
Fusion FPGA Fabric User’s Guide

http://www.actel.com/survey/rating/?f=Fusion_UG.pdf

Actel Corporation, Mountain View, CA 94043
© 2010 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200265-0

Release: July 2010

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of merchantability
or fitness for a particular purpose. Information in this document is subject to change without notice. Actel assumes no
responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any unauthorized person
without prior written consent of Actel Corporation.

Trademarks
Actel, Actel Fusion, IGLOO, Libero, Pigeon Point, ProASIC, SmartFusion and the associated logos are trademarks or
registered trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective
owners.

Fusion FPGA Fabric User’s Guide

Table of Contents
Introduction . 9
Contents . 9
Revision History . 9
Related Information . 9

1 FPGA Array Architecture in Low Power Flash Devices . 11
Device Architecture . 11
FPGA Array Architecture Support . 12
Device Overview . 13
Related Documents . 22
List of Changes . 22

2 Global Resources in Actel Low Power Flash Devices . 23
Introduction . 23
Global Architecture . 23
Global Resource Support in Flash-Based Devices . 24
VersaNet Global Network Distribution . 25
Chip and Quadrant Global I/Os . 27
Spine Architecture . 33
Using Clock Aggregation . 36
Design Recommendations . 38
Conclusion . 50
Related Documents . 50
List of Changes . 51

3 Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs 53
Introduction . 53
Overview of Clock Conditioning Circuitry . 53
CCC Support in Actel’s Flash Devices . 55
Global Buffers with No Programmable Delays . 56
Global Buffer with Programmable Delay . 56
Global Buffers with PLL Function . 59
Global Input Selections . 62
Device-Specific Layout . 69
PLL Core Specifications . 75
Functional Description . 76
Software Configuration . 86
Detailed Usage Information . 94
Recommended Board-Level Considerations . 102
Conclusion . 103
Related Documents . 103
List of Changes . 103

4 Fusion Clock Resources . 107
Internal RC Oscillator . 108
Revision 0 3

Table of Contents
Crystal Oscillator (XTLOSC) . 112
No-Glitch Multiplexer (NGMUX) . 121
Real-Time Counter (RTC) . 129
Related Documents . 134
List of Changes . 134

5 Fusion Embedded Flash Memory Blocks. 135
Using the Embedded Flash Memory for Initialization . 135
Using the Embedded Flash Memory for General Data Storage . 156
Microprocessor/Microcontroller Interface . 179

6 FlashROM in Actel’s Low Power Flash Devices . 189
Introduction . 189
Architecture of User Nonvolatile FlashROM . 189
FlashROM Support in Flash-Based Devices . 190
FlashROM Applications . 192
FlashROM Security . 193
Programming and Accessing FlashROM . 194
FlashROM Design Flow . 196
Custom Serialization Using FlashROM . 201
Conclusion . 202
Related Documents . 202
List of Changes . 202

7 SRAM and FIFO Memories in Actel's Low Power Flash Devices . 203
Introduction . 203
Device Architecture . 203
SRAM/FIFO Support in Flash-Based Devices . 206
SRAM and FIFO Architecture . 207
Memory Blocks and Macros . 207
Initializing the RAM/FIFO . 220
Software Support . 226
Conclusion . 229
List of Changes . 229

8 Designing the Fusion Analog System . 231
Introduction . 231
Analog-to-Digital Converter Background . 231
ADC Clock . 234
Sample Sequencing Overview . 237
Sample Rate and Sample Sequence Calculation . 238
Acquisition Time Calculation . 239
Prescaler Selection . 241
Analog Configuration MUX (ACM) . 241

9 Fusion Design Solutions and Methodologies . 245
HDL Design with Analog System Soft IP . 245
Microprocessor/Microcontroller Design . 248

10 Interfacing with the Fusion Analog System: Processor/Microcontroller Interface 251
Objective . 251
4 Revision 0

Fusion FPGA Fabric User’s Guide
CoreAI . 251
Clocking Scheme . 254
Analog Configuration MUX Initialization . 256
ADC Configuration and Calibration . 259
Implementing Voltage Monitoring Applications . 260
Implementing Current Monitor Applications . 263
Implementing Temperature Monitor Applications . 264
Implementing Gate Driver Applications . 265
Design Example . 266
Designing with the RTC . 270
List of Changes . 270

11 Interfacing with the Fusion Analog System: IP Interface . 271
Fusion Analog System Soft IP Design . 271
System Overview – Interface Components . 272
System Operation . 274
SmartGen Soft IP Blocks . 275
Basic Analog Block Settings . 281
Soft IP Implementation Options . 283
Analog Configuration MUX (ACM) . 288
Sample Code . 289
List of Changes . 291

12 Temperature, Voltage, and Current Calibration in Fusion FPGAs . 293
Introduction . 293
General Calibration Concept . 294
Calibration Measurements . 295
Actel Calibration Solution . 297
Performing System-Level Calibration Using Fusion . 305
Conclusion . 307
Related Documents . 307
List of Changes . 307

13 I/O Software Control in Low Power Flash Devices. 309
Flash FPGAs I/O Support . 310
Software-Controlled I/O Attributes . 311
Implementing I/Os in Actel Software . 312
Assigning Technologies and VREF to I/O Banks . 322
Conclusion . 327
Related Documents . 327
List of Changes . 328

14 DDR for Actel’s Low Power Flash Devices . 329
Introduction . 329
Double Data Rate (DDR) Architecture . 329
DDR Support in Flash-Based Devices . 330
I/O Cell Architecture . 331
Input Support for DDR . 333
Output Support for DDR . 333
Instantiating DDR Registers . 334
Revision 0 5

Table of Contents
Design Example . 340
Conclusion . 342
List of Changes . 343

15 Prototyping With AFS600 for Smaller Devices. 345
Prototype Guideline . 346
Summary . 348

16 Programming Flash Devices . 349
Introduction . 349
Summary of Programming Support . 349
Programming Support in Flash Devices . 350
General Flash Programming Information . 351
Important Programming Guidelines . 357
Related Documents . 359
List of Changes . 360

17 Security in Low Power Flash Devices . 363
Security in Programmable Logic . 363
Security Support in Flash-Based Devices . 364
Security Architecture . 365
Security Features . 366
Security in Action . 370
FlashROM Security Use Models . 373
Generating Programming Files . 375
Conclusion . 386
Glossary . 386
References . 386
Related Documents . 387
List of Changes . 387

18 In-System Programming (ISP) of Actel’s Low Power Flash Devices Using FlashPro4/3/3X 389
Introduction . 389
ISP Architecture . 389
ISP Support in Flash-Based Devices . 390
Programming Voltage (VPUMP) and VJTAG . 391
Nonvolatile Memory (NVM) Programming Voltage . 391
IEEE 1532 (JTAG) Interface . 392
Security . 392
Security in ARM-Enabled Low Power Flash Devices . 393
FlashROM and Programming Files . 395
Programming Solution . 396
ISP Programming Header Information . 397
Board-Level Considerations . 399
Conclusion . 400
Related Documents . 400
List of Changes . 401

19 Microprocessor Programming of Actel’s Low Power Flash Devices . 403
Introduction . 403
6 Revision 0

Fusion FPGA Fabric User’s Guide
Microprocessor Programming Support in Flash Devices . 404
Programming Algorithm . 405
Implementation Overview . 405
Hardware Requirement . 408
Security . 408
Conclusion . 409
List of Changes . 410

20 Boundary Scan in Low Power Flash Devices. 411
Boundary Scan . 411
TAP Controller State Machine . 411
Actel’s Flash Devices Support the JTAG Feature . 412
Boundary Scan Support in Low Power Devices . 413
Boundary Scan Opcodes . 413
Boundary Scan Chain . 413
Board-Level Recommendations . 414
List of Changes . 415

21 UJTAG Applications in Actel’s Low Power Flash Devices . 417
Introduction . 417
UJTAG Support in Flash-Based Devices . 418
UJTAG Macro . 419
UJTAG Operation . 420
Typical UJTAG Applications . 422
Conclusion . 425
Related Documents . 426
List of Changes . 426

22 Fusion Board-Level Design Guidelines . 427
Objective . 427
Analog and Digital Plane Isolation . 427
Other Special Function Pins . 432
Application-Specific Recommendations . 434
List of Changes . 435

23 Fusion Solutions, Design Examples, and Reference Designs . 437
System Management Applications . 437
Other Applications . 438
Development System . 439

B Summary of Changes. 443
History of Revision to Chapters . 443

C Product Support . 445
Customer Service . 445
Actel Customer Technical Support Center . 445
Actel Technical Support . 445
Website . 445
Contacting the Customer Technical Support Center . 445

Index . 447
Revision 0 7

Introduction

Contents
This user’s guide contains information to help designers understand and use Actel's Fusion® mixed
signal FPGAs. Each chapter addresses a specific topic. Many of these chapters apply to other Actel
device families as well. When a feature or description applies only to a specific device family, this is made
clear in the text.

Revision History
The revision history for each chapter is listed at the end of the chapter. Most of these chapters were
formerly included in device handbooks. Some were originally application notes or information included in
device datasheets.
A "Summary of Changes" table at the end of this user’s guide lists the chapters that were changed in
each revision of the document, with links to the "List of Changes" sections for those chapters.

Related Information
Refer to the Fusion Mixed Signal FPGAs datasheet for detailed specifications, timing, and package and
pin information.
The Actel website page for Fusion mixed signal FPGAs is /www.actel.com/products/fusion/default.aspx.
Revision 0 9

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/products/fusion/default.aspx

1 – FPGA Array Architecture in Low Power Flash
Devices

Device Architecture

Advanced Flash Switch
Unlike SRAM FPGAs, the low power flash devices use a live-at-power-up ISP flash switch as their
programming element. Flash cells are distributed throughout the device to provide nonvolatile,
reconfigurable programming to connect signal lines to the appropriate VersaTile inputs and outputs. In
the flash switch, two transistors share the floating gate, which stores the programming information
(Figure 1-1). One is the sensing transistor, which is only used for writing and verification of the floating
gate voltage. The other is the switching transistor. The latter is used to connect or separate routing nets,
or to configure VersaTile logic. It is also used to erase the floating gate. Dedicated high-performance
lines are connected as required using the flash switch for fast, low-skew, global signal distribution
throughout the device core. Maximum core utilization is possible for virtually any design. The use of the
flash switch technology also removes the possibility of firm errors, which are increasingly common in
SRAM-based FPGAs.

Figure 1-1 • Flash-Based Switch

Sensing Switching

Switch In

Switch Out

Word

Floating Gate
Revision 0 11

FPGA Array Architecture in Low Power Flash Devices
FPGA Array Architecture Support
The flash FPGAs listed in Table 1-1 support the architecture features described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 1-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 1-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 1-1 • Flash-Based FPGAs

Series Family* Description

IGLOO® IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC®3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
12 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf

Fusion FPGA Fabric User’s Guide
Device Overview
The low power flash devices consist of multiple distinct programmable architectural features (Figure 1-5
on page 15 through Figure 1-7 on page 16):

• FPGA fabric/core (VersaTiles)
• Routing and clock resources (VersaNets)
• FlashROM
• Dedicated SRAM and/or FIFO

– 30 k gate and smaller device densities do not support SRAM or FIFO.
– Automotive devices do not support FIFO operation.

• I/O structures
• Flash*Freeze technology and low power modes

Notes: * Bank 0 for the 30 k devices
† Flash*Freeze mode is supported on IGLOO devices.

Figure 1-2 • IGLOO and ProASIC3 nano Device Architecture Overview with Two I/O Banks (applies to 10 k and
30 k device densities, excluding IGLOO PLUS devices)

VersaTile

I/Os

User Nonvolatile
FlashROM

Flash*Freeze†
Technology

Charge
Pumps

Bank 1*

B
an

k
1

B
ank 0

Bank 1
CCC-GL
Revision 0 13

FPGA Array Architecture in Low Power Flash Devices
Note: † Flash*Freeze mode is supported on IGLOO devices.
Figure 1-3 • IGLOO Device Architecture Overview with Two I/O Banks with RAM and PLL

(60 k and 125 k gate densities)

Note: † Flash*Freeze mode is supported on IGLOO devices.
Figure 1-4 • IGLOO Device Architecture Overview with Three I/O Banks

(AGLN015, AGLN020, A3PN015, and A3PN020)

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC

I/Os

ISP AES
Decryption

User Nonvolatile
FlashRom

Flash*Freeze†
Technology

Charge
Pumps

Bank 0

B
an

k
1

B
an

k
1 B

ank 0
B

ank 0

Bank 1

VersaTile

CCC-GL

I/Os

User Nonvolatile
FlashROM

Flash*Freeze†
Technology

Charge Pumps

Bank 1

B
an

k
1

B
ank 0

Bank 1
14 Revision 0

Fusion FPGA Fabric User’s Guide
Note: Flash*Freeze technology only applies to IGLOO and ProASIC3L families.
Figure 1-5 • IGLOO, IGLOO nano, ProASIC3 nano, and ProASIC3/L Device Architecture Overview with Four

I/O Banks (AGL600 device is shown)

Note: * AGLP030 does not contain a PLL or support AES security.
Figure 1-6 • IGLOO PLUS Device Architecture Overview with Four I/O Banks

ISP AES
Decryption*

User Nonvolatile
FlashRom

Flash*Freeze†

Technology
Charge
Pumps

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC

I/Os

Bank 0
B

an
k

3
B

an
k

3 B
ank 1

B
ank 1

Bank 2

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC*

I/Os

ISP AES
Decryption*

User Nonvolatile
FlashRom

Flash*Freeze
Technology

Charge
Pumps

Bank 0

B
ank 1

B
ank 1B

an
k

3
B

an
k

3

Bank 2
Revision 0 15

FPGA Array Architecture in Low Power Flash Devices
Note: Flash*Freeze technology only applies to IGLOOe devices.
Figure 1-7 • IGLOOe and ProASIC3E Device Architecture Overview (AGLE600 device is shown)

4,608-Bit Dual-Port SRAM
or FIFO Block

VersaTile

RAM Block

CCC

Pro I/Os

4,608-Bit Dual-Port SRAM
or FIFO Block

RAM Block

ISP AES
Decryption

User Nonvolatile
FlashRom

Flash*Freeze†

Technology
Charge
Pumps

B
ank 3

B
ank 2

Bank 0 Bank 1

Bank 5 Bank 4

B
an

k
7

B
an

k
6

16 Revision 0

Fusion FPGA Fabric User’s Guide
Core Architecture
VersaTile
The proprietary IGLOO and ProASIC3 device architectures provide granularity comparable to gate
arrays. The device core consists of a sea-of-VersaTiles architecture.
As illustrated in Figure 1-8, there are four inputs in a logic VersaTile cell, and each VersaTile can be
configured using the appropriate flash switch connections:

• Any 3-input logic function
• Latch with clear or set
• D-flip-flop with clear or set
• Enable D-flip-flop with clear or set (on a 4th input)

VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be
inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line
routing resources. VersaTiles and larger functions can be connected with any of the four levels of routing
hierarchy.
When the VersaTile is used as an enable D-flip-flop, SET/CLR is supported by a fourth input. The
SET/CLR signal can only be routed to this fourth input over the VersaNet (global) network. However, if, in
the user’s design, the SET/CLR signal is not routed over the VersaNet network, a compile warning
message will be given, and the intended logic function will be implemented by two VersaTiles instead of
one.
The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the
connection is to the efficient long-line or very-long-line resources.

* This input can only be connected to the global clock distribution network.
Figure 1-8 • Low Power Flash Device Core VersaTile

Switch (flash connection) GroundVia (hard connection)Legend:

 Y
Pin 1

0
1

0
1

0
1

0
1

Data
 X3

CLK
 X2

 CLR/
Enable
 X1

CLR

XC*

F2

YL
Revision 0 17

FPGA Array Architecture in Low Power Flash Devices
Array Coordinates
During many place-and-route operations in the Actel Designer software tool, it is possible to set
constraints that require array coordinates. Table 1-2 provides array coordinates of core cells and memory
blocks for IGLOO and ProASIC3 devices. Table 1-3 provides the information for IGLOO PLUS devices.
Table 1-4 on page 19 provides the information for IGLOO nano and ProASIC3 nano devices. The array
coordinates are measured from the lower left (0, 0). They can be used in region constraints for specific
logic groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.
I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed
because there is not a one-to-one correspondence between I/O cells and core cells. In addition, the I/O
coordinate system changes depending on the die/package combination. It is not listed in Table 1-2. The
Designer ChipPlanner tool provides the array coordinates of all I/O locations. I/O and cell coordinates are
used for placement constraints. However, I/O placement is easier by package pin assignment.
Figure 1-9 on page 19 illustrates the array coordinates of a 600 k gate device. For more information on
how to use array coordinates for region/placement constraints, see the Designer User's Guide or online
help (available in the software) for software tools.

Table 1-2 • IGLOO and ProASIC3 Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO
ProASIC3/
ProASIC3L x y x y (x, y) (x, y) (x, y) (x, y)

AGL015 A3P015 3 2 34 13 None None (0, 0) (37, 15)

AGL030 A3P030 3 3 66 13 None None (0, 0) (69, 15)

AGL060 A3P060 3 2 66 25 None (3, 26) (0, 0) (69, 29)

AGL125 A3P125 3 2 130 25 None (3, 26) (0, 0) (133, 29)

AGL250 A3P250/L 3 2 130 49 None (3, 50) (0, 0) (133, 53)

AGL400 A3P400 3 2 194 49 None (3, 50) (0, 0) (197, 53)

AGL600 A3P600/L 3 4 194 75 (3, 2) (3, 76) (0, 0) (197, 79)

AGL1000 A3P1000/L 3 4 258 99 (3, 2) (3, 100) (0, 0) (261, 103)

AGLE600 A3PE600/L,
RT3PE600L

3 4 194 75 (3, 2) (3, 76) (0, 0) (197, 79)

A3PE1500 3 4 322 123 (3, 2) (3, 124) (0, 0) (325, 127)

AGLE3000 A3PE3000/L,
RT3PE3000L

3 6 450 173 (3, 2)
or

(3, 4)

(3, 174)
or

(3, 176)

(0, 0) (453, 179)

Table 1-3 • IGLOO PLUS Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO PLUS x y x y (x, y) (x, y) (x, y) (x, y)

AGLP030 2 3 67 13 None None (0, 0) (69, 15)

AGLP060 2 2 67 25 None (3, 26) (0, 0) (69, 29)

AGLP125 2 2 131 25 None (3, 26) (0, 0) (133, 29)
18 Revision 0

http://www.actel.com/documents/designer_ug.pdf

Fusion FPGA Fabric User’s Guide
Table 1-4 • IGLOO nano and ProASIC3 nano Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO nano ProASIC3 nano (x, y) (x, y) (x, y) (x, y) (x, y) (x, y)

AGLN010 A3P010 (0, 2) (32, 5) None None (0, 0) (34, 5)

AGLN015 A3PN015 (0, 2) (32, 9) None None (0, 0) (34, 9)

AGLN020 A3PN020 (0, 2) 32, 13) None None (0, 0) (34, 13)

AGLN060 A3PN060 (3, 2) (66, 25) None (3, 26) (0, 0) (69, 29)

AGLN125 A3PN125 (3, 2) (130, 25) None (3, 26) (0, 0) (133, 29)

AGLN250 A3PN250 (3, 2) (130, 49) None (3, 50) (0, 0) (133, 49)

Note: The vertical I/O tile coordinates are not shown. West-side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)};
east-side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 1-9 • Array Coordinates for AGL600, AGLE600, A3P600, and A3PE600

Top Row (5, 1) to (168, 1)
Bottom Row (7, 0) to (165, 0)

Top Row (169, 1) to (192, 1)

I/O Tile

Memory
Blocks

Memory
Blocks

Memory
Blocks

UJTAG FlashROM

Top Row (7, 79) to (189, 79)
Bottom Row (5, 78) to (192, 78)

I/O Tile

(3, 77)
(3, 76)

Memory
Blocks

(3, 3)
(3, 2)

VersaTile (Core)
 (3, 75)

VersaTile (Core)
 (3, 4)

(0, 0) (197, 0)

(194, 2)
(194, 3)

(194, 4)
VersaTile (Core)

(194, 75)
VersaTile (Core)

(197, 79)

(194, 77)
(194, 76)

(0, 79)

(197, 1)
Revision 0 19

FPGA Array Architecture in Low Power Flash Devices
Routing Architecture
The routing structure of low power flash devices is designed to provide high performance through a
flexible four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources;
high-speed, very-long-line resources; and the high-performance VersaNet networks.
The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect
directly to every input of the eight surrounding VersaTiles (Figure 1-10). The exception to this is that the
SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaTile global network.
The efficient long-line resources provide routing for longer distances and higher-fanout connections.
These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and
horizontally, and cover the entire device (Figure 1-11 on page 21). Each VersaTile can drive signals onto
the efficient long-line resources, which can access every input of every VersaTile. Routing software
automatically inserts active buffers to limit loading effects.
The high-speed, very-long-line resources, which span the entire device with minimal delay, are used to
route very long or high-fanout nets: length ±12 VersaTiles in the vertical direction and length ±16 in the
horizontal direction from a given core VersaTile (Figure 1-12 on page 21). Very long lines in low power
flash devices have been enhanced over those in previous ProASIC families. This provides a significant
performance boost for long-reach signals.
The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from
external pins or internal logic. These nets are typically used to distribute clocks, resets, and other high-
fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and
signals can be introduced at any junction. These can be employed hierarchically, with signals accessing
every input of every VersaTile. For more details on VersaNets, refer to the "Global Resources in Actel
Low Power Flash Devices" section on page 23.

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global
network connection.

Figure 1-10 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors

L

L L

LL

L
Inputs

O
ut

pu
t Ultra-Fast Local Lines

(connects a VersaTile to the
adjacent VersaTile, I/O buffer,
or memory block)

L L L

Long Lines
20 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 1-11 • Efficient Long-Line Resources

Figure 1-12 • Very-Long-Line Resources

LL L L L L

LL L L L L

LL L L L L

LL L L L L

LL L L L L

Spans 1 VersaTile
Spans 2 VersaTiles
Spans 4 VersaTiles

Spans 1 VersaTile
Spans 2 VersaTiles

Spans 4 VersaTiles

VersaTile

High-Speed, Very-Long-Line Resources

Pad Ring

P
ad

 R
in

g
I/O

 R
in

g

I/O
 R

ing

Pad Ring

16×12 Block of VersaTiles

SRAM
Revision 0 21

FPGA Array Architecture in Low Power Flash Devices
Related Documents

User’s Guides
Designer User's Guide
http://www.actel.com/documents/designer_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 1-1 • Flash-Based
FPGAs.

12

Figure 1-2 • IGLOO and ProASIC3 nano Device Architecture Overview with Two I/O
Banks (applies to 10 k and 30 k device densities, excluding IGLOO PLUS devices)
through Figure 1-5 • IGLOO, IGLOO nano, ProASIC3 nano, and ProASIC3/L Device
Architecture Overview with Four I/O Banks (AGL600 device is shown) are new.

