using the same programming file. This is often used for large volume programming and by programming houses. The sites often have independent processors and memory enabling the sites to operate concurrently, meaning each site may start programming the same file independently. This enables the operator to change one device while the other sites continue programming, which increases throughput. Multiple adapter modules for the same package are required when using a multi-site programmer. Silicon Sculptor I, II, and 3 programmers can be cascaded to program multiple devices in a chain. Multi-site programmers can also be purchased from BP Microsystems.

- Advantages: Provides the capability of programming multiple devices at the same time.
 No additional overhead for programming on the system board. Allows local control of programming and data files for maximum security.
- Limitations: More expensive than a single-site programmer
- Automated production (robotic) programmers

Automated production programmers are based on multi-site programmers. They consist of a large input tray holding multiple parts and a robotic arm to select and place parts into appropriate programming sockets automatically. When the programming of the parts is complete, the parts are removed and placed in a finished tray. The automated programmers are often used in volume programming houses to program parts for which the programming time is small.

14-6 v1.3

Volume Programming Services

Device Type Supported: Flash and Antifuse

Once the design is stable for applications with large production volumes, preprogrammed devices can be purchased. Table 14-3 describes the volume programming services.

Table 14-3 • Volume Programming Services

Programmer	Vendor	Availability
In-House Programming	Actel	Contact Actel Sales
Distributor Programming Centers	Memec Unique	Contact Distribution
Independent Programming Centers	Various	Contact Vendor

Advantages: As programming is outsourced, this solution is easier to implement than creating a substantial in-house programming capability. As programming houses specialize in large-volume programming, this is often the most cost-effective solution.

Limitations: There are some logistical issues with the use of a programming service provider, such as the transfer of programming files and the approval of First Articles. By definition, the programming file must be released to a third-party programming house. Nondisclosure agreements (NDAs) can be signed to help ensure data protection; however, for extremely security-conscious designs, this may not be an option.

Actel In-House Programming

When purchasing Actel devices in volume, IHP can be requested as part of the purchase. If this option is chosen, there is a small cost adder for each device programmed. Each device is marked with a special mark to distinguish it from blank parts. Programming files for the design will be sent to Actel. Sample parts with the design programmed, First Articles, will be returned for customer approval. Once approval of First Articles has been received, Actel will proceed with programming the remainder of the order. To request Actel IHP, contact your local Actel representative.

• Distributor Programming Centers

If purchases are made through a distributor, many distributors will provide programming for their customers. Consult with your preferred distributor about this option.

• Independent Programming Centers

There are many programming centers that specialize only in programming but are not directly affiliated with Actel or our distributors. These programming centers must follow the guidelines for programming Actel devices and use certified programmers to program Actel devices. Actel does not have recommendations for external programming centers.

v1.3 14-7

Programming Solutions

Details for the available programmers can be found in the programmer user's guides listed in the "Related Documents" section on page 14-15. Refer to Table 14-6 on page 14-10 for more information concerning programming solutions.

All of the programmers except FlashPro3, FlashPro Lite, and FlashPro require adapter modules, which are designed to support device packages. The modules are all listed on the Actel website at http://www.actel.com/products/hardware/program_debug/ss/modules.aspx. They are not listed in this document, since this list is updated frequently with new package options and any upgrades required to improve programming yield or support new families.

Table 14-4 • Programming Solutions

Programmer	Vendor	ISP	Single Device	Multi-Device	Availability
FlashPro3	Actel	Only	Yes	Yes ¹	Available
FlashPro Lite	Actel	Only	Yes	Yes ¹	Available
FlashPro	Actel	Only	Yes	Yes ¹	Available
Silicon Sculptor 3	Actel	Yes ²	Yes	Cascade option (up to two)	Available
Silicon Sculptor II	Actel	Yes ²	Yes	Cascade option (up to two)	Available
Silicon Sculptor	Actel	Yes	Yes	Cascade option (up to four)	Discontinued
Sculptor 6X	Actel	No	Yes	Yes	Discontinued
BP MicroProgrammers	BP Microsystems	No	Yes	Yes	Contact BP Microsystems at www.bpmicro.com

Notes:

- 1. Multiple devices can be connected in the same JTAG chain for programming.
- 2. Silicon Sculptor II and Silicon Sculptor 3 can only provide ISP for ProASIC and ProASIC families, not for Fusion, IGLOO, or ProASIC3 devices.

Programmer Ordering Codes

The products shown in Table 14-5 can be ordered through Actel sales and will be shipped directly from Actel. Products can also be ordered from Actel distributors, but will still be shipped directly from Actel. Table 14-5 includes ordering codes for the full kit, as well as codes for replacement items and any related hardware. Some additional products can be purchased from external suppliers for use with the programmers. Ordering codes for adapter modules used with Silicon Sculptor are available on the Actel website at

http://www.actel.com/products/hardware/program_debug/ss/modules.aspx.

Table 14-5 • Programming Ordering Codes

Description	Vendor	Ordering Code	Comment
FlashPro3 ISP programmer	Actel	FLASHPRO 3	Uses a 2×5, RA male header connector
	A -4 - 1	EL ACUIDDO LITE	Constant and the second of the
FlashPro Lite ISP programmer	Actel	FLASHPRO LITE	Supports small programming header or large header through header converter (not included)
FlashPro ISP programmer	Actel	FLASH PRO	Supports small programming header or large header through header converter (not included)
Silicon Sculptor 3	Actel	SILICON-SCULPTOR 3	USB 2.0 high-speed production programmer
Silicon Sculptor II	Actel	SILICON-SCULPTOR II	Requires add-on adapter modules to support devices
Silicon Sculptor ISP module	Actel	SMPA-ISP-ACTEL-3-KIT	Ships with both large and small header support

^{*} A maximum of two Silicon Sculptor II programmers can be chained together using a standard IEEE 1284 parallel port cable.

14-8 v1.3

Table 14-5 • Programming Ordering Codes (continued)

Description	Vendor	Ordering Code	Comment
Concurrent programming cable	Actel	SS-EXPANDER	Used to cascade Silicon Sculptor I programmers together*
Software for Silicon Sculptor	Actel	SCULPTOR-SOFTWARE-CD	http://www.actel.com/download/program_debug/ss/
ISP cable for small header	Actel	ISP-CABLE-S	Supplied with SMPA-ISP-ACTEL-3-KIT
ISP cable for large header	Actel	PA-ISP-CABLE	Supplied with SMPA-ISP-ACTEL-3-KIT
Header converter	Actel	Header-Converter	Converts from small to large header
Small programming header	Samtec	FTSH-113-01-L-D-K	Supported by FlashPro, FlashPro Lite, and Silicon Sculptor
			In migrating to ProASIC3/E devices, an FP3-26PIN-ADAPTER is required.
10-pin 0.1" pitch cable header (right- angle PCB mount angle)	AMP	103310-1	Supported by FlashPro3
10-pin 0.1" pitch cable header (straight PCB mount angle)	3M	2510-6002UB	Supported by FlashPro3
Compact programming header (10-pin 0.05" pitch, 2 rows of 5 pins)	Samtec	FTSH-105-01-L-D-K	Supported by FlashPro3, FP3-10PIN-ADAPTER-KIT required. Used for boards where space is at a premium.
Migration and compact header adapter	Actel	FP3-10PIN-ADAPTER-KIT	Compact header and migration kit. Comes with Samtec FFSD-05-D-06.00-01-N (6-inch cable for connecting to compact 10-pin headers).
Large programming header, 0.062" board thickness	3M	3429-6502	Supported by Silicon Sculptor by default, FlashPro and FlashPro Lite with header converter
Large programming header, 0.094" to 0.125" board thickness	3M	3429-6503	Supported by Silicon Sculptor by default, FlashPro and FlashPro Lite with header converter
Plug-in header, small	Actel	SMPA-ISP-HEADER-S	Required for small header for ProASIC only; not used for ProASIC PLUS
Plug-in header	Actel	SMPA-ISP-HEADER	Required for large header for ProASIC only; not used for ProASIC PLUS
Vacuum pens for PQ, TQ, VQ; <208 pins	Actel	PENVAC	
Vacuum pens for PQ, TQ, VQ; ≥208 pins	Actel	PENVAC-HD	Heavy-duty, provides stronger vacuum

^{*} A maximum of two Silicon Sculptor II programmers can be chained together using a standard IEEE 1284 parallel port cable.

v1.3 14-9

Programmer Device Support

Refer to Table 14-6 to determine which general-purpose flash devices have programmer device support. To learn more about the different Actel families, refer to the Actel website: http://www.actel.com/products/devices.aspx.

Data in Table 14-6 also applies to ARM-enabled M7 device versions of Fusion, IGLOO, and ProASIC3 devices. Refer to the appropriate family datasheets for information on die/package combinations available as ARM-enabled versions.

Table 14-6 • Programmer Device Support

	l	1		Ciliana	Ciliana	Cilicar	I	T .	<u> </u>
Actel		ARM-	Silicon	Silicon	Silicon	Silicon Sculptor		FlashPro	
Family	Device		Sculptor		II	3	FlashPro		FlashPro3
Fusion	AFS090		No	No	Yes.	Yes.	No	No	Yes.
	AFS250				No ISP	No ISP			ISP
	AFS600	1			support.	support.			support
	AFS1500	1							
IGLOO	AGL015		No	No	Yes.	Yes.	No	No	Yes.
	AGL030				No ISP	No ISP			ISP
	AGL060				support.	support.			support.
	AGL125								
	AGL250	1							
	AGL400	1							
	AGL600	1							
	AGL1000	1							
IGLOOe	AGLE600	1	No	No	Yes.	Yes.	No	No	Yes.
	AGLE3000	1			No ISP	No ISP			ISP .
						support.			support
IGLOO PLUS			No	No	Yes.	Yes.	No	No	Yes.
	AGLP060				No ISP	No ISP			ISP support
	AGLP125					support.			
IGLOO	AGLN010		No	No	Yes.	Yes.	No	No	Yes.
nano	AGLN015				No ISP	No ISP			ISP
	AGLN020				support.	support.			support
	AGLN060								
	AGLN125								
	AGLN250								
ProASIC3	A3PN010		No	No	Yes.	Yes.	No	No	Yes.
nano	A3PN015				No ISP	No ISP			ISP
	A3PN020				support.	support.			support.
	A3PN060								
	A3PN125								
	A3PN250								
ProASIC3L	A3P250L	1	No	No	Yes.	Yes.	No	No	Yes.
	A3P600L	1			No ISP	No ISP			ISP
	A3P1000L	1			support.	support.			support.
	A3PE3000L	1							

^{*} Refer to the "Certified Programming Solutions" section on page 14-12 for more information on programmer support.

14-10 v1.3

Table 14-6 • Programmer Device Support (continued)

Actel Family	Device	ARM- Enabled	Silicon Sculptor		Silicon Sculptor II	Silicon Sculptor 3	FlashPro	FlashPro Lite	FlashPro3
ProASIC3	A3P015 A3P030 A3P060 A3P125 A3P250		No	No	Yes. No ISP support.	Yes. No ISP support.	No	No	Yes. ISP support.
	A3P400 A3P600 A3P1000	\frac{1}{}							
ProASIC3E	A3PE600 A3PE1500 A3PE3000	✓ ✓ ✓	No	No	Yes. No ISP support.	Yes. No ISP support.	No	No	Yes. ISP support.
ProASIC ^{PLUS}	APA075 APA150 APA300 APA450 APA600 APA750 APA1000		Yes. ISP support.	Yes. ISP support.	Yes. ISP support.	Yes. ISP support.	Yes. ISP support.	Yes. ISP support.	No
ProASIC	A500K50 A500K130 A500K180 A500K270		Yes	Yes	Yes	Yes	Yes	No	No

^{*} Refer to the "Certified Programming Solutions" section on page 14-12 for more information on programmer support.

Certified Programming Solutions

The Actel-certified programmers for flash devices are FlashPro3, FlashPro Lite, FlashPro, Silicon Sculptor I and II, and any programmer that is built by BP Microsystems. All other programmers are considered noncertified programmers.

• FlashPro3, FlashPro Lite, FlashPro

The Actel family of FlashPro device programmers provides in-system programming in an easy-to-use, compact system that supports all flash families. Whether programming a board containing a single device or multiple devices connected in a chain, the Actel line of FlashPro programmers enables fast programming and reprogramming. Programming with the FlashPro series of programmers saves board space and money as it eliminates the need for sockets on the board. There are no built-in algorithms, so there is no delay between product release and programming support.

Silicon Sculptor II

Silicon Sculptor II is a robust, compact, single-device programmer with standalone software for the PC. It is designed to enable concurrent programming of multiple units from the same PC with speeds equivalent to or faster than previous Actel programmers. It replaces Silicon Sculptor I as the Actel programmer of choice.

Silicon Sculptor I and Silicon Sculptor 6X

Actel no longer offers Silicon Sculptor I or Silicon Sculptor 6X for sale. Both items have been discontinued. Actel does support Silicon Sculptor I and Silicon Sculptor 6X by continuing to release new software that enables improved programming of previously covered Actel devices; new Actel devices are only supported on Silicon Sculptor II. All software support for Silicon Sculptor I and Silicon Sculptor 6X programmers will be disconnected by the end of 2005; no support for these older programmers will be offered in 2006. Actel recommends that all customers upgrade to Silicon Sculptor II or a BP multi-site programmer.

• Noncertified Programmers

Actel does not test programming solutions from other vendors, and CANNOT guarantee programming yield. Also, Actel will not perform any failure analysis on devices programmed by hardware from other vendors.

Programming Centers

Actel programming hardware policy also applies to programming centers. Actel expects all programming centers to use certified programmers to program Actel devices. If a programming center uses noncertified programmers to program Actel devices, the "Noncertified Programmers" policy applies.

Flash Programming Guidelines

Preprogramming Setup

Before programming, several steps are required to ensure an optimal programming yield.

Use Proper Handling and Electrostatic Discharge (ESD) Precautions

Actel FPGAs are sensitive electronic devices that are susceptible to damage from ESD and other types of mishandling. For more information about ESD, refer to the *Actel Quality and Reliability Guide*, beginning with page 41.

Use the Latest Version of the Designer Software to Generate Your Programming File (recommended)

The files used to program Actel flash devices (*.bit, *.stp) contain important information about the switches that will be programmed in the FPGA. Find the latest version and corresponding release notes at http://www.actel.com/download/software/designer/. Also, programming files must always be zipped during file transfer to avoid the possibility of file corruption.

14-12 v1.3

Use the Latest Version of the Programming Software

The programming software is frequently updated to accommodate yield enhancements in FPGA manufacturing. These updates ensure maximum programming yield and minimum programming times. Before programming, always check the version of software being used to ensure it is the most recent. Depending on the programming software, refer to one of the following:

- FlashPro: http://www.actel.com/download/program_debug/flashpro/
- Silicon Sculptor: http://www.actel.com/download/program_debug/ss/

Use the Most Recent Adapter Module with Silicon Sculptor

Occasionally, Actel makes modifications to the adapter modules to improve programming yields and programming times. To identify the latest version of each module before programming, visit http://www.actel.com/products/hardware/program_debug/ss/modules.aspx.

Perform Routine Hardware Self-Diagnostic Test

FlashPro

The self-test is only applicable when programming with FlashPro and FlashPro3 programmers. It is not supported with FlashPro Lite. To run the self-diagnostic test, follow the instructions given in the "Performing a Self-Test" section of http://www.actel.com/documents/FlashPro_UG.pdf.

Silicon Sculptor

The self-diagnostic test verifies correct operation of the pin drivers, power supply, CPU, memory, and adapter module. This test should be performed before every programming session. At minimum, the test must be executed every week. To perform self-diagnostic testing using the Silicon Sculptor software, perform the following steps, depending on the operating system:

- DOS: From anywhere in the software, type ALT + D.
- Windows: Click Device > choose Actel Diagnostic > select the Test tab > click OK.

Programming Flash FPGAs

Programming a flash device is a one-step process, whether programming is conducted with a socket adapter module or via ISP. The Execute function will automatically erase the device, program the flash cells, and verify that it is programmed correctly. Actel recommends confirming the security status is correct before programming.

The following steps are required to program Actel flash FPGAs.

Programming with FlashPro

Setup

Properly connect the FlashPro ribbon cable with the programming header and turn on the switch. Actel recommends running the self-test before programming any devices; see the "Perform Routine Hardware Self-Diagnostic Test" section on page 14-13.

In the programming software, from the File menu, choose **Connect**. In the FlashPro Connect to Programmer dialog box that appears, select the port to which the FlashPro programmer is connected, and select the device family. Disable voltages from the programmer if they are available on the board.

Click Connect. A successful connect or any errors appear in the Log window.

Analyze Chain and Device Selection

From the File menu, choose **Analyze Chain**. Chain details appear in the Log window. If any failures appear, refer to the error and troubleshooting section of the *FlashPro User's Guide*. Select the device to be programmed from the **Device** list. If only one device is present in the chain, performing Analyze Chain selects that device automatically from the Device list.

v1.3 14-13

Loading the STAPL file

FlashPro3, FlashPro Lite, and FlashPro programmers use a STAPL (*.stp) file to program the device. To load the STAPL file, from the File menu, choose **Open STAPL file**, or click the **Open File** button on the toolbar.

Selecting an Action

After loading the STAPL file, select an action from the Action list. See the "Programming File Actions" section in the *FlashPro User's Guide* for a definition of each action.

Programming the Device

To program the device, in the Action list, select **Program**. Make the required selections and click **Execute** to start programming. The progress of the programming action displays in the Log window. The message "Exit 0" indicates that the device has successfully been programmed.

Note: Do not interrupt the programming sequence; it may damage the device or programmer.

Verify Correct Programming

To verify the device is programmed with the correct STAPL file, load the STAPL file and in the Action list, click **Verify**. Click **Execute** to start the verification process. A successful verification results in "Exit 0."

Note: Verification is also performed in the previous "Programming the Device" step; clicking **Verify** is an additional standalone option.

Programming Failure Allowances

Flash FPGAs are reprogrammable, so Actel tests the programmability for 100% of the devices shipped.

Return Material Authorization (RMA) Policies

Actel consistently strives to exceed customer expectations by continuing to improve the quality of our products and our quality management system. Actel has RMA procedures in place to address programming fallout. Customers should be mindful of the following RMA policies.

All devices submitted for an RMA must be within the Actel warranty period of one year from date of shipment. Actel will reject RMAs for devices that are no longer under warranty.

RMAs will only be authorized for current Actel devices. Devices that have been discontinued will not receive RMAs. All functional failure analysis requests must be initiated by opening a case with Actel Technical Support. Devices returned for failure analysis against an RMA should be in their original packaging and must have an RMA number issued by Actel.

Contacting the Customer Support Group

Highly skilled engineers staff the Customer Applications Center from 7:00 A.M. to 6:00 P.M., Pacific time, Monday through Friday. You can contact the center by one of the following methods:

Electronic Mail

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. Actel monitors the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and contact information for efficient processing of your request. The technical support email address is tech@actel.com.

Telephone

Our Technical Support Hotline answers all calls. The center retrieves information, such as your name, company name, telephone number, and question. Once this is done, a case number is assigned. Then the center forwards the information to a queue where the first available applications engineer receives the data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific time, Monday through Friday.

The Customer Applications Center number is (800) 262-1060.

European customers can call +44 (0) 1256 305 600.

14-14 v1.3

Related Documents

Below is a list of related documents, their location on the Actel website, and a brief summary of each document.

Application Notes

Programming Antifuse Devices

http://www.actel.com/documents/AntifuseProgram_AN.pdf

Implementation of Security in Actel's ProASIC and ProASICPLUS Flash-Based FPGAs

http://www.actel.com/documents/Flash Security AN.pdf

Handbook Documents

Security in Low-Power Flash Devices

http://www.actel.com/documents/LPD Security HBs.pdf

In-System Programming (ISP) of Actel's Low-Power Flash Devices Using FlashPro3

http://www.actel.com/documents/LPD_ISP_HBs.pdf

Microprocessor Programming of Actel's Low-Power Flash Devices

http://www.actel.com/documents/LPD_Microprocessor_HBs.pdf

User's Guides

FlashPro Programmers

FlashPro3, FlashPro Lite, and FlashPro

http://www.actel.com/products/hardware/program_debug/flashpro/default.aspx

FlashPro User's Guide

http://www.actel.com/documents/FlashPro_UG.pdf

The FlashPro User's Guide includes hardware and software setup, self-test instructions, use instructions, and a troubleshooting / error message guide.

Silicon Sculptor 3 and Silicon Sculptor II

http://www.actel.com/products/hardware/program_debug/ss/default.aspx

Other Documents

http://www.actel.com/products/solutions/security/default.aspx#flashlock

The security resource center describes security in Actel Flash FPGAs.

Actel Quality and Reliability Guide

http://www.actel.com/documents/RelGuide.pdf

Part Number and Revision Date

This document was previously published as an application note describing features and functions of the device, and as such has now been incorporated into the device handbook format. No technical changes have been made to the content.

Part Number 51700094-013-3

Revised December 2008

v1.3 14-15

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.3)			
v1.2 (October 2008)	The "Programming Support in Flash Devices" section was updated to include IGLOO nano and ProASIC3 nano devices.			
	The "Flash Devices" section was updated to include information for IGLOO nano devices. The following sentence was added: IGLOO PLUS devices can also be operated at any voltage between 1.2 V and 1.5 V; the Designer software allows 50 mV increments in the voltage.			
	Table 14-5 · Programming Ordering Codes was updated to replace FP3-26PIN-ADAPTER with FP3-10PIN-ADAPTER-KIT.			
	Table 14-6 · Programmer Device Support was updated to add IGLOO nano and ProASIC3 nano devices. AGL400 was added to the IGLOO portion of the table.	14-10		
v1.1 (March 2008)	The "Programming Support in Flash Devices" section was revised to include new families and make the information more concise.	14-2		
	Figure 14-1 · FlashPro Programming Setup and the "Programming Support in Flash Devices" section are new.	14-1, 14-2		
	Table 14-6 · Programmer Device Support was updated to include A3PE600L with the other ProASIC3L devices, and the RT ProASIC3 family was added.	14-10		
v1.0 (January 2008)	The "Flash Devices" section was updated to include the IGLOO PLUS family. The text, "Voltage switching is required in-system to switch from a 1.2 V core to 1.5 V core for programming," was revised to state, "Although the device can operate at 1.2 V core voltage, the device can only be reprogrammed when the core voltage is 1.5 V. Voltage switching is required in-system to switch from a 1.2 V supply (V_{CC} , V_{CCI} , and V_{JTAG}) to 1.5 V for programming."			
	The ProASIC3L family was added to Table 14-6 · Programmer Device Support as a separate set of rows rather than combined with ProASIC3 and ProASIC3E devices. The IGLOO PLUS family was included, and AGL015 and A3P015 were added.	14-10		

14-16 v1.3

15 – Security in Low-Power Flash Devices

Security in Programmable Logic

The need for security on FPGA programmable logic devices (PLDs) has never been greater than today. If the contents of the FPGA can be read by an external source, the intellectual property (IP) of the system is vulnerable to unauthorized copying. Actel Fusion, [®] IGLOO, [®] and ProASIC[®]3 devices contain state-of-the-art circuitry to make the flash-based devices secure during and after programming. Low-power flash devices have a built-in 128-bit Advanced Encryption Standard (AES) decryption core (except for 30 k gate devices and smaller). The decryption core facilitates secure insystem programming (ISP) of the FPGA core array fabric, the FlashROM, and the Flash Memory Blocks (FBs) in Fusion devices. The FlashROM, Flash Blocks, and FPGA core fabric can be programmed independently of each other, allowing the FlashROM or Flash Blocks to be updated without the need for change to the FPGA core fabric.

Actel has incorporated the AES decryption core into the low-power flash devices and has also included the Actel flash-based lock technology, FlashLock. Together, they provide leading-edge security in a programmable logic device. Configuration data loaded into a device can be decrypted prior to being written to the FPGA core using the AES 128-bit block cipher standard. The AES encryption key is stored in on-chip, nonvolatile flash memory.

This document outlines the security features offered in low-power flash devices, some applications and uses, as well as the different software settings for each application.

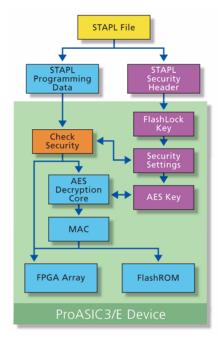


Figure 15-1 • Overview on Security

v1.5 15-1

Security Support in Flash-Based Devices

The flash FPGAs listed in Table 15-1 support the security feature and the functions described in this document.

Table 15-1 • Flash-Based FPGAs

Series	Family*	Description					
IGLOO	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology					
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards					
	IGLOO nano	The industry's lowest-power, smallest-size solution					
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities					
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs					
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards					
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities					
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology					
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L					
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L					
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications					
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex™-M1 soft processors, and flash memory into a monolithic device					

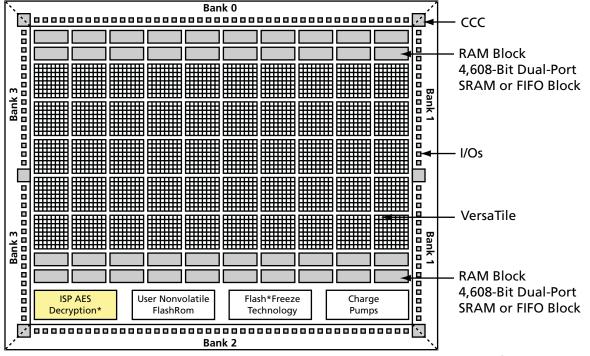
Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 15-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 15-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.


To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

15-2 v1.5

Security Architecture

Fusion, IGLOO, and ProASIC3 devices have been designed with the most comprehensive programming logic design security in the industry. In the architecture of these devices, security has been designed into the very fabric. The flash cells are located beneath seven metal layers, and the use of many device design and layout techniques makes invasive attacks difficult. Since device layers cannot be removed without disturbing the charge on the programmed (or erased) flash gates, devices cannot be easily deconstructed to decode the design. Low-power flash devices are unique in being reprogrammable and having inherent resistance to both invasive and noninvasive attacks on valuable IP. Secure, remote ISP is now possible with AES encryption capability for the programming file during electronic transfer. Figure 15-2 shows a view of the AES decryption core inside an IGLOO device; Figure 15-3 on page 15-4 shows the AES decryption core inside a Fusion device. The AES core is used to decrypt the encrypted programming file when programming.

Note: *ISP AES Decryption is not supported by 30 k gate devices and smaller. For details of other architecture features by device, refer to the appropriate family datasheet.

Figure 15-2 • Block Representation of the AES Decryption Core in IGLOO and ProASIC3 Devices

v1.5 15-3

Figure 15-3 • Block Representation of the AES Decryption Core in a Fusion AFS600 FPGA

Security Features

IGLOO and ProASIC3 devices have two entities inside: FlashROM and the FPGA core fabric. Fusion devices contain three entities: FlashROM, FBs, and the FPGA core fabric. The parts can be programmed or updated independently with a STAPL programming file. The programming files can be AES-encrypted or plaintext. This allows maximum flexibility in providing security to the entire device. Refer to FlashROM in Actel's Low-Power Flash Devices for information on the FlashROM structure.

Unlike SRAM-based FPGA devices, which require a separate boot PROM to store programming data, low-power flash devices are nonvolatile, and the secured configuration data is stored in on-chip flash cells that are part of the FPGA fabric. Once programmed, this data is an inherent part of the FPGA array and does not need to be loaded at system power-up. SRAM-based FPGAs load the configuration bitstream upon power-up; therefore, the configuration is exposed and can be read easily.

The built-in FPGA core, FBs, and FlashROM support programming files encrypted with the 128-bit AES (FIPS-192) block ciphers. The AES key is stored in dedicated, on-chip flash memory and can be programmed before the device is shipped to other parties (allowing secure remote field updates).

Security in ARM-Enabled Low-Power Flash Devices

There are slight differences between the regular flash devices and the ARM[®]-enabled flash devices, which have the M1 and M7 prefix.

The AES key is used by Actel and preprogrammed into the device to protect the ARM IP. As a result, the design is encrypted along with the ARM IP, according to the details below.

15-4 v1.5

Cortex-M1 Device Security

Cortex-M1-enabled devices are shipped with the following security features:

- FPGA array enabled for AES-encrypted programming and verification
- FlashROM enabled for AES-encrypted Write and Verify
- Fusion Embedded Flash Memory enabled for AES-encrypted Write

AES Encryption of Programming Files

Low-power flash devices employ AES as part of the security mechanism that prevents invasive and noninvasive attacks. The mechanism entails encrypting the programming file with AES encryption and then passing the programming file through the AES decryption core, which is embedded in the device. The file is decrypted there, and the device is successfully programmed. The AES master key is stored in on-chip nonvolatile memory (flash). The AES master key can be preloaded into parts in a secure programming environment (such as the Actel In-House Programming center), and then "blank" parts can be shipped to an untrusted programming or manufacturing center for final personalization with an AES-encrypted bitstream. Late-stage product changes or personalization can be implemented easily and securely by simply sending a STAPL file with AES-encrypted data. Secure remote field updates over public networks (such as the Internet) are possible by sending and programming a STAPL file with AES-encrypted data.

The AES key protects the programming data for file transfer into the device with 128-bit AES encryption. If AES encryption is used, the AES key is stored or preprogrammed into the device. To program, you must use an AES-encrypted file, and the encryption used on the file must match the encryption key already in the device.

The AES key is protected by a FlashLock security Pass Key that is also implemented in each device. The AES key is always protected by the FlashLock Key, and the AES-encrypted file does NOT contain the FlashLock Key. This FlashLock Pass Key technology is exclusive to the Actel flash-based device families. FlashLock Pass Key technology can also be implemented without the AES encryption option, providing a choice of different security levels.

In essence, security features can be categorized into the following three options:

- AES encryption with FlashLock Pass Key protection
- FlashLock protection only (no AES encryption)
- No protection

Each of the above options is explained in more detail in the following sections with application examples and software implementation options.

Advanced Encryption Standard

The 128-bit AES standard (FIPS-192) block cipher is the NIST (National Institute of Standards and Technology) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to protect sensitive government information well into the 21st century. It replaces the aging DES, which NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect sensitive, unclassified information. The 128-bit AES standard has 3.4×10^{38} possible 128-bit key variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text using exhaustive techniques. Keys are stored (securely) in low-power flash devices in nonvolatile flash memory. All programming files sent to the device can be authenticated by the part prior to programming to ensure that bad programming data is not loaded into the part that may possibly damage it. All programming verification is performed on-chip, ensuring that the contents of low-power flash devices remain secure.

Actel has implemented the 128-bit AES (Rijndael) algorithm in low-power flash devices. With this key size, there are approximately 3.4×10^{38} possible 128-bit keys. DES has a 56-bit key size, which provides approximately 7.2×10^{16} possible keys. In their AES fact sheet, the National Institute of Standards and Technology uses the following hypothetical example to illustrate the theoretical security provided by AES. If one were to assume that a computing system existed that could recover a DES key in a second, it would take that same machine approximately 149 trillion years to crack a 128-bit AES key. NIST continues to make their point by stating the universe is believed to be less than 20 billion years old. 1

v1.5 15-5

The AES key is securely stored on-chip in dedicated low-power flash device flash memory and cannot be read out. In the first step, the AES key is generated and programmed into the device (for example, at a secure or trusted programming site). The Actel Designer software tool provides AES key generation capability. After the key has been programmed into the device, the device will only correctly decrypt programming files that have been encrypted with the same key. If the individual programming file content is incorrect, a Message Authentication Control (MAC) mechanism inside the device will fail in authenticating the programming file. In other words, when an encrypted programming file is being loaded into a device that has a different programmed AES key, the MAC will prevent this incorrect data from being loaded, preventing possible device damage. See Figure 15-3 on page 15-4 and Figure 15-4 on page 15-7 for graphical representations of this process.

It is important to note that the user decides what level of protection will be implemented for the device. When AES protection is desired, the FlashLock Pass Key must be set. The AES key is a content protection mechanism, whereas the FlashLock Pass Key is a device protection mechanism. When the AES key is programmed into the device, the device still needs the Pass Key to protect the FPGA and FlashROM contents and the security settings, including the AES key. Using the FlashLock Pass Key prevents modification of the design contents by means of simply programming the device with a different AES key.

AES Decryption and MAC Authentication

Low-power flash devices have a built-in 128-bit AES decryption core, which decrypts the encrypted programming file and performs a MAC check that authenticates the file prior to programming.

MAC authenticates the entire programming data stream. After AES decryption, the MAC checks the data to make sure it is valid programming data for the device. This can be done while the device is still operating. If the MAC validates the file, the device will be erased and programmed. If the MAC fails to validate, then the device will continue to operate uninterrupted.

This will ensure the following:

- Correct decryption of the encrypted programming file
- Prevention of erroneous or corrupted data being programmed during the programming file transfer
- Correct bitstream passed to the device for decryption

15-6 v1.5

I. National Institute of Standards and Technology, "ADVANCED ENCRYPTION STANDARD (AES) Questions and Answers," 28 January 2002 (10 January 2005). See http://csrc.nist.gov/archive/aes/index1.html for more information.

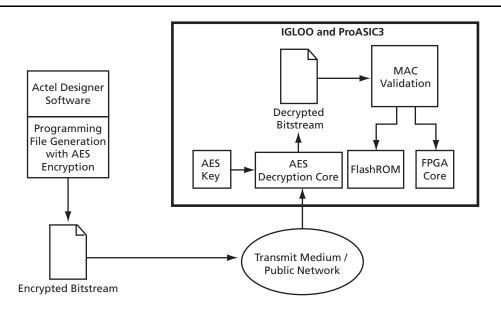


Figure 15-4 • Example Application Scenario Using AES in IGLOO and ProASIC3 Devices

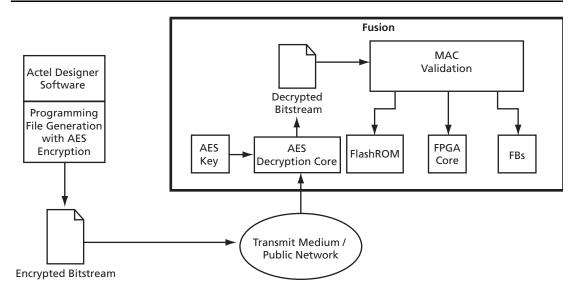


Figure 15-5 • Example Application Scenario Using AES in Fusion Devices

FlashLock

Additional Options for IGLOO and ProASIC3 Devices

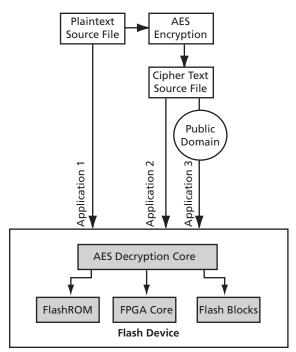
The user also has the option of prohibiting Write operations to the FPGA array but allowing Verify operations on the FPGA array and/or Read operations on the FlashROM without the use of the FlashLock Pass Key. This option provides the user the freedom of verifying the FPGA array and/or reading the FlashROM contents after the device is programmed, without having to provide the FlashLock Pass Key. The user can incorporate AES encryption on the programming files to better enhance the level of security used.

v1.5 15-7

Permanent Security Setting Options

In applications where a permanent lock is not desired, yet the security settings should not be modifiable, IGLOO and ProASIC3 devices can accommodate this requirement.

This application is particularly useful in cases where a device is located at a remote location and must be reprogrammed with a design or data update. Refer to the "Application 3: Nontrusted Environment—Field Updates/Upgrades" section on page 15-10 for further discussion and examples of how this can be achieved.


The user must be careful when considering the Permanent FlashLock or Permanent Security Settings option. Once the design is programmed with the permanent settings, it is not possible to reconfigure the security settings already employed on the device. Therefore, exercise careful consideration before programming permanent settings.

Permanent FlashLock

The purpose of the permanent lock feature is to provide the benefits of the highest level of security to IGLOO and ProASIC3 devices. If selected, the permanent FlashLock feature will create a permanent barrier, preventing any access to the contents of the device. This is achieved by permanently disabling Write and Verify access to the array, and Write and Read access to the FlashROM. After permanently locking the device, it has been effectively rendered one-time-programmable. This feature is useful if the intended applications do not require design or system updates to the device.

Security in Action

This section illustrates some applications of the security advantages of Actel's devices (Figure 15-6).

Note: Flash blocks are only used in Fusion devices.

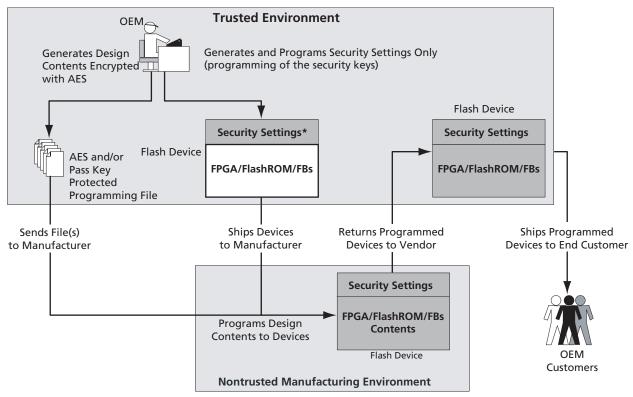
Figure 15-6 • Security Options

15-8 v1.5

Application 1: Trusted Environment

As illustrated in Figure 15-7 on page 15-10, this application allows the programming of devices at design locations where research and development take place. Therefore, encryption is not necessary and is optional to the user. This is often a secure way to protect the design, since the design program files are not sent elsewhere. In situations where production programming is not available at the design location, programming centers (such as Actel In-House Programming) provide a way of programming designs at an alternative, secure, and trusted location. In this scenario, the user generates a STAPL programming file from the Designer software in plaintext format, containing information on the entire design or the portion of the design to be programmed. The user can choose to employ the FlashLock Pass Key feature with the design. Once the design is programmed to unprogrammed devices, the design is protected by this FlashLock Pass Key. If no future programming is needed, the user can consider permanently securing the IGLOO and ProASIC3 device, as discussed in the "Permanent FlashLock" section on page 15-8.

Application 2: Nontrusted Environment—Unsecured Location


Often, programming of devices is not performed in the same location as actual design implementation, to reduce manufacturing cost. Overseas programming centers and contract manufacturers are examples of this scenario.

To achieve security in this case, the AES key and the FlashLock Pass Key can be initially programmed in-house (trusted environment). This is done by generating a programming file with only the security settings and no design contents. The design FPGA core, FlashROM, and (for Fusion) FB contents are generated in a separate programming file. This programming file must be set with the same AES key that was used to program to the device previously so the device will correctly decrypt this encrypted programming file. As a result, the encrypted design content programming file can

v1.5 15-9

be safely sent off-site to nontrusted programming locations for design programming. Figure 15-7 shows a more detailed flow for this application.

Notes:

- 1. Programmed portion indicated with dark gray.
- 2. Programming of FBs applies to Fusion only.

Figure 15-7 • Application 2: Device Programming in a Nontrusted Environment

Application 3: Nontrusted Environment—Field Updates/Upgrades

Programming or reprogramming of devices may occur at remote locations. Reconfiguration of devices in consumer products/equipment through public networks is one example. Typically, the remote system is already programmed with particular design contents. When design update (FPGA array contents update) and/or data upgrade (FlashROM and/or FB contents upgrade) is necessary, an updated programming file with AES encryption can be generated, sent across public networks, and transmitted to the remote system. Reprogramming can then be done using this AES-encrypted programming file, providing easy and secure field upgrades. Low-power flash devices support this secure ISP using AES. The detailed flow for this application is shown in Figure 15-8 on page 15-11. Refer to *Microprocessor Programming of Actel's Low-Power Flash Devices* for more information.

To prepare devices for this scenario, the user can initially generate a programming file with the available security setting options. This programming file is programmed into the devices before shipment. During the programming file generation step, the user has the option of making the security settings permanent or not. In situations where no changes to the security settings are necessary, the user can select this feature in the software to generate the programming file with permanent security settings. Actel recommends that the programming file use encryption with an AES key, especially when ISP is done via public domain.

For example, if the designer wants to use an AES key for the FPGA array and the FlashROM, **Permanent** needs to be chosen for this setting. At first, the user chooses the options to use an AES key for the FPGA array and the FlashROM, and then chooses **Permanently lock the security settings**. A unique AES key is chosen. Once this programming file is generated and programmed to

15-10 v1.5

the devices, the AES key is permanently stored in the on-chip memory, where it is secured safely. The devices are sent to distant locations for the intended application. When an update is needed, a new programming file must be generated. The programming file must use the same AES key for encryption; otherwise, the authentication will fail and the file will not be programmed in the device.

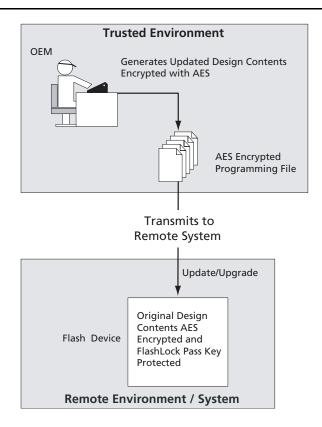
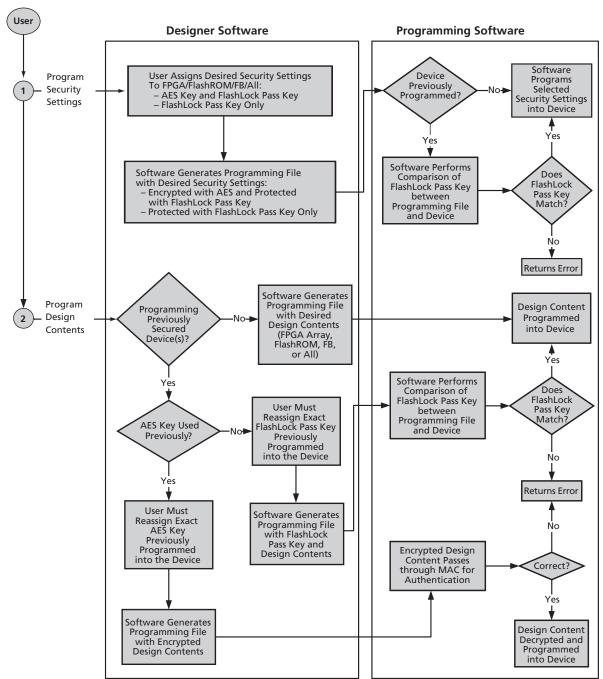


Figure 15-8 • Application 3: Nontrusted Environment—Field Updates/Upgrades

FlashROM Security Use Models

Each of the subsequent sections describes in detail the available selections in Actel Designer as an aid to understanding security applications and generating appropriate programming files for those applications. Before proceeding, it is helpful to review Figure 15-7 on page 15-10, which gives a general overview of the programming file generation flow within the Designer software as well as what occurs during the device programming stage. Specific settings are discussed in the following sections.

In Figure 15-7 on page 15-10, the flow consists of two sub-flows. Sub-flow 1 describes programming security settings to the device only, and sub-flow 2 describes programming the design contents only.


In Application 1, described in the "Application 1: Trusted Environment" section on page 15-9, the user does not need to generate separate files but can generate one programming file containing both security settings and design contents. Then programming of the security settings and design contents is done in one step. Both sub-flow 1 and sub-flow 2 are used.

In Application 2, described in the "Application 2: Nontrusted Environment—Unsecured Location" section on page 15-9, the trusted site should follow sub-flows 1 and 2 separately to generate two separate programming files. The programming file from sub-flow 1 will be used at the trusted site to program the device(s) first. The programming file from sub-flow 2 will be sent off-site for production programming.

v1.5 15-11

In Application 3, described in the "Application 3: Nontrusted Environment—Field Updates/Upgrades" section on page 15-10, typically only sub-flow 2 will be used, because only updates to the design content portion are needed and no security settings need to be changed. In the event that update of the security settings is necessary, see the "Reprogramming Devices" section on page 15-21 for details. For more information on programming low-power flash devices, refer to *In-System Programming (ISP)* of Actel's Low-Power Flash Devices Using FlashPro3.

Note: If programming the Security Header only, just perform sub-flow 1.
If programming design content only, just perform sub-flow 2.

Figure 15-9 • Security Programming Flows

15-12 v1.5

Generating Programming Files

Generation of the Programming File in a Trusted Environment— Application 1

As discussed in the "Application 1: Trusted Environment" section on page 15-9, in a trusted environment, the user can choose to program the device with plaintext bitstream content. It is possible to use plaintext for programming even when the FlashLock Pass Key option has been selected. In this application, it is not necessary to employ AES encryption protection. For AES encryption settings, refer to the next sections.

The generated programming file will include the security setting (if selected) and the plaintext programming file content for the FPGA array, FlashROM, and/or FBs. These options are indicated in Table 15-2 and Table 15-3.

Table 15-2 • IGLOO and ProASIC3 Plaintext Security Options, No AES

Security Protection	FlashROM Only	FPGA Core Only	Both FlashROM and FPGA
No AES / no FlashLock	✓	✓	✓
FlashLock only	✓	✓	✓
AES and FlashLock	-	-	-

Table 15-3 • Fusion Plaintext Security Options

Security Protection	FlashROM Only	FPGA Core Only	FB Core Only	All
No AES / no FlashLock	✓	✓	✓	✓
FlashLock	✓	✓	✓	✓
AES and FlashLock	_	_	_	_

Note: For all instructions, the programming of Flash Blocks refers to Fusion only.

For this scenario, generate the programming file as follows:

1. Select the Silicon features to be programmed (Security Settings, FPGA Array, FlashROM, Flash Memory Blocks), as shown in Figure 15-10 on page 15-14 and Figure 15-11 on page 15-14. Click Next.

If **Security Settings** is selected (i.e., the FlashLock security Pass Key feature), an additional dialog will be displayed to prompt you to select the security level setting. If no security setting is selected, you will be directed to Step 3.