13, 14

Table 1-4 • IGLOO nano and ProASIC3 nano Array Coordinates is new. 19

v1.3
(October 2008)

The title of this document was changed from "Core Architecture of IGLOO and
ProASIC3 Devices" to "FPGA Array Architecture in Low Power Flash Devices."

11

The "FPGA Array Architecture Support" section was revised to include new families
and make the information more concise.

12

Table 1-2 • IGLOO and ProASIC3 Array Coordinates was updated to include Military
ProASIC3/EL and RT ProASIC3 devices.

18

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 1-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

12

v1.1
(March 2008)

Table 1-1 • Flash-Based FPGAs and the accompanying text was updated to include
the IGLOO PLUS family. The "IGLOO Terminology" section and "Device Overview"
section are new.

12

The "Device Overview" section was updated to note that 15 k devices do not
support SRAM or FIFO.

13

Figure 1-6 • IGLOO PLUS Device Architecture Overview with Four I/O Banks is
new.

15

Table 1-2 • IGLOO and ProASIC3 Array Coordinates was updated to add A3P015
and AGL015.

18

Table 1-3 • IGLOO PLUS Array Coordinates is new. 18
22 Revision 0

http://www.actel.com/documents/designer_ug.pdf

2 – Global Resources in Actel Low Power Flash
Devices

Introduction
Actel IGLOO,® Fusion, and ProASIC®3 FPGA devices offer a powerful, low-delay VersaNet global
network scheme and have extensive support for multiple clock domains. In addition to the Clock
Conditioning Circuits (CCCs) and phase-locked loops (PLLs), there is a comprehensive global clock
distribution network called a VersaNet global network. Each logical element (VersaTile) input and output
port has access to these global networks. The VersaNet global networks can be used to distribute low-
skew clock signals or high-fanout nets. In addition, these highly segmented VersaNet global networks
contain spines (the vertical branches of the global network tree) and ribs that can reach all the VersaTiles
inside their region. This allows users the flexibility to create low-skew local clock networks using spines.
This document describes VersaNet global networks and discusses how to assign signals to these global
networks and spines in a design flow. Details concerning low power flash device PLLs are described in
the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" section on
page 53. This chapter describes the low power flash devices’ global architecture and uses of these global
networks in designs.

Global Architecture
Low power flash devices offer powerful and flexible control of circuit timing through the use of global
circuitry. Each chip has up to six CCCs, some with PLLs.

• In IGLOOe, ProASIC3EL, and ProASIC3E devices, all CCCs have PLLs—hence, 6 PLLs per
device (except the PQ208 package, which has only 2 PLLs).

• In IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, and ProASIC3L devices, the west CCC
contains a PLL core (except in 10 k through 30 k devices).

• In Fusion devices, the west CCC also contains a PLL core. In the two larger devices (AFS600 and
AFS1500), the west and east CCCs each contain a PLL.

Refer to Table 3-6 on page 75 for details. Each PLL includes delay lines, a phase shifter (0°, 90°, 180°,
270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and
interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to
three chip global lines on each side of the chip (six chip global lines total). The CCCs at the four corners
each have access to three quadrant global lines in each quadrant of the chip (except in 10 k through 30 k
gate devices).
The nano 10 k, 15 k, and 20 k devices support four VersaNet global resources, and 30 k devices support
six global resources. The 10 k through 30 k devices have simplified CCCs called CCC-GLs.
The flexible use of the VersaNet global network allows the designer to address several design
requirements. User applications that are clock-resource-intensive can easily route external or gated
internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay
penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global
network.
Note: Actel recommends that you choose the appropriate global pin and use the appropriate global

resource so you can realize these benefits.
The following sections give an overview of the VersaNet global network, the structure of the global
network, access point for the global networks, and the clock aggregation feature that enables a design to
have very low clock skew using spines.
Revision 0 23

Global Resources in Actel Low Power Flash Devices
Global Resource Support in Flash-Based Devices
The flash FPGAs listed in Table 2-1 support the global resources and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO products as
listed in Table 2-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 2-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 2-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
24 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf

Fusion FPGA Fabric User’s Guide
VersaNet Global Network Distribution
One of the architectural benefits of low power flash architecture is the set of powerful, low-delay
VersaNet global networks that can access the VersaTiles, SRAM, and I/O tiles of the device. Each device
offers a chip global network with six global lines (except for nano 10 k, 15 k, and 20 k gate devices) that
are distributed from the center of the FPGA array. In addition, each device (except the 10 k through 30 k
gate device) has four quadrant global networks, each consisting of three quadrant global net resources.
These quadrant global networks can only drive a signal inside their own quadrant. Each VersaTile has
access to nine global line resources—three quadrant and six chip-wide (main) global networks—and a
total of 18 globals are available on the device (3 × 4 regional from each quadrant and 6 global).
Figure 2-1 shows an overview of the VersaNet global network and device architecture for devices 60 k
and above. Figure 2-2 and Figure 2-3 on page 26 show simplified VersaNet global networks.
The VersaNet global networks are segmented and consist of spines, global ribs, and global multiplexers
(MUXes), as shown in Figure 2-1. The global networks are driven from the global rib at the center of the
die or quadrant global networks at the north or south side of the die. The global network uses the MUX
trees to access the spine, and the spine uses the clock ribs to access the VersaTile. Access is available
to the chip or quadrant global networks and the spines through the global MUXes. Access to the spine
using the global MUXes is explained in the "Spine Architecture" section on page 33.
These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including
clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-
skew local clock networks using spines for up to 252 internal/external clocks or other high-fanout nets in
low power flash devices. Optimal usage of these low-skew networks can result in significant
improvement in design performance.

Note: Not applicable to 10 k through 30 k gate devices
Figure 2-1 • Overview of VersaNet Global Network and Device Architecture

Pad Ring

Pad Ring

P
ad

 R
in

g
I/O

 R
in

g

I/O
R

ing

Chip (main)
Global Pads

Chip (main)
Global Pads

High-Performance
Global Network

Spine

Ribs

Scope of Spine
(shaded area
plus local RAMs
and I/Os)Spine-Selection

MUX

Embedded
RAM Blocks

Logic Tiles

Top Spine

Bottom Spine

T1

B1

T2

B2

T3

B3

Quadrant Global Pads
Revision 0 25

Global Resources in Actel Low Power Flash Devices
Figure 2-2 • Simplified VersaNet Global Network (30 k gates and below)

Figure 2-3 • Simplified VersaNet Global Network (60 k gates and above)

Global Drivers Global Drivers

2 2 2 2

2
2

Chip (main) Global
Network

North Quadrant Global Network

South Quadrant Global Network

Chip (main)
Global

Network

3

3
3

3 3 3

3 3 3 3

6

6

6

6

6

6

6

6

C
hi

p
G

lo
ba

l S
pi

ne
Q

ua
dr

an
t G

lo
ba

l S
pi

ne

CCC

CCC

CCC CCC

CCC

CCC
26 Revision 0

Fusion FPGA Fabric User’s Guide
Chip and Quadrant Global I/Os
The following sections give an overview of naming conventions and other related I/O information.

Naming of Global I/Os
In low power flash devices, the global I/Os have access to certain clock conditioning circuitry and have
direct access to the global network. Additionally, the global I/Os can be used as regular I/Os, since they
have identical capabilities to those of regular I/Os. Due to the comprehensive and flexible nature of the
I/Os in low power flash devices, a naming scheme is used to show the details of the I/O. The global I/O
uses the generic name Gmn/IOuxwByVz. Note that Gmn refers to a global input pin and IOuxwByVz
refers to a regular I/O Pin, as these I/Os can be used as either global or regular I/Os. Refer to the I/O
Structures chapter of the user’s guide for the device that you are using for more information on this
naming convention.
Figure 2-4 represents the global input pins connection. It shows all 54 global pins available to
access the 18 global networks in ProASIC3E families.

Figure 2-4 • Global Connections Details

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

3

3

3

3 3

3 3 3

6

6

6

6

6

6

6

6

C
hi

p
G

lo
ba

lS
pi

ne
Q

ua
dr

an
tG

lo
ba

lS
pi

ne

GAAO/IOuxwByVz
GAA1/IOuxwByVz
GAA2/IOuxwByVz
GABO/IOuxwByVz
GAB1/IOuxwByVz
GAB2/IOuxwByVz
GACO/IOuxwByVz
GAC1/IOuxwByVz
GAC2/IOuxwByVz

3

3

Bankx

Bankx

B
an

kx
B

an
kx

B
ankx

B
ankx

Bankx

Bankx

Chip Global
Location F

GFAO/IOuxwByVz
GFA1/IOuxwByVz
GFA2/IOuxwByVz
GFBO/IOuxwByVz
GFB1/IOuxwByVz
GFB2/IOuxwByVz

GFC2/IOuxwByVz

GEAO/IOuxwByVz
GEAC/IOuxwByVz
GEA2/IOuxwByVz
GEBO/IOuxwByVz
GEB1/IOuxwByVz
GEB2/IOuxwByVz
GECO/IOuxwByVz
GEC1/IOuxwByVz
GEC2/IOuxwByVz

GFC1/IOuxwByVz
GFCO/IOuxwByVz

Quadrant Global
Location E

Quadrant Global
Location D

GDAO/IOuxwByVz
GDA1/IOuxwByVz
GDA2/IOuxwByVz
GDBO/IOuxwByVz
GDB1/IOuxwByVz
GDB2/IOuxwByVz
GDCO/IOuxwByVz
GDC1/IOuxwByVz
GDC2/IOuxwByVz

Chip Global
Location C

GCAO/IOuxwByVz
GCA1/IOuxwByVz
GCA2/IOuxwByVz
GCBO/IOuxwByVz
GCB1/IOuxwByVz
GCB2/IOuxwByVz
GCCO/IOuxwByVz
GCC1/IOuxwByVz
GCC2/IOuxwByVz

Quadrant Global
Location B

GBAO/IOuxwByVz
GBA1/IOuxwByVz
GBA2/IOuxwByVz
GBBO/IOuxwByVz
GBB1/IOuxwByVz
GBB2/IOuxwByVz
GBCO/IOuxwByVz
GBC1/IOuxwByVz
GBC2/IOuxwByVz

CCC w it h PLL

CCC w it hout PLL

CCC w it h or w it hout PLL

3
3

33

Quadrant Global
Location A
Revision 0 27

Global Resources in Actel Low Power Flash Devices
Figure 2-5 shows more detailed global input connections. It shows the global input pins connection
to the northwest quadrant global networks. Each global buffer, as well as the PLL reference clock, can be
driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not supported for IGLOO nano or

ProASIC3 nano devices)
• The FPGA core

Note: Differential inputs are not supported for IGLOO nano or ProASIC3 nano devices.
Figure 2-5 • Global I/O Overview

+

+

Source for CCC
(CLKA or CLKB or CLKC)

Each shaded box represents an
INBUF or INBUF_LVDS/LVPECL
macro, as appropriate. To Core

Routed Clock
(from FPGA core)

Sample Pin Names

GAA0/IO0NDB0V01

GAA1/IO00PDB0V01

GAA2/IO13PDB7V11

GAA[0:2]: GA represents global in the northwest corner
of the device. A[0:2]: designates specific A clock source.

2

28 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 2-6 shows all nine global inputs for the location A connected to the top left quadrant global
network via CCC.

Since each bank can have a different I/O standard, the user should be careful to choose the correct
global I/O for the design. There are 54 global pins available to access 18 global networks. For the single-
ended and voltage-referenced I/O standards, you can use any of these three available I/Os to access the
global network. For differential I/O standards such as LVDS and LVPECL, the I/O macro needs to be
placed on (A0, A1), (B0, B1), (C0, C1), or a similar location. The unassigned global I/Os can be used
as regular I/Os. Note that pin names starting with GF and GC are associated with the chip global
networks, and GA, GB, GD, and GE are used for quadrant global networks. Table 2-2 on page 30 and
Table 2-3 on page 31 show the general chip and quadrant global pin names.

Figure 2-6 • Global Inputs

MUX

GAAO/
IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz
GAA1/

GAA2/

MUX

GABO/

GAB1/

GAB2/

MUX

GACO/

GAC1/

GAC2/

CLKA

CLKB

CLKC

Quadrant Global for CLKA

Quadrant Global for CLKB

Quadrant Global for CLKC

CCC

IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz
Revision 0 29

Global Resources in Actel Low Power Flash Devices
Table 2-2 • Chip Global Pin Name

I/O Type Beginning of I/O Name Notes

Single-Ended GFAO/IOuxwByVz
GFA1/IOuxwByVz
GFA2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

GFBO/IOuxwByVz
GFB1/IOuxwByVz
GFB2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

GFC0/IOuxwByVz
GFC1/IOuxwByVz
GFC2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

GCAO/IOuxwByVz
GCA1/IOuxwByVz
GCA2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

GCBO/IOuxwByVz
GCB1/IOuxwByVz
GCB2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

GCC0/IOuxwByVz
GCC1/IOuxwByVz
GCC2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

Differential I/O Pairs GFAO/IOuxwByVz
GFA1/IOuxwByVz

The output of the different pair will drive the chip global.

GFBO/IOuxwByVz
GFB1/IOuxwByVz

The output of the different pair will drive the chip global.

GFCO/IOuxwByVz
GFC1/IOuxwByVz

The output of the different pair will drive the chip global.

GCAO/IOuxwByVz
GCA1/IOuxwByVz

The output of the different pair will drive the chip global.

GCBO/IOuxwByVz
GCB1/IOuxwByVz

The output of the different pair will drive the chip global.

GCCO/IOuxwByVz
GCC1/IOuxwByVz

The output of the different pair will drive the chip global.

Note: Only one of the I/Os can be directly connected to a quadrant at a time.
30 Revision 0

Fusion FPGA Fabric User’s Guide
Table 2-3 • Quadrant Global Pin Name

I/O Type Beginning of I/O Name Notes

Single-Ended GAAO/IOuxwByVz
GAA1/IOuxwByVz
GAA2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time

GABO/IOuxwByVz
GAB1/IOuxwByVz
GAB2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GAC0/IOuxwByVz
GAC1/IOuxwByVz
GAC2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GBAO/IOuxwByVz
GBA1/IOuxwByVz
GBA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBBO/IOuxwByVz
GBB1/IOuxwByVz
GBB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBC0/IOuxwByVz
GBC1/IOuxwByVz
GBC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDAO/IOuxwByVz
GDA1/IOuxwByVz
GDA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDBO/IOuxwByVz
GDB1/IOuxwByVz
GDB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDC0/IOuxwByVz
GDC1/IOuxwByVz
GDC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEAO/IOuxwByVz
GEA1/IOuxwByVz
GEA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEBO/IOuxwByVz
GEB1/IOuxwByVz
GEB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEC0/IOuxwByVz
GEC1/IOuxwByVz
GEC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

Note: Only one of the I/Os can be directly connected to a quadrant at a time.
Revision 0 31

Global Resources in Actel Low Power Flash Devices
Unused Global I/O Configuration
The unused clock inputs behave similarly to the unused Pro I/Os. The Actel Designer software
automatically configures the unused global pins as inputs with pull-up resistors if they are not used as
regular I/O.

I/O Banks and Global I/O Standards
In low power flash devices, any I/O or internal logic can be used to drive the global network. However,
only the global macro placed at the global pins will use the hardwired connection between the I/O and
global network. Global signal (signal driving a global macro) assignment to I/O banks is no different from
regular I/O assignment to I/O banks with the exception that you are limited to the pin placement location
available. Only global signals compatible with both the VCCI and VREF standards can be assigned to
the same bank.

Differential I/O Pairs GAAO/IOuxwByVz
GAA1/IOuxwByVz

The output of the different pair will drive the global.

GABO/IOuxwByVz
GAB1/IOuxwByVz

The output of the different pair will drive the global.

GACO/IOuxwByVz
GAC1/IOuxwByVz

The output of the different pair will drive the global.

GBAO/IOuxwByVz
GBA1/IOuxwByVz

The output of the different pair will drive the global.

GBBO/IOuxwByVz
GBB1/IOuxwByVz

The output of the different pair will drive the global.

GBCO/IOuxwByVz
GBC1/IOuxwByVz

The output of the different pair will drive the global.

GDAO/IOuxwByVz
GDA1/IOuxwByVz

The output of the different pair will drive the global.

GDBO/IOuxwByVz
GDB1/IOuxwByVz

The output of the different pair will drive the global.

GDCO/IOuxwByVz
GDC1/IOuxwByVz

The output of the different pair will drive the global.

GEAO/IOuxwByVz
GEA1/IOuxwByVz

The output of the different pair will drive the global.

GEBO/IOuxwByVz
GEB1/IOuxwByVz

The output of the different pair will drive the global.

GECO/IOuxwByVz
GEC1/IOuxwByVz

The output of the different pair will drive the global.

Table 2-3 • Quadrant Global Pin Name (continued)

Note: Only one of the I/Os can be directly connected to a quadrant at a time.
32 Revision 0

Fusion FPGA Fabric User’s Guide
Spine Architecture
The low power flash device architecture allows the VersaNet global networks to be segmented. Each of
these networks contains spines (the vertical branches of the global network tree) and ribs that can reach
all the VersaTiles inside its region. The nine spines available in a vertical column reside in global
networks with two separate regions of scope: the quadrant global network, which has three spines, and
the chip (main) global network, which has six spines. Note that the number of quadrant globals and
globals/spines per tree varies depending on the specific device. Refer to Table 2-4 for the clocking
resources available for each device. The spines are the vertical branches of the global network tree,
shown in Figure 2-3 on page 26. Each spine in a vertical column of a chip (main) global network is further
divided into two spine segments of equal lengths: one in the top and one in the bottom half of the die
(except in 10 k through 30 k gate devices).
Top and bottom spine segments radiating from the center of a device have the same height. However,
just as in the ProASICPLUS® family, signals assigned only to the top and bottom spine cannot access the
middle two rows of the die. The spines for quadrant clock networks do not cross the middle of the die and
cannot access the middle two rows of the architecture.
Each spine and its associated ribs cover a certain area of the device (the "scope" of the spine; see
Figure 2-3 on page 26). Each spine is accessed by the dedicated global network MUX tree architecture,
which defines how a particular spine is driven—either by the signal on the global network from a CCC, for
example, or by another net defined by the user. Details of the chip (main) global network spine-selection
MUX are presented in Figure 2-8 on page 36. The spine drivers for each spine are located in the middle
of the die.
Quadrant spines can be driven from user I/Os or an internal signal from the north and south sides of the
die. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. Access to the top quadrant spine regions is from the top
of the die, and access to the bottom quadrant spine regions is from the bottom of the die. The A3PE3000
device has 28 clock trees and each tree has nine spines; this flexible global network architecture enables
users to map up to 252 different internal/external clocks in an A3PE3000 device.

Table 2-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices

ProASIC3/
ProASIC3L
Devices

IGLOO
Devices

Chip
Globals

Quadrant
Globals

(4×3)
Clock
Trees

Globals/
Spines

per
Tree

Total
Spines

per
Device

VersaTiles
in Each

Tree
Total

VersaTiles

Rows
in

Each
Spine

A3PN010 AGLN010 4 0 1 0 0 260 260 4

A3PN015 AGLN015 4 0 1 0 0 384 384 6

A3PN020 AGLN020 4 0 1 0 0 520 520 6

A3PN060 AGLN060 6 12 4 9 36 384 1,536 12

A3PN125 AGLN125 6 12 8 9 72 384 3,072 12

A3PN250 AGLN250 6 12 8 9 72 768 6,144 24

A3P015 AGL015 6 0 1 9 9 384 384 12

A3P030 AGL030 6 0 2 9 18 384 768 12

A3P060 AGL060 6 12 4 9 36 384 1,536 12

A3P125 AGL125 6 12 8 9 72 384 3,072 12

A3P250/L AGL250 6 12 8 9 72 768 6,144 24

A3P400 AGL400 6 12 12 9 108 768 9,216 24

A3P600/L AGL600 6 12 12 9 108 1,152 13,824 36

A3P1000/L AGL1000 6 12 16 9 144 1,536 24,576 48

A3PE600/L AGLE600 6 12 12 9 108 1,120 13,440 35

A3PE1500 6 12 20 9 180 1,888 37,760 59

A3PE3000/L AGLE3000 6 12 28 9 252 2,656 74,368 83
Revision 0 33

Global Resources in Actel Low Power Flash Devices
Table 2-5 • Globals/Spines/Rows for IGLOO PLUS Devices

IGLOO
PLUS
Devices

Chip
Globals

Quadrant
Globals

(4×3)
Clock
Trees

Globals/
Spines

per Tree

Total
Spines

per Device
VersaTiles

in Each Tree
Total

VersaTiles

Rows
in

Each
Spine

AGLP030 6 0 2 9 18 384* 792 12

AGLP060 6 12 4 9 36 384* 1,584 12

AGLP125 6 12 8 9 72 384* 3,120 12

Note: *Clock trees that are located at far left and far right will support more VersaTiles.

Table 2-6 • Globals/Spines/Rows for Fusion Devices

Fusion
Device

Chip
Globals

Quadrant
Globals

(4×3)
Clock
Trees

Globals/
Spines

per
Tree

Total
Spines

per
Device

VersaTiles
in

Each
Tree

Total
VersaTiles

Rows
in

Each
Spine

AFS090 6 12 6 9 54 384 2,304 12

AFS250 6 12 8 9 72 768 6,144 24

AFS600 6 12 12 9 108 1,152 13,824 36

AFS1500 6 12 20 9 180 1,920 38,400 60
34 Revision 0

Fusion FPGA Fabric User’s Guide
Spine Access
The physical location of each spine is identified by the letter T (top) or B (bottom) and an accompanying
number (Tn or Bn). The number n indicates the horizontal location of the spine; 1 refers to the first spine
on the left side of the die. Since there are six chip spines in each spine tree, there are up to six spines
available for each combination of T (or B) and n (for example, six T1 spines). Similarly, there are three
quadrant spines available for each combination of T (or B) and n (for example, four T1 spines), as shown
in Figure 2-7.

A spine is also called a local clock network, and is accessed by the dedicated global MUX architecture.
These MUXes define how a particular spine is driven. Refer to Figure 2-8 on page 36 for the global MUX
architecture. The MUXes for each chip global spine are located in the middle of the die. Access to the top
and bottom chip global spine is available from the middle of the die. There is no control dependency
between the top and bottom spines. If a top spine, T1, of a chip global network is assigned to a net, B1 is
not wasted and can be used by the global clock network. The signal assigned only to the top or bottom
spine cannot access the middle two rows of the architecture. However, if a spine is using the top and
bottom at the same time (T1 and B1, for instance), the previous restriction is lifted.
The MUXes for each quadrant global spine are located in the north and south sides of the die. Access to
the top and bottom quadrant global spines is available from the north and south sides of the die. Since
the MUXes for quadrant spines are located in the north and south sides of the die, you should not try to
drive T1 and B1 quadrant spines from the same signal.

Figure 2-7 • Chip Global Aggregation

Tn Tn+1 Tn+2 Tn+3 Tn+4

A

B

B

C

Global
Network

Tn Tn+1 Tn+2 Tn+3 Tn+4

A

C

Global
Network
Revision 0 35

Global Resources in Actel Low Power Flash Devices
Using Clock Aggregation
Clock aggregation allows for multi-spine clock domains to be assigned using hardwired connections,
without adding any extra skew. A MUX tree, shown in Figure 2-8, provides the necessary flexibility to
allow long lines, local resources, or I/Os to access domains of one, two, or four global spines. Signal
access to the clock aggregation system is achieved through long-line resources in the central rib in the
center of the die, and also through local resources in the north and south ribs, allowing I/Os to feed
directly into the clock system. As Figure 2-9 indicates, this access system is contiguous.
There is no break in the middle of the chip for the north and south I/O VersaNet access. This is different
from the quadrant clocks located in these ribs, which only reach the middle of the rib.

Figure 2-8 • Spine Selection MUX of Global Tree

Figure 2-9 • Clock Aggregation Tree Architecture

Internal/External
Signal

Internal/External
Signal

Internal/External
Signals

Spine

Global Rib

Global Driver MUX

Tree Node MUX

Tree Node MUX

Internal/External
Signals

Tree Node MUX

Global Spine
Global Rib
Global Driver and MUX

I/O Access
Internal Signal Access

I/O Tiles

Global Signal Access
Tree Node MUX
36 Revision 0

Fusion FPGA Fabric User’s Guide
Clock Aggregation Architecture
This clock aggregation feature allows a balanced clock tree, which improves clock skew. The physical
regions for clock aggregation are defined from left to right and shift by one spine. For chip global
networks, there are three types of clock aggregation available, as shown in Figure 2-10:

• Long lines that can drive up to four adjacent spines (A)
• Long lines that can drive up to two adjacent spines (B)
• Long lines that can drive one spine (C)

There are three types of clock aggregation available for the quadrant spines, as shown in Figure 2-10:
• I/Os or local resources that can drive up to four adjacent spines
• I/Os or local resources that can drive up to two adjacent spines
• I/Os or local resources that can drive one spine

As an example, A3PE600 and AFS600 devices have twelve spine locations: T1, T2, T3, T4, T5, T6, B1,
B2, B3, B4, B5, and B6. Table 2-7 shows the clock aggregation you can have in A3PE600 and
AFS600.

The clock aggregation for the quadrant spines can cross over from the left to right quadrant, but not from
top to bottom. The quadrant spine assignment T1:T4 is legal, but the quadrant spine assignment T1:B1
is not legal. Note that this clock aggregation is hardwired. You can always assign signals to spine T1 and
B2 by instantiating a buffer, but this may add skew in the signal.

Figure 2-10 • Four Spines Aggregation

Tn Tn + 1 Tn + 2 Tn + 4

A

B

C

Tn + 3

Table 2-7 • Spine Aggregation in A3PE600 or AFS600

Clock Aggregation Spine

1 spine T1, T2, T3, T4, T5, T6, B1, B2, B3, B4, B5, B6

2 spines T1:T2, T2:T3, T3:T4, T4:T5, T5:T6, B1:B2, B2:B3, B3:B4, B4:B5, B5:B6

4 spines B1:B4, B2:B5, B3:B6, T1:T4, T2:T5, T3:T6
Revision 0 37

Global Resources in Actel Low Power Flash Devices
Design Recommendations
The following sections provide design flow recommendations for using a global network in a design.

• "Global Macros and I/O Standards"
• "Global Macro and Placement Selections" on page 40
• "Using Global Macros in Synplicity" on page 42
• "Global Promotion and Demotion Using PDC" on page 43
• "Spine Assignment" on page 44
• "Designer Flow for Global Assignment" on page 45
• "Simple Design Example" on page 47
• "Global Management in PLL Design" on page 49
• "Using Spines of Occupied Global Networks" on page 50

Global Macros and I/O Standards
The larger low power flash devices have six chip global networks and four quadrant global networks.
However, the same clock macros are used for assigning signals to chip globals and quadrant globals.
Depending on the clock macro placement or assignment in the Physical Design Constraint (PDC) file or
MultiView Navigator (MVN), the signal will use the chip global network or quadrant network. Table 2-8
lists the clock macros available for low power flash devices. Refer to the IGLOO, ProASIC3,
SmartFusion, and Fusion Macro Library Guide for details.

Use these available macros to assign a signal to the global network. In addition to these global macros,
PLL and CLKDLY macros can also drive the global networks. Use I/O–standard–specific clock macros
(CLKBUF_x) to instantiate a specific I/O standard for the global signals. Table 2-9 on page 39 shows the
list of these I/O–standard–specific macros. Note that if you use these I/O–standard–specific clock
macros, you cannot change the I/O standard later in the design stage. If you use the regular CLKBUF
macro, you can use MVN or the PDC file in Designer to change the I/O standard. The default I/O

Table 2-8 • Clock Macros

Macro Name Description Symbol

CLKBUF Input macro for Clock Network

CLKBUF_x Input macro for Clock Network
with specific I/O standard

CLKBUF_LVDS/LVPECL LVDS or LVPECL input macro
for Clock Network (not
supported for IGLOO nano or
ProASIC3 nano devices)

CLKINT Macro for internal clock interface

CLKBIBUF Bidirectional macro with input
dedicated to routed Clock
Network

YPAD

CLKBUF

PAD Y
CLKBUF_X

PADN

PADP

CLKBUF_LVPECL Y

PADN

PADP

CLKBUF_LVDS Y

A Y

CLKINT

D
Y

E PAD

CLKBIBUF
38 Revision 0

http://www.actel.com/documents/pa3_libguide_ug.pdf
http://www.actel.com/documents/pa3_libguide_ug.pdf

Fusion FPGA Fabric User’s Guide
standard for CLKBUF is LVTTL in the current Actel Libero® Integrated Design Environment (IDE) and
Designer software.

The current synthesis tool libraries only infer the CLKBUF or CLKINT macros in the netlist. All other
global macros must be instantiated manually into your HDL code. The following is an example of
CLKBUF_LVCMOS25 global macro instantiations that you can copy and paste into your code:

VHDL
component clkbuf_lvcmos25

port (pad : in std_logic; y : out std_logic);
end component

begin
-- concurrent statements
u2 : clkbuf_lvcmos25 port map (pad => ext_clk, y => int_clk);
end

Verilog
module design (______);

input _____;
output ______;

clkbuf_lvcmos25 u2 (.y(int_clk), .pad(ext_clk);

endmodule

Table 2-9 • I/O Standards within CLKBUF

Name Description

CLKBUF_LVCMOS5 LVCMOS clock buffer with 5.0 V CMOS voltage level

CLKBUF_LVCMOS33 LVCMOS clock buffer with 3.3 V CMOS voltage level

CLKBUF_LVCMOS25 LVCMOS clock buffer with 2.5 V CMOS voltage level1

CLKBUF_LVCMOS18 LVCMOS clock buffer with 1.8 V CMOS voltage level

CLKBUF_LVCMOS15 LVCMOS clock buffer with 1.5 V CMOS voltage level

CLKBUF_LVCMOS12 LVCMOS clock buffer with 1.2 V CMOS voltage level

CLKBUF_PCI PCI clock buffer

CLKBUF_PCIX PCIX clock buffer

CLKBUF_GTL25 GTL clock buffer with 2.5 V CMOS voltage level1

CLKBUF_GTL33 GTL clock buffer with 3.3 V CMOS voltage level1

CLKBUF_GTLP25 GTL+ clock buffer with 2.5 V CMOS voltage level1

CLKBUF_GTLP33 GTL+ clock buffer with 3.3 V CMOS voltage level1

CLKBUF_ HSTL _I HSTL Class I clock buffer1

CLKBUF_ HSTL _II HSTL Class II clock buffer1

CLKBUF_SSTL2_I SSTL2 Class I clock buffer1

CLKBUF_SSTL2_II SSTL2 Class II clock buffer1

CLKBUF_SSTL3_I SSTL3 Class I clock buffer1

CLKBUF_SSTL3_II SSTL3 Class II clock buffer1

Notes:
1. Supported in only the IGLOOe, ProASIC3E, AFS600, and AFS1500 devices
2. By default, the CLKBUF macro uses the 3.3 V LVTTL I/O technology.
Revision 0 39

Global Resources in Actel Low Power Flash Devices
Global Macro and Placement Selections
Low power flash devices provide the flexibility of choosing one of the three global input pad locations
available to connect to a global / quadrant global network. For 60K gate devices and above, if the
single-ended I/O standard is chosen, there is flexibility to choose one of the global input pads (the first,
second, and fourth input). Once chosen, the other I/O locations are used as regular I/Os. If the differential
I/O standard is chosen, the first and second inputs are considered as paired, and the third input is paired
with a regular I/O. The user then has the choice of selecting one of the two sets to be used as the global
input source. There is also the option to allow an internal clock signal to feed the global network. A
multiplexer tree selects the appropriate global input for routing to the desired location. Note that the
global I/O pads do not need to feed the global network; they can also be used as regular I/O pads.

Hardwired I/O Clock Source
Hardwired I/O refers to global input pins that are hardwired to the multiplexer tree, which directly
accesses the global network. These global input pins have designated pin locations and are indicated
with the I/O naming convention Gmn (m refers to any one of the positions where the global buffers is
available, and n refers to any one of the three global input MUXes and the pin number of the associated
global location, m). Choosing this option provides the benefit of directly connecting to the global buffers,
which provides less delay. See Figure 2-11 for an example illustration of the connections, shown in red. If
a CLKBUF macro is initiated, the clock input can be placed at one of nine dedicated global input pin
locations: GmA0, GmA1, GmA2, GmB0, GmB1, GmB2, GmC0, GmC1, or GmC2. Note that the
placement of the global will determine whether you are using chip global or quadrant global. For
example, if the CLKBIF is placed in one of the GF pin locations, it will use the chip global network; if the
CLKBIF is placed in one of the GA pin locations, it will use quadrant global network. This is shown in
Figure 2-12 on page 41 and Figure 2-13 on page 41.

Figure 2-11 • CLKBUF Macro

+

+

To Core

From FPGA core

GFA0

GFA1

GFA2

To global network
40 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 2-12 • Chip Global Region

Figure 2-13 • Quadrant Global Region

Location A

Location F

Location E Location D

Location C

Location BBankx Bankx

Bankx Bankx

B
an

kx
B

an
kx

B
an

kx
B

an
kx

Chip Global Region

C
LK

B
U

F
pl

ac
ed

 a
t o

ne
 o

f t
he

 G
F

pi
n

lo
ca

tio
ns

Location A

Location F

Location E Location D

Location C

Location BBankx Bankx

Bankx Bankx

B
an

kx
B

an
kx

B
an

kx
B

an
kx

Quadrant Global Region

CLKBUF placed at one of the GA pin locations
Revision 0 41

Global Resources in Actel Low Power Flash Devices
External I/O or Local signal as Clock Source
External I/O refers to regular I/O pins are labeled with the I/O convention IOuxwByVz. You can allow the
external I/O or internal signal to access the global. To allow the external I/O or internal signal to access
the global network, you need to instantiate the CLKINT macro. Refer to Figure 2-4 on page 27 for an
example illustration of the connections. Instead of using CLKINT, you can also use PDC to promote
signals from external I/O or internal signal to the global network. However, it may cause layout issues
because of synthesis logic replication. Refer to the "Global Promotion and Demotion Using PDC" section
on page 43 for details.

Using Global Macros in Synplicity
The Synplify® synthesis tool automatically inserts global buffers for nets with high fanout during
synthesis. By default, Synplicity® puts six global macros (CLKBUF or CLKINT) in the netlist, including
any global instantiation or PLL macro. Synplify always honors your global macro instantiation. If you have
a PLL (only primary output is used) in the design, Synplify adds five more global buffers in the netlist.
Synplify uses the following global counting rule to add global macros in the netlist:

1. CLKBUF: 1 global buffer
2. CLKINT: 1 global buffer
3. CLKDLY: 1 global buffer
4. PLL: 1 to 3 global buffers

– GLA, GLB, GLC, YB, and YC are counted as 1 buffer.
– GLB or YB is used or both are counted as 1 buffer.
– GLC or YC is used or both are counted as 1 buffer.

Figure 2-14 • CLKINT Macro

+

+

To Core

From FPGA core

GFA0

GFA1

GFA2

To global network

INBUF CLKINT

INBUF
42 Revision 0

Fusion FPGA Fabric User’s Guide
You can use the syn_global_buffers attribute in Synplify to specify a maximum number of global macros
to be inserted in the netlist. This can also be used to restrict the number of global buffers inserted. In the
Synplicity 8.1 version or newer, a new attribute, syn_global_minfanout, has been added for low power
flash devices. This enables you to promote only the high-fanout signal to global. However, be aware that
you can only have six signals assigned to chip global networks, and the rest of the global signals should
be assigned to quadrant global networks. So, if the netlist has 18 global macros, the remaining 12 global
macros should have fanout that allows the instances driven by these globals to be placed inside a
quadrant.

Global Promotion and Demotion Using PDC
The HDL source file or schematic is the preferred place for defining which signals should be assigned to
a clock network using clock macro instantiation. This method is preferred because it is guaranteed to be
honored by the synthesis tools and Designer software and stop any replication on this net by the
synthesis tool. Note that a signal with fanout may have logic replication if it is not promoted to global
during synthesis. In that case, the user cannot promote that signal to global using PDC. See Synplicity
Help for details on using this attribute. To help you with global management, Designer allows you to
promote a signal to a global network or demote a global macro to a regular macro from the user netlist
using the compile options and/or PDC commands.
The following are the PDC constraints you can use to promote a signal to a global network:

1. PDC syntax to promote a regular net to a chip global clock:
assign_global_clock –net netname

The following will happen during promotion of a regular signal to a global network:
– If the net is external, the net will be driven by a CLKINT inserted automatically by Compile.
– The I/O macro will not be changed to CLKBUF macros.
– If the net is an internal net, the net will be driven by a CLKINT inserted automatically by

Compile.
2. PDC syntax to promote a net to a quadrant clock:

assign_local_clock –net netname –type quadrant UR|UL|LR|LL

This follows the same rule as the chip global clock network.
The following PDC command demotes the clock nets to regular nets.
unassign_global_clock -net netname

Note: OAVDIVRST exists only in the Fusion PLL.
Figure 2-15 • PLLs in Low Power Flash Devices

CLKA GLA
EXTFB
POWERDOWN
OADIVRST

LOCK

GLB
YB

GLC
YC
Revision 0 43

Global Resources in Actel Low Power Flash Devices
The following will happen during demotion of a global signal to regular nets:
• CLKBUF_x becomes INBUF_x; CLKINT is removed from the netlist.
• The essential global macro, such as the output of the Clock Conditioning Circuit, cannot be

demoted.
• No automatic buffering will happen.

Since no automatic buffering happens when a signal is demoted, this net may have a high delay due to
large fanout. This may have a negative effect on the quality of the results. Actel recommends that the
automatic global demotion only be used on small-fanout nets. Use clock networks for high-fanout nets to
improve timing and routability.

Spine Assignment
The low power flash device architecture allows the global networks to be segmented and used as clock
spines. These spines, also called local clock networks, enable the use of PDC or MVN to assign a signal
to a spine.
PDC syntax to promote a net to a spine/local clock:
assign_local_clock –net netname –type [quadrant|chip] Tn|Bn|Tn:Bm

If the net is driven by a clock macro, Designer automatically demotes the clock net to a regular net before
it is assigned to a spine. Nets driven by a PLL or CLKDLY macro cannot be assigned to a local clock.
When assigning a signal to a spine or quadrant global network using PDC (pre-compile), the Designer
software will legalize the shared instances. The number of shared instances to be legalized can be
controlled by compile options. If these networks are created in MVN (only quadrant globals can be
created), no legalization is done (as it is post-compile). Designer does not do legalization between non-
clock nets.
As an example, consider two nets, net_clk and net_reset, driving the same flip-flop. The following PDC
constraints are used:
assign_local_clock –net net_clk –type chip T3
assign_local_clock –net net_reset –type chip T1:T2

During Compile, Designer adds a buffer in the reset net and places it in the T1 or T2 region, and places
the flip-flop in the T3 spine region (Figure 2-16).

Figure 2-16 • Adding a Buffer for Shared Instances

D

CLK

CLR
net_clk

net_reset

T1 T2 T3

D

CLK

CLR
net_clk

net_reset

assign_local_clock -net net_clk -type chip T3
assign_local_clock -net net_reset -type chip T1:T2

Before Compile After Compile

Added
buffer
44 Revision 0

Fusion FPGA Fabric User’s Guide
You can control the maximum number of shared instances allowed for the legalization to take place using
the Compile Option dialog box shown in Figure 2-17. Refer to Libero IDE / Designer online help for
details on the Compile Option dialog box. A large number of shared instances most likely indicates a
floorplanning problem that you should address.

Designer Flow for Global Assignment
To achieve the desired result, pay special attention to global management during synthesis and place-
and-route. The current Synplify tool does not insert more than six global buffers in the netlist by default.
Thus, the default flow will not assign any signal to the quadrant global network. However, you can use
attributes in Synplify and increase the default global macro assignment in the netlist. Designer v6.2
supports automatic quadrant global assignment, which was not available in Designer v6.1. Layout will
make the choice to assign the correct signals to global. However, you can also utilize PDC and perform
manual global assignment to overwrite any automatic assignment. The following step-by-step
suggestions guide you in the layout of your design and help you improve timing in Designer:

1. Run Compile and check the Compile report. The Compile report has global information in the
"Device Utilization" section that describes the number of chip and quadrant signals in the design.
A "Net Report" section describes chip global nets, quadrant global nets, local clock nets, a list of
nets listed by fanout, and net candidates for local clock assignment. Review this information. Note
that YB or YC are counted as global only when they are used in isolation; if you use YB only and
not GLB, this net is not shown in the global/quadrant nets report. Instead, it appears in the Global
Utilization report.

2. If some signals have a very high fanout and are candidates for global promotion, promote those
signals to global using the compile options or PDC commands. Figure 2-18 on page 46 shows the
Globals Management section of the compile options. Select Promote regular nets whose
fanout is greater than and enter a reasonable value for fanouts.

Figure 2-17 • Shared Instances in the Compile Option Dialog Box
Revision 0 45

Global Resources in Actel Low Power Flash Devices
3. Occasionally, the synthesis tool assigns a global macro to clock nets, even though the fanout is
significantly less than other asynchronous signals. Select Demote global nets whose fanout is
less than and enter a reasonable value for fanouts. This frees up some global networks from the
signals that have very low fanouts. This can also be done using PDC.

4. Use a local clock network for the signals that do not need to go to the whole chip but should have
low skew. This local clock network assignment can only be done using PDC.

5. Assign the I/O buffer using MVN if you have fixed I/O assignment. As shown in Figure 2-10 on
page 37, there are three sets of global pins that have a hardwired connection to each global
network. Do not try to put multiple CLKBUF macros in these three sets of global pins. For
example, do not assign two CLKBUFs to GAA0x and GAA2x pins.

6. You must click Commit at the end of MVN assignment. This runs the pre-layout checker and
checks the validity of global assignment.

7. Always run Compile with the Keep existing physical constraints option on. This uses the
quadrant clock network assignment in the MVN assignment and checks if you have the desired
signals on the global networks.

8. Run Layout and check the timing.

Figure 2-18 • Globals Management GUI in Designer
46 Revision 0

Fusion FPGA Fabric User’s Guide
Simple Design Example
Consider a design consisting of six building blocks (shift registers) and targeted for an A3PE600-PQ208
(Figure 2-16 on page 44). The example design consists of two PLLs (PLL1 has GLA only; PLL2 has both
GLA and GLB), a global reset (ACLR), an enable (EN_ALL), and three external clock domains (QCLK1,
QCLK2, and QCLK3) driving the different blocks of the design. Note that the PQ208 package only has
two PLLs (which access the chip global network). Because of fanout, the global reset and enable signals
need to be assigned to the chip global resources. There is only one free chip global for the remaining
global (QCLK1, QCLK2, QCLK3). Place two of these signals on the quadrant global resource. The
design example demonstrates manually assignment of QCLK1 and QCLK2 to the quadrant global using
the PDC command.

Figure 2-19 • Block Diagram of the Global Management Example Design

reg256_behave

REG_PLLCLK2GLA_OUT

REG_QCLK1_OUT

REG_QCLK2_OUT

REG_PLLCLK2GLB_OUT

REG_QCLK3_OUT

REG_PLLCLK1_OUT

REG_PLLCLK2GLA

PDOWN
PLLZ_CLKA

DATA_QCLK1

DATA_PLLCQCLK2
EN_ALL

QCLK1

DATA_QCLK2

QCLK2
ACLR

DATA_QCLK3

DATA_PLLCLK1

PLL1_CLKA

QCLK3

Shhl_In
Shhl_In
Adr
Clock

Shhl_out

REG_QCLK1

REG_QCLK2

REG_PLLCLK2GLB

REG_QCLK3

REG_PLLCLK1

PLL1

\$115

POWER-DOWN
CLKA

LOCK
GLA

POWER-DOWN
CLKA

LOCK
GLA
GLB

PLL2

\$116

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out
Revision 0 47

Global Resources in Actel Low Power Flash Devices
Step 1
Run Synthesis with default options. The Synplicity log shows the following device utilization:

Step 2
Run Compile with the Promote regular nets whose fanout is greater than option selected in Designer;
you will see the following in the Compile report:
Device utilization report:
==========================
CORE Used: 1536 Total: 13824 (11.11%)
IO (W/ clocks) Used: 19 Total: 147 (12.93%)
Differential IO Used: 0 Total: 65 (0.00%)
GLOBAL Used: 8 Total: 18 (44.44%)
PLL Used: 2 Total: 2 (100.00%)
RAM/FIFO Used: 0 Total: 24 (0.00%)
FlashROM Used: 0 Total: 1 (0.00%)
……………………
The following nets have been assigned to a global resource:
Fanout Type Name

1536 INT_NET Net : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536 SET/RESET_NET Net : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : QCLK1_c
Driver: QCLK1_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : QCLK2_c
Driver: QCLK2_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

Designer will promote five more signals to global due to high fanout. There are eight signals assigned to
global networks.

Cell usage:

cell count area count*area

DFN1E1C1
BUFF
INBUF
VCC
GND
OUTBUF
CLKBUF
PLL
TOTAL

1536
278
10
9
9
6
3
2

1853

2.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0

3072.0
278.0
0.0
0.0
0.0
0.0
0.0
0.0

3350.0
48 Revision 0

Fusion FPGA Fabric User’s Guide
During Layout, Designer will assign two of the signals to quadrant global locations.

Step 3 (optional)
You can also assign the QCLK1_c and QCLK2_c nets to quadrant regions using the following PDC
commands:
assign_local_clock –net QCLK1_c –type quadrant UL
assign_local_clock –net QCLK2_c –type quadrant LL

Step 4
Import this PDC with the netlist and run Compile again. You will see the following in the Compile report:
The following nets have been assigned to a global resource:
Fanout Type Name

1536 INT_NET Net : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536 SET/RESET_NET Net : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

The following nets have been assigned to a quadrant clock resource using PDC:
Fanout Type Name

256 CLK_NET Net : QCLK1_c

Driver: QCLK1_pad_CLKINT
Region: quadrant_UL

256 CLK_NET Net : QCLK2_c
Driver: QCLK2_pad_CLKINT
Region: quadrant_LL

Step 5
Run Layout.