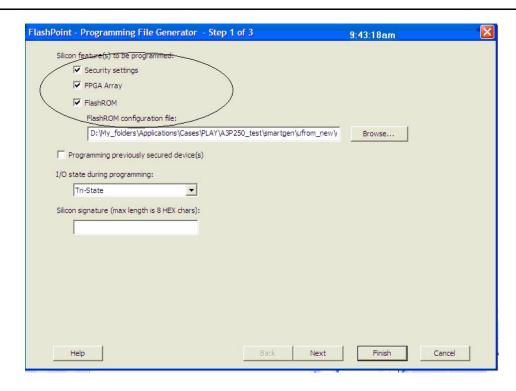


Figure 15-10 • All Silicon Features Selected for IGLOO and ProASIC3 Devices

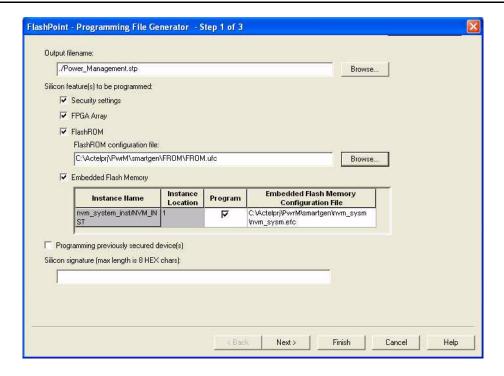


Figure 15-11 • All Silicon Features Selected for Fusion

15-14 v1.5

- 2. Choose the appropriate security level setting and enter a FlashLock Pass Key. The default is the **Medium** security level (Figure 15-12). Click **Next**.
 - If you want to select different options for the FPGA and/or FlashROM, this can be set by clicking **Custom Level**. Refer to the "Advanced Options" section on page 15-22 for different custom security level options and descriptions of each.

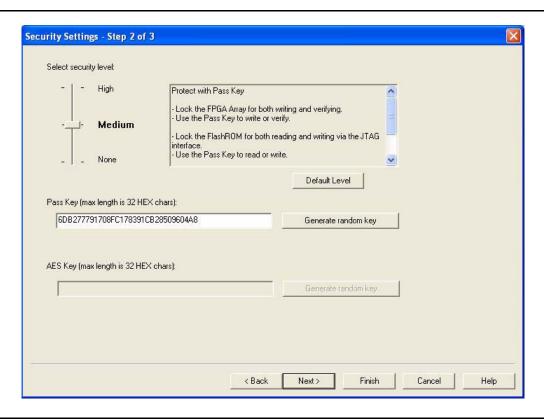


Figure 15-12 • Medium Security Level Selected for Low-Power Flash Devices

3. Choose the desired settings for the FlashROM configurations to be programmed (Figure 15-13). Click **Finish** to generate the STAPL programming file for the design.

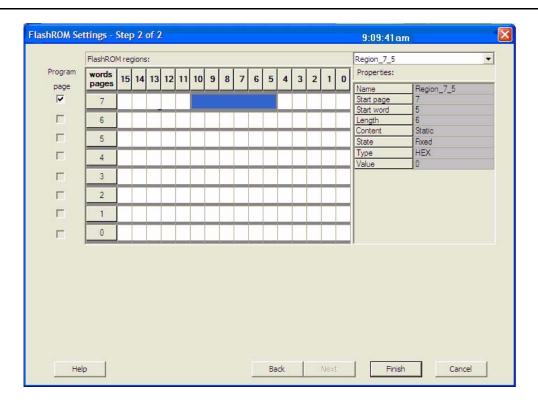


Figure 15-13 • FlashROM Configuration Settings for Low-Power Flash Devices

Generation of Security Header Programming File Only— Application 2

As mentioned in the "Application 2: Nontrusted Environment—Unsecured Location" section on page 15-9, the designer may employ FlashLock Pass Key protection or FlashLock Pass Key with AES encryption on the device before sending it to a nontrusted or unsecured location for device programming. To achieve this, the user needs to generate a programming file containing only the security settings desired (Security Header programming file).

Note: If AES encryption is configured, FlashLock Pass Key protection must also be configured.

The available security options are indicated in Table 15-4 and Table 15-5 on page 15-17.

Table 15-4 • FlashLock Security Options for IGLOO and ProASIC3

Security Option	FlashROM Only	FPGA Core Only	Both FlashROM and FPGA
No AES / no FlashLock	-	-	-
FlashLock only	✓	✓	✓
AES and FlashLock	✓	✓	✓

15-16 v1.5

Table 15-5 • FlashLock Security Options for Fusion

Security Option	FlashROM Only	FPGA Core Only	FB Core Only	All
No AES / no FlashLock	-	_	-	_
FlashLock	✓	✓	✓	✓
AES and FlashLock	✓	✓	✓	✓

For this scenario, generate the programming file as follows:

1. Select only the **Security settings** option, as indicated in Figure 15-14 and Figure 15-15 on page 15-18. Click **Next**.

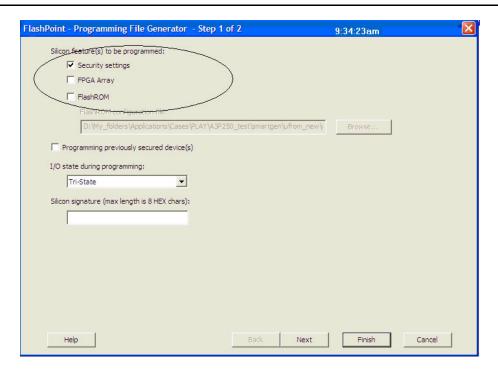


Figure 15-14 • Programming IGLOO and ProASIC3 Security Settings Only

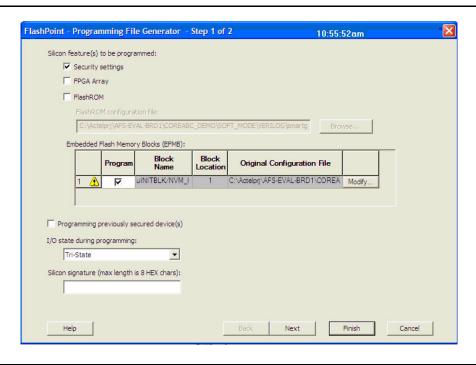


Figure 15-15 • Programming Fusion Security Settings Only

- 2. Choose the desired security level setting and enter the key(s).
 - The **High** security level employs FlashLock Pass Key with AES Key protection.
 - The **Medium** security level employs FlashLock Pass Key protection only.

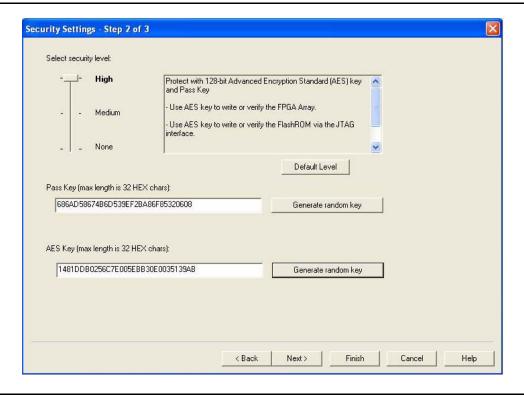


Figure 15-16 • High Security Level to Implement FlashLock Pass Key and AES Key Protection

15-18 v1.5

Table 15-6 and Table 15-7 show all available options. If you want to implement custom levels, refer to the "Advanced Options" section on page 15-22 for information on each option and how to set it.

3. When done, click **Finish** to generate the Security Header programming file.

Table 15-6 • All IGLOO and ProASIC3 Header File Security Options

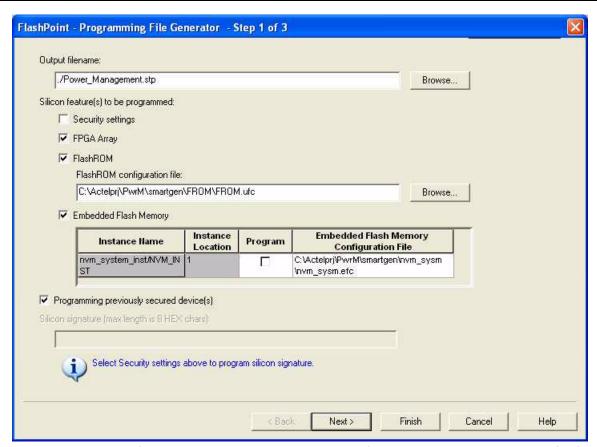
Security Option	FlashROM Only	FPGA Core Only	Both FlashROM and FPGA
No AES / no FlashLock	✓	✓	✓
FlashLock only	✓	1	✓
AES and FlashLock	✓	✓	✓

Note: ✓ = options that may be used

Table 15-7 • All Fusion Header File Security Options

Security Option	FlashROM Only	FPGA Core Only	FB Core Only	All
No AES / No FlashLock	✓	✓	✓	✓
FlashLock	✓	✓	✓	✓
AES and FlashLock	✓	√	✓	1

Generation of Programming Files with AES Encryption— Application 3


This section discusses how to generate design content programming files needed specifically at unsecured or remote locations to program devices with a Security Header (FlashLock Pass Key and AES key) already programmed ("Application 2: Nontrusted Environment—Unsecured Location" section on page 15-9 and "Application 3: Nontrusted Environment—Field Updates/Upgrades" section on page 15-10). In this case, the encrypted programming file must correspond to the AES key already programmed into the device. If AES encryption was previously selected to encrypt the FlashROM, FBs, and FPGA array, AES encryption must be set when generating the programming file for them. AES encryption can be applied to the FlashROM only, the FBs only, the FPGA array only, or all. The user must ensure both the FlashLock Pass Key and the AES key match those already programmed to the device(s), and all security settings must match what was previously programmed. Otherwise, the encryption and/or device unlocking will not be recognized when attempting to program the device with the programming file.

The generated programming file will be AES-encrypted.

In this scenario, generate the programming file as follows:

1. Deselect **Security settings** and select the portion of the device to be programmed (Figure 15-17 on page 15-20). Select **Programming previously secured device(s)**. Click **Next**.

Note: The settings in this figure are used to show the generation of an AES-encrypted programming file for the FPGA array, FlashROM, and FB contents. One or all locations may be selected for encryption.

Figure 15-17 • Settings to Program a Device Secured with FlashLock and using AES Encryption

Choose the **High** security level to reprogram devices using both the FlashLock Pass Key and AES key protection (Figure 15-18 on page 15-21). Enter the AES key and click **Next**.

A device that has already been secured with FlashLock and has an AES key loaded must recognize the AES key to program the device and generate a valid bitstream in authentication. The FlashLock Key is only required to unlock the device and change the security settings.

This is what makes it possible to program in an untrusted environment. The AES key is protected inside the device by the FlashLock Key, so you can only program if you have the correct AES key. In fact, the AES key is not in the programming file either. It is the key used to encrypt the data in the file. The same key previously programmed with the FlashLock Key matches to decrypt the file.

An AES-encrypted file programmed to a device without FlashLock would not be secure, since without FlashLock to protect the AES key, someone could simply reprogram the AES key first, then program with any AES key desired or no AES key at all. This option is therefore not available in the software.

15-20 v1.5

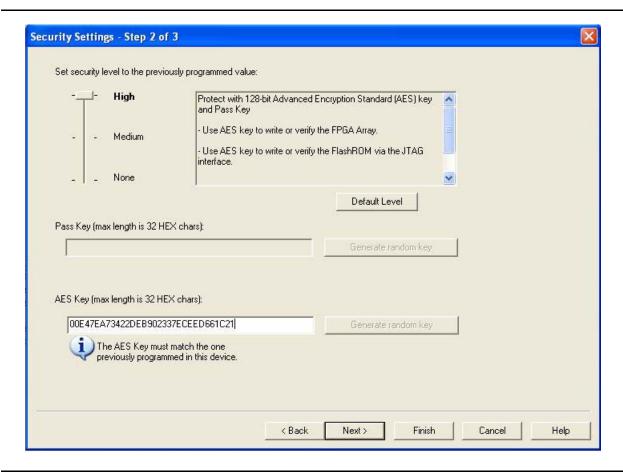


Figure 15-18 • Security Level Set High to Reprogram Device with AES Key

Programming with this file is intended for an unsecured environment. The AES key encrypts the programming file with the same AES key already used in the device and utilizes it to program the device.

Reprogramming Devices

Previously programmed devices can be reprogrammed using the steps in the "Generation of the Programming File in a Trusted Environment—Application 1" section on page 15-13 and "Generation of Security Header Programming File Only—Application 2" section on page 15-16. In the case where a FlashLock Pass Key has been programmed previously, the user must generate the new programming file with a FlashLock Pass Key that matches the one previously programmed into the device. The software will check the FlashLock Pass Key in the programming file against the FlashLock Pass Key in the device can be unlocked to perform further programming with the new programming file.

Figure 15-10 on page 15-14 and Figure 15-11 on page 15-14 show the option **Programming previously secured device(s)**, which the user should select before proceeding. Upon going to the next step, the user will be notified that the same FlashLock Pass Key needs to be entered, as shown in Figure 15-19 on page 15-22.

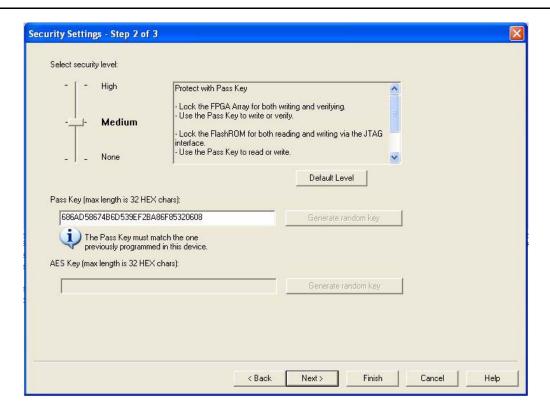


Figure 15-19 • FlashLock Pass Key, Previously Programmed Devices

It is important to note that when the security settings need to be updated, the user also needs to select the **Security settings** check box in Step 1, as shown in Figure 15-10 on page 15-14 and Figure 15-11 on page 15-14, to modify the security settings. The user must consider the following:

- If only a new AES key is necessary, the user must re-enter the same Pass Key previously programmed into the device in Designer and then generate a programming file with the same Pass Key and a different AES key. This ensures the programming file can be used to access and program the device and the new AES key.
- If a new Pass Key is necessary, the user can generate a new programming file with a new Pass Key (with the same or a new AES key if desired). However, for programming, the user must first load the original programming file with the Pass Key that was previously used to unlock the device. Then the new programming file can be used to program the new security settings.

Advanced Options

As mentioned, there may be applications where more complicated security settings are required. The "Custom Security Levels" section in the *FlashPro User's Guide* describes different advanced options available to aid the user in obtaining the best available security settings.

15-22 v1.5

Programming File Header Definition

In each STAPL programming file generated, there will be information about how the AES key and FlashLock Pass Key are configured. Table 15-8 shows the header definitions in STAPL programming files for different security levels.

Table 15-8 • STAPL Programming File Header Definitions by Security Level

Security Level	STAPL File Header Definition						
No security (no FlashLock Pass Key or AES key)	NOTE "SECURITY" "Disable";						
FlashLock Pass Key with no AES key	NOTE "SECURITY" "KEYED ";						
FlashLock Pass Key with AES key	NOTE "SECURITY" "KEYED ENCRYPT ";						
Permanent Security Settings option enabled	NOTE "SECURITY" "PERMLOCK ENCRYPT ";						
AES-encrypted FPGA array (for programming updates)	NOTE "SECURITY" "ENCRYPT CORE ";						
AES-encrypted FlashROM (for programming updates)	NOTE "SECURITY" "ENCRYPT FROM ";						
AES-encrypted FPGA array and FlashROM (for programming updates)	NOTE "SECURITY" "ENCRYPT FROM CORE ";						

Example File Headers

STAPL Files Generated with FlashLock Key and AES Key Containing Key Information

- FlashLock Key / AES key indicated in STAPL file header definition
- Intended ONLY for secured/trusted environment programming applications

```
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EDB9";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "KEYED ENCRYPT ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";
NOTE "PASS_KEY" "$00123456789012345678901234567890";
NOTE "AES_KEY" "$ABCDEFABCDEFABCDEFABCDEFABCBFAB";
______
```


STAPL File with AES Encryption

- Does not contain AES key / FlashLock Key information
- Intended for transmission through web or service to unsecured locations for programming

```
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EF57";
NOTE "CHECKSUM" "$EF57";
NOTE "SAVE_DATA" "FROMSTream";
NOTE "SECURITY" "ENCRYPT FROM CORE ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "200000000";
NOTE "SILSIG" "$00000000";
```

Conclusion

The new and enhanced security features offered in Actel Fusion, IGLOO, and ProASIC3 devices provide state-of-the-art security to designs programmed into these flash-based devices. Actel low-power flash devices employ the encryption standard used by NIST and the U.S. government—AES using the 128-bit Rijndael algorithm.

The combination of an on-chip AES decryption engine and Actel FlashLock technology provides the highest level of security against invasive attacks and design theft, implementing the most robust and secure ISP solution. These security features protect IP within the FPGA and protect the system from cloning, wholesale "black box" copying of a design, invasive attacks, and explicit IP or data theft.

Glossary

Term	Explanation					
Security Header programming file	Programming file used to program the FlashLock Pass Key and/or AES key into the device to secure the FPGA, FlashROM, and/or FBs.					
AES (encryption) key	128-bit key defined by the user when the AES encryption option is set in the Actel Designer software when generating the programming file.					
FlashLock Pass Key	128-bit key defined by the user when the FlashLock option is set in the Actel Designer software when generating the programming file.					
	The FlashLock Key protects the security settings programmed to the device. Once a device is programmed with FlashLock, whatever settings were chosen at that time are secure.					
FlashLock	The combined security features that protect the device content from attacks. These features are the following:					
	• Flash technology that does not require an external bitstream to program the device					
	 FlashLock Pass Key that secures device content by locking the security settings and preventing access to the device as defined by the user 					
	AES key that allows secure, encrypted device reprogrammability					

15-24 v1.5

References

National Institute of Standards and Technology. "ADVANCED ENCRYPTION STANDARD (AES) Questions and Answers." 28 January 2002 (10 January 2005).

See http://csrc.nist.gov/archive/aes/index1.html for more information.

Related Documents

Handbook Documents

FlashROM in Actel's Low-Power Flash Devices

http://www.actel.com/documents/LPD_FlashROM_HBs.pdf

Programming ProASIC3/E Using a Microprocessor

http://www.actel.com/documents/LPD_Microprocessor_HBs.pdf

In-System Programming (ISP) of Actel's Low-Power Flash Devices Using FlashPro3

http://www.actel.com/documents/LPD_ISP_HBs.pdf

Fusion Embedded Flash Memory Blocks

http://www.actel.com/documents/Fusion_Flash_HBs.pdf

User's Guides

FlashPro User's Guide

http://www.actel.com/documents/flashpro_ug.pdf

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet, combined with content previously published as an application note describing features and functions of the device. To improve usability for customers, the device architecture information has now been combined with usage information, to reduce duplication and possible inconsistencies in published information. No technical changes were made to the datasheet content unless explicitly listed. Changes to the application note content were made only to be consistent with existing datasheet information.

Part Number 51700094-014-5 Revised August 2009

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.5)	Page
v1.4 (December 2008)	The "CoreMP7 Device Security" section was removed from "Security in ARM-Enabled Low-Power Flash Devices", since M7-enabled devices are no longer supported.	15-4
v1.3 (October 2008)	IGLOO nano and ProASIC3 nano devices were added to Table 15-1 \cdot Flash-Based FPGAs.	15-2
v1.2 (June 2008)	The "Security Support in Flash-Based Devices" section was revised to include new families and make the information more concise.	15-2
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 15-1 · Flash-Based FPGAs: • ProASIC3L was updated to include 1.5 V. • The number of PLLs for ProASIC3E was changed from five to six.	15-2
v1.0 (January 2008)	The chapter was updated to include the IGLOO PLUS family and information regarding 15 k gate devices.	N/A
	The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new.	15-2

15-26 v1.5

16 – In-System Programming (ISP) of Actel's Low-Power Flash Devices Using FlashPro3

Introduction

Actel's low-power flash devices are all in-system programmable. This document describes the general requirements for programming a device and specific requirements for the FlashPro3 programmer.

Fusion, IGLOO,[®] and ProASIC[®]3 devices offer a low-power, single-chip, live-at-power-up solution with the ASIC advantages of security and low unit cost through nonvolatile flash technology. Each device contains 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications such as Internet Protocol (IP) addressing, user system preference storage, device serialization, or subscription-based business models. Fusion, IGLOO, and ProASIC3 devices offer the best in-system programming (ISP) solution, FlashLock[®] security features, and AES-decryption-based ISP.

ISP Architecture

Low-power flash devices support ISP via JTAG and require a single V_{PUMP} voltage of 3.3 V during programming. In addition, programming via a microcontroller in a target system is also supported.

Refer to Microprocessor Programming of Actel's Low-Power Flash Devices.

Family-specific support:

- Fusion, ProASIC3, and ProASIC3E devices support ISP.
- ProASIC3L devices operate using a 1.2 V core voltage and support ISP at 1.5 V only. Voltage switching is required in-system to switch from a 1.2 V core to 1.5 V core for programming.
- IGLOO and IGLOOe V5 devices can be programmed in-system when the device is using a 1.5 V supply voltage to the FPGA core.
- All IGLOO V2 and ProASIC3L devices can be operated at any voltage between 1.2 V and 1.5 V.
 Designer software allows 50 mV increments in the voltage. Although devices can operate at
 1.2 V core voltage, a device can only be reprogrammed when the core voltage is 1.5 V.
 Voltage switching is required in-system to switch from a 1.2 V supply (V_{CC}, V_{CCI}, and V_{JTAG})
 to 1.5 V for programming.

IGLOO devices cannot be programmed in-system when the device is in Flash*Freeze mode. The device should exit Flash*Freeze mode and be in normal operation for programming to start. Programming operations in IGLOO devices can be achieved when the device is in normal operating mode and a 1.5 V core voltage is used.

JTAG 1532

Fusion, IGLOO, and ProASIC3 devices support the JTAG-based IEEE 1532 standard for ISP. To start JTAG operations, the IGLOO device should exit Flash*Freeze mode and be in normal operation before starting to send JTAG commands to the device. As part of this support, when a device is in an unprogrammed state, all user I/O pins are disabled. This is achieved by keeping the global IO_EN signal deactivated, which also has the effect of disabling the input buffers. The SAMPLE/PRELOAD instruction captures the status of pads in parallel and shifts them out as new data is shifted in for loading into the Boundary Scan Register (BSR). When the device is in an unprogrammed state, the SAMPLE/PRELOAD instruction has no effect on I/O status; however, it will continue to shift in new data to be loaded into the BSR. Therefore, when SAMPLE/PRELOAD is used on an unprogrammed device, the BSR will be loaded with undefined data. For JTAG timing information on setup, hold, and fall times, refer to the FlashPro User's Guide.

ISP Support in Flash-Based Devices

The flash FPGAs listed in Table 16-1 support the ISP feature and the functions described in this document.

Table 16-1 • Flash-Based FPGAs

Series	Family*	Description					
IGLOO	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology					
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards					
	IGLOO nano	The industry's lowest-power, smallest-size solution					
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities					
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs					
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards					
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities					
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology					
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L					
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L					
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications					
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex™-M1 soft processors, and flash memory into a monolithic device					

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 16-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 16-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

16-2 v1.5

Programming Voltage (V_{PUMP}) and V_{JTAG}

Low-power flash devices support on-chip charge pumps, and therefore require only a single 3.3 V programming voltage for the V_{PUMP} pin during programming. When the device is not being programmed, the V_{PUMP} pin can be left floating or can be tied (pulled up) to any voltage between 0 V and 3.6 V. During programming, the target board or the FlashPro3 programmer can provide V_{PUMP} . FlashPro3 is capable of supplying V_{PUMP} to a single device. If more than one device is to be programmed using FlashPro3 on a given board, FlashPro3 should not be relied on to supply the V_{PUMP} voltage.

Low-power flash device I/Os support a bank-based, voltage-supply architecture that simultaneously supports multiple I/O voltage standards (Table 16-2 on page 16-3). By isolating the JTAG power supply in a separate bank from the user I/Os, low-power flash devices provide greater flexibility with supply selection and simplify power supply and printed circuit board (PCB) design. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Actel recommends that TCK be tied to GND or V_{JTAG} when not used. This prevents a possible totempole current on the input buffer stage. For TDI, TMS, and TRST pins, the devices provide an internal nominal 10 k Ω pull-up resistor. During programming, all I/O pins, except for JTAG interface pins, are tristated and weakly pulled up to V_{CCI} . This isolates the part and prevents the signals from floating. The JTAG interface pins are driven by the FlashPro3 during programming, including the TRST pin, which is driven HIGH.

Table 16-2 • Power Supplies

Power Supply	Programming Mode	Current during Programming
V _{CC}	1.5 V	< 70 mA
V _{CCI}	1.5 V / 1.8 V / 2.5 V / 3.3 V (bank-selectable)	I/Os are weakly pulled up.
V_{JTAG}	1.5 V / 1.8 V / 2.5 V / 3.3 V	< 20 mA
V _{PUMP}	3.0 V to 3.6 V	< 80 mA

Note: All supply voltages should be at 1.5 V or higher, regardless of the setting during normal operation.

IEEE 1532 (JTAG) Interface

The supported industry-standard IEEE 1532 programming interface builds on the IEEE 1149.1 (JTAG) standard. IEEE 1532 defines the standardized process and methodology for ISP. Both silicon and software issues are addressed in IEEE 1532 to create a simplified ISP environment. Any IEEE 1532–compliant programmer can be used to program low-power flash devices. However, only limited security and FlashROM features are supported when using the IEEE 1532 standard. The Actel FlashPro3 programmer was developed exclusively for these devices and will support all the security and device serialization features. Refer to the standard for detailed information about IEEE 1532.

Security

Unlike SRAM-based FPGAs that require loading at power-up from an external source such as a microcontroller or boot PROM, Actel nonvolatile devices are live at power-up, and there is no bitstream required to load the device when power is applied. The unique flash-based architecture prevents reverse engineering of the programmed code on the device, because the programmed data is stored in nonvolatile memory cells. Each nonvolatile memory cell is made up of small capacitors and any physical deconstruction of the device will disrupt stored electrical charges.

Each low-power flash device has a built-in 128-bit Advanced Encryption Standard (AES) decryption core, except for the 30 k gate devices and smaller. Any FPGA core or FlashROM content loaded into the device can optionally be sent as encrypted bitstream and decrypted as it is loaded. This is

v1.5 16-3

particularly suitable for applications where device updates must be transmitted over an unsecured network such as the Internet. The embedded AES decryption core can prevent sensitive data from being intercepted (Figure 16-1 on page 16-4). A single 128-bit AES Key (32 hex characters) is used to encrypt FPGA core programming data and/or FlashROM programming data in the Actel tools. The low-power flash devices also decrypt with a single 128-bit AES Key. In addition, low-power flash devices support a Message Authentication Code (MAC) for authentication of the encrypted bitstream on-chip. This allows the encrypted bitstream to be authenticated and prevents erroneous data from being programmed into the device. The FPGA core, FlashROM, and Flash Memory Blocks (FBs), in Fusion only, can be updated independently using a programming file that is AES-encrypted (cipher text) or uses plain text.

Security in ARM-Enabled Low-Power Flash Devices

There are slight differences between the regular flash device and the ARM®-enabled flash devices, which have the M1 and M7 prefix.

The AES key is used by Actel and preprogrammed into the device to protect the ARM IP. As a result, the design will be encrypted along with the ARM IP, according to the details below.

Cortex-M1 Device Security

Cortex-M1-enabled devices are shipped with the following security features:

- FPGA array enabled for AES-encrypted programming and verification
- FlashROM enabled for AES-encrypted write and verify
- Fusion Embedded Flash Memory enabled for AES encrypted write

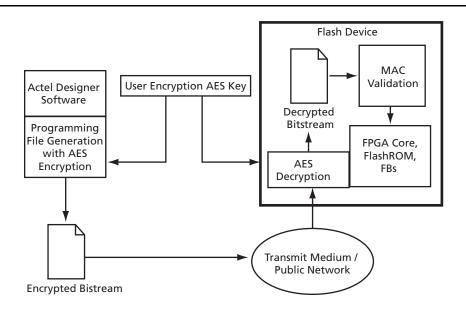


Figure 16-1 • AES-128 Security Features

16-4 v1.5

Figure 16-2 shows different applications for ISP programming.

- 1. In a trusted programming environment, you can program the device using the unencrypted (plaintext) programming file.
- 2. You can program the AES Key in a trusted programming environment and finish the final programming in an untrusted environment using the AES-encrypted (cipher text) programming file.
- 3. For the remote ISP updating/reprogramming, the AES Key stored in the device enables the encrypted programming bitstream to be transmitted through the untrusted network connection.

Actel low-power flash devices also provide the unique Actel FlashLock feature, which protects the Pass Key and AES Key. Unless the original FlashLock Pass Key is used to unlock the device, security settings cannot be modified. Low-power flash devices do not support read-back of FPGA core-programmed data; however, the FlashROM contents can selectively be read back (or disabled) via the JTAG port based on the security settings established by the Actel Designer software. Refer to Security in Low-Power Flash Devices for more information.

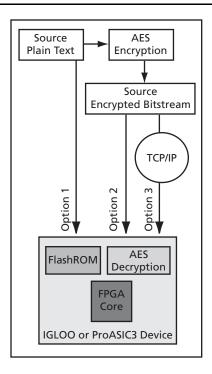


Figure 16-2 • Different ISP Use Models

v1.5 16-5

FlashROM and Programming Files

Each low-power flash device has 1 kbit of on-chip, nonvolatile flash memory that can be accessed from the FPGA core. This nonvolatile FlashROM is arranged in eight pages of 128 bits (Figure 16-3). Each page can be programmed independently, with or without the 128-bit AES encryption. The FlashROM can only be programmed via the IEEE 1532 JTAG port and cannot be programmed from the FPGA core. In addition, during programming of the FlashROM, the FPGA core is powered down automatically by the on-chip programming control logic.

			Byte Number in Page														
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	7																
<u>-</u>	6																
Number	5																
<u> </u>	4																
2	3																
Pag	2																
Δ.	1																
	0																

Figure 16-3 • FlashROM Architecture

Using FlashROM combined with AES, many subscription-based applications or device serialization applications are possible. SmartGen supports easy management of the FlashROM contents even over large numbers of devices. SmartGen can support FlashROM contents that contain the following:

- Static values
- Random numbers
- Values read from a file
- Independent updates of each page

In addition, auto-incrementing of fields is possible. In applications where the FlashROM content is different for each device, you have the option to generate a single STAPL file for all the devices or individual serialization files for each device. For more information on how to generate the FlashROM content for device serialization, refer to FlashROM in Actel's Low-Power Flash Devices.

Actel Libero[®] Integrated Designed Environment (IDE) includes a unique tool to support the generation and management of FlashROM and FPGA programming files. This tool is called FlashPoint.

Depending on the applications, designers can use the FlashPoint software to generate a STAPL file with different contents. In each case, optional AES encryption and/or different security settings can be set.

In Designer, when you click the Programming File icon, FlashPoint launches, and you can generate STAPL file(s) with four different cases (Figure 16-4 on page 16-7). When the serialization feature is used during the configuration of FlashROM in SmartGen, you can generate a single STAPL file that will program all the devices or an individual STAPL file for each device.

The following cases present the FPGA core and FlashROM programming file combinations that can be used for different applications. In each case, you can set the optional security settings (FlashLock Pass Key and/or AES Key) depending on the application.

- 1. A single STAPL file or multiple STAPL files with multiple FlashROM contents and the FPGA core content. A single STAPL file will be generated if the device serialization feature is not used. You can program the whole FlashROM or selectively program individual pages.
- 2. A single STAPL file for the FPGA core content

- 3. A single STAPL file or multiple STAPL files with multiple FlashROM contents. A single STAPL file will be generated if the device serialization feature is not used. You can program the whole FlashROM or selectively program individual pages.
- 4. A single STAPL file to configure the security settings for the device, such as the AES Key and/or Pass Key.

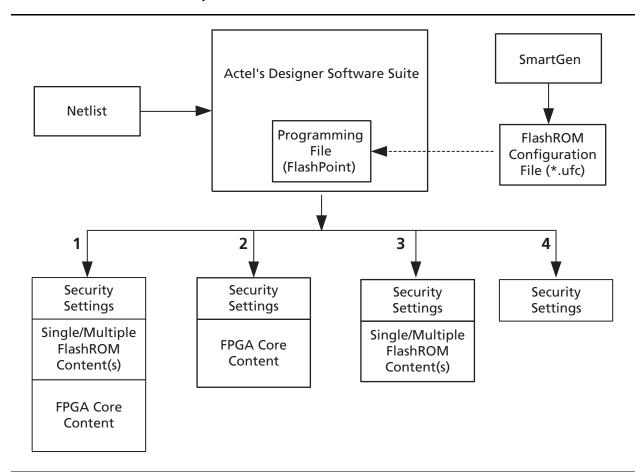


Figure 16-4 • Flexible Programming File Generation for Different Applications

Programming Solution

For device programming, any IEEE 1532–compliant programmer can be used; however, the FlashPro3 programmer must be used to control the low-power flash device's rich security features and FlashROM programming options. The FlashPro3 programmer is a low-cost portable programmer for the Actel flash families. It can also be used with a powered USB hub for parallel programming. General specifications for the FlashPro3 programmer are as follows:

- Programming clock TCK is used with a maximum frequency of 20 MHz, and the default frequency is 4 MHz.
- Programming file STAPL
- Daisy chain Supported. You can use the ChainBuilder software to build the programming file for the chain.
- Parallel programming Supported. Multiple FlashPro3 programmers can be connected together using a powered USB hub or through the multiple USB ports on the PC.
- Power supply The target board must provide V_{CC}, V_{CCI}, V_{PUMP} and V_{JTAG} during programming. However, if there is only one device on the target board, the FlashPro3 programmer can generate the required V_{PUMP} voltage from the USB port.

v1.5 16-7

ISP Programming Header Information

The FlashPro3 programming cable connector can be connected with a 10-pin, 0.1"-pitch programming header. The recommended programming headers are manufactured by AMP (103310-1) and 3M (2510-6002UB). If you have limited board space, you can use a compact programming header manufactured by Samtec (FTSH-105-01-L-D-K). Using this compact programming header, you are required to order an additional header adapter manufactured by Actel (FP3-26PIN-ADAPTER).

Existing ProASICPLUS family customers who are using the Samtec Small Programming Header (FTSH-113-01-L-D-K) and are planning to migrate to IGLOO or ProASIC3 devices can order a separate adapter kit from Actel (FP3-10PIN-ADAPTER-KIT), which contains a compact 10-pin adapter kit as well as 26-pin migration capability.

Tab	le 16-3 •	Programming	Heade	r Ord	lering Codes	
-----	-----------	-------------	-------	-------	--------------	--

Manufacturer	Part Number	Description
AMP	103310-1	10-pin, 0.1"-pitch cable header (right-angle PCB mount angle)
3M	2510-6002UB	10-pin, 0.1"-pitch cable header (straight PCB mount angle)
Samtec	FTSH-113-01-L-D-K	Small programming header supported by FlashPro and Silicon Sculptor
Samtec	FTSH-105-01-L-D-K	Compact programming header
Samtec	FFSD-05-D-06.00-01-N	10-pin cable with 50 mil pitch sockets; included in FP3-10PIN-ADAPTER-KIT.
Actel	FP3-10PIN-ADAPTER-KIT	Compact header and migration kit

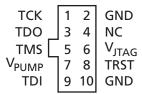


Figure 16-5 • Programming Header (top view)

Table 16-4 • Programming Header Pin Numbers and Description

Pin	Signal	Source	Description
1	TCK	Programmer	JTAG Clock
2	GND ¹	-	Signal Reference
3	TDO	Target Board	Test Data Output
4	NC	-	No Connect
5	TMS	Programmer	Test Mode Select
6	V_{JTAG}	Target Board	JTAG Supply Voltage
7	V_{PUMP}^2	Programmer/Target Board	Programming Supply Voltage
8	nTRST	Programmer	JTAG Test Reset (Hi-Z with 10 $k\Omega$ pull-down, HIGH, LOW, or toggling)
9	TDI	Programmer	Test Data Input
10	GND ¹	_	Signal Reference

Notes:

- 1. Both GND pins must be connected.
- 2. FlashPro3 can provide V_{PUMP} if there is only one device on the target board.

16-8 v1.5

Board-Level Considerations

A bypass capacitor is required from V_{PUMP} to GND for all low-power flash devices during programming. This bypass capacitor protects the devices from voltage spikes that may occur on the V_{PUMP} supplies during the erase and programming cycles. Refer to *Pin Descriptions* for specific recommendations. For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across V_{PUMP} and GND, and positioned as close to the FPGA pins as possible. The bypass capacitor must be placed within 2.5 cm of the device pins.

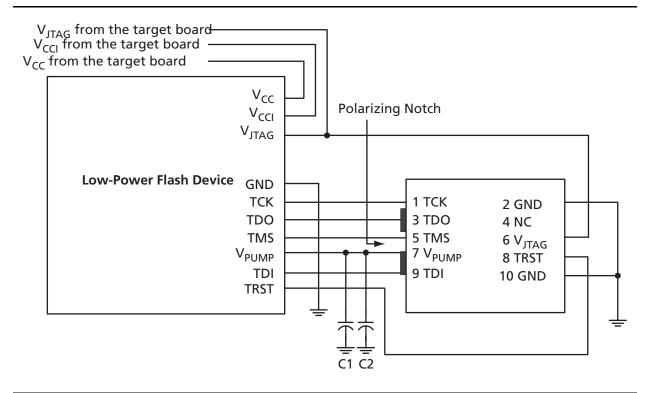


Figure 16-6 • Board Layout and Programming Header Top View

Troubleshooting Signal Integrity

Symptoms of a Signal Integrity Problem

A signal integrity problem can manifest itself in many ways. The problem may show up as extra or dropped bits during serial communication, changing the meaning of the communication. There is a normal variation of threshold voltage and frequency response between parts even from the same lot. Because of this, the effects of signal integrity may not always affect different devices on the same board in the same way. Sometimes, replacing a device appears to make signal integrity problems go away, but this is just masking the problem. Different parts on identical boards will exhibit the same problem sooner or later. It is important to fix signal integrity problems early. Unless the signal integrity problems are severe enough to completely block all communication between the device and the programmer, they may show up as subtle problems. Some of the FlashPro3 exit codes that are caused by signal integrity problems are listed below. Signal integrity problems are not the only possible cause of these errors, but this list is intended to show where problems can occur. FlashPro3 allows TCK to be lowered from 24 MHz down to 1 MHz to allow you to address some signal integrity problems that may occur with impedance mismatching at higher frequencies.

Chain Integrity Test Error or Analyze Chain Failure

Normally, the FlashPro3 Analyze Chain command expects to see 0x2 on the TDO pin. If the command reports reading 0x0 or 0x3, it is seeing the TDO pin stuck at 0 or 1. The only time the TDO

v1.5 16-9

pin comes out of tristate is when the JTAG TAP state machine is in the Shift-IR or Shift-DR state. If noise or reflections on the TCK or TMS lines have disrupted the correct state transitions, the device's TAP state controller might not be in one of these two states when the programmer tries to read the device. When this happens, the output is floating when it is read and does not match the expected data value. This can also be caused by a broken TDO net. Only a small amount of data is read from the device during the Analyze Chain command, so marginal problems may not always show up during this command.

Exit 11

This error occurs during the verify stage of programming a device. After programming the design into the device, the device is verified to ensure it is programmed correctly. The verification is done by shifting the programming data into the device. An internal comparison is performed within the device to verify that all switches are programmed correctly. Noise induced by poor signal integrity can disrupt the writes and reads or the verification process and produce a verification error. While technically a verification error, the root cause is often related to signal integrity.

Refer to the *FlashPro User's Guide* for other error messages and solutions. For the most up-to-date known issues and solutions, refer to http://www.actel.com/support.

Conclusion

Fusion, IGLOO, and ProASIC3 devices offer a low-cost, single-chip solution that is live at power-up through nonvolatile flash technology. The FlashLock Pass Key and 128-bit AES Key security features enable secure ISP in an untrusted environment. On-chip FlashROM enables a host of new applications, including device serialization, subscription-based applications, and IP addressing. Additionally, as the FlashROM is nonvolatile, all of these services can be provided without battery backup.

Related Documents

Handbook Documents

Microprocessor Programming of Actel's Low-Power Flash Devices

http://www.actel.com/documents/LPD Microprocessor HBs.pdf

Security in Low-Power Flash Devices

http://www.actel.com/LPD_Security_HBs.pdf

FlashROM in Actel's Low-Power Flash Devices

http://www.actel.com/documents/LPD_FlashROM_HBs.pdf

Pin Descriptions

http://www.actel.com/documents/LPD_PinDescriptions_HBs.pdf

User's Guides

FlashPro User's Guide

http://www.actel.com/documents/flashpro_ug.pdf

16-10 v1.5

Part Number and Revision Date

This document was previously published as an application note describing features and functions of the device, and as such has now been incorporated into the device handbook format. No technical changes have been made to the content.

Part Number 51700094-015-5 Revised August 2009

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.5)	Page
v1.4 (December 2008)	The "CoreMP7 Device Security" section was removed from "Security in ARM-Enabled Low-Power Flash Devices", since M7-enabled devices are no longer supported.	16-4
v1.3 (October 2008)	The "ISP Architecture" section was revised to include information about core voltage for IGLOO V2 and ProASIC3L devices, as well as 50 mV increments allowable in Designer software.	
	IGLOO nano and ProASIC3 nano devices were added to Table 16-1 · Flash-Based FPGAs.	16-2
	A second capacitor was added to Figure 16-6 · Board Layout and Programming Header Top View.	16-9
v1.2 (June 2008)	The "ISP Support in Flash-Based Devices" section was revised to include new families and make the information more concise.	16-2
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 16-1 · Flash-Based FPGAs: • ProASIC3L was updated to include 1.5 V. • The number of PLLs for ProASIC3E was changed from five to six.	16-2
v1.0 (January 2008)	The "ISP Architecture" section was updated to included the IGLOO PLUS family in the discussion of family-specific support. The text, "When 1.2 V is used, the device can be reprogrammed in-system at 1.5 V only," was revised to state, "Although the device can operate at 1.2 V core voltage, the device can only be reprogrammed when all supplies (V _{CC} , V _{CCI} , and V _{JTAG}) are at 1.5 V."	16-1
	The "ISP Support in Flash-Based Devices" section and Table 16-1 · Flash-Based FPGAs were updated to include the IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new.	16-2
	The "Security" section was updated to mention that 15 k gate devices do not have a built-in 128-bit decryption core.	16-3
	Table 16-2 · Power Supplies was revised to remove the Normal Operation column and add a table note stating, "All supply voltages should be at 1.5 V or higher, regardless of the setting during normal operation."	16-3
	The "ISP Programming Header Information" section was revised to change FP3-26PIN-ADAPTER to FP3-10PIN-ADAPTER-KIT. Table 16-3 · Programming Header Ordering Codes was updated with the same change, as well as adding the part number FFSD-05-D-06.00-01-N, a 10-pin cable with 50-mil-pitch sockets.	16-8
	The "Board-Level Considerations" section was updated to describe connecting two capacitors in parallel across V _{PUMP} and GND for proper programming.	16-9

In-System Programming (ISP) of Actel's Low-Power Flash Devices Using FlashPro3

Previous Version	Changes in Current Version (v1.5)	Page
51900055-2/7.06	Information was added to the "Programming Voltage (VPUMP) and VJTAG" section about the JTAG interface pin.	16-3
51900055-1/1.05	ACTgen was changed to SmartGen.	N/A
	In Figure 16-6 \cdot Board Layout and Programming Header Top View, the order of the text was changed to:	16-9
	V _{JTAG} from the target board	
	V _{CCI} from the target board	
	V _{CC} from the target board	

16-12 v1.5

17 – Microprocessor Programming of Actel's Low-Power Flash Devices

Introduction

The Fusion, IGLOO,® and ProASIC®3 families of flash FPGAs support in-system programming (ISP) with the use of a microprocessor. Flash-based FPGAs store their configuration information in the actual cells within the FPGA fabric. SRAM-based devices need an external configuration memory, and hybrid nonvolatile devices store the configuration in a flash memory inside the same package as the SRAM FPGA. Since the programming of a true flash FPGA is simpler, requiring only one stage, it makes sense that programming with a microprocessor in-system should be simpler than with other SRAM FPGAs. This reduces bill-of-materials costs and printed circuit board (PCB) area, and increases system reliability.

Nonvolatile flash technology also gives the low-power flash devices the advantage of a secure, low-power, live-at-power-up, and single-chip solution. Low-power flash devices are reprogrammable and offer time-to-market benefits at an ASIC-level unit cost. These features enable engineers to create high-density systems using existing ASIC or FPGA design flows and tools.

This document is an introduction to microprocessor programming only. To explain the difference between the options available, user's guides for DirectC and STAPL provide more detail on implementing each style.

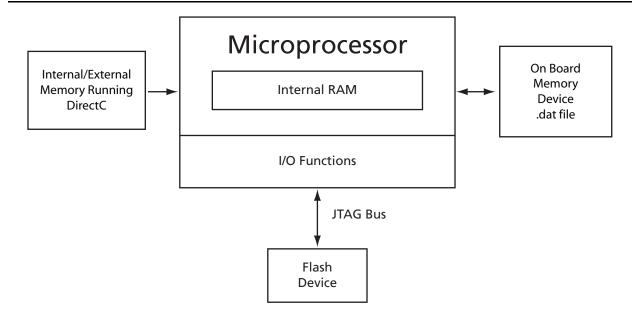


Figure 17-1 • ISP Using Microprocessor

v1.4 17-1

Microprocessor Programming Support in Flash Devices

The flash-based FPGAs listed in Table 17-1 support programming with a microprocessor and the functions described in this document.