Global Management in PLL Design
This section describes the legal global network connections to PLLs in the low power flash devices. For
detailed information on using PLLs, refer to "Clock Conditioning Circuits in Low Power Flash Devices and
Mixed Signal FPGAs" section on page 53. Actel recommends that you use the dedicated global pins to
directly drive the reference clock input of the associated PLL for reduced propagation delays and clock
distortion. However, low power flash devices offer the flexibility to connect other signals to reference
clock inputs. Each PLL is associated with three global networks (Figure 2-5 on page 28). There are some
limitations, such as when trying to use the global and PLL at the same time:

• If you use a PLL with only primary output, you can still use the remaining two free global
networks.

• If you use three globals associated with a PLL location, you cannot use the PLL on that location.
• If the YB or YC output is used standalone, it will occupy one global, even though this signal does

not go to the global network.
Revision 0 49

Using Spines of Occupied Global Networks
When a signal is assigned to a global network, the flash switches are programmed to set the MUX select
lines (explained in the "Clock Aggregation Architecture" section on page 37) to drive the spines of that
network with the global net. However, if the global net is restricted from reaching into the scope of a
spine, the MUX drivers of that spine are available for other high-fanout or critical signals (Figure 2-20).
For example, if you want to limit the CLK1_c signal to the left half of the chip and want to use the right
side of the same global network for CLK2_c, you can add the following PDC commands:
define_region -name region1 -type inclusive 0 0 34 29
assign_net_macros region1 CLK1_c
assign_local_clock –net CLK2_c –type chip B2

Conclusion
IGLOO, Fusion, and ProASIC3 devices contain 18 global networks: 6 chip global networks and 12
quadrant global networks. These global networks can be segmented into local low-skew networks called
spines. The spines provide low-skew networks for the high-fanout signals of a design. These allow you
up to 252 different internal/external clocks in an A3PE3000 device. This document describes the
architecture for the global network, plus guidelines and methodologies in assigning signals to globals and
spines.

Related Documents

User’s Guides
IGLOO, Fusion, and ProASIC3 Macro Library Guide
http://www.actel.com/documents/pa3_libguide_ug.pdf

Figure 2-20 • Design Example Using Spines of Occupied Global Networks

http://www.actel.com/documents/pa3_libguide_ug.pdf
http://www.actel.com/documents/pa3_libguide_ug.pdf

Fusion FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and
ProASIC3 nano devices do not support differential inputs (SAR 21449).

N/A

The "Global Architecture" section and "VersaNet Global Network Distribution"
section were revised for clarity (SAR 20646).

23, 25

The "I/O Banks and Global I/Os" section was moved earlier in the document,
renamed to "Chip and Quadrant Global I/Os", and revised for clarity. Figure 2-4 •
Global Connections Details, Figure 2-6 • Global Inputs, Table 2-2 • Chip Global
Pin Name, and Table 2-3 • Quadrant Global Pin Name are new (SAR 20646).

27

The "Clock Aggregation Architecture" section was revised (SAR 20646). 33

Figure 2-7 • Chip Global Aggregation was revised (SAR 20646). 35

The "Global Macro and Placement Selections" section is new (SAR 20646). 40

v1.4
(December 2008)

The "Global Architecture" section was updated to include 10 k devices, and to
include information about VersaNet global support for IGLOO nano devices.

23

The Table 2-1 • Flash-Based FPGAs was updated to include IGLOO nano and
ProASIC3 nano devices.

24

The "VersaNet Global Network Distribution" section was updated to include 10 k
devices and to note an exception in global lines for nano devices.

25

Figure 2-2 • Simplified VersaNet Global Network (30 k gates and below) is new. 26

The "Spine Architecture" section was updated to clarify support for 10 k and nano
devices.

33

Table 2-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include IGLOO nano and ProASIC3 nano devices.

33

The figure in the CLKBUF_LVDS/LVPECL row of Table 2-8 • Clock Macros was
updated to change CLKBIBUF to CLKBUF.

38

v1.3
(October 2008)

A third bullet was added to the beginning of the "Global Architecture" section: In
Fusion devices, the west CCC also contains a PLL core. In the two larger devices
(AFS600 and AFS1500), the west and east CCCs each contain a PLL.

23

The "Global Resource Support in Flash-Based Devices" section was revised to
include new families and make the information more concise.

24

Table 2-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include A3PE600/L in the device column.

33

Table note 1 was revised in Table 2-9 • I/O Standards within CLKBUF to include
AFS600 and AFS1500.

39

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 2-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

24
Revision 0 51

Global Resources in Actel Low Power Flash Devices
v1.1
(March 2008)

The "Global Architecture" section was updated to include the IGLOO PLUS
family. The bullet was revised to include that the west CCC does not contain a
PLL core in 15 k and 30 k devices. Instances of "A3P030 and AGL030 devices"
were replaced with "15 k and 30 k gate devices."

23

v1.1
(continued)

Table 2-1 • Flash-Based FPGAs and the accompanying text was updated to
include the IGLOO PLUS family. The "IGLOO Terminology" section and
"ProASIC3 Terminology" section are new.

24

The "VersaNet Global Network Distribution" section, "Spine Architecture" section,
the note in Figure 2-1 • Overview of VersaNet Global Network and Device
Architecture, and the note in Figure 2-3 • Simplified VersaNet Global Network
(60 k gates and above) were updated to include mention of 15 k gate devices.

25, 26

Table 2-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to add the A3P015 device, and to revise the values for clock trees, globals/spines
per tree, and globals/spines per device for the A3P030 and AGL030 devices.

33

Table 2-5 • Globals/Spines/Rows for IGLOO PLUS Devices is new. 34

CLKBUF_LVCMOS12 was added to Table 2-9 • I/O Standards within CLKBUF. 39

The "User’s Guides" section was updated to include the three different I/O
Structures chapters for ProASIC3 and IGLOO device families.

50

v1.0
(January 2008)

Figure 2-3 • Simplified VersaNet Global Network (60 k gates and above) was
updated.

26

The "Naming of Global I/Os" section was updated. 27

The "Using Global Macros in Synplicity" section was updated. 42

The "Global Promotion and Demotion Using PDC" section was updated. 43

The "Designer Flow for Global Assignment" section was updated. 45

The "Simple Design Example" section was updated. 47

51900087-0/1.05
(January 2005)

Table 2-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was
updated.

33

Date Changes Page
52 Revision 0

3 – Clock Conditioning Circuits in Low Power
Flash Devices and Mixed Signal FPGAs

Introduction
This document outlines the following device information: Clock Conditioning Circuit (CCC) features, PLL
core specifications, functional descriptions, software configuration information, detailed usage
information, recommended board-level considerations, and other considerations concerning clock
conditioning circuits and global networks in low power flash devices or mixed signal FPGAs.

Overview of Clock Conditioning Circuitry
In Fusion, IGLOO,® and ProASIC®3 devices, the CCCs are used to implement frequency division,
frequency multiplication, phase shifting, and delay operations. The CCCs are available in six chip
locations—each of the four chip corners and the middle of the east and west chip sides. For device-
specific variations, refer to the "Device-Specific Layout" section on page 69.
The CCC is composed of the following:

• PLL core
• 3 phase selectors
• 6 programmable delays and 1 fixed delay that advances/delays phase
• 5 programmable frequency dividers that provide frequency multiplication/division (not shown in

Figure 3-5 on page 62 because they are automatically configured based on the user's required
frequencies)

• 1 dynamic shift register that provides CCC dynamic reconfiguration capability
Figure 3-1 provides a simplified block diagram of the physical implementation of the building blocks in
each of the CCCs.

Figure 3-1 • Overview of the CCCs Offered in Fusion, IGLOO, and ProASIC3

3 Global I/Os
CLKA

CLKB

CLKC

To Global Network A

To Global Network B

To Global Network C

From
Core

To
Core

CCC
Function Block

(with or without PLL)

Multiplexer
Tree

3 Global I/Os

3 Global I/Os

To
Core

To
Core

From
Core

From
Core

Multiple Signals
Single Signals
Revision 0 53

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each CCC can implement up to three independent global buffers (with or without programmable delay)
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to
three global outputs. Unused global outputs of a PLL can be used to implement independent global
buffers, up to a maximum of three global outputs for a given CCC.

CCC Programming
The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or
through an asynchronous interface. This asynchronous dedicated shift register interface is dynamically
accessible from inside the low power flash devices to permit parameter changes, such as PLL divide
ratios and delays, during device operation.
To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is
determined either by the user during the design process, with configuration data being stored in flash
memory as part of the device programming procedure, or by writing data into a dedicated shift register
during normal device operation.
This latter mode allows the user to dynamically reconfigure the CCC without the need for core
programming. The shift register is accessed through a simple serial interface. Refer to the "UJTAG
Applications in Actel’s Low Power Flash Devices" section on page 417 or the application note Using
Global Resources in Actel Fusion Devices.

Global Resources
Low power flash and mixed signal devices provide three global routing networks (GLA, GLB, and GLC)
for each of the CCC locations. There are potentially many I/O locations; each global I/O location can be
chosen from only one of three possibilities. This is controlled by the multiplexer tree circuitry in each
global network. Once the I/O location is selected, the user has the option to utilize the CCCs before the
signals are connected to the global networks. The CCC in each location (up to six) has the same
structure, so generating the CCC macros is always done with an identical software GUI. The CCCs in the
corner locations drive the quadrant global networks, and the CCCs in the middle of the east and west
chip sides drive the chip global networks. The quadrant global networks span only a quarter of the
device, while the chip global networks span the entire device. For more details on global resources
offered in low power flash devices, refer to the "Global Resources in Actel Low Power Flash Devices"
section on page 23.
A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, or
CLKC-GLC) of a given CCC. A PLL macro uses the CLKA CCC input to drive its reference clock. It uses
the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can
also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the
YB (or YC) output is used. Refer to the "PLL Macro Signal Descriptions" section on page 60 for more
information.
Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not supported for IGLOO nano or

ProASIC3 nano devices)
• The FPGA core
54 Revision 0

http://www.actel.com/documents/Fusion_GlobalResources_AN.pdf
http://www.actel.com/documents/Fusion_GlobalResources_AN.pdf

Fusion FPGA Fabric User’s Guide
CCC Support in Actel’s Flash Devices
The flash FPGAs listed in Table 3-1 support the CCC feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 3-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 3-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 3-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
Revision 0 55

http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Global Buffers with No Programmable Delays
Access to the global / quadrant global networks can be configured directly from the global I/O buffer,
bypassing the CCC functional block (as indicated by the dotted lines in Figure 3-1 on page 53). Internal
signals driven by the FPGA core can use the global / quadrant global networks by connecting via the
routed clock input of the multiplexer tree.
There are many specific CLKBUF macros supporting the wide variety of single-ended I/O inputs
(CLKBUF) and differential I/O standards (CLKBUF_LVDS/LVPECL) in the low power flash families. They
are used when connecting global I/Os directly to the global/quadrant networks.
Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
When an internal signal needs to be connected to the global/quadrant network, the CLKINT macro is
used to connect the signal to the routed clock input of the network's MUX tree.
To utilize direct connection from global I/Os or from internal signals to the global/quadrant networks,
CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are used (Figure 3-2).

• The CLKBUF and CLKBUF_LVPECL/LVDS1 macros are composite macros that include an I/O
macro driving a global buffer, which uses a hardwired connection.

• The CLKBUF, CLKBUF_LVPECL/LVDS1 and CLKINT macros are pass-through clock sources
and do not use the PLL or provide any programmable delay functionality.

• The CLKINT macro provides a global buffer function driven internally by the FPGA core.
The available CLKBUF macros are described in the IGLOO, ProASIC3, SmartFusion, and Fusion
Macro Library Guide.

Global Buffer with Programmable Delay
Clocks requiring clock adjustments can utilize the programmable delay cores before connecting to the
global / quadrant global networks. A maximum of 18 CCC global buffers can be instantiated in a device—
three per CCC and up to six CCCs per device.
Each CCC functional block contains a programmable delay element for each of the global networks (up
to three), and users can utilize these features by using the corresponding macro (Figure 3-3 on page 57).

1. B-LVDS and M-LVDS are supported with the LVDS macro.

Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
Figure 3-2 • CCC Options: Global Buffers with No Programmable Delay

NoneCLKBUF_LVDS/LVPECL Macro

PADN

PADP Y

Y

Y

A

ED

PAD

PAD

Y

CLKINT Macro CLKBUF Macro

CLKBIBUF Macro GLA, GLB,
or GLC

Clock Source Clock Conditioning Output

CLKBIBUF
56 Revision 0

http://www.actel.com/documents/pa3_libguide_ug.pdf
http://www.actel.com/documents/pa3_libguide_ug.pdf

Fusion FPGA Fabric User’s Guide
The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to
delay the clock input using a programmable delay. The CLKDLY macro takes the selected clock input
and adds a user-defined delay element. This macro generates an output clock phase shift from the input
clock.
The CLKDLY macro can be driven by an INBUF* macro to create a composite macro, where the I/O
macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the
software will automatically place the dedicated global I/O in the appropriate locations. Many specific
INBUF macros support the wide variety of single-ended and differential I/O standards supported by the
low power flash family. The available INBUF macros are described in the IGLOO, ProASIC3,
SmartFusion, and Fusion Macro Library Guide.
The CLKDLY macro can be driven directly from the FPGA core. The CLKDLY macro can also be driven
from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a
special macro, PLLINT, to differentiate the clock input driven by the hardwired I/O connection.
The visual CLKDLY configuration in the SmartGen area of the Actel Libero® Integrated Design
Environment (IDE) and Designer tools allows the user to select the desired amount of delay and
configures the delay elements appropriately. SmartGen also allows the user to select the input clock
source. SmartGen will automatically instantiate the special macro, PLLINT, when needed.

CLKDLY Macro Signal Descriptions
The CLKDLY macro supports one input and one output. Each signal is described in Table 3-2.

Notes:
1. For INBUF* driving a PLL macro or CLKDLY macro, the I/O will be hard-routed to the CCC; i.e., will be placed by

software to a dedicated Global I/O.
2. IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Figure 3-3 • CCC Options: Global Buffers with Programmable Delay

PADN
PADP

Y

PAD Y

Input LVDS/LVPECL Macro

INBUF* Macro

GLA

or

GLB

or

GLC

Clock Source
Clock Conditioning Output

CLK

DLYGL[4:0]

GL

Table 3-2 • Input and Output Description of the CLKDLY Macro

Signal Name I/O Description

CLK Reference Clock Input Reference clock input

GL Global Output Output Primary output clock to respective global/quadrant clock networks
Revision 0 57

http://www.actel.com/documents/pa3_libguide_ug.pdf
http://www.actel.com/documents/pa3_libguide_ug.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CLKDLY Macro Usage
When a CLKDLY macro is used in a CCC location, the programmable delay element is used to allow the
clock delays to go to the global network. In addition, the user can bypass the PLL in a CCC location
integrated with a PLL, but use the programmable delay that is associated with the global network by
instantiating the CLKDLY macro. The same is true when using programmable delay elements in a CCC
location with no PLLs (the user needs to instantiate the CLKDLY macro). There is no difference between
the programmable delay elements used for the PLL and the CLKDLY macro. The CCC will be configured
to use the programmable delay elements in accordance with the macro instantiated by the user.
As an example, if the PLL is not used in a particular CCC location, the designer is free to specify up to
three CLKDLY macros in the CCC, each of which can have its own input frequency and delay adjustment
options. If the PLL core is used, assuming output to only one global clock network, the other two global
clock networks are free to be used by either connecting directly from the global inputs or connecting from
one or two CLKDLY macros for programmable delay.
The programmable delay elements are shown in the block diagram of the PLL block shown in Figure 3-5
on page 62. Note that any CCC locations with no PLL present contain only the programmable delay
blocks going to the global networks (labeled "Programmable Delay Type 2"). Refer to the "Clock Delay
Adjustment" section on page 77 for a description of the programmable delay types used for the PLL. Also
refer to Table 3-13 on page 84 for Programmable Delay Type 1 step delay values, and Table 3-14 on
page 84 for Programmable Delay Type 2 step delay values. CCC locations with a PLL present can be
configured to utilize only the programmable delay blocks (Programmable Delay Type 2) going to the
global networks A, B, and C.
Global network A can be configured to use only the programmable delay element (bypassing the PLL) if the
PLL is not used in the design. Figure 3-5 on page 62 shows a block diagram of the PLL, where the
programmable delay elements are used for the global networks (Programmable Delay Type 2).
58 Revision 0

Fusion FPGA Fabric User’s Guide
Global Buffers with PLL Function
Clocks requiring frequency synthesis or clock adjustments can utilize the PLL core before connecting to
the global / quadrant global networks. A maximum of 18 CCC global buffers can be instantiated in a
device—three per CCC and up to six CCCs per device. Each PLL core can generate up to three
global/quadrant clocks, while a clock delay element provides one.
The PLL functionality of the clock conditioning block is supported by the PLL macro.

The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL
macro also provides power-down input and lock output signals. The additional inputs shown on the
macro are configuration settings, which are configured through the use of SmartGen. For manual setting
of these bits refer to the IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide for details.
Figure 3-5 on page 62 illustrates the various clock output options and delay elements.

Notes:
1. For Fusion only.
2. Refer to the IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide for more information.
3. For INBUF* driving a PLL macro or CLKDLY macro, the I/O will be hard-routed to the CCC; i.e., will be placed by

software to a dedicated Global I/O.
4. IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Figure 3-4 • CCC Options: Global Buffers with PLL

PADN

PADP
Y

PAD Y

Input LVDS/LVPECL Macro PLL Macro

INBUF* Macro

GLA

or

GLA and (GLB or YB)

or

GLA and (GLC or YC)

or

GLA and (GLB or YB) and

(GLC or YC)

Clock Source Clock Conditioning Output

OADIVHALF
OADIV[4:0]
OAMUX[2:0]
DLYGLA[4:0]
OBDIV[4:0]
OBMUX[2:0]
DLYYB[4:0]
DLYGLB[4:0]
OCDIV[4:0]
OCMUX[2:0]
DLYYC[4:0]
DLYGLC[4:0]
FINDIV[6:0]
FBDIV[6:0]
FBDLY[4:0]
FBSEL[1:0]
XDLYSEL
VCOSEL[2:0]

CLKA
EXTFB

GLA
LOCK

GLB
YB

GLC
YC

POWERDOWN
OADIVRST1

1
2

2
2

2
2

2
2

2
2

2
2

2

2

2
2

2
2

Revision 0 59

http://www.actel.com/documents/pa3_libguide_ug.pdf
http://www.actel.com/documents/pa3_libguide_ug.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
PLL Macro Signal Descriptions
The PLL macro supports two inputs and up to six outputs. Table 3-3 gives a description of each signal.

Input Clock
The inputs to the input reference clock (CLKA) of the PLL can come from global input pins, regular I/O
pins, or internally from the core. For Fusion families, the input reference clock can also be from the
embedded RC oscillator or crystal oscillator.

Global Output Clocks
GLA (Primary), GLB (Secondary 1), and GLC (Secondary 2) are the outputs of Global Multiplexer 1,
Global Multiplexer 2, and Global Multiplexer 3, respectively. These signals (GLx) can be used to drive the
high-speed global and quadrant networks of the low power flash devices.
A global multiplexer block consists of the input routing for selecting the input signal for the GLx clock and
the output multiplexer, as well as delay elements associated with that clock.

Core Output Clocks
YB and YC are known as Core Outputs and can be used to drive internal logic without using global
network resources. This is especially helpful when global network resources must be conserved and
utilized for other timing-critical paths.

Table 3-3 • Input and Output Signals of the PLL Block
Signal Name I/O Description
CLKA Reference Clock Input Reference clock input for PLL core; input clock for primary output

clock, GLA
OADIVRST Reset Signal for the

Output Divider A
Input For Fusion only. OADIVRST can be used when you bypass the PLL

core (i.e., OAMUX = 001). The purpose of the OADIVRST signals is
to reset the output of the final clock divider to synchronize it with the
input to that divider when the PLL is bypassed. The signal is active
on a low to high transition. The signal must be low for at least one
divider input. If PLL core is used, this signal is "don't care" and the
internal circuitry will generate the reset signal for the
synchronization purpose.

OADIVHALF Output A Division by
Half

Input For Fusion only. Active high. Division by half feature. This feature
can only be used when users bypass the PLL core (i.e., OAMUX =
001) and the RC Oscillator (RCOSC) drives the CLKA input. This
can be used to divide the 100 MHz RC oscillator by a factor of 1.5,
2.5, 3.5, 4.5 ... 14.5). Refer to Table 3-17 on page 85 for more
information.

EXTFB External Feedback Input Allows an external signal to be compared to a reference clock in the
PLL core's phase detector.

POWERDOWN Power Down Input Active low input that selects power-down mode and disables the
PLL. With the POWERDOWN signal asserted, the PLL core sends
0 V signals on all of the outputs.

GLA Primary Output Output Primary output clock to respective global/quadrant clock networks
GLB Secondary 1 Output Output Secondary 1 output clock to respective global/quadrant clock

networks
YB Core 1 Output Output Core 1 output clock to local routing network
GLC Secondary 2 Output Output Secondary 2 output clock to respective global/quadrant clock

networks
YC Core 2 Output Output Core 2 output clock to local routing network
LOCK PLL Lock Indicator Output Active high signal indicating that steady-state lock has been

achieved between CLKA and the PLL feedback signal
60 Revision 0

Fusion FPGA Fabric User’s Guide
YB and YC are identical to GLB and GLC, respectively, with the exception of a higher selectable final
output delay. The SmartGen PLL Wizard will configure these outputs according to user specifications
and can enable these signals with or without the enabling of Global Output Clocks.
The above signals can be enabled in the following output groupings in both internal and external
feedback configurations of the static PLL:

• One output – GLA only
• Two outputs – GLA + (GLB and/or YB)
• Three outputs – GLA + (GLB and/or YB) + (GLC and/or YC)

PLL Macro Block Diagram
As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these
(GLB and GLC) can be routed to the B and C global network access, respectively, and/or routed to the
device core (YB and YC).
There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).
There are delay elements in the feedback loop that can be used to advance the clock relative to the
reference clock.
The PLL macro reference clock can be driven in the following ways:

1. By an INBUF* macro to create a composite macro, where the I/O macro drives the global buffer
(with programmable delay) using a hardwired connection. In this case, the I/O must be placed in
one of the dedicated global I/O locations.

2. Directly from the FPGA core.
3. From an I/O that is routed through the FPGA regular routing fabric. In this case, users must

instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described
earlier.