Table 17-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO nano	The industry's lowest-power, smallest-size solution
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex™-M1 soft processors, and flash memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 17-1. Where the information applies to only one device or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 17-1. Where the information applies to only one device or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

17-2 v1.4

Programming Algorithm

JTAG Interface

The low-power flash families are fully compliant with the IEEE 1149.1 (JTAG) standard. They support all the mandatory boundary scan instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) as well as six optional public instructions (USERCODE, IDCODE, HIGHZ, and CLAMP).

IEEE 1532

The low-power flash families are also fully compliant with the IEEE 1532 programming standard. The IEEE 1532 standard adds programming instructions and associated data registers to devices that comply with the IEEE 1149.1 standard (JTAG). These instructions and registers extend the capabilities of the IEEE 1149.1 standard such that the Test Access Port (TAP) can be used for configuration activities. The IEEE 1532 standard greatly simplifies the programming algorithm, reducing the amount of time needed to implement microprocessor ISP.

Implementation Overview

To implement device programming with a microprocessor, the user should first download the C-based STAPL player or DirectC code from the Actel website. (See the Actel website for future updates regarding the STAPL player and DirectC code). Using the easy-to-follow Actel user's guide, create the low-level application programming interface (API) to provide the necessary basic functions. These API functions act as the interface between the programming software and the actual hardware (Figure 17-2).

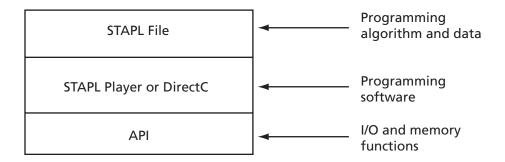


Figure 17-2 • Device Programming Code Relationship

The API is then linked with the STAPL player or DirectC and compiled using the microprocessor's compiler. Once the entire code is compiled, the user must download the resulting binary into the MCU system's program memory (such as ROM, EEPROM, or flash). The system is now ready for programming.

To program a design into the FPGA, the user creates a bitstream or STAPL file using the Actel Designer software, downloads it into the MCU system's volatile memory, and activates the stored programming binary file (Figure 17-3 on page 17-4). Once the programming is completed, the bitstream or STAPL file can be removed from the system, as the configuration profile is stored in the flash FPGA fabric and does not need to be reloaded at every system power-on.

v1.4 17-3

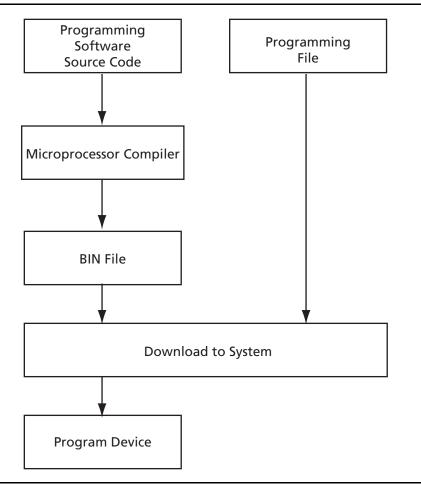


Figure 17-3 • MCU FPGA Programming Model

FlashROM

Actel low-power flash devices have 1 kbit of user-accessible, nonvolatile, FlashROM on-chip. This nonvolatile FlashROM can be programmed along with the core or on its own using the standard IEEE 1532 JTAG programming interface.

The FlashROM is architected as eight pages of 128 bits. Each page can be individually programmed (erased and written). Additionally, on-chip AES security decryption can be used selectively to load data securely into the FlashROM (e.g., over public or private networks, such as the Internet). Refer to FlashROM in Actel's Low-Power Flash Devices.

17-4 v1.4

STAPL vs. DirectC

Programming the low-power flash devices is performed using DirectC or the STAPL player. Both tools use the STAPL file as an input. DirectC is a compiled language, whereas STAPL is an interpreted language. Microprocessors will be able to load the FPGA using DirectC much more quickly than STAPL. This speed advantage becomes more apparent when lower clock speeds of 8-or 16-bit microprocessors are used. DirectC also requires less memory than STAPL, since the programming algorithm is directly implemented. STAPL does have one advantage over DirectC—the ability to upgrade. When a new programming algorithm is required, the STAPL user simply needs to regenerate a STAPL file using the latest version of the Designer software and download it to the system. The DirectC user must download the latest version of DirectC from Actel, compile everything, and download the result into the system (Figure 17-4).

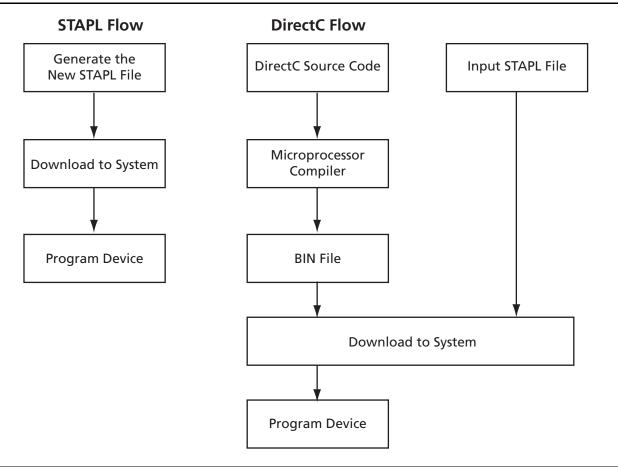


Figure 17-4 • STAPL vs. DirectC

v1.4 17-5

Remote Upgrade via TCP/IP

Transmission Control Protocol (TCP) provides a reliable bitstream transfer service between two endpoints on a network. TCP depends on Internet Protocol (IP) to move packets around the network on its behalf. TCP protects against data loss, data corruption, packet reordering, and data duplication by adding checksums and sequence numbers to transmitted data and, on the receiving side, sending back packets and acknowledging the receipt of data.

The system containing the low-power flash device can be assigned an IP address when deployed in the field. When the device requires an update (core or FlashROM), the programming instructions along with the new programming data (AES-encrypted cipher text) can be sent over the Internet to the target system via the TCP/IP protocol. Once the MCU receives the instruction and data, it can proceed with the FPGA update. Low-power flash devices support Message Authentication Code (MAC), which can be used to validate data for the target device. More details are given in the "Message Authentication Code (MAC) Validation/Authentication" section on page 17-6.

Hardware Requirement

To facilitate the programming of the low-power flash families, the system must have a microprocessor (with access to the device JTAG pins) to process the programming algorithm, memory to store the programming algorithm, programming data, and the necessary programming voltage. Refer to the relevant datasheet for programming voltages.

Security

Read-Back Prevention

The low-power flash devices are designed with security in mind. Even without any security measures (such as FlashLock with AES), it is not possible to read back the programming data from a programmed device. Upon programming completion, the programming algorithm will reload the programming data into the device. The device will then use built-in circuitry to determine if it was programmed correctly.

As an additional security measure, the devices are equipped with AES decryption. AES works in two steps. The first step is to program a key into the devices in a secure or trusted programming center (such as Actel In-House Programming (IHP) center). The second step is to encrypt any programming files with the same encryption key. The encrypted programming file will only work with the devices that have the same key. The AES used in the low-power flash families is the 128-bit AES decryption engine (Rijndael algorithm).

Message Authentication Code (MAC) Validation/Authentication

As part of the AES decryption flow, the devices are equipped with a MAC validation/authentication system. MAC is an authentication tag, also called a checksum, derived by applying an on-chip authentication scheme to a STAPL file as it is loaded into the FPGA. MACs are computed and verified with the same key so they can only be verified by the intended recipient. When the MCU system receives the AES-encrypted programming data (cipher text), it can validate the data by loading it into the FPGA and performing a MAC verification prior to loading the data, via a second programming pass, into the FPGA core cells. This prevents erroneous or corrupt data from getting into the FPGA.

Low-power flash devices with AES and MAC are superior to devices with only DES or 3DES encryption. Because the MAC verifies the correctness of the data, the FPGA is protected from erroneous loading of invalid programming data that could damage a device (Figure 17-5 on page 17-7).

The AES with MAC enables field updates over public networks without fear of having the design stolen. An encrypted programming file can only work on devices with the correct key, rendering

17-6 v1.4

any stolen files useless to the thief. To learn more about the low-power flash devices' security features, refer to Security in Low-Power Flash Devices.

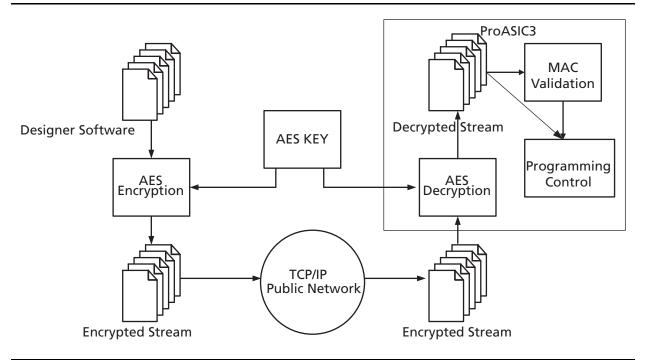


Figure 17-5 • ProASIC3 Device Encryption Flow

Conclusion

The Actel Fusion, IGLOO, and ProASIC3 FPGAs are ideal for applications that require field upgrades. The single-chip devices save board space by eliminating the need for EEPROM. The built-in AES with MAC enables transmission of programming data over any network without fear of design theft. Fusion, IGLOO, and ProASIC3 FPGAs are IEEE 1532—compliant and support STAPL, making the target programming software easy to implement.

v1.4 17-7

Related Documents

Handbook Documents

FlashROM in Actel's Low-Power Flash Devices
http://www.actel.com/documents/LPD_FlashROM_HBs.pdf
Security in Low-Power Flash Devices
http://www.actel.com/documents/LPD_Security_HBs.pdf

Part Number and Revision Date

This document was previously published as an application note describing features and functions of the device, and as such has now been incorporated into the device handbook format. No technical changes have been made to the content.

Part Number 51700094-016-4 Revised December 2008

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in the Current Version (v1.4)	Page	
v1.3 (October 2008)	IGLOO nano and ProASIC3 nano devices were added to Table 17-1 · Flash-Based FPGAs.		
v1.2 (June 2008)	The "Microprocessor Programming Support in Flash Devices" section was revised to include new families and make the information more concise.	17-2	
v1.1 (March 2008)	 The following changes were made to the family descriptions in Table 17-1 · Flash-Based FPGAs: ProASIC3L was updated to include 1.5 V. The number of PLLs for ProASIC3E was changed from five to six. 	17-2	
v1.0 (January 2008)	The "Microprocessor Programming Support in Flash Devices" section was updated to include information on the IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new.		

17-8 v1.4

Boundary Scan and UJTAG

18 – Boundary Scan in Low-Power Flash Devices

Boundary Scan

Low-power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during boundary scan testing.

The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and instruction register (Figure 18-2 on page 18-4).

Low-power flash devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine

The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 18-1.

The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-Logic-Reset state.

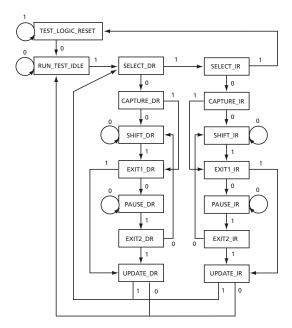


Figure 18-1 • TAP Controller State Machine

Actel's Flash Devices Support the JTAG Feature

The flash-based FPGAs listed in Table 18-1 support the JTAG feature and the functions described in this document.

Table 18-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO®	IGLOO	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe Higher density IGLOO FPGAs with six PLLs and additiona	
	IGLOO nano	The industry's lowest-power, smallest-size solution
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
		Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
		Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash ³	
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and		Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC®3 FPGA fabric, programmable analog block, support for ARM® Cortex™-M1 soft processors, and flash memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 18-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 18-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

18-2 v1.4

Boundary Scan Support in Low-Power Devices

The information in this document applies to all Fusion, IGLOO, and ProASIC3 devices. For IGLOO, IGLOO PLUS, and ProASIC3L devices, the Flash*Freeze pin must be deasserted for successful boundary scan operations. Devices cannot enter JTAG mode directly from Flash*Freeze mode.

Boundary Scan Opcodes

Low-power flash devices support all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction (Table 18-2).

Table 18-2 • Boundary Scan Opcodes

	Hex Opcode
EXTEST	00
HIGHZ	07
USERCODE	0E
SAMPLE/PRELOAD	01
IDCODE	0F
CLAMP	05
BYPASS	FF

Boundary Scan Chain

The serial pins are used to serially connect all the boundary scan register cells in a device into a boundary scan register chain (Figure 18-2 on page 18-4), which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic I/O tile and the input, output, and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.

Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input), TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI, and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" description in *Pin Descriptions* for pull-up/-down recommendations for TDO and TCK pins.

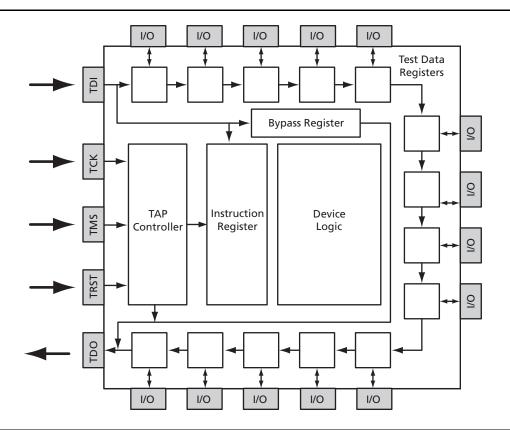
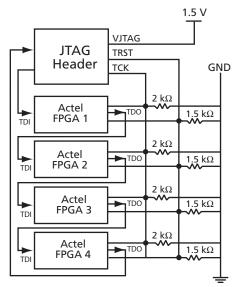


Figure 18-2 • Boundary Scan Chain

Board-Level Recommendations

Table 18-3 gives pull-down recommendations for the TRST and TCK pins.


Table 18-3 • TRST and TCK Pull-Down Recommendations

V _{JTAG}	Tie-Off Resistance*
V _{JTAG} at 3.3 V	200 Ω to 1 kΩ
V _{JTAG} at 2.5 V	200 Ω to 1 kΩ
V _{JTAG} at 1.8 V	500 Ω to 1 kΩ
V _{JTAG} at 1.5 V	500 Ω to 1 k Ω

^{*} Equivalent parallel resistance if more than one device is on JTAG chain (Figure 18-3)

18-4 v1.4

Note: TCK is correctly wired with an equivalent tie-off resistance of 500 Ω , which satisfies the table for V_{JTAG} of 1.5 V. The resistor values for TRST are not appropriate in this case, as the tie-off resistance of 375 Ω is below the recommended minimum for V_{JTAG} = 1.5 V, but would be appropriate for a V_{JTAG} setting of 2.5 V or 3.3 V.

Figure 18-3 • Parallel Resistance on JTAG Chain of Devices

Related Documents

Handbook Documents

Pin Descriptions

http://www.actel.com/documents/LPD_PinDescriptions_HBs.pdf

v1.4 18-5

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet. To improve usability for customers, the device architecture information has now been split into handbook sections, which also include usage information. No technical changes were made to the content unless explicitly listed.

Part Number 51700094-019-3 Revised December 2008

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.4)		
v1.3 (October 2008)	IGLOO nano and ProASIC3 nano devices were added to Table 18-1 · Flash-Based FPGAs.		
v1.2 (June 2008)	The "Boundary Scan Support in Low-Power Devices" section was revised to include new families and make the information more concise.		
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 18-1 · Flash-Based FPGAs: • ProASIC3L was updated to include 1.5 V. • The number of PLLs for ProASIC3E was changed from five to six.	18-2	
v1.0 (January 2008)	The chapter was updated to include the IGLOO PLUS family and information regarding 15 k gate devices.		
	The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new.		

18-6 v1.4

19 – UJTAG Applications in Actel's Low-Power Flash Devices

Introduction

In Fusion, IGLOO,® and ProASIC®3 devices, there is bidirectional access from the JTAG port to the core VersaTiles during normal operation of the device (Figure 19-1). User JTAG (UJTAG) is the ability for the design to use the JTAG ports for access to the device for updates, etc. While regular JTAG is used, the UJTAG tiles, located at the southeast area of the die, are directly connected to the JTAG Test Access Port (TAP) Controller in normal operating mode. As a result, all the functional blocks of the device, such as Clock Conditioning Circuits (CCCs) with PLLs, SRAM blocks, embedded FlashROM, flash memory blocks, and I/O tiles, can be reached via the JTAG ports. The UJTAG functionality is available by instantiating the UJTAG macro directly in the source code of a design. Access to the FPGA core VersaTiles from the JTAG ports enables users to implement different applications using the TAP Controller (JTAG port). This document introduces the UJTAG tile functionality and discusses a few application examples. However, the possible applications are not limited to what is presented in this document. UJTAG can serve different purposes in many designs as an elementary or auxiliary part of the design. For detailed usage information, refer to Boundary Scan in Low-Power Flash Devices.

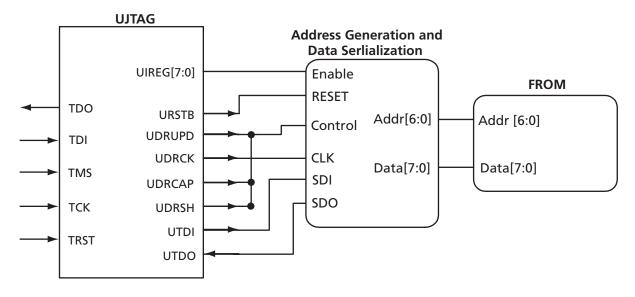


Figure 19-1 • Block Diagram of Using UJTAG to Read FlashROM Contents

v1.4 19-1

UJTAG Support in Flash-Based Devices

The flash-based FPGAs listed in Table 19-1 support the UJTAG feature and the functions described in this document.

Table 19-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO IGLOO Ultra-low-power 1.2 V to 1.5 V FPGAs with F		Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO nano	The industry's lowest-power, smallest-size solution
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with F		ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
Military ProASIC3/EL Military temperature A3PE600L, A3		Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
Fusion	Fusion	Mixed-signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex™-M1 soft processors, and flash memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 19-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 19-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

19-2 v1.4

UJTAG Macro

The UJTAG tiles can be instantiated in a design using the UJTAG macro from the Fusion, IGLOO, or ProASIC3 macro library. Note that "UJTAG" is a reserved name and cannot be used for any other user-defined blocks. A block symbol of the UJTAG tile macro is presented in Figure 19-2. In this figure, the ports on the left side of the block are connected to the JTAG TAP Controller, and the right-side ports are accessible by the FPGA core VersaTiles. The TDI, TMS, TDO, TCK, and TRST ports of UJTAG are only provided for design simulation purposes and should be treated as external signals in the design netlist. However, these ports must NOT be connected to any I/O buffer in the netlist. Figure 19-3 on page 19-4 illustrates the correct connection of the UJTAG macro to the user design netlist. Actel Designer software will automatically connect these ports to the TAP during place-and-route. Table 19-2 gives the port descriptions for the rest of the UJTAG ports:

Table 19-2 • UJTAG Port Descriptions

Port	Description
UIREG [7:0]	This 8-bit bus carries the contents of the JTAG Instruction Register of each device. Instruction Register values 16 to 127 are not reserved and can be employed as user-defined instructions.
URSTB	URSTB is an active-low signal and will be asserted when the TAP Controller is in Test-Logic-Reset mode. URSTB is asserted at power-up, and a power-on reset signal resets the TAP Controller. URSTB will stay asserted until an external TAP access changes the TAP Controller state.
UTDI	This port is directly connected to the TAP's TDI signal.
UTDO	This port is the user TDO output. Inputs to the UTDO port are sent to the TAP TDO output MUX when the IR address is in user range.
UDRSH	Active-high signal enabled in the ShiftDR TAP state
UDRCAP	Active-high signal enabled in the CaptureDR TAP state
UDRCK	This port is directly connected to the TAP's TCK signal.
UDRUPD	Active-high signal enabled in the UpdateDR TAP state

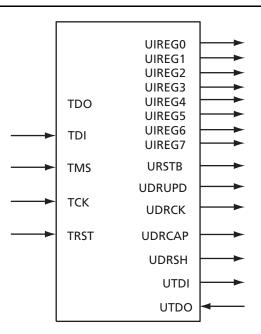
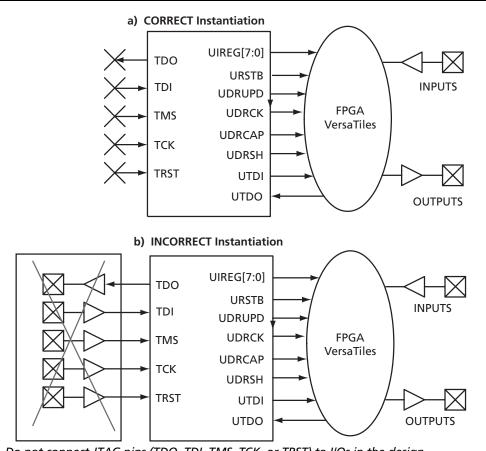



Figure 19-2 • UJTAG Tile Block Symbol

v1.4 19-3

Note: Do not connect JTAG pins (TDO, TDI, TMS, TCK, or TRST) to I/Os in the design.

Figure 19-3 • Connectivity Method of UJTAG Macro

UJTAG Operation

There are a few basic functions of the UJTAG macro that users must understand before designing with it. The most important fundamental concept of the UJTAG design is its connection with the TAP Controller state machine.

TAP Controller State Machine

The 16 states of the TAP Controller state machine are shown in Figure 19-4 on page 19-5. The 1s and 0s, shown adjacent to the state transitions, represent the TMS values that must be present at the time of a rising TCK edge for a state transition to occur. In the states that include the letters "IR," the instruction register operates; in the states that contain the letters "DR," the test data register operates. The TAP Controller receives two control inputs, TMS and TCK, and generates control and clock signals for the rest of the test logic.

On power-up (or the assertion of TRST), the TAP Controller enters the Test-Logic-Reset state. To reset the controller from any other state, TMS must be held HIGH for at least five TCK cycles. After reset, the TAP state changes at the rising edge of TCK, based on the value of TMS.

19-4 v1.4

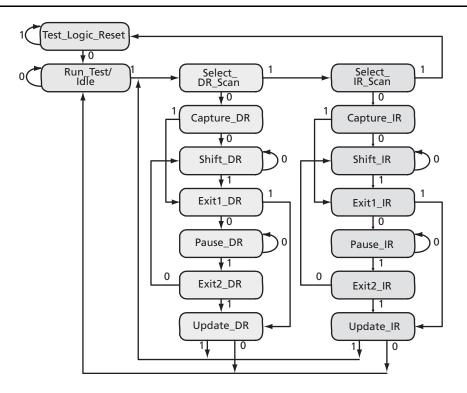


Figure 19-4 • TAP Controller State Diagram

UJTAG Port Usage

UIREG[7:0] hold the contents of the JTAG instruction register. The UIREG vector value is updated when the TAP Controller state machine enters the Update_IR state. Instructions 16 to 127 are user-defined and can be employed to encode multiple applications and commands within an application. Loading new instructions into the UIREG vector requires users to send appropriate logic to TMS to put the TAP Controller in a full IR cycle starting from the Select IR_Scan state and ending with the Update_IR state.

UTDI, UTDO, and UDRCK are directly connected to the JTAG TDI, TDO, and TCK ports, respectively. The TDI input can be used to provide either data (TAP Controller in the Shift_DR state) or the new contents of the instruction register (TAP Controller in the Shift_IR state).