During power-up, the PLL outputs will toggle around the maximum frequency of the voltage-controlled
oscillator (VCO) gear selected. Toggle frequencies can range from 40 MHz to 250 MHz. This will
continue as long as the clock input (CLKA) is constant (HIGH or LOW). This can be prevented by LOW
assertion of the POWERDOWN signal.
The visual PLL configuration in SmartGen, a component of the Libero IDE and Designer tools, will derive
the necessary internal divider ratios based on the input frequency and desired output frequencies
selected by the user.
Revision 0 61

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
SmartGen also allows the user to select the various delays and phase shift values necessary to adjust
the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB, GLC, YB, and YC).
SmartGen allows the user to select the input clock source. SmartGen automatically instantiates the
special macro, PLLINT, when needed.

Global Input Selections
Low power flash devices provide the flexibility of choosing one of the three global input pad locations
available to connect to a CCC functional block or to a global / quadrant global network. Figure 3-6 on
page 63 and Figure 3-7 on page 63 show the detailed architecture of each global input structure for 30 k
gate devices and below, as well as 60 k gate devices and above, respectively. For 60 k gate devices and
above (Figure 3-6 on page 63), if the single-ended I/O standard is chosen, there is flexibility to choose
one of the global input pads (the first, second, and fourth input). Once chosen, the other I/O locations are
used as regular I/Os. If the differential I/O standard is chosen (not applicable for IGLOO nano and
ProASIC3 nano devices), the first and second inputs are considered as paired, and the third input is
paired with a regular I/O.
The user then has the choice of selecting one of the two sets to be used as the clock input source to the
CCC functional block. There is also the option to allow an internal clock signal to feed the global network
or the CCC functional block. A multiplexer tree selects the appropriate global input for routing to the
desired location. Note that the global I/O pads do not need to feed the global network; they can also be
used as regular I/O pads.

Note: Clock divider and clock multiplier blocks are not shown in this figure or in SmartGen. They are automatically
configured based on the user's required frequencies.

Figure 3-5 • CCC with PLL Block

PLL Core
Phase
Select

Phase
Select

Phase
Select

GLA

CLKA

GLB

YB

GLC

YC

Programmable Delay
Programmable
 Delay Type 1

Programmable
 Delay Type 2

Programmable
 Delay Type 2

Programmable
 Delay Type 1

Programmable
 Delay Type 2

Programmable
 Delay Type 1

Four-Phase Output

EXTFB
62 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 3-6 • Clock Input Sources (30 k gates devices and below)

Notes:
1. Represents the global input pins. Globals have direct access to the clock conditioning block and are

not routed via the FPGA fabric. Refer to the "User I/O Naming Conventions in I/O Structures" chapter
of the appropriate device user’s guide.

2. Instantiate the routed clock source input as follows:
a) Connect the output of a logic element to the clock input of a PLL, CLKDLY, or CLKINT macro.
b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS/B-LVDS/M-LVDS/DDR) in

a relevant global pin location.
3. IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Figure 3-7 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT (60 k

gates devices and above)

Routed Clock
(from FPGA core)

Drives the global
network directly
(GLA or GLC)

Dedicated I/O Pad

Sample Pin Names

GEC0/IO37RSB1

To Core

+

+

Source for CCC
(CLKA or CLKB or CLKC)

Each shaded box represents an
INBUF or INBUF_LVDS/LVPECL
macro, as appropriate. To Core

Routed Clock
(from FPGA core)

Sample Pin Names

GAA0/IO0NDB0V01

GAA1/IO00PDB0V01

GAA2/IO13PDB7V11

GAA[0:2]: GA represents global in the northwest corner
of the device. A[0:2]: designates specific A clock source.

2

Revision 0 63

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each global buffer, as well as the PLL reference clock, can be driven from one of the following:
• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not applicable for IGLOO nano and

ProASIC3 nano devices)
• The FPGA core

Since the architecture of the devices varies as size increases, the following list details I/O types
supported for globals:

IGLOO and ProASIC3
• LVDS-based clock sources are available only on 250 k gate devices and above (IGLOO nano and

ProASIC3 nano devices do not support differential inputs).
• 60 k and 125 k gate devices support single-ended clock sources only.
• 15 k and 30 k gate devices support these inputs for CCC only and do not contain a PLL.
• nano devices:

– 10 k, 15 k, and 20 k devices do not contain PLLs in the CCCs, and support only CLKBUF and
CLKINT.

– 60 k, 125 k, and 250 k devices support one PLL in the middle left CCC position. In the
absence of the PLL, this CCC can be used by CLKBUF, CLKINT, and CLKDLY macros. The
corner CCCs support CLKBUF, CLKINT, and CLKDLY.

Fusion
• AFS600 and AFS1500: All single-ended, differential, and voltage-referenced I/O standards (Pro

I/O).
• AFS090 and AFS250: All single-ended and differential I/O standards.

Clock Sources for PLL and CLKDLY Macros
The input reference clock (CLKA for a PLL macro, CLK for a CLKDLY macro) can be accessed from
different sources via the associated clock multiplexer tree. Each CCC has the option of choosing the
source of the input clock from one of the following:

• Hardwired I/O
• External I/O
• Core Logic
• RC Oscillator (Fusion only)
• Crystal Oscillator (Fusion only)

The SmartGen macro builder tool allows users to easily create the PLL and CLKDLY macros with the
desired settings. Actel strongly recommends using SmartGen to generate the CCC macros.

Hardwired I/O Clock Source
Hardwired I/O refers to global input pins that are hardwired to the multiplexer tree, which directly
accesses the CCC global buffers. These global input pins have designated pin locations and are
indicated with the I/O naming convention Gmn (m refers to any one of the positions where the PLL core
is available, and n refers to any one of the three global input MUXes and the pin number of the
associated global location, m). Choosing this option provides the benefit of directly connecting to the
CCC reference clock input, which provides less delay. See Figure 3-8 on page 65 for an example
illustration of the connections, shown in red. If a CLKDLY macro is initiated to utilize the programmable
delay element of the CCC, the clock input can be placed at one of nine dedicated global input pin
locations. In other words, if Hardwired I/O is chosen as the input source, the user can decide to place the
input pin in one of the GmA0, GmA1, GmA2, GmB0, GmB1, GmB2, GmC0, GmC1, or GmC2 locations of
the low power flash devices. When a PLL macro is used to utilize the PLL core in a CCC location, the
clock input of the PLL can only be connected to one of three GmA* global pin locations: GmA0, GmA1, or
GmA2.
64 Revision 0

Fusion FPGA Fabric User’s Guide
Note: Fusion CCCs have additional source selections (RCOSC, XTAL).
Figure 3-8 • Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 60 k

Gates and Larger

Figure 3-9 • Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 30 k
Gates and Smaller

+
_

PLL or CLKDLY
Macro

Routed Clock
(from FPGA core)

Gmn0

Gmn1

Gmn2

To Core

To Global (or local)
Routing NetworkCLKA

PLLINT

Multiplexer
Tree

+
_

IOuxwByVz
Gmn* = Global Input Pin
IOuxwByVz = Regular I/O Pin

Routed Clock
(from the FPGA core)

Directly Drives Global Network
(GLA or GLC)

Dedicated I/O Pad

Sample Pin Names

GEC0/IO37RSB1

To Core
Revision 0 65

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
External I/O Clock Source
External I/O refers to regular I/O pins. The clock source is instantiated with one of the various INBUF
options and accesses the CCCs via internal routing. The user has the option of assigning this input to
any of the I/Os labeled with the I/O convention IOuxwByVz. Refer to the "User I/O Naming Conventions
in I/O Structures" chapter of the appropriate device user’s guide, and for Fusion, refer to the Actel Fusion
Family of Mixed Signal FPGAs datasheet for more information. Figure 3-10 gives a brief explanation of
external I/O usage. Choosing this option provides the freedom of selecting any user I/O location but
introduces additional delay because the signal connects to the routed clock input through internal routing
before connecting to the CCC reference clock input.
For the External I/O option, the routed signal would be instantiated with a PLLINT macro before
connecting to the CCC reference clock input. This instantiation is conveniently done automatically by
SmartGen when this option is selected. Actel recommends using the SmartGen tool to generate the CCC
macro. The instantiation of the PLLINT macro results in the use of the routed clock input of the I/O to
connect to the PLL clock input. If not using SmartGen, manually instantiate a PLLINT macro before the
PLL reference clock to indicate that the regular I/O driving the PLL reference clock should be used (see
Figure 3-10 for an example illustration of the connections, shown in red).
In the above two options, the clock source must be instantiated with one of the various INBUF macros.
The reference clock pins of the CCC functional block core macros must be driven by regular input
macros (INBUFs), not clock input macros.

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input
reference clock of the CCC block.

Figure 3-10 • Illustration of External I/O Usage

PLL or CLKDLY
Macro

Routed Clock
(from FPGA Core)

Gmn*

Gmn*

Gmn*

To Core

IOuxwByVz*

To Global (or Local)
Routing Network

IOuxwByVz*

CLKA

PLLINT

Multiplexer
Tree

+
_

+
_

Gmn* = Global Input Pin
IOuxwByVz = Regular I/O Pin
66 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Fusion FPGA Fabric User’s Guide
Core Logic Clock Source
Core logic refers to internal routed nets. Internal routed signals access the CCC via the FPGA Core
Fabric. Similar to the External I/O option, whenever the clock source comes internally from the core itself,
the routed signal is instantiated with a PLLINT macro before connecting to the CCC clock input (see
Figure 3-11 for an example illustration of the connections, shown in red).

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input
reference clock of the CCC block.

Figure 3-11 • Illustration of Core Logic Usage

PLL or CLKDLY
Macro

Routed Clock
(from FPGA Core)

Gmn*

Gmn*

Gmn*

To Core

IOuxwByVz*

To Global (or Local)
Routing Network

From Internal
Signals

CLKA

PLLINT

Multiplexer
Tree

_
+

_
+

Gmn* = Global Input Pin
IOuxwByVz = Regular I/O Pin
Revision 0 67

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Available I/O Standards

Global Synthesis Constraints
The Synplify® synthesis tool, by default, allows six clocks in a design for Fusion, IGLOO, and ProASIC3.
When more than six clocks are needed in the design, a user synthesis constraint attribute,
syn_global_buffers, can be used to control the maximum number of clocks (up to 18) that can be inferred
by the synthesis engine.
High-fanout nets will be inferred with clock buffers and/or internal clock buffers. If the design consists of
CCC global buffers, they are included in the count of clocks in the design.
The subsections below discuss the clock input source (global buffers with no programmable delays) and
the clock conditioning functional block (global buffers with programmable delays and/or PLL function) in
detail.

Table 3-4 • Available I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF_LVCMOS5

CLKBUF_LVCMOS33 1

CLKBUF_LVCMOS25 2

CLKBUF_LVCMOS18

CLKBUF_LVCMOS15

CLKBUF_PCI

CLKBUF_PCIX 3

CLKBUF_GTL25 2,3

CLKBUF_GTL33 2,3

CLKBUF_GTLP25 2,3

CLKBUF_GTLP33 2,3

CLKBUF_HSTL_I 2,3

CLKBUF_HSTL_II 2,3

CLKBUF_SSTL3_I 2,3

CLKBUF_SSTL3_II 2,3

CLKBUF_SSTL2_I 2,3

CLKBUF_SSTL2_II 2,3

CLKBUF_LVDS 4,5

CLKBUF_LVPECL5

Notes:
1. By default, the CLKBUF macro uses 3.3 V LVTTL I/O technology. For more details, refer to the

IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide.
2. I/O standards only supported in ProASIC3E and IGLOOe families.
3. I/O standards only supported in the following Fusion devices: AFS600 and AFS1500.
4. B-LVDS and M-LVDS standards are supported by CLKBUF_LVDS.
5. Not supported for IGLOO nano and ProASIC3 nano devices.
68 Revision 0

http://www.actel.com/documents/pa3_libguide_ug.pdf
http://www.actel.com/documents/pa3_libguide_ug.pdf

Fusion FPGA Fabric User’s Guide
Device-Specific Layout
Two kinds of CCCs are offered in low power flash devices: CCCs with integrated PLLs, and CCCs
without integrated PLLs (simplified CCCs). Table 3-5 lists the number of CCCs in various devices.

Note: nano 10 k, 15 k, and 20 k offer 6 global MUXes instead of CCCs.

Table 3-5 • Number of CCCs by Device Size and Package
Device

Package

CCCs with
Integrated

PLLs

CCCs without
Integrated PLLs
(simplified CCC)ProASIC3 IGLOO

A3PN010 AGLN010 All 0 2

A3PN015 AGLN015 All 0 2

A3PN020 AGLN020 All 0 2

AGLN060 CS81 0 6

A3PN060 AGLN060 All other
packages

1 5

AGLN125 CS81 0 6

A3PN125 AGLN125 All other
packages

1 5

AGLN250 CS81 0 6

A3PN250 AGLN250 All other
packages

1 5

A3P015 AGL015 All 0 2

A3P030 AGL030/AGLP030 All 0 2

AGL060/AGLP060 CS121/CS201 0 6

A3P060 AGL060/AGLP060 All other
packages

1 5

A3P125 AGL125/AGLP125 All 1 5

A3P250/L AGL250 All 1 5

A3P400 AGL400 All 1 5

A3P600/L AGL600 All 1 5

A3P1000/L AGL1000 All 1 5

A3PE600 AGLE600 PQ208 2 4

A3PE600/L All other
packages

6 0

A3PE1500 PQ208 2 4

A3PE1500 All other
packages

6 0

A3PE3000/L PQ208 2 4

A3PE3000/L AGLE3000 All other
packages

6 0

Fusion Devices
AFS090 All 1 5

AFS250, M1AFS250 All 1 5

AFS600, M7AFS600, M1AFS600 All 2 4

AFS1500, M1AFS1500 All 2 4
Revision 0 69

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
This section outlines the following device information: CCC features, PLL core specifications, functional
descriptions, software configuration information, detailed usage information, recommended board-level
considerations, and other considerations concerning global networks in low power flash devices.

Clock Conditioning Circuits with Integrated PLLs
Each of the CCCs with integrated PLLs includes the following:

• 1 PLL core, which consists of a phase detector, a low-pass filter, and a four-phase voltage-
controlled oscillator

• 3 global multiplexer blocks that steer signals from the global pads and the PLL core onto the
global networks

• 6 programmable delays and 1 fixed delay for time advance/delay adjustments
• 5 programmable frequency divider blocks to provide frequency synthesis (automatically

configured by the SmartGen macro builder tool)

Clock Conditioning Circuits without Integrated PLLs
There are two types of simplified CCCs without integrated PLLs in low power flash devices.

1. The simplified CCC with programmable delays, which is composed of the following:
– 3 global multiplexer blocks that steer signals from the global pads and the programmable

delay elements onto the global networks
– 3 programmable delay elements to provide time delay adjustments

2. The simplified CCC (referred to as CCC-GL) without programmable delay elements, which is
composed of the following:
– A global multiplexer block that steer signals from the global pads onto the global networks
70 Revision 0

Fusion FPGA Fabric User’s Guide
CCC Locations
CCCs located in the middle of the east and west sides of the device access the three VersaNet global
networks on each side (six total networks), while the four CCCs located in the four corners access three
quadrant global networks (twelve total networks). See Figure 3-12.

The following explains the locations of the CCCs in IGLOO and ProASIC3 devices:
In Figure 3-14 on page 73 through Figure 3-15 on page 73, CCCs with integrated PLLs are indicated in
red, and simplified CCCs are indicated in yellow. There is a letter associated with each location of the
CCC, in clockwise order. The upper left corner CCC is named "A," the upper right is named "B," and so
on. These names finish up at the middle left with letter "F."

Figure 3-12 • Global Network Architecture for 60 k Gate Devices and Above

Northwest Quadrant Global Networks

Southeast Quadrant Global Networks

Chip-Wide (main)
Global

Networks

3

3

3

3 3 3

3 3 3 3

6

6

6

6

6

6

6

6

G
lo

ba
l S

pi
ne

Q
ua

dr
an

t G
lo

ba
l S

pi
ne

CCC Location A

CCC Location F

CCC Location E CCC Location D

CCC Location C

CCC Location B
Revision 0 71

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
IGLOO and ProASIC3 CCC Locations
In all IGLOO and ProASIC3 devices (except 10 k through 30 k gate devices, which do not contain PLLs),
six CCCs are located in the same positions as the IGLOOe and ProASIC3E CCCs. Only one of the
CCCs has an integrated PLL and is located in the middle of the west (middle left) side of the device. The
other five CCCs are simplified CCCs and are located in the four corners and the middle of the east side
of the device (Figure 3-13).

Note: The number and architecture of the banks are different for some devices.
10 k through 30 k gate devices do not support PLL features. In these devices, there are two CCC-GLs at
the lower corners (one at the lower right, and one at the lower left). These CCC-GLs do not have
programmable delays.

Figure 3-13 • CCC Locations in IGLOO and ProASIC3 Family Devices
(except 10 k through 30 k gate devices)

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC

I/Os

ISP AES
Decryption

User Nonvolatile
FlashROM (FROM) Charge Pumps

Bank 0
B

an
k

3
B

an
k

3 B
ank 1

B
ank 1

Bank 2

A B

C

DE

F

= CCC with integrated PLL
= Simplified CCC with programmable delay elements (no PLL)
72 Revision 0

Fusion FPGA Fabric User’s Guide
IGLOOe and ProASIC3E CCC Locations
IGLOOe and ProASIC3E devices have six CCCs—one in each of the four corners and one each in the
middle of the east and west sides of the device (Figure 3-14).
All six CCCs are integrated with PLLs, except in PQFP-208 package devices. PQFP-208 package
devices also have six CCCs, of which two include PLLs and four are simplified CCCs. The CCCs with
PLLs are implemented in the middle of the east and west sides of the device (middle right and middle
left). The simplified CCCs without PLLs are located in the four corners of the device (Figure 3-15).

Figure 3-14 • CCC Locations in IGLOOe and ProASIC3E Family Devices (except PQFP-208
package)

Figure 3-15 • CCC Locations in ProASIC3E Family Devices (PQFP-208 package)

VersaTile

RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

Pro I/Os

RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

ISP AES
Decryption

User Nonvolatile
FlashRom

Flash*Freeze
Technology

Charge
Pumps

= CCC with integrated PLL

CCC A B

C

DE

F

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

I/Os

Bank 0

B
an

k
3

B
an

k
3 B

ank 1
B

ank 1

Bank 2

= CCC with integrated PLL
= Simplified CCC with programmable delay elements (no PLL)

B

C

D

CCC
A

E

F

ISP AES
Decryption*

User Nonvolatile
FlashRom

Flash*Freeze
Technology

Charge
Pumps
Revision 0 73

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Fusion CCC Locations
Fusion devices have six CCCs: one in each of the four corners and one each in the middle of the east
and west sides of the device (Figure 3-16 and Figure 3-17). The device can have one integrated PLL in
the middle of the west side of the device or two integrated PLLs in the middle of the east and west sides
of the device (middle right and middle left).

Figure 3-16 • CCC Locations in Fusion Family Devices (AFS090, AFS250, M1AFS250)

Figure 3-17 • CCC Locations in Fusion Family Devices (except AFS090, AFS250, M1AFS250)

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC

I/Os

ISP AES
Decryption

User Nonvolatile
FlashROM (FROM) Charge Pumps

Bank 0

B
an

k
3

B
an

k
3 B

ank 1
B

ank 1

Bank 2

A B

C

DE

F

= CCC with integrated PLL
= Simplified CCC with programmable delay elements (no PLL)

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

I/Os

Bank 0

B
an

k
3

B
an

k
3 B

ank 1
B

ank 1

Bank 2

= CCC with integrated PLL
= Simplified CCC with programmable delay elements (no PLL)

B

C

D

CCC
A

E

F

ISP AES
Decryption*

User Nonvolatile
FlashRom

Flash*Freeze
Technology

Charge
Pumps
74 Revision 0

Fusion FPGA Fabric User’s Guide
PLL Core Specifications
PLL core specifications can be found in the DC and Switching Characteristics chapter of the appropriate
family datasheet.

Loop Bandwidth
Common design practice for systems with a low-noise input clock is to have PLLs with small loop
bandwidths to reduce the effects of noise sources at the output. Table 3-6 shows the PLL loop
bandwidth, providing a measure of the PLL's ability to track the input clock and jitter.

PLL Core Operating Principles
This section briefly describes the basic principles of PLL operation. The PLL core is composed of a
phase detector (PD), a low-pass filter (LPF), and a four-phase voltage-controlled oscillator (VCO).
Figure 3-18 illustrates a basic single-phase PLL core with a divider and delay in the feedback path.

The PLL is an electronic servo loop that phase-aligns the PD feedback signal with the reference input. To
achieve this, the PLL dynamically adjusts the VCO output signal according to the average phase
difference between the input and feedback signals.
The first element is the PD, which produces a voltage proportional to the phase difference between its
inputs. A simple example of a digital phase detector is an Exclusive-OR gate. The second element, the
LPF, extracts the average voltage from the phase detector and applies it to the VCO. This applied
voltage alters the resonant frequency of the VCO, thus adjusting its output frequency.
Consider Figure 3-18 with the feedback path bypassing the divider and delay elements. If the LPF
steadily applies a voltage to the VCO such that the output frequency is identical to the input frequency,
this steady-state condition is known as lock. Note that the input and output phases are also identical. The
PLL core sets a LOCK output signal HIGH to indicate this condition.
Should the input frequency increase slightly, the PD detects the frequency/phase difference between its
reference and feedback input signals. Since the PD output is proportional to the phase difference, the
change causes the output from the LPF to increase. This voltage change increases the resonant
frequency of the VCO and increases the feedback frequency as a result. The PLL dynamically adjusts in
this manner until the PD senses two phase-identical signals and steady-state lock is achieved. The
opposite (decreasing PD output signal) occurs when the input frequency decreases.
Now suppose the feedback divider is inserted in the feedback path. As the division factor M (shown in
Figure 3-19 on page 76) is increased, the average phase difference increases. The average phase

Table 3-6 • –3 dB Frequency of the PLL
Minimum

(Ta = +125°C, VCCA = 1.4 V)
Typical

(Ta = +25°C, VCCA = 1.5 V)
Maximum

(Ta = –55°C, VCCA = 1.6 V)
–3 dB
Frequency

15 kHz 25 kHz 45 kHz

Figure 3-18 • Simplified PLL Core with Feedback Divider and Delay

Frequency
Reference
Input FIN

Phase
Detector

Low-Pass
Filter

Voltage
Controlled
Oscillator

Divide by M
Counter Delay

Frequency
Output
M × FIN
Revision 0 75

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
difference will cause the VCO to increase its frequency until the output signal is phase-identical to the
input after undergoing division. In other words, lock in both frequency and phase is achieved when the
output frequency is M times the input. Thus, clock division in the feedback path results in multiplication at
the output.
A similar argument can be made when the delay element is inserted into the feedback path. To achieve
steady-state lock, the VCO output signal will be delayed by the input period less the feedback delay. For
periodic signals, this is equivalent to time-advancing the output clock by the feedback delay.
Another key parameter of a PLL system is the acquisition time. Acquisition time is the amount of time it
takes for the PLL to achieve lock (i.e., phase-align the feedback signal with the input reference clock).
For example, suppose there is no voltage applied to the VCO, allowing it to operate at its free-running
frequency. Should an input reference clock suddenly appear, a lock would be established within the
maximum acquisition time.