UDRSH, UDRUPD, and UDRCAP are HIGH when the TAP Controller state machine is in the Shift_DR, Update_DR, and Capture_DR states, respectively. Therefore, they act as flags to indicate the stages of the data shift process. These flags are useful for applications in which blocks of data are shifted into the design from JTAG pins. For example, an active UDRSH can indicate that UTDI contains the data bitstream, and UDRUPD is a candidate for the end-of-data-stream flag.

As mentioned earlier, users should not connect the TDI, TDO, TCK, TMS, and TRST ports of the UJTAG macro to any port or net of the design netlist. The Designer software will automatically handle the port connection.

v1.4 19-5

Typical UJTAG Applications

Bidirectional access to the JTAG port from VersaTiles—without putting the device into test mode—creates flexibility to implement many different applications. This section describes a few of these. All are based on importing/exporting data through the UJTAG tiles.

Clock Conditioning Circuitry—Dynamic Reconfiguration

In low-power flash devices, CCCs, which include PLLs, can be configured dynamically through either an 81-bit embedded shift register or static flash programming switches. These 81 bits control all the characteristics of the CCC: routing MUX architectures, delay values, divider values, etc. Table 19-3 lists the 81 configuration bits in the CCC.

Table 19-3 • Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC Blocks

Bit Number(s)	Control Function		
80	RESET ENABLE		
79	DYNCSEL		
78	DYNBSEL		
77	DYNASEL		
<76:74>	VCOSEL [2:0]		
73	STATCSEL		
72	STATBSEL		
71	STATASEL		
<70:66>	DLYC [4:0]		
<65:61>	DLYB {4:0]		
<60:56>	DLYGLC [4:0]		
<55:51>	DLYGLB [4:0]		
<50:46>	DLYGLA [4:0]		
45	XDLYSEL		
<44:40>	FBDLY [4:0]		
<39:38>	FBSEL		
<37:35>	OCMUX [2:0]		
<34:32>	OBMUX [2:0]		
<31:29>	OAMUX [2:0]		
<28:24>	OCDIV [4:0]		
<23:19>	OBDIV [4:0]		
<18:14>	OADIV [4:0]		
<13:7>	FBDIV [6:0]		
<6:0>	FINDIV [6:0]		

The embedded 81-bit shift register (for the dynamic configuration of the CCC) is accessible to the VersaTiles, which, in turn, have access to the UJTAG tiles. Therefore, the CCC configuration shift register can receive and load the new configuration data stream from JTAG.

Dynamic reconfiguration eliminates the need to reprogram the device when reconfiguration of the CCC functional blocks is needed. The CCC configuration can be modified while the device continues to operate. Employing the UJTAG core requires the user to design a module to provide the configuration data and control the CCC configuration shift register. In essence, this is a user-designed TAP Controller requiring chip resources.

19-6 v1.4

Similar reconfiguration capability exists in the Actel ProASIC PLUS® family. The only difference is the number of shift register bits controlling the CCC (27 in ProASIC and 81 in IGLOO, ProASIC3, and Fusion).

Fine Tuning

In some applications, design constants or parameters need to be modified after programming the original design. The tuning process can be done using the UJTAG tile without reprogramming the device with new values. If the parameters or constants of a design are stored in distributed registers or embedded SRAM blocks, the new values can be shifted onto the JTAG TAP Controller pins, replacing the old values. The UJTAG tile is used as the "bridge" for data transfer between the JTAG pins and the FPGA VersaTiles or SRAM logic. Figure 19-5 shows a flow chart example for fine-tuning application steps using the UJTAG tile.

In Figure 19-5, the TMS signal sets the TAP Controller state machine to the appropriate states. The flow mainly consists of two steps: a) shifting the defined instruction and b) shifting the new data. If the target parameter is constantly used in the design, the new data can be shifted into a temporary shift register from UTDI. The UDRSH output of UJTAG can be used as a shift-enable signal, and UDRCK is the shift clock to the shift register. Once the shift process is completed and the TAP Controller state is moved to the Update_DR state, the UDRUPD output of the UJTAG can latch the new parameter value from the temporary register into a permanent location. This avoids any interruption or malfunctioning during the serial shift of the new value.

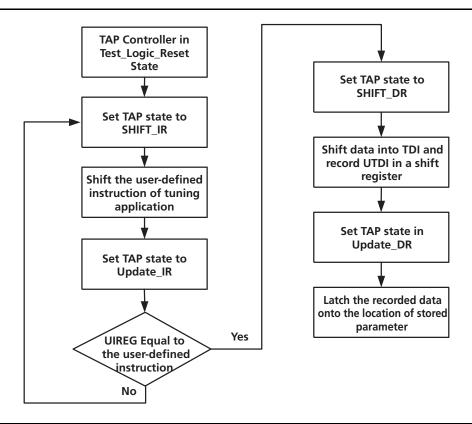


Figure 19-5 • Flow Chart Example of Fine-Tuning an Application Using UJTAG

v1.4 19-7

Silicon Testing and Debugging

In many applications, the design needs to be tested, debugged, and verified on real silicon or in the final embedded application. To debug and test the functionality of designs, users may need to monitor some internal logic (or nets) during device operation. The approach of adding design test pins to monitor the critical internal signals has many disadvantages, such as limiting the number of user I/Os. Furthermore, adding external I/Os for test purposes may require additional or dedicated board area for testing and debugging.

The UJTAG tiles of low-power flash devices offer a flexible and cost-effective solution for silicon test and debug applications. In this solution, the signals under test are shifted out to the TDO pin of the TAP Controller. The main advantage is that all the test signals are monitored from the TDO pin; no pins or additional board-level resources are required. Figure 19-6 illustrates this technique. Multiple test nets are brought into an internal MUX architecture. The selection of the MUX is done using the contents of the TAP Controller instruction register, where individual instructions (values from 16 to 127) correspond to different signals under test. The selected test signal can be synchronized with the rising or falling edge of TCK (optional) and sent out to UTDO to drive the TDO output of JTAG.

The test and debug procedure is not limited to the example in Figure 19-5 on page 19-7. Users can customize the debug and test interface to make it appropriate for their applications. For example, multiple test signals can be registered and then sent out through UTDO, each at a different edge of TCK. In other words, n signals are sampled with an F_{TCK} / n sampling rate. The bandwidth of the information sent out to TDO is always proportional to the frequency of TCK.

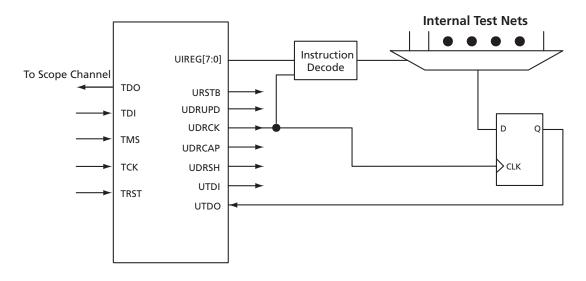


Figure 19-6 • UJTAG Usage Example in Test and Debug Applications

SRAM Initialization

Users can also initialize embedded SRAMs of the low-power flash devices. The initialization of the embedded SRAM blocks of the design can be done using UJTAG tiles, where the initialization data is imported using the TAP Controller. Similar functionality is available in ProASICPLUS devices using JTAG. The guidelines for implementation and design examples are given in the RAM Initialization and ROM Emulation in ProASICPLUS Devices application note.

SRAMs are volatile by nature; data is lost in the absence of power. Therefore, the initialization process should be done at each power-up if necessary.

19-8 v1.4

FlashROM Read-Back Using JTAG

The low-power flash architecture contains a dedicated nonvolatile FlashROM block, which is formatted into eight 128-bit pages. For more information on FlashROM, refer to *FlashROM in Actel's Low-Power Flash Devices*. The contents of FlashROM are available to the VersaTiles during normal operation through a read operation. As a result, the UJTAG macro can be used to provide the FlashROM contents to the JTAG port during normal operation. Figure 19-7 illustrates a simple block diagram of using UJTAG to read the contents of FlashROM during normal operation.

The FlashROM read address can be provided from outside the FPGA through the TDI input or can be generated internally using the core logic. In either case, data serialization logic is required (Figure 19-7) and should be designed using the VersaTile core logic. FlashROM contents are read asynchronously in parallel from the flash memory and shifted out in a synchronous serial format to TDO. Shifting the serial data out of the serialization block should be performed while the TAP is in UDRSH mode. The coordination between TCK and the data shift procedure can be done using the TAP state machine by monitoring UDRSH, UDRCAP, and UDRUPD.

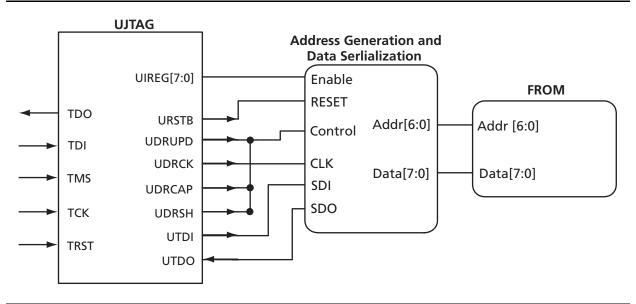


Figure 19-7 • Block Diagram of Using UJTAG to Read FlashROM Contents

Conclusion

Actel low-power flash FPGAs offer many unique advantages, such as security, nonvolatility, reprogrammablity, and low power—all in a single chip. In addition, Fusion, IGLOO, and ProASIC3 devices provide access to the JTAG port from core VersaTiles while the device is in normal operating mode. A wide range of available user-defined JTAG opcodes allows users to implement various types of applications, exploiting this feature of these devices. The connection between the JTAG port and core tiles is implemented through an embedded and hardwired UJTAG tile. A UJTAG tile can be instantiated in designs using the UJTAG library cell. This document presents multiple examples of UJTAG applications, such as dynamic reconfiguration, silicon test and debug, finetuning of the design, and RAM initialization. Each of these applications offers many useful advantages.

v1.4 19-9

Related Documents

Application Notes

RAM Initialization and ROM Emulation in ProASICPLUS Devices http://www.actel.com/documents/APA_RAM_Initd_AN.pdf

Handbook Documents

Boundary Scan in Low-Power Flash Devices
http://www.actel.com/documents/LPD_BoundaryScan_HBs.pdf
FlashROM in Actel's Low-Power Flash Devices
http://www.actel.com/documents/LPD_FlashROM_HBs.pdf

Part Number and Revision Date

This document contains content extracted from the Device Architecture section of the datasheet, combined with content previously published as an application note describing features and functions of the device. To improve usability for customers, the device architecture information has now been combined with usage information, to reduce duplication and possible inconsistencies in published information. No technical changes were made to the datasheet content unless explicitly listed. Changes to the application note content were made only to be consistent with existing datasheet information

Part Number 51700094-020-4 Revised December 2008

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.4)		
v1.3 (October 2008)	IGLOO nano and ProASIC3 nano devices were added to Table 19-1 · Flash-Based FPGAs.		
v1.2 (June 2008)	The "UJTAG Support in Flash-Based Devices" section was revised to include new families and make the information more concise.		
	The title of Table 19-3 \cdot Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC Blocks was revised to include Fusion.	19-6	
v1.1 (March 2008)	The following changes were made to the family descriptions in Table 19-1 · Flash-Based FPGAs: • ProASIC3L was updated to include 1.5 V. • The number of PLLs for ProASIC3E was changed from five to six.	19-2	
v1.0 (January 2008)	The chapter was updated to include the IGLOO PLUS family and information regarding 15 k gate devices.		
	The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new.		

19-10 v1.4

Board-Level Requirements

20 – Power-Up/-Down Behavior of Low-Power Flash Devices

Introduction

Actel's low-power flash devices are flash-based FPGAs manufactured on a 0.13 μ m process node. These devices offer a single-chip, reprogrammable solution and support Level 0 live at power-up (LAPU) due to their nonvolatile architecture.

Actel's low-power flash FPGA families are optimized for logic area, I/O features, and performance. IGLOO® devices are optimized for power, making them the industry's lowest power programmable solution. IGLOO PLUS FPGAs offer enhanced I/O features beyond those of the IGLOO ultra-low-power solution for I/O-intensive low-power applications. IGLOO nano devices are the industry's lowest-power cost-effective solution. ProASIC3®L FPGAs balance low power with high performance. The ProASIC3 family is Actel's high-performance flash FPGA solution. ProASIC3 nano devices offer the lowest-cost solution with enhanced I/O capabilities.

Actel's low-power flash devices exhibit very low transient current on each power supply during power-up. The peak value of the transient current depends on the device size, temperature, voltage levels, and power-up sequence.

The following devices can have inputs driven in while the device is not powered:

- IGLOO (AGL015 and AGL030)
- IGLOO nano (all devices)
- IGLOO PLUS (AGLP030, AGLP060, AGLP125)
- IGLOOe (AGLE600, AGLE3000)
- ProASIC3L (A3PE3000L)
- ProASIC3 (A3P015, A3P030)
- ProASIC3 nano (all devices)
- ProASIC3E (A3PE600, A3PE1500, A3PE3000)
- Military ProASIC3EL (A3PE600L, A3PE3000L, but not A3P1000)
- RT ProASIC3 (RT3PE600L, RT3PE3000L)

The driven I/Os do not pull up power planes, and the current draw is limited to very small leakage current, making them suitable for applications that require cold-sparing. These devices are hot-swappable, meaning they can be inserted in a live power system.¹

^{1.} For more details on the levels of hot-swap compatibility in Actel's low-power flash devices, refer to the "Hot-Swap Support" section in the I/O Structures chapter of the handbook for the device you are using.

Actel's Flash Devices Support Power-Up Behavior

The flash FPGAs listed in Table 20-1 support power-up behavior and the functions described in this document.

Table 20-1 • Flash-Based FPGAs

Series	Family*	Description
IGLOO	IGL00	Ultra-low-power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLO0e	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO nano	The industry's lowest-power, smallest-size solution
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
ProASIC3	ProASIC3	Low-power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 20-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 20-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

20-2 v1.2

Power-Up/-Down Sequence and Transient Current

Actel's low-power flash devices use the following main voltage pins during normal operation:²

- V_{CCPLX}
- V_{JTAG}
- V_{CC}: Voltage supply to the FPGA core
 - V_{CC} is 1.5 V \pm 0.075 V for IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3 devices operating at 1.5 V.
 - V_{CC} is 1.2 V \pm 0.06 V for IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices operating at 1.2 V.
 - V5 devices will require a 1.5 V V $_{\rm CC}$ supply, whereas V2 devices can utilize either a 1.2 V or 1.5 V V $_{\rm CC}$
- V_{CCI}Bx: Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number.
- VMVx: Quiet supply voltage to the input buffers of each I/O bank. x is the bank number.
 (Note: IGLOO nano, IGLOO PLUS, and ProASIC3 nano devices do not have VMVx supply pins.)

The I/O bank VMV pin must be tied to the V_{CCI} pin within the same bank. Therefore, the supplies that need to be powered up/down during normal operation are V_{CC} and V_{CCI} . These power supplies can be powered up/down in any sequence during normal operation of IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, ProASIC3, and ProASIC3 nano FPGAs. During power-up, I/Os in each bank will remain tristated until the last supply (either $V_{CCI}Bx$ or V_{CC}) reaches its functional activation voltage. Similarly, during power-down, I/Os of each bank are tristated once the first supply reaches its brownout deactivation voltage.

Although Actel's low-power flash devices have no power-up or power-down sequencing requirements, Actel identifies the following power conditions that will result in higher than normal transient current. Use this information to help maximize power savings:

Actel recommends tying V_{CCPLX} to V_{CC} and using proper filtering circuits to decouple V_{CC} noise from the PLL.

- a. If V_{CCPLX} is powered up before V_{CC} , a static current of up to 5 mA (typical) per PLL may be measured on V_{CCPLX} .
 - i. The current vanishes as soon as V_{CC} reaches the V_{CCPLX} voltage level.
 - ii. The same current is observed at power-down (V_{CC} before V_{CCPLX}).
- b. If V_{CCPLX} is powered up simultaneously or after V_{CC}:
 - i. Actel's low-power flash devices exhibit very low transient current on V_{CC} . For ProASIC3 devices, the maximum transient current on V_{CC} does not exceed the maximum standby current specified in the device datasheet.

The source of transient current, also known as inrush current, varies depending on the FPGA technology. Due to their volatile technology, the internal registers in SRAM FPGAs must be initialized before configuration can start. This initialization is the source of significant inrush current in SRAM FPGAs during power-up. Due to the nonvolatile nature of flash technology, low-power flash devices do not require any initialization at power-up, and there is very little or no crossbar current through PMOS and NMOS devices. Therefore, the transient current at power-up is significantly less than for SRAM FPGAs. Figure 20-1 on page 20-4 illustrates the types of power consumption by SRAM FPGAs compared to Actel's antifuse and flash FPGAs.

For more information on Actel FPGA voltage supplies, refer to the appropriate datasheet located at http://www.actel.com/techdocs/ds.

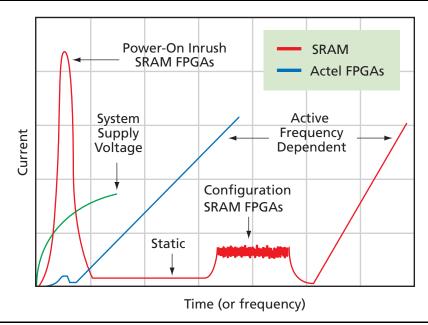


Figure 20-1 • Types of Power Consumption in SRAM FPGAs and Actel Nonvolatile FPGAs

Transient Current on V_{CC}

The characterization of the transient current on V_{CC} is performed on nearly all devices within the IGLOO, ProASIC3L, and ProASIC3 families. A sample size of five units is used from each device family member. All the device I/Os are internally pulled down while the transient current measurements are performed. For ProASIC3 devices, the measurements at typical conditions show that the maximum transient current on V_{CC} , when the power supply is powered at ramp-rates ranging from 15 V/ms to 0.15 V/ms, does not exceed the maximum standby current specified in the device datasheets. Refer to *ProASIC3 DC and Switching Characteristics* and *ProASIC3E DC and Switching Characteristics* for more information.

Similarly, IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current on V_{CC} . The transient current does not exceed the typical operating current of the device while in active mode. For example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the transient current on V_{CC} is typically in the range of 1–5 mA.

Transient Current on V_{CCI}

The characterization of the transient current on V_{CCI} is performed on devices within the IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, ProASIC3 nano, and ProASIC3L groups of devices, similarly to V_{CC} transient current measurements. For ProASIC3 devices, the measurements at typical conditions show that the maximum transient current on V_{CCI} , when the power supply is powered at ramprates ranging from 33 V/ms to 0.33 V/ms, does not exceed the maximum standby current specified in the device datasheet. Refer to *ProASIC3 DC and Switching Characteristics* and *ProASIC3E DC and Switching Characteristics* for more information.

Similarly, IGLOO, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current on V_{CCI} . The transient current does not exceed the typical operating current of the device while in active mode. For example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the transient current on V_{CCI} is typically in the range of 1–2 mA.

20-4 v1.2

I/O Behavior at Power-Up/-Down

This section discusses the behavior of device I/Os, used and unused, during power-up/-down of V_{CCI} and V_{CCI} . As mentioned earlier, VMVx and V_{CCI} Bx are tied together, and therefore, inputs and outputs are powered up/down at the same time.

I/O State during Power-Up/-Down

This section discusses the characteristics of I/O behavior during device power-up and power-down. Before the start of power-up, all I/Os are in tristate mode. The I/Os will remain tristated during power-up until the last voltage supply (V_{CC} or V_{CCI}) is powered to its functional level (power supply functional levels are discussed in the "Power-Up to Functional Time" section on page 20-6). After the last supply reaches the functional level, the outputs will exit the tristate mode and drive the logic at the input of the output buffer. Similarly, the input buffers will pass the external logic into the FPGA fabric once the last supply reaches the functional level. The behavior of user I/Os is independent of the V_{CC} and V_{CCI} sequence or the state of other voltage supplies of the FPGA (V_{PUMP} and V_{JTAG}). Figure 20-2 shows the output buffer driving HIGH and its behavior during power-up with 10 k Ω external pull-down. In Figure 20-2, V_{CC} is powered first, and V_{CCI} is powered 5 ms after V_{CC} . Figure 20-3 on page 20-6 shows the state of the I/O when V_{CCI} is powered about 5 ms before V_{CC} . In the circuitry shown in Figure 20-3 on page 20-6, the output is externally pulled down.

During power-down, device I/Os become tristated once the first power supply $(V_{CC} \text{ or } V_{CCI})$ drops below its brownout voltage level. The I/O behavior during power-down is also independent of voltage supply sequencing.

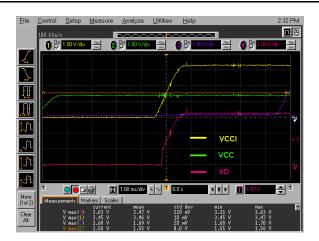


Figure 20-2 • I/O State when V_{CC} Is Powered before V_{CCI}

v1.2 20-5

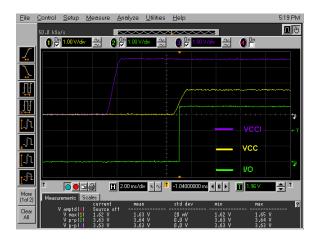


Figure 20-3 • I/O State when V_{CCI} Is Powered before V_{CC}

Power-Up to Functional Time

At power-up, device I/Os exit the tristate mode and become functional once the last voltage supply in the power-up sequence (V_{CCI} or V_{CC}) reaches its functional activation level. The power-up-to-functional time is the time it takes for the last supply to power up from zero to its functional level. Note that the functional level of the power supply during power-up may vary slightly within the specification at different ramp-rates. Refer to Table 20-2 for the functional level of the voltage supplies at power-up.

Typical I/O behavior during power-up-to-functional time is illustrated in Figure 20-2 on page 20-5 and Figure 20-3.

Table 20-2 • Power-Up Functional Activation Levels for V_{CC} and V_{CCI}

Device	V _{CC} Functional Activation Level (V)	V _{CCI} Functional Activation Level (V)
ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices running at V_{CC} = 1.5 V*	0.85 V ± 0.25 V	0.9 V ± 0.3 V
IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices running at $V_{CC} = 1.2 \text{ V}^*$	0.85 V ± 0.2 V	0.9 V ± 0.15 V

Note: *V5 devices will require a 1.5 V V_{CC} supply, whereas V2 devices can utilize either a 1.2 V or 1.5 V V_{CC} .

Actel's low-power flash devices meet Level 0 LAPU; that is, they can be functional prior to V_{CC} reaching the regulated voltage required. This important advantage distinguishes low-power flash devices from their SRAM-based counterparts. SRAM-based FPGAs, due to their volatile technology, require hundreds of milliseconds after power-up to configure the design bitstream before they become functional. Refer to Figure 20-4 on page 20-7 and Figure 20-5 on page 20-8 for more information.

20-6 v1.2

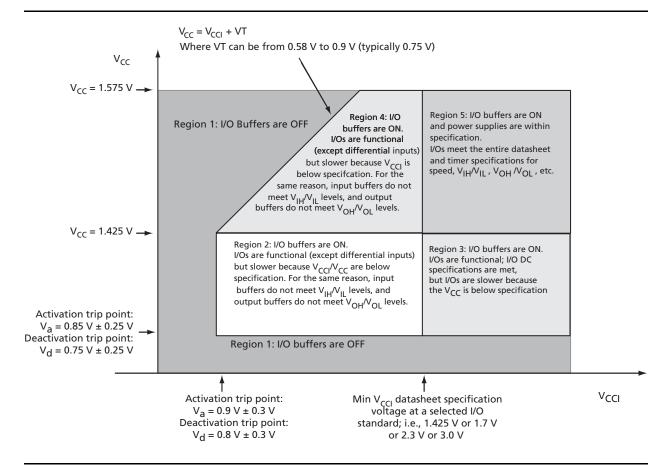


Figure 20-4 • I/O State as a Function of V_{CCI} and V_{CC} Voltage Levels for IGLOO V5, IGLOO nano V5, IGLOO PLUS V5, ProASIC3L, and ProASIC3 Devices Running at V_{CC} = 1.5 V ± 0.075 V

v1.2 20-7

Figure 20-5 • I/O State as a Function of V_{CCI} and V_{CC} Voltage Levels for IGLOO V2, IGLOO nano V2, IGLOO PLUS V2, and ProASIC3L Devices Running at V_{CC} = 1.2 V ± 0.06 V

20-8 v1.2

Brownout Voltage

Brownout is a condition in which the voltage supplies are lower than normal, causing the device to malfunction as a result of insufficient power. In general, Actel does not guarantee the functionality of the design inside the flash FPGA if voltage supplies are below their minimum recommended operating condition. Actel has performed measurements to characterize the brownout levels of FPGA power supplies. Refer to Table 20-3 for device-specific brownout deactivation levels. For the purpose of characterization, a direct path from the device input to output is monitored while voltage supplies are lowered gradually. The brownout point is defined as the voltage level at which the output stops following the input. Characterization tests performed on several IGLOO, ProASIC3L, and ProASIC3 devices in typical operating conditions showed the brownout voltage levels to be within the specification.

During device power-down, the device I/Os become tristated once the first supply in the power-down sequence drops below its brownout deactivation voltage.

Table 20-3 • Brownout Deactivation Levels for V_{CC} and V_{CCI}

Devices	V _{CC} Brownout Deactivation Level (V)	V _{CCI} Brownout Deactivation Level (V)
ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano, IGLOO PLUS and ProASIC3L devices running at $V_{CC} = 1.5 \text{ V}$		0.8 V ± 0.3 V
IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices running at V_{CC} = 1.2 V	0.75 V ± 0.2 V	0.8 V ± 0.15 V

PLL Behavior at Brownout Condition

When PLL power supply voltage and/or V_{CC} levels drop below the V_{CC} brownout levels mentioned above for 1.5 V and 1.2 V devices, the PLL output lock signal goes LOW and/or the output clock is lost. The following sections explain PLL behavior during and after the brownout condition.

V_{CCPLL} and **V_{CC}** Tied Together

In this condition, both V_{CC} and V_{CCPLL} drop below the 0.75 V (\pm 0.25 V or \pm 0.2 V) brownout level. During the brownout recovery, once V_{CCPLL} and V_{CC} reach the activation point (0.85 \pm 0.25 V or \pm 0.2 V) again, the PLL output lock signal may still remain LOW with the PLL output clock signal toggling. If this condition occurs, there are two ways to recover the PLL output lock signal:

- Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
- 2. Turn off the input reference clock to the PLL and then turn it back on.

Only V_{CCPLL} Is at Brownout

In this case, only V_{CCPLL} drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and the V_{CC} supply remains at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V ± 0.06 V for 1.2 V devices). In this condition, the PLL behavior after brownout recovery is similar to initial power-up condition, and the PLL will regain lock automatically after V_{CCPLL} is ramped up above the activation level (0.85 ± 0.25 V or ± 0.2 V). No intervention is necessary in this case.

Only V_{CC} Is at Brownout

In this condition, V_{CC} drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and V_{CCPLL} remains at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V ± 0.06 V for 1.2 V devices). During the brownout recovery, once V_{CC} reaches the activation point again (0.85 ± 0.25 V or ± 0.2 V), the PLL output lock signal may still remain LOW with the PLL output clock signal toggling. If this condition occurs, there are two ways to recover the PLL output lock signal:

- Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
- 2. Turn off the input reference clock to the PLL and then turn it back on.

It is important to note that Actel recommends using a monotonic power supply or voltage regulator to ensure proper power-up behavior.

Internal Pull-Up and Pull-Down

Low-power flash device I/Os are equipped with internal weak pull-up/-down resistors that can be used by designers. If used, these internal pull-up/-down resistors will be activated during power-up, once both V_{CC} and V_{CCl} are above their functional activation level. Similarly, during power-down, these internal pull-up/-down resistors will turn off once the first supply voltage falls below its brownout deactivation level.

Cold-Sparing

In cold-sparing applications, voltage can be applied to device I/Os before and during power-up. Cold-sparing applications rely on three important characteristics of the device:

- 1. I/Os must be tristated before and during power-up.
- 2. Voltage applied to the I/Os must not power up any part of the device.
- 3. V_{CCI} should not exceed 3.6 V, per datasheet specifications.

As described in the "Power-Up to Functional Time" section on page 20-6, Actel's low-power flash I/Os are tristated before and during power-up until the last voltage supply (V_{CC} or V_{CCI}) is powered up past its functional level. Furthermore, applying voltage to the FPGA I/Os does not pull up V_{CC} or V_{CCI} and, therefore, does not partially power up the device. Table 20-4 includes the cold-sparing test results on A3PE600-PQ208 devices. In this test, leakage current on the device I/O and residual voltage on the power supply rails were measured while voltage was applied to the I/O before power-up.

Table 20-4 • Cold-Sparing Test Results for A3PE600 Devices

	Residual V		
Device I/O	V _{cc}	V _{CCI}	Leakage Current
Input	0	0.003	<1 μΑ
Output	0	0.003	<1 μΑ

V_{CCI} must not exceed 3.6 V, as stated in the datasheet specification. Therefore, ProASIC3E devices meet all three requirements stated earlier in this section and are suitable for cold-sparing applications.

The following devices and families support cold-sparing:

- IGLOO: AGL015 and AGL030
- All IGLOO nano
- All IGLOO PLUS
- All IGLOOe
- ProASIC3L: A3PE3000L
- ProASIC3: A3P015 and A3P030
- All ProASIC3 nano
- All ProASIC3E
- Military ProASIC3EL: A3PE600L and A3PE3000L
- RT ProASIC3: RT3PE600L and RT3PE3000L

20-10 v1.2

The following devices and families do not support cold-sparing:

- IGLOO: AGL060, AGL125, AGL250, AGL600, AGL1000
- ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
- ProASIC3L: A3P250L, A3P600L, A3P1000L
- Military ProASIC3: A3P1000

Hot-Swapping

Hot-swapping is the operation of hot insertion or hot removal of a card in a powered-up system. The I/Os need to be configured in hot-insertion mode if hot-swapping compliance is required. For more details on the levels of hot-swap compatibility in low-power flash devices, refer to the "Hot-Swap Support" section in the I/O Structures chapter of the handbook for the device you are using.

The following devices and families support hot-swapping:

- IGLOO: AGL015 and AGL030
- All IGLOO nano
- All IGLOO PLUS
- All IGLOOe
- ProASIC3L: A3PE3000L
- ProASIC3: A3P015 and A3P030
- All ProASIC3 nano
- All ProASIC3E
- Military ProASIC3EL: A3PE600L and A3PE3000L
- RT ProASIC3: RT3PE600L and RT3PE3000L

The following devices and families do not support hot-swapping:

- IGLOO: AGL060, AGL125, AGL250, AGL400, AGL600, AGL1000
- ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
- ProASIC3L: A3P250L, A3P600L, A3P1000L
- Military ProASIC3: A3P1000

Conclusion

Actel's low-power flash FPGAs provide an excellent programmable logic solution for a broad range of applications. In addition to high performance, low cost, security, nonvolatility, and single chip, they are live at power-up (meet Level 0 of the LAPU classification) and offer clear and easy-to-use power-up/-down characteristics. Unlike SRAM FPGAs, low-power flash devices do not require any specific power-up/-down sequencing and have extremely low power-up inrush current in any power-up sequence. Actel low-power flash FPGAs also support both cold-sparing and hot-swapping for applications requiring these capabilities.

v1.2 20-11

Related Documents

Datasheets

ProASIC3 DC and Switching Characteristics
http://www.actel.com/documents/PA3GenSpecs_DS.pdf
ProASIC3E DC and Switching Characteristics
http://www.actel.com/documents/PA3EGenSpecs_DS.pdf

Handbook Documents

I/O Structures in IGLOO PLUS Devices
http://www.actel.com/documents/IGLOOPLUS_IO_HBs.pdf
I/O Structures in IGLOO and ProASIC3 Devices
http://www.actel.com/documents/IGLOO_PA3_IO_HBs.pdf
I/O Structures in IGLOOe and ProASIC3E Devices
http://www.actel.com/documents/IGLOOe_PA3E_IO_HBs.pdf

Part Number and Revision Date

This document was a previously published handbook chapter that only discussed ProASIC3/E (*Power-Up Behavior of ProASIC3/E Devices*, part number 51700094-021), and has now been updated to include data for IGLOO and ProASIC3L families.

Part Number 51700094-027-2 Revised December 2008

20-12 v1.2

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.2)	Page
v1.1 (October 2008)	IGLOO nano and ProASIC3 nano devices were added to the document as supported device types.	N/A
v1.0 (August 2008)	The "Introduction" section was updated to add Military ProASIC3EL and RT ProASIC3 devices to the list of devices that can have inputs driven in while the device is not powered.	
	The "Actel's Flash Devices Support Power-Up Behavior" section was revised to include new families and make the information more concise.	
	The "Cold-Sparing" section was revised to add Military ProASIC3/EL and RT ProASIC3 devices to the lists of devices with and without cold-sparing support.	20-10
	The "Hot-Swapping" section was revised to add Military ProASIC3/EL and RT ProASIC3 devices to the lists of devices with and without hot-swap support. AGL400 was added to the list of devices that do not support hot-swapping.	20-11
v1.3 (March 2008)	This document was revised, renamed, and assigned a new part number. It now includes data for the IGLOO and ProASIC3L families.	N/A
v1.2 (January 2008) 51700094-021-2	The "Handbook Documents" section was updated to include the three different I/O Structure handbook chapters.	20-12
v1.1 (January 2008) 51700094-021-1	The first sentence of the "PLL Behavior at Brownout Condition" section was updated to read, "When PLL power supply voltage and/or V_{CC} levels drop below the V_{CC} brownout levels (0.75 V \pm 0.25 V), the PLL output lock signal goes low and/or the output clock is lost."	20-9
v1.0 (January 2008) 51700094-021-0	The "PLL Behavior at Brownout Condition" section was added.	20-9

21 – ProASIC3/E SSO and Pin Placement Guidelines

Introduction

Ground bounce and V_{CC} bounce have always been present in digital integrated circuits (ICs). With the advance of technology and shrinking CMOS features, the speed of designs, I/O slew rates, and the size of I/O busses have increased significantly in the past few years. As a result, simultaneously switching outputs (SSOs) and their effects on signal integrity have become an important factor in any digital IC design. When SSOs are not properly designed into a board layout or digital IC, data corruption and system failure may result.

To prevent SSO-induced issues in modern digital systems, designers must compromise an elegant board layout for reliability. An elegant board layout may include practices such as placing all inputs on one side of a chip, outputs on the opposite side, and all bus pins next to each other to make board layout simple. In today's digital systems, utilizing modern FPGAs such as Actel ProASIC®3/E may result in data corruption due to ground bounce, V_{CC} bounce, or crosstalk. To design a reliable system for ProASIC3/E FPGAs, follow three simple rules:

- 1. Identify the SSOs in a design as early in the design cycle as possible, and spread them out across the entire die periphery. Avoid clusters of more than four adjacent SSO pins.
- 2. Identify sensitive (and usually asynchronous) system signals, and shield them from the effects of SSO (specific shielding techniques are discussed later in this document).
- 3. Use the lowest possible I/O slew rate and drive strength the design timing will support.

Furthermore, relatively large lead inductance in PQ, TQ, and VQ packages makes these packages more vulnerable to SSOs and hence undesirable for high-speed designs or designs with a considerable number of SSOs. FG or BG packages are preferred in such designs because they show much better SSO performance. By following the above three rules, you will create reliable systems free from the effects of SSOs. The following sections cover specific SSO recommendations and mitigation techniques for designs that do not comply with these recommendations.

SSO Effects

The total number of SSOs for each bus is determined by identifying the outputs that are synchronous to a single clock domain, have their clock-to-out times within ±200 ps of each other, and are placed next to each other on die pads that are on both sides of a sensitive I/O, as shown in Figure 21-1 on page 21-2. The sensitive I/O affected by SSO is sometimes referred to as the victim I/O or quiet I/O. SSOs may affect the victim I/O if the total number of SSOs on both sides of the victim I/O exceeds the ProASIC3/E SSO recommendation. It is important to note that the SSOs should be referenced to the die pads and not package pins, since neighboring package pins are not necessarily next to each other on the die (e.g., for BG and FG packages). This can be determined by using MultiView Navigator (MVN) in the Designer software, or die/package bonding diagrams provided by Actel. However, when routing traces on the board, it is important to note that SSOs on neighboring traces on the board may affect the quiet I/O surrounded by the SSO traces due to crosstalk or coupling.

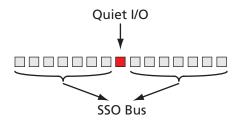


Figure 21-1 • Basic Block Diagram of Quiet I/O Surrounded by SSO Bus

SSO Effect on Power and Ground for Quiet Outputs

If SSOs toggle in one direction (either HIGH to LOW or LOW to HIGH), a significant amount of current quickly begins to flow to the ground or V_{CCI} pins. This current is the sum of the simultaneous sink or source currents of the CMOS output buffers. The quick jump in current causes a voltage drop on the parasitic inductance between the board and die V_{CCI} and ground ($V = L \times di/dt$). For more information about the ground and V_{CCI} bounce phenomenon, refer to the Simultaneous Switching Noise application note. The local fluctuations of the V_{CCI} and ground levels may cause the signals on quiet outputs (measured with respect to the fluctuating V_{CCI} and ground) to be misinterpreted as unwanted logic glitches.

SSO Effect on Inputs

SSOs may also affect quiet inputs due to the mutual inductance and capacitance on the package in addition to possible crosstalk of signal traces on the board. SSOs can cause logic glitches on any quiet inputs they surround. The unwanted glitches may cause functional failures if they are propagated through the input buffer. In SSO characterization of ProASIC3/E devices, glitches are considered errors if they cause internal latches in the design to trigger.

SSO Effect on Output Delay (push-out)

As the speed and I/O slew rate of digital ICs increase, effects of ground and V_{CCI} bounce start to surface in digital system designs. One of these effects is output delay or push-out. The ground bounce and V_{CCI} dip induced by SSO transitions creates a temporary collapse of internal V_{CCI} and/or GND supply levels in the output buffers. This change in supply level increases the output buffer propagation delay time. It is important to note that push-out occurs on the SSO bus itself as well as on the victim outputs. Multiple factors, such as SSO bus frequency, drive strength, and slew rate, contribute to push-out. These factors can be adjusted to mitigate the push-out phenomenon. If the clock-to-out time of the victim output is important, the push-out delay should be considered in the timing budget of the design.

SSO Effect on Minimum Input Slew Rate (input maximum rise/fall time)

If the SSOs surrounding an input exceed the Actel recommendation, the minimum slew rate requirement for that input may be affected. The minimum input slew rate is the slowest signal transition time (from 0 to 1 or vice versa) at the input that does not cause unwanted logic glitches during signal transition. Figure 21-2 on page 21-3 illustrates the unwanted logic glitches with slow transition times. As shown, the logic glitch due to the slow input transition time may cause logic malfunction at edge-sensitive inputs (i.e., clock signals). If the sensitive inputs are affected by the SSO bus, the input minimum slew rate (maximum rise and fall time) should be reduced from what is listed in the device datasheet. Usually, synchronous, level-sensitive inputs are not prone to malfunction due to this phenomenon because their logic value is important only when sampled by a clock.

21-2 v1.0

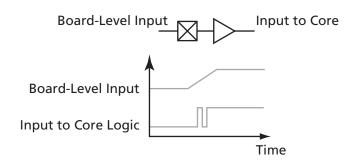


Figure 21-2 • Slow Rise/Fall Time Causing Glitches at the Output of an Input Buffer

Shielding from SSOs

When exposure of sensitive signals (e.g., asynchronous reset) to SSOs is inevitable, these signals need to be shielded from the SSOs to mitigate the unwanted effects. Shielding is basically separating the sensitive signals from SSOs using neighboring pins. Figure 21-3 shows a basic block diagram depicting a victim output in the presence of an SSO bus.

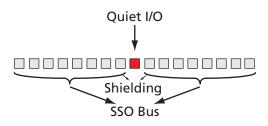


Figure 21-3 • Shielding Scheme

There are different shielding techniques that can be used to protect the victim I/O from the SSO bus. Before describing these techniques, the concept of *virtual ground* and *virtual V_{CCI}* should be understood.

Virtual Ground

Virtual ground, also known as soft ground, is used to improve noise performance. As opposed to a real ground, which is connected to planes within the package, a virtual ground is connected to the planes through the impedance of an I/O buffer. A virtual ground is a ground pin implemented using regular I/O ports. To implement a virtual ground, instantiate an output buffer (with highest drive strength and slew rate) in the design. Tie the input of this output buffer to zero within the design so the output buffer is constantly driving to the ground level.

Virtual V_{CCI}

Virtual V_{CCI} is similar to virtual ground. The only difference is that in the case of virtual V_{CCI} , the output buffer is permanently driving to logic HIGH.

In general, there are two shielding methods recommended by Actel: a) using GND pins or virtual grounds and b) using any V_{CCI} , GND, V_{CCI} , unused I/O, used (but not sensitive) I/O, or any combination of these pins.

Shielding Using GND or Virtual Ground Pins

When shielding sensitive I/Os from the SSO bus, GND or virtual ground pins can be used if required. In this case, two or three GND or virtual ground pins should be placed on each side of the quiet I/O. The shielding pins should be connected externally to the board-level ground. To prevent any board-level coupling or crosstalk noise on the sensitive I/Os, the shielding pins should be routed on

v1.0 21-3

the board alongside the SSO bus for the whole length of the SSO traces and on the same board layer. These shielding traces should be connected to board ground at both ends of their length.

Shielding Using Other Pins

The type of shielding pins is not restricted to GND or virtual grounds. The shielding pins can also be V_{CCI} , V_{CCII} , virtual V_{CCI} , unused I/Os, or used I/Os that are not sensitive to SSO effects (e.g., outputs driving LEDs).

How to Use This Document

The rest of this document is divided based on three different SSO effects: on outputs, on inputs, and on Clock Conditioning Circuits (CCCs). Each section includes tables that identify the recommended maximum number of SSOs and the required shielding if the number of SSOs exceeds the recommendation. The tables are categorized by device/package type (e.g., A3P600-FG484) and I/O configuration of the SSO bus (i.e., drive strength and slew rate). If the desired device/package combination cannot be found in the tables, choose the SSO recommendation for the closest package type and the next smaller die size. The following example describes two scenarios in which the SSO recommendation for another device/package can be used for a member of the ProASIC3/E family:

- 1. SSO guidelines for A3P250-PQ208 can be used when designing for A3P400-PQ208.
- SSO guidelines for A3PE600-FG484 can be used when designing for A3PE1500-FG676.

You should study this entire document, consider the desired device/package combination, define the worst-case SSO scenario, and use the SSO guidelines or shielding recommendations described in the tables. At the end of each section, guidelines are given on how to mitigate the effects of SSOs. Note that the data presented in this document is collected at nominal operating conditions (1.5 V core voltage and room temperature). CMOS transistors switch faster when cold, and therefore the edge rates become faster, so SSO effects are usually worse at lower temperatures.

At the end of this document, some general board-level design guidelines are included. Actel recommends that you follow these guidelines when designing boards.

SSO Effects on Outputs

This section describes the SSO effects on other outputs. As stated in the "Shielding from SSOs" section on page 21-3, in ProASIC3 and ProASIC3E devices, the effects of SSOs on quiet outputs are categorized by ground bounce, V_{CCI} bounce, and push-out. The following sections give the characteristics of SSO effects on outputs and provide guidelines on how to mitigate these effects.

Ground and V_{CCI} Bounce

The most widely known effects of SSOs are ground and V_{CCI} bounce. This section characterizes ProASIC3/E ground and V_{CCI} bounce in the presence of SSOs. Since outputs with higher drive strength or faster slew rate source/sink higher current at the time of switching, SSOs are more disruptive when they are configured at higher drive strength and high slew rate. Table 21-1 on page 21-5 lists the number of SSOs causing specified levels of ground and V_{CCI} bounce for various device, package, and SSO bus configurations. A disruptive ground bounce is one with a 1.25 V peak and 1 ns width—enough to trigger a high-speed input to change its value from zero to one. Similarly, a disruptive V_{CCI} bounce causes oscillations on the quiet output (driving HIGH) with a magnitude of 2 V and width of 1 ns. These values are chosen based on Actel bench experiments using typical CMOS input sensitivity.

21-4 v1.0

Device	Drive Strength (mA)	Slew Rate	SSOs Causing GND Bounce	SSOs Causing V _{CCI} Bounce
A3P250-PQ208	24	High	4	2
		Low	High 4 Low 4 High 8 Low 16 High 6 Low 8	6
	12	High	8	12
		Low	16	16
A3PE600-PQ208	24	High	6	4
		Low	8	8
	12	High	6 4 8 8 10 12	
		Low	14	14 16
A3PE600-FG484	24	High	24	10
		Low	56	16
	12	High	>64	32
		Low	>64	>64

Table 21-1 • Number of SSOs Causing Specified Ground and V_{CCI} Bounce

Output Push-Out

As described in the "SSO Effect on Output Delay (push-out)" section on page 21-2, if an output is surrounded by SSOs, the propagation delay of that output may be increased due to the noise on ground or V_{CCI} . Figure 21-4 shows a simple diagram of the push-out effect. As shown, the push-out effect occurs only if the affected output toggles at the same time as the SSO bus. If the outputs surrounded by the SSO bus are not switching simultaneously (within 200 ps of each other) with the SSOs, the outputs are not affected by the push-out phenomenon.