Functional Description
This section provides detailed descriptions of PLL block functionality: clock dividers and multipliers, clock
delay adjustment, phase adjustment, and dynamic PLL configuration.

Clock Dividers and Multipliers
The PLL block contains five programmable dividers. Figure 3-19 shows a simplified PLL block.

Figure 3-19 • PLL Block Diagram

PLL Core
CLKA

Fixed
Delay D1

D2

D2

D1

D2

D1

n

m
u

v

w

GLA

GLB

GLC

Primary

Secondary 1

Secondary 2

YB

YC

System
Delay

Output
Delay

Feedback
Delay Output

Delay

Output
Delay
Output
Delay

Output
Delay

270°
180°
90°
0°

D1 = Programmable Delay Type 1
D2 = Programmable Delay Type 2
76 Revision 0

Fusion FPGA Fabric User’s Guide
Dividers n and m (the input divider and feedback divider, respectively) provide integer frequency division
factors from 1 to 128. The output dividers u, v, and w provide integer division factors from 1 to 32.
Frequency scaling of the reference clock CLKA is performed according to the following formulas:

fGLA = fCLKA × m / (n × u) – GLA Primary PLL Output Clock

EQ 1

fGLB = fYB = fCLKA × m / (n × v) – GLB Secondary 1 PLL Output Clock(s)

EQ 2

fGLC = fYC = fCLKA × m / (n × w) – GLC Secondary 2 PLL Output Clock(s)

EQ 3
SmartGen provides a user-friendly method of generating the configured PLL netlist, which includes
automatically setting the division factors to achieve the closest possible match to the requested
frequencies. Since the five output clocks share the n and m dividers, the achievable output frequencies
are interdependent and related according to the following formula:

fGLA = fGLB × (v / u) = fGLC × (w / u)

EQ 4

Clock Delay Adjustment
There are a total of seven configurable delay elements implemented in the PLL architecture.
Two of the delays are located in the feedback path, entitled System Delay and Feedback Delay. System
Delay provides a fixed delay of 2 ns (typical), and Feedback Delay provides selectable delay values from
0.6 ns to 5.56 ns in 160 ps increments (typical). For PLLs, delays in the feedback path will effectively
advance the output signal from the PLL core with respect to the reference clock. Thus, the System and
Feedback delays generate negative delay on the output clock. Additionally, each of these delays can be
independently bypassed if necessary.
The remaining five delays perform traditional time delay and are located at each of the outputs of the
PLL. Besides the fixed global driver delay of 0.755 ns for each of the global networks, the global
multiplexer outputs (GLA, GLB, and GLC) each feature an additional selectable delay value from
0.025 ns to 0.76 ns in the first step, and then to 5.56 ns in 160 ps increments. The additional YB and YC
signals have access to a selectable delay from 0.6 ns to 5.56 ns in 160 ps increments (typical). This is
the same delay value as the CLKDLY macro. It is similar to CLKDLY, which bypasses the PLL core just
to take advantage of the phase adjustment option with the delay value.
The following parameters must be taken into consideration to achieve minimum delay at the outputs
(GLA, GLB, GLC, YB, and YC) relative to the reference clock: routing delays from the PLL core to CCC
outputs, core outputs and global network output delays, and the feedback path delay. The feedback path
delay acts as a time advance of the input clock and will offset any delays introduced beyond the PLL core
output. The routing delays are determined from back-annotated simulation and are configuration-
dependent.

Phase Adjustment
The output from the PLL core can be phase-adjusted with respect to the reference input clock, CLKA.
The user can select a 0°, 90°, 180°, or 270° phase shift independently for each of the outputs YA,
GLB/YB, and GLC/YC. Note that each of these phase-adjusted signals might also undergo further
frequency division and/or time adjustment via the remaining dividers and delays located at the outputs of
the PLL.
Revision 0 77

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Dynamic PLL Configuration
The CCCs can be configured both statically and dynamically.
In addition to the ports available in the Static CCC, the Dynamic CCC has the dynamic shift register
signals that enable dynamic reconfiguration of the CCC. With the Dynamic CCC, the ports CLKB and
CLKC are also exposed. All three clocks (CLKA, CLKB, and CLKC) can be configured independently.
The CCC block is fully configurable. The following two sources can act as the CCC configuration bits.

Flash Configuration Bits
The flash configuration bits are the configuration bits associated with programmed flash switches. These
bits are used when the CCC is in static configuration mode. Once the device is programmed, these bits
cannot be modified. They provide the default operating state of the CCC.

Dynamic Shift Register Outputs
This source does not require core reprogramming and allows core-driven dynamic CCC reconfiguration.
When the dynamic register drives the configuration bits, the user-defined core circuit takes full control
over SDIN, SDOUT, SCLK, SSHIFT, and SUPDATE. The configuration bits can consequently be
dynamically changed through shift and update operations in the serial register interface. Access to the
logic core is accomplished via the dynamic bits in the specific tiles assigned to the PLLs.
Figure 3-20 illustrates a simplified block diagram of the MUX architecture in the CCCs.

The selection between the flash configuration bits and the bits from the configuration register is made
using the MODE signal shown in Figure 3-20. If the MODE signal is logic HIGH, the dynamic shift
register configuration bits are selected. There are 81 control bits to configure the different functions of the
CCC.
Each group of control bits is assigned a specific location in the configuration shift register. For a list of the
81 configuration bits (C[80:0]) in the CCC and a description of each, refer to "PLL Configuration Bits
Description" on page 80. The configuration register can be serially loaded with the new configuration
data and programmed into the CCC using the following ports:

• SDIN: The configuration bits are serially loaded into a shift register through this port. The LSB of
the configuration data bits should be loaded first.

• SDOUT: The shift register contents can be shifted out (LSB first) through this port using the shift
operation.

• SCLK: This port should be driven by the shift clock.
• SSHIFT: The active-high shift enable signal should drive this port. The configuration data will be

shifted into the shift register if this signal is HIGH. Once SSHIFT goes LOW, the data shifting will
be halted.

• SUPDATE: The SUPDATE signal is used to configure the CCC with the new configuration bits
when shifting is complete.

Note: *For Fusion, bit <88:81> is also needed.
Figure 3-20 • The CCC Configuration MUX Architecture

SDIN

SCLK

RESET_ENABLE

SDOUT

SSHIFT

MODE

SUPDATE

Configuration Bits

Dynamic Shift
Register

Flash
Programming
Configuration

Bits

<80:0>*

<80>
<79:0> <79:0>*
78 Revision 0

Fusion FPGA Fabric User’s Guide
To access the configuration ports of the shift register (SDIN, SDOUT, SSHIFT, etc.), the user should
instantiate the CCC macro in his design with appropriate ports. Actel recommends that users choose
SmartGen to generate the CCC macros with the required ports for dynamic reconfiguration.
Users must familiarize themselves with the architecture of the CCC core and its input, output, and
configuration ports to implement the desired delay and output frequency in the CCC structure.
Figure 3-21 shows a model of the CCC with configurable blocks and switches.

Figure 3-21 • CCC Block Control Bits – Graphical Representation of Assignments

/w D

C<37:35>

C<28:24>

Internal

C<60:56>

GLCD

C<70:66>

YC

CLKC

CLKB

Internal
C<55:51>

C<23:19>
C<34:32>

GLBD

D YB/v
C<44:40>

C<45>
C<39:38>

D

D

(0)

(1)

(1)

(2)

C<13:7>

C<6:0>

/m

/n
CLKA

PLL
Core

(4)

(2)

(7)
(6)
(5)

C<18:14>

C<31:29>

C<50:46>

Internal

GLAD

/u
M
U
X
A

0°

270°

90°
180°

M
U
X
B

M
U
X
C

Revision 0 79

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Loading the Configuration Register
The most important part of CCC dynamic configuration is to load the shift register properly with the
configuration bits. There are different ways to access and load the configuration shift register:

• JTAG interface
• Logic core
• Specific I/O tiles

JTAG Interface
The JTAG interface requires no additional I/O pins. The JTAG TAP controller is used to control the
loading of the CCC configuration shift register.
Low power flash devices provide a user interface macro between the JTAG pins and the device core
logic. This macro is called UJTAG. A user should instantiate the UJTAG macro in his design to access
the configuration register ports via the JTAG pins.
For more information on CCC dynamic reconfiguration using UJTAG, refer to the "UJTAG Applications in
Actel’s Low Power Flash Devices" section on page 417.

Logic Core
If the logic core is employed, the user must design a module to provide the configuration data and control
the shifting and updating of the CCC configuration shift register. In effect, this is a user-designed TAP
controller, which requires additional chip resources.

Specific I/O Tiles
If specific I/O tiles are used for configuration, the user must provide the external equivalent of a TAP
controller. This does not require additional core resources but does use pins.

Shifting the Configuration Data
To enter a new configuration, all 81 bits must shift in via SDIN. After all bits are shifted, SSHIFT must go
LOW and SUPDATE HIGH to enable the new configuration. For simulation purposes, bits <71:73> and
<77:80> are "don't care."
The SUPDATE signal must be LOW during any clock cycle where SSHIFT is active. After SUPDATE is
asserted, it must go back to the LOW state until a new update is required.

PLL Configuration Bits Description
Table 3-7 • Configuration Bit Descriptions for the CCC Blocks
Config.
Bits Signal Name Description
<88:87> GLMUXCFG [1:0]1 NGMUX configuration The configuration bits specify the input clocks

to the NGMUX (refer to Table 3-16 on
page 84).2

86 OCDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC
oscillator can be divided by the divider factor
in Table 3-17 on page 85.

85 OBDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC
oscillator can be divided by a 0.5 factor (refer
to Table 3-17 on page 85).

84 OADIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC
oscillator can be divided by certain 0.5 factor
(refer to Table 3-15 on page 84).

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set.

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools >
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
80 Revision 0

Fusion FPGA Fabric User’s Guide
83 RXCSEL1 CLKC input selection Select the CLKC input clock source between
RC oscillator and crystal oscillator (refer to
Table 3-15 on page 84).2

82 RXBSEL1 CLKB input selection Select the CLKB input clock source between
RC oscillator and crystal oscillator (refer to
Table 3-15 on page 84).2

81 RXASEL1 CLKA input selection Select the CLKA input clock source between
RC oscillator and crystal oscillator (refer to
Table 3-15 on page 84).2

80 RESETEN Reset Enable Enables (active high) the synchronization of
PLL output dividers after dynamic
reconfiguration (SUPDATE). The Reset
Enable signal is READ-ONLY and should not
be modified via dynamic reconfiguration.

79 DYNCSEL Clock Input C Dynamic
Select

Configures clock input C to be sent to GLC for
dynamic control.2

78 DYNBSEL Clock Input B Dynamic
Select

Configures clock input B to be sent to GLB for
dynamic control.2

77 DYNASEL Clock Input A Dynamic
Select

Configures clock input A for dynamic PLL
configuration.2

<76:74> VCOSEL[2:0] VCO Gear Control Three-bit VCO Gear Control for four frequency
ranges (refer to Table 3-18 on page 85 and
Table 3-19 on page 85).

73 STATCSEL MUX Select on Input C MUX selection for clock input C2

72 STATBSEL MUX Select on Input B MUX selection for clock input B2

71 STATASEL MUX Select on Input A MUX selection for clock input A2

<70:66> DLYC[4:0] YC Output Delay Sets the output delay value for YC.

<65:61> DLYB[4:0] YB Output Delay Sets the output delay value for YB.

<60:56> DLYGLC[4:0] GLC Output Delay Sets the output delay value for GLC.

<55:51> DLYGLB[4:0] GLB Output Delay Sets the output delay value for GLB.

<50:46> DLYGLA[4:0] Primary Output Delay Primary GLA output delay

45 XDLYSEL System Delay Select When selected, inserts System Delay in the
feedback path in Figure 3-19 on page 76.

<44:40> FBDLY[4:0] Feedback Delay Sets the feedback delay value for the
feedback element in Figure 3-19 on page 76.

<39:38> FBSEL[1:0] Primary Feedback Delay
Select

Controls the feedback MUX: no delay, include
programmable delay element, or use external
feedback.

<37:35> OCMUX[2:0] Secondary 2 Output
Select

Selects from the VCO’s four phase outputs for
GLC/YC.

Table 3-7 • Configuration Bit Descriptions for the CCC Blocks (continued)
Config.
Bits Signal Name Description

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set.

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools >
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
Revision 0 81

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
<34:32> OBMUX[2:0] Secondary 1 Output
Select

Selects from the VCO’s four phase outputs for
GLB/YB.

<31:29> OAMUX[2:0] GLA Output Select Selects from the VCO’s four phase outputs for
GLA.

<28:24> OCDIV[4:0] Secondary 2 Output
Divider

Sets the divider value for the GLC/YC outputs.
Also known as divider w in Figure 3-19 on
page 76. The divider value will be OCDIV[4:0]
+ 1.

<23:19> OBDIV[4:0] Secondary 1 Output
Divider

Sets the divider value for the GLB/YB outputs.
Also known as divider v in Figure 3-19 on
page 76. The divider value will be OBDIV[4:0]
+ 1.

<18:14> OADIV[4:0] Primary Output Divider Sets the divider value for the GLA output. Also
known as divider u in Figure 3-19 on page 76.
The divider value will be OADIV[4:0] + 1.

<13:7> FBDIV[6:0] Feedback Divider Sets the divider value for the PLL core
feedback. Also known as divider m in
Figure 3-19 on page 76. The divider value will
be FBDIV[6:0] + 1.

<6:0> FINDIV[6:0] Input Divider Input Clock Divider (/n). Sets the divider value
for the input delay on CLKA. The divider value
will be FINDIV[6:0] + 1.

Table 3-7 • Configuration Bit Descriptions for the CCC Blocks (continued)
Config.
Bits Signal Name Description

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set.

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools >
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
82 Revision 0

Fusion FPGA Fabric User’s Guide
Table 3-8 to Table 3-14 on page 84 provide descriptions of the configuration data for the configuration
bits.

Table 3-8 • Input Clock Divider, FINDIV[6:0] (/n)

FINDIV<6:0> State Divisor New Frequency Factor

0 1 1.00000

1 2 0.50000

… … …

127 128 0.0078125

Table 3-9 • Feedback Clock Divider, FBDIV[6:0] (/m)

FBDIV<6:0> State Divisor New Frequency Factor

0 1 1

1 2 2

… … …

127 128 128

Table 3-10 • Output Frequency Dividers
A Output Divider, OADIV <4:0> (/u);
B Output Divider, OBDIV <4:0> (/v);
C Output Divider, OCDIV <4:0> (/w)

OADIV<4:0>; OBDIV<4:0>;
CDIV<4:0> State Divisor New Frequency Factor

0 1 1.00000

1 2 0.50000

… … …

31 32 0.03125

Table 3-11 • MUXA, MUXB, MUXC
OAMUX<2:0>; OBMUX<2:0>; OCMUX<2:0> State MUX Input Selected
0 None. Six-input MUX and PLL are bypassed.

Clock passes only through global MUX and goes directly
into HC ribs.

1 Not available

2 PLL feedback delay line output

3 Not used

4 PLL VCO 0° phase shift

5 PLL VCO 90° phase shift

6 PLL VCO 180° phase shift

7 PLL VCO 270° phase shift
Revision 0 83

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Table 3-12 • 2-Bit Feedback MUX

FBSEL<1:0> State MUX Input Selected

0 Ground. Used for power-down mode in power-down logic
block.

1 PLL VCO 0° phase shift

2 PLL delayed VCO 0° phase shift

3 N/A

Table 3-13 • Programmable Delay Selection for Feedback Delay and Secondary Core Output Delays

FBDLY<4:0>; DLYYB<4:0>; DLYYC<4:0> State Delay Value

0 Typical delay = 600 ps

1 Typical delay = 760 ps

2 Typical delay = 920 ps

… …
31 Typical delay = 5.56 ns

Table 3-14 • Programmable Delay Selection for Global Clock Output Delays

DLYGLA<4:0>; DLYGLB<4:0>; DLYGLC<4:0> State Delay Value

0 Typical delay = 225 ps

1 Typical delay = 760 ps

2 Typical delay = 920 ps

… …

31 Typical delay = 5.56 ns

Table 3-15 • Fusion Dynamic CCC Clock Source Selection
RXASEL DYNASEL Source of CLKA
1 0 RC Oscillator

1 1 Crystal Oscillator

RXBSEL DYNBSEL Source of CLKB
1 0 RC Oscillator

1 1 Crystal Oscillator

RXBSEL DYNCSEL Source of CLKC
1 0 RC Oscillator

1 1 Crystal Oscillator

Table 3-16 • Fusion Dynamic CCC NGMUX Configuration
GLMUXCFG<1:0> NGMUX Select Signal Supported Input Clocks to NGMUX
00 0 GLA

1 GLC

01 0 GLA

1 GLINT

10 0 GLC

1 GLINT
84 Revision 0

Fusion FPGA Fabric User’s Guide
Table 3-17 • Fusion Dynamic CCC Division by Half Configuration

OADIVHALF /
OBDIVHALF /
OCDIVHALF

OADIV<4:0> /
OBDIV<4:0> /
OCDIV<4:0>
(in decimal) Divider Factor

Input Clock
Frequency

Output Clock
Frequency (MHz)

1 2 1.5 100 MHz RC
Oscillator

66.7

4 2.5 40.0

6 3.5 28.6

8 4.5 22.2

10 5.5 18.2

12 6.5 15.4

14 7.5 13.3

16 8.5 11.8

18 9.5 10.5

20 10.5 9.5

22 11.5 8.7

24 12.5 8.0

26 13.5 7.4

28 14.5 6.9

0 0–31 1–32 Other Clock Sources Depends on other
divider settings

Table 3-18 • Configuration Bit <76:75> / VCOSEL<2:1> Selection for All Families

Voltage

VCOSEL[2:1]

00 01 10 11

Min.
(MHz)

Max.
(MHz)

Min.
(MHz)

Max.
(MHz)

Min.
(MHz)

Max.
(MHz)

Min.
(MHz)

Max.
(MHz)

IGLOO and IGLOO PLUS

1.2 V ± 5% 24 35 30 70 60 140 135 160

1.5 V ± 5% 24 43.75 30 87.5 60 175 135 250

ProASIC3L, RT ProASIC3, and Military ProASIC3/L

1.2 V ± 5% 24 35 30 70 60 140 135 250

1.5 V ± 5% 24 43.75 30 70 60 175 135 350

ProASIC3 and Fusion

1.5 V ± 5% 24 43.75 33.75 87.5 67.5 175 135 350

Table 3-19 • Configuration Bit <74> / VCOSEL<0> Selection for All Families

VCOSEL[0] Description

0 Fast PLL lock acquisition time with high tracking jitter. Refer to the corresponding datasheet for specific
value and definition.

1 Slow PLL lock acquisition time with low tracking jitter. Refer to the corresponding datasheet for specific
value and definition.
Revision 0 85

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Software Configuration
SmartGen automatically generates the desired CCC functional block by configuring the control bits, and
allows the user to select two CCC modes: Static PLL and Delayed Clock (CLKDLY).

Static PLL Configuration
The newly implemented Visual PLL Configuration Wizard feature provides the user a quick and easy way
to configure the PLL with the desired settings (Figure 3-22). The user can invoke SmartGen to set the
parameters and generate the netlist file with the appropriate flash configuration bits set for the CCCs. As
mentioned in "PLL Macro Block Diagram" on page 61, the input reference clock CLKA can be configured
to be driven by Hardwired I/O, External I/O, or Core Logic. The user enters the desired settings for all the
parameters (output frequency, output selection, output phase adjustment, clock delay, feedback delay,
and system delay). Notice that the actual values (divider values, output frequency, delay values, and
phase) are shown to aid the user in reaching the desired design frequency in real time. These values are
typical-case data. Best- and worst-case data can be observed through static timing analysis in
SmartTime within Designer.
For dynamic configuration, the CCC parameters are defined using either the external JTAG port or an
internally defined serial interface via the built-in dynamic shift register. This feature provides the ability to
compensate for changes in the external environment.

Figure 3-22 • Visual PLL Configuration Wizard

Input
Selection

Fixed System Delay

Feedback Selection (Feedback MUX)

VCO Clock Frequency Programmable Output Delay Elements

Output
Selection
86 Revision 0

Fusion FPGA Fabric User’s Guide
Feedback Configuration
The PLL provides both internal and external feedback delays. Depending on the configuration, various
combinations of feedback delays can be achieved.

Internal Feedback Configuration
This configuration essentially sets the feedback multiplexer to route the VCO output of the PLL core as
the input to the feedback of the PLL. The feedback signal can be processed with the fixed system and
the adjustable feedback delay, as shown in Figure 3-23. The dividers are automatically configured by
SmartGen based on the user input.
Indicated below is the System Delay pull-down menu. The System Delay can be bypassed by setting it to
0. When set, it adds a 2 ns delay to the feedback path (which results in delay advancement of the output
clock by 2 ns).

Figure 3-24 shows the controllable Feedback Delay. If set properly in conjunction with the fixed System
Delay, the total output delay can be advanced significantly.