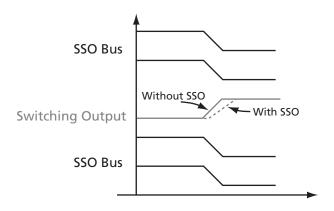


Figure 21-4 • SSO Push-Out Effect

v1.0 21-5

Table 21-2 lists the increase in output delay for variou	us SSO widths and configurations.
--	-----------------------------------

Table 21-2 • SSO Push-Out Effect on an Output Surrounded by SSOs

Package	Drive Strength (mA)	Slew Rate	5 < SSOs < 10	SSOs ≥ 10
PQ208	24	High	<1.1 ns	<1.8 ns
		Low	<600 ps	<1.2 ns
	12	High	<900 ps	<1.5 ns
		Low	Negligible	Negligible
	≤8	Any	Negligible	Negligible
FG484	Any	Any	Negligible	Negligible

Notes:

- 1. Table data obtained when output load is 30 pF.
- 2. Larger output load increases the push-out effect. As an example, increasing the output load from 30 pF to 50 pF increases the push-out effect by 40%.

Mitigating SSO Effects on Outputs

Any effort to mitigate the SSO effect starts with eliminating the SSOs themselves. As described in "Introduction" on page 21-1, the SSOs should be spread across the die pads to avoid a large SSO bus concentrated in one area of the die. If possible, the clock-to-out timing of output busses should be staggered to reduce the number of SSOs in vicinity of sensitive outputs. If placement of sensitive outputs close to an SSO bus is inevitable, such outputs should be shielded from the bus. The shielding scheme to protect delay-sensitive outputs is similar to the guidelines presented in Table 21-3 on page 21-7. Whenever shielding is required, it is recommended to use GND or virtual ground pins as shielding. However, it is acceptable to use other shielding pins to protect sensitive outputs from SSOs.

Segmenting SSO busses into smaller sections helps mitigate the SSO effect. The SSO bus can be segmented by inserting spacers among the SSO bus pins when placed on the die pads, as shown in Figure 21-5. The spacers can be GND or virtual ground, V_{CCI} or virtual V_{CCI} , unused I/O, or used I/Os that are not assigned to sensitive signals and do not toggle frequently or synchronously with the SSOs (e.g., signals driving LEDs).

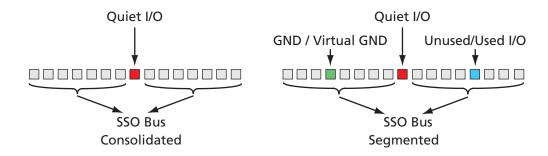


Figure 21-5 • Example of Consolidated and Segmented SSO Bus

Also, as described in Table 21-1 on page 21-5 and Table 21-2, FG and BG packages show much better characteristics with respect to SSO effects than PQ, TQ, or VQ packages. Therefore, for relatively high-speed designs or designs that have a significant number of wide output busses, FG or BG packages are strongly recommended.

In addition to the logic design and device package type, board-level design is a key parameter in mitigating SSO effects. A well-designed PCB, capable of providing clean voltage supplies to the FPGA, is less susceptible to noise and therefore performs better.

21-6 v1.0

Board-Level Timing Analysis with Push-Out

Since the push-out effect changes the clock-to-out timing of the signal surrounded by SSOs, designers should take care when performing board-level timing analysis for such outputs. The following are the Actel recommendations for calculating the clock-to-out timing of signals affected by push-out phenomena:

- For board-level setup time calculations:
 Clock-to-out = worst-case clock-to-out reported by SmartTime + push-out delay
- For board-level hold time calculations:
 Clock-to-out = best-case clock-to-out reported by SmartTime

SSO Effects on Inputs

As described in the "Virtual V_{CCI}" section on page 21-3, if a quiet input is surrounded by SSOs, the logic driven by that input may experience a glitch when the SSO bus is switching. In ProASIC3/E devices in FG or BG packages, the inputs are not affected by an SSO bus. However, in PQ, TQ, and VQ packages, due to larger lead inductance, the SSOs may affect the inputs as described in the "SSO Effect on Inputs" section on page 21-2 and the "SSO Effect on Minimum Input Slew Rate (input maximum rise/fall time)" section on page 21-2. Table 21-3 describes the input shielding required for various SSO sizes with different I/O configurations. For example, in a PQ208 package, if a sensitive input (e.g., asynchronous reset) is surrounded by an SSO bus configured with 16 mA drive strength and low slew rate, two shielding pins are required on each side of the sensitive input to prevent any logic glitch on the reset line during transition of the SSO bus.

Table 21-3 • Shielding Requirement Protecting Inputs from SSO 1

Package	Drive Strength (mA)	Slew Rate	Shielding Required ² for 4 < SSO < 8	Shielding Required ² for SSO > 8
PQ208	24	High	2	3
		Low	2	2
	16	High	2	3
		Low	2	2
	12	High	0	1
		Low	0	0
	8	Any	0	0
FG484	Any	Any	0	0

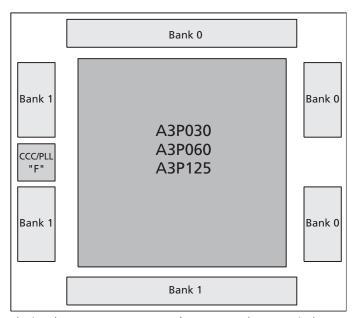
Notes:

- 1. Measurements were performed with a 3.3 V swing on the SSO bus.
- 2. Shielding pins required on the side of the sensitive input adjacent to the SSO bus.

In PQ, TQ, and VQ packages, the sensitive inputs may be affected by SSOs as described in the "SSO Effect on Minimum Input Slew Rate (input maximum rise/fall time)" section on page 21-2. If the edge-sensitive inputs surrounded by an SSO bus rise or fall at the same time as an SSO transition, the maximum rise and fall times of those inputs should be less than 3 ns to avoid any glitches, as described the "SSO Effect on Minimum Input Slew Rate (input maximum rise/fall time)" section on page 21-2.

v1.0 21-7

Mitigating SSO Effects on Inputs


As illustrated in Table 21-1 on page 21-5, in PQ, TQ, and VQ packages, inputs may be affected by a surrounding SSO bus, depending on the configuration and number of the SSOs. FG and BG packages show much better SSO characteristics due to smaller lead inductance. Therefore, designers are encouraged to use these packages in designs that have SSOs and are sensitive to noise. It is also recommended that designers use the general guidelines described in "Introduction" on page 21-1 to eliminate SSO conditions that may cause system signal integrity problems.

In addition, experiments at Actel show that in ProASIC3/E devices, inputs configured with the Schmitt Trigger option are slightly more tolerant to the noise induced by an SSO bus. Therefore, Actel recommends that designers select the Schmitt Trigger option for critical inputs surrounded by SSOs whenever possible.

Whenever shielding is required by Table 21-3 on page 21-7, it is recommended to use GND or virtual ground pins as shielding (described in the "Shielding Using GND or Virtual Ground Pins" section on page 21-3); however, it is acceptable to use other shielding pins (as described in the "Shielding Using Other Pins" section on page 21-4) to protect the sensitive inputs from SSOs.

Mitigating SSO Effects on Clock Conditioning Circuits

In general, analog circuitry is more sensitive to noise than digital signals. As described in the "Shielding from SSOs" section on page 21-3, any sensitive signal surrounded by an SSO bus is affected by the noise induced by SSO activity. Therefore, if the analog power supply of the ProASIC3/E PLL (i.e., the V_{CCPLX} pin) is surrounded by SSOs, the noise induced by the SSOs in the analog supply will cause an increase in the PLL output jitter. Experiments at Actel show that if the analog supply pin of the PLL is surrounded by two or more SSOs, the output jitter of the corresponding PLL will be increased beyond the jitter specification in the ProASIC3/E datasheet. Therefore, if PLLs are used in ProASIC3/E devices, the analog supplies of the PLLs used should be shielded from any SSOs by avoiding the placement of SSOs in neighboring I/O banks. Refer to Figure 21-6, Figure 21-7 on page 21-9, and Figure 21-8 on page 21-9 for more information about the I/O bank neighboring the PLL.

Note: The A3P030 device does not support a PLL (V_{COMPLF} and V_{CCPLF} pins).

Figure 21-6 • Naming Conventions of ProASIC3 Devices with Two I/O Banks

21-8 v1.0

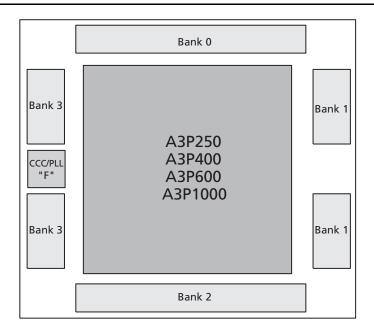


Figure 21-7 • Naming Conventions of ProASIC3 Devices with Four I/O Banks

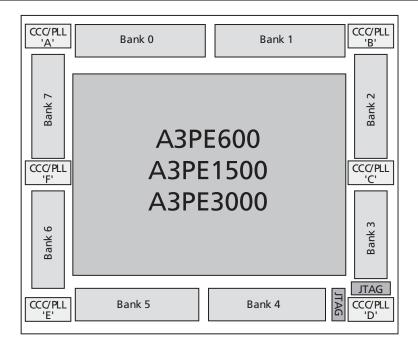


Figure 21-8 • User I/O Naming Conventions of ProASIC3E Devices

v1.0 21-9

Conclusion

As digital designs get faster and larger, SSOs and their effects become a more critical part of system signal integrity analysis. This application note provides data characterizing and predicting the effects of SSOs on sensitive inputs and outputs in ProASIC3/E FPGAs. SSO effects should be mitigated to ensure the functionality of the design; this application note provides specific techniques for doing so.

SSO mitigation techniques should be conducted in parallel with chip-level and board-level design, as they play important roles in providing a clean digital system. For board-level design guidelines, refer to the *Board-Level Considerations* application note.

Due to the nature of SSOs, FG and BG packages are more tolerant to SSO effects than PQ or TQ packages. Therefore, for high-speed designs or designs with large numbers of SSOs, FG and BG packages are strongly recommended.

Related Documents

Application Notes

Simultaneous Switching Noise
http://www.actel.com/documents/SSN_AN.pdf
Board-Level Considerations
http://www.actel.com/documents/BoardLevelCons_AN.pdf

Part Number and Revision Date

This document was previously published as an application note describing features and functions of the device, and as such has now been incorporated into the device handbook format. No technical changes have been made to the content.

Part Number 51700094-022-0 Revised January 2008

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.0)	Page
51900140-1/6.05	Figure 21-6 · Naming Conventions of ProASIC3 Devices with Two I/O Banks, Figure 21-7 · Naming Conventions of ProASIC3 Devices with Four I/O Banks, and Figure 21-8 · User I/O Naming Conventions of ProASIC3E Devices were updated.	

21-10 v1.0

22 – Metastability Characterization Report for Actel Flash FPGAs

Introduction

Whenever asynchronous data is registered by a clocked flip-flop, there is a probability of setup or hold time violation on that flip-flop. In applications such as synchronization or data recovery, due to the asynchronous nature of the data input to the flip-flops, the data transition time is unpredictable with respect to the active edge of the clock. The susceptibility of a circuit to reaching this metastable state can be described using a probabilistic equation. Setup or hold violations cause the output of the flip-flop to enter a symmetrically balanced transient state, called a metastable state. The metastable state is manifested in a bistable device by the outputs glitching, going into an undefined state somewhere between 1 and 0, oscillating, or by the output transition being delayed for an indeterminable time. Once the flip-flop has entered the metastable state, the probability that it will still be metastable later has been shown to be an exponentially decreasing function of time. Because of this property, a designer should simply wait for additional time after the specified propagation delay before sampling the flip-flop output so that the designer can be assured that the likelihood of metastable failure is remote enough to be tolerable. The additional time of waiting becomes shorter, even though still more than zero, as the technology improves and semiconductor devices reach higher ranges of speed.

This document discusses a description of metastability equations followed by metastability characterization of ProASIC,[®] ProASIC^{PLUS®}, ProASIC3, and ProASIC3E FPGAs. This application note also provides examples on the usage of metastability equations.

Theory of Metastability

In general, the mean time between failures (MTBF) should be defined statically. Figure 22-1 on page 22-2 depicts a simple circuit, used to synchronize asynchronous data with the system clock. EQ 22-1 shows the relation between MTBF and the clock-to-out settling time of a flip-flop:

MTBF =
$$e^{(T_S/\tau)}/(T_o \times f_d \times f_c)$$

EQ 22-1

$$T_s = T_{co} + T_{met}$$

EQ 22-2

In EQ 22-1 and EQ 22-2:

T_s = Total flip-flop output settling time

 T_{co} = Flip-flop clock-to-out delay

T_{met} = Additional settling time added to the normal clock-to-out delay of the flip-flop before sampling the output of the flip-flop

t = Metastable decay constant.

 T_0 = Metastability aperture at T_{co} = 0 ns (this parameter represents the likelihood that a flip-flop will enter a metastable state)

f_d = Data transition rate (twice the data frequency for periodic signals, since there are two transitions per period)

f_c = Clock frequency

v1.0 22-1

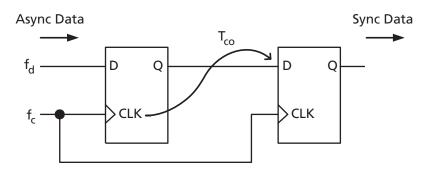


Figure 22-1 • Example of Synchronization Circuit

As mentioned earlier, the aperture represents the likelihood of the flip-flop entering a metastable state. The aperture is defined as a time window within the clock period. Data transitioning inside the aperture will cause the flip-flop output settling time to be greater than $T_{co} + T_{met}$. The aperture is calculated by recording the number of instances in which the settling time exceeds the specified $T_{co} + T_{met}$. The metastability aperture decreases exponentially as the allowed settling time ($T_{co} + T_{met}$) increases:

Aperture =
$$T_0 \times e^{-(T_{co} + T_{met})/\tau}$$

EQ 22-3

If the data transition occurs within the aperture, the flip-flop will stay metastable beyond the allocated settling time ($T_{co} + T_{met}$); and therefore, the second flip-flop would register invalid data (Figure 22-1). The probability of an asynchronous data transition is uniformly distributed over the clock period. Therefore, the probability of a single data transition occurring in the metastable aperture is calculated by EQ 22-4:

$$p = aperture / T_c$$

EQ 22-4

where T_c is the clock period.

In each clock cycle, the failure occurs if the data transition time is within the aperture. Therefore, the number of failures in one clock cycle can be derived by EQ 22-5:

$$n_e = n \times p = n \times (aperture / T_c)$$

EQ 22-5

where n_e represents the number of errors per clock cycle, and n is the number of data transitions per clock period (f_d / f_c).

The number of clock cycles in the operation time (N) is the total time divided by the clock period, or

$$N = T_{operation} / T_{c}$$

EQ 22-6

Combining EQ 22-5 and EQ 22-6 results in the total number of failures per operation time (N_e):

$$N_e = N \times n_e = (T_{operation} / T_c) \times (f_d / f_c) \times (aperture / T_c)$$

EQ 22-7

Since $T_c = 1 / f_c$, EQ 22-7 can be simplified to

$$N_e = T_{operation} \times f_d \times f_c \times aperture$$

EQ 22-8

MTBF is defined as the operation time divided by the number of failures, or

MTBF = 1/
$$(f_d \times f_c \times aperture) = 1/ (T_0 \times e^{-(Tco + Tmet) / \tau} \times f_d \times f_c)$$

EQ 22-9

22-2 v1.0

FPGA Metastability Characterization

Like other FGPA manufacturers, to absorb the fixed value the of e^{Tco} term, Actel simplifies EQ 22-9 on page 22-2 to the following form:

$$MTBF = e^{C2 * Tmet} / (C1 \times f_d \times f_c)$$

EQ 22-10

where C2 is a constant inversely proportional to the metastability decay constant, and C1 is the proportionality constant, which is similar to aperture.

The FPGA metastability characterization is a series of tests conducted to identify the value of C1 and C2. There are several environmental and test condition factors that influence the characterization. These factors include but are not limited to the rise time of data and clock signals, input voltage levels, and operating voltage and temperature. Moreover, increased system noise due to switching of both internal nodes and I/Os can influence the metastability results. Therefore, it is essential to provide a suitable environment for testing.

Test Design Description

Figure 22-2 shows a schematic of the test circuit used to characterize the metastability in Actel devices. The propagation delay, operating under specified setup and hold time, is measured from the output of flip-flop DFF#1 to the input of flip-flop DFF#3. This value is denoted by EQ 22-11:

$$T_{min} = T_{cof}(DFF#1) + T_{delay} + T_{su}(DFF#3)$$

EQ 22-11

where T_{delay} is the propagation delay from output of DFF#1 to input of DFF#3, T_{cof} is the clock-to-out delay of DFF#3, and T_{su} represents the setup time requirement of DFF#3. T_{min} corresponds to the T_{co} in EQ 22-9 on page 22-2 and is the reference time to which the additional settling time, T_{met} , is added for characterization of metastability.

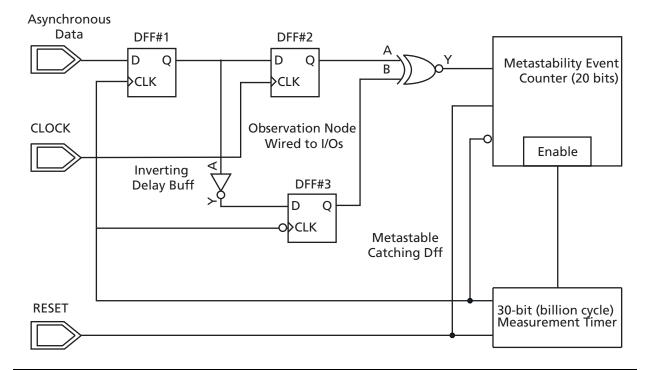


Figure 22-2 • Test Circuit

DFF#2 is clocked on the same edge as DFF#1. Conversely, DFF#3 must resolve the signal driven from the metastable DFF#1 before the falling clock edge. As can be seen in the design in Figure 22-2,

v1.0 22-3

T_{min} + T_{met} is the difference between the rising and falling edge of the clock. Therefore, it can be easily set or measured by adjusting the duty cycle of the clock signal. A detectable metastable event occurs when DFF#2 and DFF#3 are in the SAME state. In the expected operation, DFF#2 and DFF#3 are in opposite states due to the inverter in the DFF#3 input data path. The XNOR gate allows the event counter to record these metastable events. After a billion clock cycles, the counter is read and the MTBF is calculated.

In this test, T_{min} was resolved to within $\pm 0.01\%$ of the duty cycle at 10 MHz. This translates to an error of ± 10 ps.

The other test setup parameters were as follows:

- Clock and data inputs were driven from independent pulse generators (<1 ns rise time).
- Clock input levels were from 0 V to 2.5 V. These levels were required due to the impedance matching of Actel's test fixture. Data input levels were 0 V to 3.3 V.
- FPGA power supplies for all tests were at V_{DDP} = 3.3 V and V_{DD} = 2.5 V.

Metastability Measurement Results

EQ 22-10 on page 22-3 can be reformed into EQ 22-12:

$$ln(MTBF) = C2 \times T_{met} - ln(C1 \times f_d \times f_c)$$

EQ 22-12

The plot of EQ 22-12 is a linear relationship between ln(MTBF) and T_{met} , where C2 is the slope of the line. Figure 22-3 shows the plot of EQ 22-12 for Actel ProASIC and ProASIC FPGA families. C1 and C2 can be calculated from any two data points.

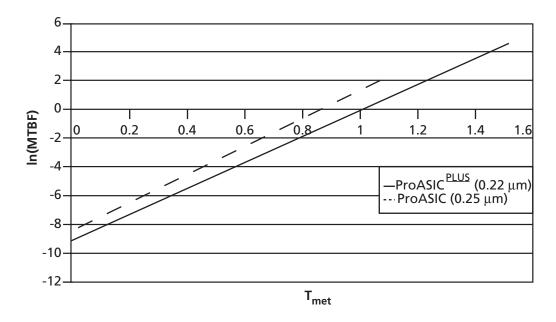


Figure 22-3 • Metastability Comparison of Actel FPGA Families

22-4 v1.0

The metastability theory indicates that C1 and C2 are independent of the test clock and data frequency. The test results concur within experimental tolerances. The calculations of C1 and C2 are given in Table 22-1.

Table 22-1 • Metastability Coefficients for Actel Flash FPGAs

f _c = 10 MHz			
Device Family	C ₁ (s)	C ₂ (s)	
ProASIC	9.95E-11	1.03E+10	
ProASIC ^{PLUS}	1.56E-11	9.148E+09	
ProASIC3/E Core Registers	9.11E-12	1.57E+10	
ProASIC3/E I/O Registers	2.25E-12	1.91E+10	

Examples of Metastability Coefficients Usage

Metastability shows a statistical nature, and designers should allow enough additional time (T_{met}) that the likelihood of metastable failure is remote enough to be tolerable by the design specification.

For example, consider that the simple circuit in Figure 22-1 on page 22-2 is implemented in a ProASICPLUS device to synchronize an asynchronous data input to the FPGA. The following parameters are given to designer by either design specification or post-layout timing analysis:

 T_{co} = 10 ns, corresponding to a clock frequency of 100 MHz

Asynchronous data transition rate = 12.5 MHz

Tolerable MTBF = 1 year

If the designer does not allow additional sampling time ($T_{met} = 0$ ns) and run the clock at the rate of 100 MHz, EQ 22-12 on page 22-4 will result in MTBF = 51.2 μ s. This means that a metastability error will occur at the output of the second flip-flop every 51.2 μ s. This value exceeds the required MTBF of one year indicated in the design specification. To meet this requirement, the designer needs to allow additional T_{met} in the sampling time, which can be calculated as follows:

1 year = $365 \times 24 \times 3,600 = 31,536,000$ seconds

In 31,536,000 = 9.148E+09 × T_{met} – In (1.56E–11 × 100E6 × 12.5E6) $\geq T_{met}$ = 2.96 ns

Therefore, an additional 3 ns sampling time will fulfill the required MTBF.

Part Number and Revision Date

This document was previously published as an application note describing features and functions of the device, and as such has now been incorporated into the device handbook format. No technical changes have been made to the content.

Part Number 51700094-023-0

Revised January 2008

List of Changes

The following table lists critical changes that were made in the current version of the chapter.

Previous Version	Changes in Current Version (v1.0)	Page
5190062-1/5.04	Table 22-1 \cdot Metastability Coefficients for Actel Flash FPGAs was updated to include ProASIC3/E information.	22-5
5190062-0	This document was updated to provide a detailed description of the calculations being made.	

v1.0 22-5

Actel, IGLOO, Actel Fusion, ProASIC, Libero, Pigeon Point and the associated logos are trademarks or registered trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective owners.

Actel is the leader in low-power FPGAs and mixed-signal FPGAs and offers the most comprehensive portfolio of system and power management solutions. Power Matters. Learn more at www.actel.com.

Actel Corporation

2061 Stierlin Court Mountain View, CA 94043-4655 USA **Phone** 650.318.4200 **Fax** 650.318.4600

Actel Europe Ltd.

River Court, Meadows Business Park Station Approach, Blackwater Camberley Surrey GU17 9AB United Kingdom

Phone +44 (0) 1276 609 300 **Fax** +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Buillding 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan

Phone +81.03.3445.7671 **Fax** +81.03.3445.7668 http://jp.actel.com

Actel Hong Kong

Room 2107, China Resources Building 26 Harbour Road Wanchai, Hong Kong **Phone** +852 2185 6460

Fax +852 2185 6488 www.actel.com.cn