Figure 3-23 • Internal Feedback with Selectable System Delay

Figure 3-24 • Internal Feedback with Selectable Feedback Delay
Revision 0 87

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
External Feedback Configuration
For certain applications, such as those requiring generation of PCB clocks that must be matched with
existing board delays, it is useful to implement an external feedback, EXTFB. The Phase Detector of the
PLL core will receive CLKA and EXTFB as inputs. EXTFB may be processed by the fixed System Delay
element as well as the M divider element. The EXTFB option is currently not supported.
After setting all the required parameters, users can generate one or more PLL configurations with HDL or
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results
and messages in a log file:

Macro Parameters

Name : test_pll
Family : ProASIC3E
Output Format : VHDL
Type : Static PLL
Input Freq(MHz) : 10.000
CLKA Source : Hardwired I/O
Feedback Delay Value Index : 1
Feedback Mux Select : 2
XDLY Mux Select : No
Primary Freq(MHz) : 33.000
Primary PhaseShift : 0
Primary Delay Value Index : 1
Primary Mux Select : 4
Secondary1 Freq(MHz) : 66.000
Use GLB : YES
Use YB : YES
GLB Delay Value Index : 1
YB Delay Value Index : 1
Secondary1 PhaseShift : 0
Secondary1 Mux Select : 4
Secondary2 Freq(MHz) : 101.000
Use GLC : YES
Use YC : NO
GLC Delay Value Index : 1
YC Delay Value Index : 1
Secondary2 PhaseShift : 0
Secondary2 Mux Select : 4

…
…
…

Primary Clock frequency 33.333
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA 0.180

Secondary1 Clock frequency 66.667
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKA 0.180
Secondary1 Clock Core Output Delay from CLKA 0.625

Secondary2 Clock frequency 100.000
Secondary2 Clock Phase Shift 0.000
Secondary2 Clock Global Output Delay from CLKA 0.180

Below is an example Verilog HDL description of a legal PLL core configuration generated by SmartGen:

module test_pll(POWERDOWN,CLKA,LOCK,GLA);
input POWERDOWN, CLKA;
output LOCK, GLA;
88 Revision 0

Fusion FPGA Fabric User’s Guide
 wire VCC, GND;

 VCC VCC_1_net(.Y(VCC));
 GND GND_1_net(.Y(GND));
 PLL Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN),
 .GLA(GLA), .LOCK(LOCK), .GLB(), .YB(), .GLC(), .YC(),
 .OADIV0(GND), .OADIV1(GND), .OADIV2(GND), .OADIV3(GND),
 .OADIV4(GND), .OAMUX0(GND), .OAMUX1(GND), .OAMUX2(VCC),
 .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND), .DLYGLA3(GND)
 , .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND),
 .OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND),
 .OBMUX2(GND), .DLYYB0(GND), .DLYYB1(GND), .DLYYB2(GND),
 .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND), .DLYGLB1(GND),
 .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND),
 .OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND),
 .OCMUX0(GND), .OCMUX1(GND), .OCMUX2(GND), .DLYYC0(GND),
 .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND),
 .DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND)
 , .DLYGLC4(GND), .FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(
 VCC), .FINDIV3(GND), .FINDIV4(GND), .FINDIV5(GND),
 .FINDIV6(GND), .FBDIV0(VCC), .FBDIV1(GND), .FBDIV2(VCC),
 .FBDIV3(GND), .FBDIV4(GND), .FBDIV5(GND), .FBDIV6(GND),
 .FBDLY0(GND), .FBDLY1(GND), .FBDLY2(GND), .FBDLY3(GND),
 .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND), .XDLYSEL(GND),
 .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(GND));
 defparam Core.VCOFREQUENCY = 33.000;
endmodule

The "PLL Configuration Bits Description" section on page 80 provides descriptions of the PLL
configuration bits for completeness. The configuration bits are shown as busses only for purposes of
illustration. They will actually be broken up into individual pins in compilation libraries and all simulation
models. For example, the FBSEL[1:0] bus will actually appear as pins FBSEL1 and FBSEL0. The setting
of these select lines for the static PLL configuration is performed by the software and is completely
transparent to the user.
Revision 0 89

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Dynamic PLL Configuration
To generate a dynamically reconfigurable CCC, the user should select Dynamic CCC in the
configuration section of the SmartGen GUI (Figure 3-25). This will generate both the CCC core and the
configuration shift register / control bit MUX.

Even if dynamic configuration is selected in SmartGen, the user must still specify the static configuration
data for the CCC (Figure 3-26). The specified static configuration is used whenever the MODE signal is
set to LOW and the CCC is required to function in the static mode. The static configuration data can be
used as the default behavior of the CCC where required.

Figure 3-25 • SmartGen GUI

Figure 3-26 • Dynamic CCC Configuration in SmartGen
90 Revision 0

Fusion FPGA Fabric User’s Guide
When SmartGen is used to define the configuration that will be shifted in via the serial interface,
SmartGen prints out the values of the 81 configuration bits. For ease of use, several configuration bits
are automatically inferred by SmartGen when the dynamic PLL core is generated; however, <71:73>
(STATASEL, STATBSEL, STATCSEL) and <77:79> (DYNASEL, DYNBSEL, DYNCSEL) depend on the
input clock source of the corresponding CCC. Users must first run Layout in Designer to determine the
exact setting for these ports. After Layout is complete, generate the "CCC_Configuration" report by
choosing Tools > Reports > CCC_Configuration in the Designer software. Refer to "PLL Configuration
Bits Description" on page 80 for descriptions of the PLL configuration bits. For simulation purposes, bits
<71:73> and <78:80> are "don't care." Therefore, it is strongly suggested that SmartGen be used to
generate the correct configuration bit settings for the dynamic PLL core.
After setting all the required parameters, users can generate one or more PLL configurations with HDL or
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results
and messages in a log file:

Macro Parameters

Name : dyn_pll_hardio
Family : ProASIC3E
Output Format : VERILOG
Type : Dynamic CCC
Input Freq(MHz) : 30.000
CLKA Source : Hardwired I/O
Feedback Delay Value Index : 1
Feedback Mux Select : 1
XDLY Mux Select : No
Primary Freq(MHz) : 33.000
Primary PhaseShift : 0
Primary Delay Value Index : 1
Primary Mux Select : 4
Secondary1 Freq(MHz) : 40.000
Use GLB : YES
Use YB : NO
GLB Delay Value Index : 1
YB Delay Value Index : 1
Secondary1 PhaseShift : 0
Secondary1 Mux Select : 0
Secondary1 Input Freq(MHz) : 40.000
CLKB Source : Hardwired I/O
Secondary2 Freq(MHz) : 50.000
Use GLC : YES
Use YC : NO
GLC Delay Value Index : 1
YC Delay Value Index : 1
Secondary2 PhaseShift : 0
Secondary2 Mux Select : 0
Secondary2 Input Freq(MHz) : 50.000
CLKC Source : Hardwired I/O

Configuration Bits:
FINDIV[6:0] 0000101
FBDIV[6:0] 0100000
OADIV[4:0] 00100
OBDIV[4:0] 00000
OCDIV[4:0] 00000
OAMUX[2:0] 100
OBMUX[2:0] 000
OCMUX[2:0] 000
FBSEL[1:0] 01
FBDLY[4:0] 00000
XDLYSEL 0
DLYGLA[4:0] 00000
DLYGLB[4:0] 00000
Revision 0 91

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
DLYGLC[4:0] 00000
DLYYB[4:0] 00000
DLYYC[4:0] 00000
VCOSEL[2:0] 100

Primary Clock Frequency 33.000
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA 1.695

Secondary1 Clock Frequency 40.000
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKB 0.200

Secondary2 Clock Frequency 50.000
Secondary2 Clock Phase Shift 0.000
Secondary2 Clock Global Output Delay from CLKC 0.200

######################################
Dynamic Stream Data
######################################

|NAME |SDIN |VALUE |TYPE |

FINDIV	[6:0]	0000101	EDIT
FBDIV	[13:7]	0100000	EDIT
OADIV	[18:14]	00100	EDIT
OBDIV	[23:19]	00000	EDIT
OCDIV	[28:24]	00000	EDIT
OAMUX	[31:29]	100	EDIT
OBMUX	[34:32]	000	EDIT
OCMUX	[37:35]	000	EDIT
FBSEL	[39:38]	01	EDIT
FBDLY	[44:40]	00000	EDIT
XDLYSEL	[45]	0	EDIT
DLYGLA	[50:46]	00000	EDIT
DLYGLB	[55:51]	00000	EDIT
DLYGLC	[60:56]	00000	EDIT
DLYYB	[65:61]	00000	EDIT
DLYYC	[70:66]	00000	EDIT
STATASEL	[71]	X	MASKED
STATBSEL	[72]	X	MASKED
STATCSEL	[73]	X	MASKED
VCOSEL	[76:74]	100	EDIT
DYNASEL	[77]	X	MASKED
DYNBSEL	[78]	X	MASKED
DYNCSEL	[79]	X	MASKED
RESETEN	[80]	1	READONLY

Below is the resultant Verilog HDL description of a legal dynamic PLL core configuration generated by
SmartGen:
module dyn_pll_macro(POWERDOWN, CLKA, LOCK, GLA, GLB, GLC, SDIN, SCLK, SSHIFT, SUPDATE,

MODE, SDOUT, CLKB, CLKC);

input POWERDOWN, CLKA;
output LOCK, GLA, GLB, GLC;
input SDIN, SCLK, SSHIFT, SUPDATE, MODE;
output SDOUT;
input CLKB, CLKC;

wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
92 Revision 0

Fusion FPGA Fabric User’s Guide
DYNCCC Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN), .GLA(GLA), .LOCK(LOCK),
.CLKB(CLKB), .GLB(GLB), .YB(), .CLKC(CLKC), .GLC(GLC), .YC(), .SDIN(SDIN),
.SCLK(SCLK), .SSHIFT(SSHIFT), .SUPDATE(SUPDATE), .MODE(MODE), .SDOUT(SDOUT),
.OADIV0(GND), .OADIV1(GND), .OADIV2(VCC), .OADIV3(GND), .OADIV4(GND), .OAMUX0(GND),
.OAMUX1(GND), .OAMUX2(VCC), .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND),
.DLYGLA3(GND), .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND),
.OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND), .OBMUX2(GND), .DLYYB0(GND),
.DLYYB1(GND), .DLYYB2(GND), .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND),
.DLYGLB1(GND), .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND),
.OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND), .OCMUX0(GND), .OCMUX1(GND),
.OCMUX2(GND), .DLYYC0(GND), .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND),
.DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND), .DLYGLC4(GND),
.FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(VCC), .FINDIV3(GND), .FINDIV4(GND),
.FINDIV5(GND), .FINDIV6(GND), .FBDIV0(GND), .FBDIV1(GND), .FBDIV2(GND),
.FBDIV3(GND), .FBDIV4(GND), .FBDIV5(VCC), .FBDIV6(GND), .FBDLY0(GND), .FBDLY1(GND),
.FBDLY2(GND), .FBDLY3(GND), .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND),
.XDLYSEL(GND), .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(VCC));

defparam Core.VCOFREQUENCY = 165.000;

endmodule

Delayed Clock Configuration
The CLKDLY macro can be generated with the desired delay and input clock source (Hardwired I/O,
External I/O, or Core Logic), as in Figure 3-27.

After setting all the required parameters, users can generate one or more PLL configurations with HDL or
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results
and messages in a log file:

Macro Parameters

Name : delay_macro
Family : ProASIC3
Output Format : Verilog
Type : Delayed Clock
Delay Index : 2
CLKA Source : Hardwired I/O

Total Clock Delay = 0.935 ns.

The resultant CLKDLY macro Verilog netlist is as follows:

module delay_macro(GL,CLK);

output GL;
input CLK;

Figure 3-27 • Delayed Clock Configuration Dialog Box
Revision 0 93

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
CLKDLY Inst1(.CLK(CLK), .GL(GL), .DLYGL0(VCC), .DLYGL1(GND), .DLYGL2(VCC),

.DLYGL3(GND), .DLYGL4(GND));

endmodule

Detailed Usage Information

Clock Frequency Synthesis
Deriving clocks of various frequencies from a single reference clock is known as frequency synthesis.
The PLL has an input frequency range from 1.5 to 350 MHz. This frequency is automatically divided
down to a range between 1.5 MHz and 5.5 MHz by input dividers (not shown in Figure 3-18 on page 75)
between PLL macro inputs and PLL phase detector inputs. The VCO output is capable of an output
range from 24 to 350 MHz. With dividers before the input to the PLL core and following the VCO outputs,
the VCO output frequency can be divided to provide the final frequency range from 0.75 to 350 MHz.
Using SmartGen, the dividers are automatically set to achieve the closest possible matches to the
specified output frequencies.
Users should be cautious when selecting the desired PLL input and output frequencies and the I/O buffer
standard used to connect to the PLL input and output clocks. Depending on the I/O standards used for
the PLL input and output clocks, the I/O frequencies have different maximum limits. Refer to the family
datasheets for specifications of maximum I/O frequencies for supported I/O standards. Desired PLL input
or output frequencies will not be achieved if the selected frequencies are higher than the maximum I/O
frequencies allowed by the selected I/O standards. Users should be careful when selecting the I/O
standards used for PLL input and output clocks. Performing post-layout simulation can help detect this
type of error, which will be identified with pulse width violation errors. Users are strongly encouraged to
perform post-layout simulation to ensure the I/O standard used can provide the desired PLL input or
output frequencies. Users can also choose to cascade PLLs together to achieve the high frequencies
needed for their applications. Details of cascading PLLs are discussed in the "Cascading CCCs" section
on page 99.
In SmartGen, the actual generated frequency (under typical operating conditions) will be displayed
beside the requested output frequency value. This provides the ability to determine the exact frequency
that can be generated by SmartGen, in real time. The log file generated by SmartGen is a useful tool in
determining how closely the requested clock frequencies match the user specifications. For example,
assume a user specifies 101 MHz as one of the secondary output frequencies. If the best output
frequency that could be achieved were 100 MHz, the log file generated by SmartGen would indicate the
actual generated frequency.

Simulation Verification
The integration of the generated PLL and CLKDLY modules is similar to any VHDL component or Verilog
module instantiation in a larger design; i.e., there is no special requirement that users need to take into
account to successfully synthesize their designs.
For simulation purposes, users need to refer to the VITAL or Verilog library that includes the functional
description and associated timing parameters. Refer to the Software Tools section of the Actel website to
obtain the family simulation libraries. If Actel Designer is installed, these libraries are stored in the
following locations:

<Designer_Installation_Directory>\lib\vtl\95\proasic3.vhd
<Designer_Installation_Directory>\lib\vtl\95\proasic3e.vhd
<Designer_Installation_Directory>\lib\vlog\proasic3.v
<Designer_Installation_Directory>\lib\vlog\proasic3e.v

For Libero IDE users, there is no need to compile the simulation libraries, as they are conveniently pre-
compiled in the ModelSim® Actel simulation tool.
94 Revision 0

http://www.actel.com/products/tools/sw.aspx

Fusion FPGA Fabric User’s Guide
The following is an example of a PLL configuration utilizing the clock frequency synthesis and clock delay
adjustment features. The steps include generating the PLL core with SmartGen, performing simulation
for verification with ModelSim, and performing static timing analysis with SmartTime in Designer.
Parameters of the example PLL configuration:

Input Frequency – 20 MHz
Primary Output Requirement – 20 MHz with clock advancement of 3.02 ns
Secondary 1 Output Requirement – 40 MHz with clock delay of 2.515 ns

Figure 3-28 shows the SmartGen settings. Notice that the overall delays are calculated automatically,
allowing the user to adjust the delay elements appropriately to obtain the desired delays.

After confirming the correct settings, generate a structural netlist of the PLL and verify PLL core settings
by checking the log file:
Name : test_pll_delays
Family : ProASIC3E
Output Format : VHDL
Type : Static PLL
Input Freq(MHz) : 20.000
CLKA Source : Hardwired I/O
Feedback Delay Value Index : 21
Feedback Mux Select : 2
XDLY Mux Select : No
Primary Freq(MHz) : 20.000
Primary PhaseShift : 0
Primary Delay Value Index : 1
Primary Mux Select : 4
Secondary1 Freq(MHz) : 40.000
Use GLB : YES
Use YB : NO
…
…
…
Primary Clock frequency 20.000
Primary Clock Phase Shift 0.000

Figure 3-28 • SmartGen Settings
Revision 0 95

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Primary Clock Output Delay from CLKA -3.020

Secondary1 Clock frequency 40.000
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKA 2.515

Next, perform simulation in ModelSim to verify the correct delays. Figure 3-29 shows the simulation
results. The delay values match those reported in the SmartGen PLL Wizard.

The timing can also be analyzed using SmartTime in Designer. The user should import the synthesized
netlist to Designer, perform Compile and Layout, and then invoke SmartTime. Go to Tools > Options
and change the maximum delay operating conditions to Typical Case. Then expand the Clock-to-Out
paths of GLA and GLB and the individual components of the path delays are shown. The path of GLA is
shown in Figure 3-30 on page 97 displaying the same delay value.

Figure 3-29 • ModelSim Simulation Results

Primary Clock Output Time
Advancement from CLKA

Secondary1 Clock Global
Output Delay from CLKA
96 Revision 0

Fusion FPGA Fabric User’s Guide
Place-and-Route Stage Considerations
Several considerations must be noted to properly place the CCC macros for layout.
For CCCs with clock inputs configured with the Hardwired I/O–Driven option:

• PLL macros must have the clock input pad coming from one of the GmA* locations.
• CLKDLY macros must have the clock input pad coming from one of the Global I/Os.

If a PLL with a Hardwired I/O input is used at a CCC location and a Hardwired I/O–Driven CLKDLY
macro is used at the same CCC location, the clock input of the CLKDLY macro must be chosen from one
of the GmB* or GmC* pin locations. If the PLL is not used or is an External I/O–Driven or Core Logic–
Driven PLL, the clock input of the CLKDLY macro can be sourced from the GmA*, GmB*, or GmC* pin
locations.
For CCCs with clock inputs configured with the External I/O–Driven option, the clock input pad can be
assigned to any regular I/O location (IO******** pins). Note that since global I/O pins can also be used as
regular I/Os, regardless of CCC function (CLKDLY or PLL), clock inputs can also be placed in any of
these I/O locations.
By default, the Designer layout engine will place global nets in the design at one of the six chip globals.
When the number of globals in the design is greater than six, the Designer layout engine will
automatically assign additional globals to the quadrant global networks of the low power flash devices. If
the user wishes to decide which global signals should be assigned to chip globals (six available) and
which to the quadrant globals (three per quadrant for a total of 12 available), the assignment can be
achieved with PinEditor, ChipPlanner, or by importing a placement constraint file. Layout will fail if the

Figure 3-30 • Static Timing Analysis Using SmartTime
Revision 0 97

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
global assignments are not allocated properly. See the "Physical Constraints for Quadrant Clocks"
section for information on assigning global signals to the quadrant clock networks.
Promoted global signals will be instantiated with CLKINT macros to drive these signals onto the global
network. This is automatically done by Designer when the Auto-Promotion option is selected. If the user
wishes to assign the signals to the quadrant globals instead of the default chip globals, this can done by
using ChipPlanner, by declaring a physical design constraint (PDC), or by importing a PDC file.

Physical Constraints for Quadrant Clocks
If it is necessary to promote global clocks (CLKBUF, CLKINT, PLL, CLKDLY) to quadrant clocks, the
user can define PDCs to execute the promotion. PDCs can be created using PDC commands (pre-
compile) or the MultiView Navigator (MVN) interface (post-compile). The advantage of using the PDC
flow over the MVN flow is that the Compile stage is able to automatically promote any regular net to a
global net before assigning it to a quadrant. There are three options to place a quadrant clock using PDC
commands:

• Place a clock core (not hardwired to an I/O) into a quadrant clock location.
• Place a clock core (hardwired to an I/O) into an I/O location (set_io) or an I/O module location

(set_location) that drives a quadrant clock location.
• Assign a net driven by a regular net or a clock net to a quadrant clock using the following

command:
assign_local_clock -net <net name> -type quadrant <quadrant clock region>

where
<net name> is the name of the net assigned to the local user clock region.
<quadrant clock region> defines which quadrant the net should be assigned to. Quadrant
clock regions are defined as UL (upper left), UR (upper right), LL (lower left), and LR (lower right).

Note: If the net is a regular net, the software inserts a CLKINT buffer on the net.
For example:
assign_local_clock -net localReset -type quadrant UR

Keep in mind the following when placing quadrant clocks using MultiView Navigator:

Hardwired I/O–Driven CCCs
• Find the associated clock input port under the Ports tab, and place the input port at one of the

Gmn* locations using PinEditor or I/O Attribute Editor, as shown in Figure 3-31.

Figure 3-31 • Port Assignment for a CCC with Hardwired I/O Clock Input
98 Revision 0

Fusion FPGA Fabric User’s Guide
• Use quadrant global region assignments by finding the clock net associated with the CCC macro
under the Nets tab and creating a quadrant global region for the net, as shown in Figure 3-32.

External I/O–Driven CCCs
The above-mentioned recommendation for proper layout techniques will ensure the correct assignment.
It is possible that, especially with External I/O–Driven CCC macros, placement of the CCC macro in a
desired location may not be achieved. For example, assigning an input port of an External I/O–Driven
CCC near a particular CCC location does not guarantee global assignments to the desired location. This
is because the clock inputs of External I/O–Driven CCCs can be assigned to any I/O location; therefore,
it is possible that the CCC connected to the clock input will be routed to a location other than the one
closest to the I/O location, depending on resource availability and placement constraints.

Clock Placer
The clock placer is a placement engine for low power flash devices that places global signals on the chip
global and quadrant global networks. Based on the clock assignment constraints for the chip global and
quadrant global clocks, it will try to satisfy all constraints, as well as creating quadrant clock regions when
necessary. If the clock placer fails to create the quadrant clock regions for the global signals, it will report
an error and stop Layout.
The user must ensure that the constraints set to promote clock signals to quadrant global networks are
valid.

Cascading CCCs
The CCCs in low power flash devices can be cascaded. Cascading CCCs can help achieve more
accurate PLL output frequency results than those achievable with a single CCC. In addition, this
technique is useful when the user application requires the output clock of the PLL to be a multiple of the
reference clock by an integer greater than the maximum feedback divider value of the PLL (divide by
128) to achieve the desired frequency.
For example, the user application may require a 280 MHz output clock using a 2 MHz input reference
clock, as shown in Figure 3-33 on page 100.

Figure 3-32 • Quadrant Clock Assignment for a Global Net
Revision 0 99

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Using internal feedback, we know from EQ 1 on page 77 that the maximum achievable output frequency
from the primary output is

fGLA = fCLKA × m / (n × u) = 2 MHz × 128 / (1 × 1) = 256 MHz

EQ 5
Figure 3-34 shows the settings of the initial PLL. When configuring the initial PLL, specify the input to be
either Hardwired I/O–Driven or External I/O–Driven. This generates a netlist with the initial PLL routed
from an I/O. Do not specify the input to be Core Logic–Driven, as this prohibits the connection from the
I/O pin to the input of the PLL.

A second PLL can be connected serially to achieve the required frequency. EQ 1 on page 77 to EQ 3 on
page 77 are extended as follows:

fGLA2 = fGLA × m2 / (n2 × u2) = fCLKA1 × m1 × m2 / (n1 × u1 × n2 × u2) – Primary PLL Output Clock

EQ 6

fGLB2 = fYB2 = fCLKA1 × m1 × m2 / (n1 × n2 × v1 × v2) – Secondary 1 PLL Output Clock(s)

EQ 7

fGLC2 = fYC2 = fCLKA1 × m1 × m2 / (n1 × n2 × w1 × w2) – Secondary 2 PLL Output Clock(s)

EQ 8
In the example, the final output frequency (foutput) from the primary output of the second PLL will be as
follows (EQ 9):

foutput = fGLA2 = fGLA × m2 / (n2 × u2) = 256 MHz × 70 / (64 × 1) = 280 MHz

EQ 9
Figure 3-35 on page 101 shows the settings of the second PLL. When configuring the second PLL (or
any subsequent-stage PLLs), specify the input to be Core Logic–Driven. This generates a netlist with the
second PLL routed internally from the core. Do not specify the input to be Hardwired I/O–Driven or
External I/O–Driven, as these options prohibit the connection from the output of the first PLL to the input
of the second PLL.

Figure 3-33 • Cascade PLL Configuration

Figure 3-34 • First-Stage PLL Showing Input of 2 MHz and Output of 256 MHz
100 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 3-36 shows the simulation results, where the first PLL’s output period is 3.9 ns (~256 MHz), and
the stage 2 (final) output period is 3.56 ns (~280 MHz).

Figure 3-35 • Second-Stage PLL Showing Input of 256 MHz from First Stage and Final Output of 280 MHz

Figure 3-36 • ModelSim Simulation Results

Stage 1 Output Clock Period Stage 2 Output Clock Period
Revision 0 101

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Recommended Board-Level Considerations
The power to the PLL core is supplied by VCCPLA/B/C/D/E/F (VCCPLx), and the associated ground
connections are supplied by VCOMPLA/B/C/D/E/F (VCOMPLx). When the PLLs are not used, the Actel
Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The
user should tie unused VCCPLx and VCOMPLx pins to ground. Optionally, the PLL can be turned on/off
during normal device operation via the POWERDOWN port (see Table 3-3 on page 60).

PLL Power Supply Decoupling Scheme
The PLL core is designed to tolerate noise levels on the PLL power supply as specified in the
datasheets. When operated within the noise limits, the PLL will meet the output peak-to-peak jitter
specifications specified in the datasheets. User applications should always ensure the PLL power supply
is powered from a noise-free or low-noise power source.
However, in situations where the PLL power supply noise level is higher than the tolerable limits, various
decoupling schemes can be designed to suppress noise to the PLL power supply. An example is
provided in Figure 3-37. The VCCPLx and VCOMPLx pins correspond to the PLL analog power supply
and ground.
Actel strongly recommends that two ceramic capacitors (10 nF in parallel with 100 nF) be placed close to
the power pins (less than 1 inch away). A third generic 10 µF electrolytic capacitor is recommended for
low-frequency noise and should be placed farther away due to its large physical size. Actel recommends
that a 6.8 µH inductor be placed between the supply source and the capacitors to filter out any low-
/medium- and high-frequency noise. In addition, the PCB layers should be controlled so the VCCPLx and
VCOMPLx planes have the minimum separation possible, thus generating a good-quality RF capacitor.
For more recommendations, refer to the Board-Level Considerations application note.
Recommended 100 nF capacitor:

• Producer BC Components, type X7R, 100 nF, 16 V
• BC Components part number: 0603B104K160BT
• Digi-Key part number: BC1254CT-ND
• Digi-Key part number: BC1254TR-ND

Recommended 10 nF capacitor:
• Surface-mount ceramic capacitor
• Producer BC Components, type X7R, 10 nF, 50 V
• BC Components part number: 0603B103K500BT
• Digi-Key part number: BC1252CT-ND
• Digi-Key part number: BC1252TR-ND

Figure 3-37 • Decoupling Scheme for One PLL (should be replicated for each PLL used)

IGLOO/e or
ProASIC3/E

Device

Power
Supply

VCCPLx

VCOMPLx

10 nF 100 nF 10 μF
102 Revision 0

http://www.actel.com/documents/BoardLevelCons_AN.pdf

Fusion FPGA Fabric User’s Guide
Conclusion
The advanced CCCs of the IGLOO and ProASIC3 devices are ideal for applications requiring precise
clock management. They integrate easily with the internal low-skew clock networks and provide flexible
frequency synthesis, clock deskewing, and/or time-shifting operations.

Related Documents

Application Notes
Board-Level Considerations
http://www.actel.com/documents/BoardLevelCons_AN.pdf

Datasheets
Actel Fusion Family of Mixed Signal FPGAs
http://www.actel.com/documents/Fusion_DS.pdf

User’s Guides
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.actel.com/documents/pa3_libguide_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

The"CCC Support in Actel’s Flash Devices" section was updated to include IGLOO
nano and ProASIC3 nano devices.

55

Figure 3-2 • CCC Options: Global Buffers with No Programmable Delay was revised to
add the CLKBIBUF macro.

56

The description of the reference clock was revised in Table 3-2 • Input and Output
Description of the CLKDLY Macro.

57

Figure 3-6 • Clock Input Sources (30 k gates devices and below) is new. Figure 3-7 •
Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT (60 k
gates devices and above) applies to 60 k gate devices and above.

63

The "IGLOO and ProASIC3" section was updated to include information for IGLOO
nano devices.

64

A note regarding Fusion CCCs was added to Figure 3-8 • Illustration of Hardwired I/O
(global input pins) Usage for IGLOO and ProASIC3 devices 60 k Gates and Larger
and the name of the figure was changed from Figure 4-8 • Illustration of Hardwired I/O
(global input pins) Usage. Figure 3-9 • Illustration of Hardwired I/O (global input pins)
Usage for IGLOO and ProASIC3 devices 30 k Gates and Smaller is new.

65
Revision 0 103

http://www.actel.com/documents/pa3_libguide_ug.pdf
http://www.actel.com/documents/BoardLevelCons_AN.pdf
http://www.actel.com/documents/pa3_libguide_ug.pdf
http://www.actel.com/documents/BoardLevelCons_AN.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
v1.4
(continued)

Table 3-5 • Number of CCCs by Device Size and Package was updated to include
IGLOO nano and ProASIC3 nano devices. Entries were added to note differences for
the CS81, CS121, and CS201 packages.

69

The "Clock Conditioning Circuits without Integrated PLLs" section was rewritten. 70

The "IGLOO and ProASIC3 CCC Locations" section was updated for nano devices. 72

Figure 4-13 • CCC Locations in the 15 k and 30 k Gate Devices was deleted. 4-20

v1.3
(October 2008)

This document was updated to include Fusion and RT ProASIC3 device information.
Please review the document very carefully.

N/A

The "CCC Support in Actel’s Flash Devices" section was updated. 55

In the "Global Buffer with Programmable Delay" section, the following sentence was
changed from:
"In this case, the I/O must be placed in one of the dedicated global I/O locations."
To
"In this case, the software will automatically place the dedicated global I/O in the
appropriate locations."

56

Figure 3-4 • CCC Options: Global Buffers with PLL was updated to include OADIVRST
and OADIVHALF.

59

In Figure 3-5 • CCC with PLL Block "fixed delay" was changed to "programmable
delay".

59

Table 3-3 • Input and Output Signals of the PLL Block was updated to include
OADIVRST and OADIVHALF descriptions.

60

Table 3-7 • Configuration Bit Descriptions for the CCC Blocks was updated to include
configuration bits 88 to 81. Note 2 is new. In addition, the description for bit <76:74>
was updated.

80

Table 3-15 • Fusion Dynamic CCC Clock Source Selection and Table 3-16 • Fusion
Dynamic CCC NGMUX Configuration are new.

84

Table 3-17 • Fusion Dynamic CCC Division by Half Configuration and Table 3-18 •
Configuration Bit <76:75> / VCOSEL<2:1> Selection for All Families are new.

85

v1.2
(June 2008)

The following changes were made to the family descriptions in Figure 3-1 • Overview
of the CCCs Offered in Fusion, IGLOO, and ProASIC3:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

53

v1.1
(March 2008)

Table 3-1 • Flash-Based FPGAs and the associated text were updated to include the
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3 Terminology"
section are new.

55

The "Global Input Selections" section was updated to include 15 k gate devices as
supported I/O types for globals, for CCC only.

62

Table 3-5 • Number of CCCs by Device Size and Package was revised to include
ProASIC3L, IGLOO PLUS, A3P015, AGL015, AGLP030, AGLP060, and AGLP125.

69

The "IGLOO and ProASIC3 CCC Locations" section was revised to include 15 k gate
devices in the exception statements, as they do not contain PLLs.

72

Date Changes Page
104 Revision 0

Fusion FPGA Fabric User’s Guide
v1.0
(January 2008)

Information about unlocking the PLL was removed from the "Dynamic PLL
Configuration" section.

78

In the "Dynamic PLL Configuration" section, information was added about running
Layout and determining the exact setting of the ports.

90

In Table 3-7 • Configuration Bit Descriptions for the CCC Blocks, the following bits
were updated to delete "transport to the user" and reference the footnote at the bottom
of the table: 79 to 71.

80

Date Changes Page
Revision 0 105

4 – Fusion Clock Resources

The Actel Fusion® mixed-signal FPGA family of devices has a wide variety of on-chip clocking
peripherals, as shown in Figure 4-1. The on-chip resources enable the creation, manipulation, and
distribution of clock signals both internally and externally. An integrated internal RC oscillator produces a
100 MHz clock without external components. For systems that require more precise clock signals, the
Fusion mixed-signal FPGA family also supports an on-chip crystal oscillator circuit. In conjunction with
the crystal oscillator circuit, the on-chip Real-Time Counter (RTC) provides timed wake-up or power-up
sequences and thus the ability to supply time and date stamps.

Like the ProASIC®3/E family of flash-based FPGAs, the flash-based Fusion device integrates up to two
phase-locked loop (PLL) cores in the embedded Clock Conditioning Circuits (CCCs). The PLL can be
clocked from the internal RC oscillator, crystal oscillator, or any other internal signal. The integrated PLL
provides the capability to alter the clock source by multiplying, dividing, synchronizing, advancing, or
delaying the signal.
The Fusion mixed-signal FPGA also integrates one No-Glitch MUX (NGMUX) for each PLL. The
NGMUX enables designers to switch between multiple clock sources without introducing glitches into the
clock network.
This chapter includes the following sections:

• "Internal RC Oscillator" on page 108
• "Crystal Oscillator (XTLOSC)" on page 112
• "No-Glitch Multiplexer (NGMUX)" on page 121
• "Real-Time Counter (RTC)" on page 129

Note: This is a simplified block diagram of the clocking resources within the Fusion device. For details regarding the
global networks and clocking resources, refer to the Actel Fusion Mixed-Signal FPGAs datasheet. For details
regarding the PLL/CCC, refer to the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal
FPGAs" section on page 53.

Figure 4-1 • Fusion Mixed-Signal FPGA Clocking System

Clock Out to Flash Memory Block

Clock Out to FPGA Core
through CCC

GLINT or
Internal Net

GNDOSC

On-ChipOff-Chip

VCCOSC

Crystal Oscillator

Clock I/OsExternal
Crystal

External
RC

Xtal Clock

PLL/
CCC

GLA
To Core

CLKOUT

NGMUX
GLC

From FPGA Core

100 MHz
RC Oscillator

or

XTAL1

XTAL2

Clock Out to FPGA Core Must Use CLKSRC

Xtal Clock Out to FPGA Core Must Use CLKSRC

Xtal Clock Out to RTCCCLK
Revision 0 107

http://www.actel.com/documents/Fusion_DS.pdf

Fusion Clock Resources
For information on using the CCC and PLL, refer to the "Clock Conditioning Circuits in Low Power Flash
Devices and Mixed Signal FPGAs" section on page 53.

Internal RC Oscillator
The internal RC oscillator is an on-chip free-running clock source capable of generating a 100 MHz
source without external components. Using the internal RC oscillator in conjunction with the integrated
PLL enables designers to generate clocks of varying frequency and phase, clocking both on- and off-chip
resources.
The Actel Fusion Mixed-Signal FPGAs datasheet contains both timing and accuracy characteristics for
the internal RC oscillator peripheral.

RC Oscillator Usage
The internal RC oscillator is capable of driving any of the clock macros (i.e., a static or dynamic PLL)
directly after instantiation. To drive a macro in the FPGA core, the RC oscillator must first be routed
through the CLKSRC macro. See the examples below on manually instantiating the RCOSC and
CLKSRC macros. SmartGen can also be used to implement these macros. For more information on
using SmartGen, refer to the SmartGen, FlashROM, ASB, and Flash Memory System Builder User's
Guide.

Example: RC Oscillator Driving Clock Macros
The following example manually instantiates the internal RC oscillator using the RCOSC macro, and
connects the 100 MHz clock output to the input pin of a SmartGen-generated PLL. Since the 100 MHz
clock output does not connect to FPGA core logic, the CLKSRC macro is not needed.

Verilog
module myClocks (

NSYSRESET,
CLK25MHZ

);

input NSYSRESET;
output CLK25MHZ;

wire CLK100;

RCOSC uRCOSC (
.CLKOUT (CLK100)

);

myPLL myPLL1 (
.POWERDOWN (1'b1),
.CLKA (CLK100),
.LOCK (),
.GLA (CLK25MHZ),
.OADIVRST (NSYSRESET)

);

endmodule
108 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/genguide_ug.pdf
http://www.actel.com/documents/genguide_ug.pdf

Fusion FPGA Fabric User’s Guide
VHDL
library ieee;
use ieee.std_logic_1164.all;

entity myClocks is
port (

NSYSRESET: in std_logic;
CLK25MHZ: out std_logic

);
end entity myClocks;

architecture myClocks is
signal CLK100 : std_logic;

component RCOSC
port (

CLKOUT: out std_logic
);

component myPLL
port (

POWERDOWN: in std_logic;
CLKA: out std_logic;
LOCK: out std_logic;
GLA: out std_logic;
OADIVRST: in std_logic

);

begin
uRCOSC : RCOSC
port map (

CLKOUT => CLK100
);

myPLL1 : myPLL
port map (

POWERDOWN => ‘1’,
CLKA => CLK100,
LOCK => open,
GLA => CLK25MHZ,
OADIVRST => NSYSRESET

);

end architecture myClocks;
Revision 0 109

Fusion Clock Resources
Example: RC Oscillator Driving FPGA Core Logic
The following example manually instantiates the internal RC oscillator and connects the 100 MHz clock
output to the FPGA core logic, which in turn generates a 25 MHz clock. Both the RCOSC and CLKSRC
macros are used, RCOSC to instantiate the internal RC oscillator and CLKSRC to connect the RCOSC
output to FPGA core logic.

Verilog
module myClock (

NSYSRESET,
CLK25MHZ

);

input NSYSRESET;
output CLK25MHZ;

wire CLK100, SYSCLK;

reg [1:0] iCOUNT;

RCOSC uRCOSC (
.CLKOUT (CLK100)

);

CLKSRC uCLKSRC (
.A (CLK100),
.Y (SYSCLK)

);

always @ (negedge NSYSRESET or posedge SYSCLK)
begin

if (NSYSRESET == 1'b0)
iCOUNT = 2'b0;

else iCOUNT = iCOUNT + 1'b1;
end

assign CLK25MHZ = iCOUNT[1];

endmodule
110 Revision 0

Fusion FPGA Fabric User’s Guide
VHDL
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity myClock is
port (

NSYSRESET: in std_logic;
CLK25MHZ: out std_logic

);
end entity myClock;

architecture myClock is
signal CLK100 : std_logic;
signal SYSCLK : std_logic;

component RCOSC
port (

CLKOUT: out std_logic
);

component CLKSRC
port (

A: in std_logic;
Y: out std_logic

);

begin

uRCOSC : RCOSC
port map (

CLKOUT => CLK100
);

uCLKSRC : CLKSRC
port map (

A => CLK100,
Y => SYSCLK

);

process (NSYSRESET, SYSCLK)
variable iCOUNT: std_logic_vector(1 downto 0);
begin
if (NSYSRESET = ‘0’)

iCOUNT := (others => ‘0’);
elsif (SYSCLK'event and SYSCLK = '1')

iCOUNT := iCOUNT + ‘1’;
end

CLK25MHZ <= iCOUNT(1);

end architecture myClock;
Revision 0 111

Fusion Clock Resources
RC Oscillator Tips and Package Connections
Although the internal RC oscillator is only a one-port macro, the GNDOSC and VCCOSC package pins
must be connected externally to provide a power and ground source for the resource and the crystal
oscillator. If neither the RC nor the crystal oscillator is used, refer to the Actel Fusion Mixed-Signal
FPGAs datasheet for accurate termination guidelines.

Crystal Oscillator (XTLOSC)
The crystal oscillator (XTLOSC) generates the clock from an external crystal. The output of the XTLOSC
CLKOUT signal can be selected as an input to the PLL. Refer to the "Clock Conditioning Circuits in Low
Power Flash Devices and Mixed Signal FPGAs" section on page 53 for more details. The XTLOSC can
operate in normal operation and standby mode (RTC is running and 1.5 V is not present).
In normal operation, the internal FPGA_EN signal is 1 as long as 1.5 V is present for VCC.. The internal
enable signal for the crystal oscillator, XTL_EN, is enabled since FPGA_EN is asserted. The
XTL_MODE signal can use MODE or RTC_MODE, depending on SELMODE.
During standby, 1.5 V is not available. FPGA_EN is 0 and SELMODE must be asserted in order for
XTL_EN to be enabled. Hence XTL_MODE relies on RTC_MODE. SELMODE and RTC_MODE must be
connected to RTCXTLSEL and RTCXTLMODE from the AB, respectively, for correct operation during
standby. Refer to the "Real-Time Counter (RTC)" section on page 129 for a detailed description.

Note: *Internal signal; does not exist in macro.
Figure 4-2 • XTLOSC Macro

XTLOSC

CLKOUT

RTC_MODE[1:0]

SELMODE

XTL

MODE[1:0]

FPGA_EN*_
XTL_EN*

XTL_MODE
0

1

112 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Fusion FPGA Fabric User’s Guide
Table 4-1 • XTLOSC Signals Description

Signal Name Width Direction Function

XTL_EN* 1 Enables the crystal. Active high.

XTL_MODE* 2 Settings for the crystal clock for different frequencies:
Value Modes Frequency Range
b’00 RC network 32 kHz to 4 MHz
b’01 Low gain 32 to 200 kHz
b’10 Medium gain 0.20 to 2.0 MHz
b’11 High gain 2.0 to 20.0 MHz

SELMODE 1 IN Selects the source of XTL_MODE and also enables the
XTL_EN. Connect from RTCXTLSEL from AB.
0: For normal operation or sleep mode of operation

XTL_EN depends on FPGA_EN,
XTL_MODE depends on MODE

1: For Standby mode of operation
XTL_EN is enabled,
XTL_MODE depends on RTC_MODE

RTC_MODE[1:0] 2 IN Settings for the crystal clock for different frequency ranges.
XTL_MODE uses RTC_MODE when SELMODE is 1.

MODE[1:0] 2 IN Settings for the crystal clock for different frequency ranges.
XTL_MODE uses MODE when SELMODE is 0. In standby,
MODE inputs will be 0s.

FPGA_EN* 1 IN 0 when 1.5 V is not present for VCC
1 when 1.5 V is present for VCC

XTL 1 IN Crystal clock source

CLKOUT 1 OUT Crystal clock output

Note: *Internal signal and does not exist in macro
Revision 0 113

Fusion Clock Resources
The crystal oscillator can be configured in one of the four modes:
• RC network, 32 kHz to 4 MHz
• Low gain, 32 to 200 kHz
• Medium gain, 0.20 to 2.0 MHz
• High gain, 2.0 to 20.0 MHz

In RC network mode, the XTAL1 pin is connected to an RC circuit, as shown in Figure 4-1 on page 107.
The XTAL2 pin should be left floating. The RC value can be chosen based on Figure 4-3 for any desired
frequency between 32 kHz and 4 MHz. The RC network mode can also accommodate an external clock
source on XTAL1 instead of an RC circuit.

In low gain, medium gain, and high gain, an external crystal component or ceramic resonator can be
added onto XTAL1 and XTAL2, as shown in Figure 4-1 on page 107.

Example: Crystal Oscillator Driving the Real-Time Counter
The following example manually instantiates the crystal oscillator using the XTLOSC macro and
connects the external 32.768 kHz crystal output to the RTC in the Analog Block (AB). Since the
32.768 kHz clock output does not connect to FPGA core logic, the CLKSRC macro is not needed. The
examples below assumes that the Analog Configuration MUX (ACM) has been previously configured and
is controlling the functionality of the RTC. For more information on the ACM, refer to the "Designing the
Fusion Analog System" section on page 231.

Verilog
module myRTC (

CLK10MHZ,
CLK32kHz

);

input CLK10MHZ;
input CLK32kHz;

wire iRTCCLK, iRTCSELMODE;
wire [1:0] iRTCMODE;

wire iACMCLK, iACMWEN, iACMRESET;

Figure 4-3 • Crystal Oscillator: RC Time Constant Values vs. Frequency (typical)

0.0
1.00E-0.7

1.00E-0.6

1.00E-0.5

1.00E-0.4

1.00E-0.3

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

R
C

 T
im

e
C

on
st

an
t (

se
c)

Frequency (MHz)

RC Time Constant Values vs. Frequency
114 Revision 0

Fusion FPGA Fabric User’s Guide
wire [7:0] iACMADDR, iACMRDATA, iACMWDATA;

XTLOSC uXTLOSC (
.XTL (CLK32kHz),
.CLKOUT (iRTCCLK),
.SELMODE (iRTCSELMODE),
.MODE (2’b0),
.RTCMODE (iRTCMODE)

);

AB uAB (
// Note: Several of the Analog Block signals
// have been omitted from this
// example, only the critical signals
// are present.

.SYSCLK (CLK10MHZ),

.ACMCLK (iACMCLK),

.ACMWEN (iACMWEN),

.ACMRESET (iACMRESET),

.ACMWDATA (iACMWDATA),

.ACMADDR (iACMADDR),

.ACMRDATA (iACMRDATA),

.RTCCLK (iRTCCLK),

.RTCXTLSEL (iRTCSELMODE),

.RTCXTLMODE (iRTCMODE),

.RTCMATCH (),

.RTCPSMMATCH ()
);

endmodule

VHDL
library ieee;
use ieee.std_logic_1164.all;

entity myRTC is
port (

CLK10MHZ: in std_logic;
CLK32kHz: in std_logic

);
end entity myRTC;

architecture myRTC is
signal iRTCCLK : std_logic;
signal iRTCSELMODE : std_logic;
signal iRTCMODE : std_logic_vector(1 downto 0);

signal iACMCLK : std_logic;
signal iACMRESET : std_logic;
signal iACMWEN : std_logic;
signal iACMADDR : std_logic_vector(7 downto 0;
signal iACMRDATA : std_logic_vector(7 downto 0;
signal iACMWDATA : std_logic_vector(7 downto 0;

component XTLOSC
port (

XTL: in std_logic;
CLKOUT: out std_logic;
SELMODE: in std_logic_vector(1 downto 0);
RTCMODE: in std_logic_vector(1 downto 0);
MODE: in std_logic_vector(1 downto 0)

);
Revision 0 115

Fusion Clock Resources
AB
-- Note: Several of the Analog Block signals
-- have been omitted from this
-- example, only the critical signals
-- are present.
port (

SYSCLK: in std_logic;

ACMCLK: in std_logic;
ACMWEN: in std_logic;
ACMRESET: in std_logic;
ACMADDR: in std_logic_vector(7 downto 0);
ACMWDATA: in std_logic_vector(7 downto 0);
ACMRDATA: out std_logic_vector(7 downto 0);

RTCCLK: in std_logic;
RTCXTLSEL: out std_logic;
RTCXTLMODE: out std_logic_vector(1 downto 0);
RTCMATCH: out std_logic;
RTCPSMATCH: out std_logic

);

begin

uXTLOSC : XTLOSC
port map (

XTL => CLK32kHz,
CLKOUT => iRTCCLK,
SELMODE => iRTCSELMODE,
MODE => “00”,
RTCMODE => iRTCMODE

);

uAB : AB
-- Note: Several of the Analog Block signals
-- have been omitted from this
-- example, only the critical signals
-- are present.
port map (

SYSCLK => CLK10MHZ,

ACMCLK => iACMCLK,
ACMWEN => iACMWEN,
ACMRESET => iACMRESET,
ACMWDATA => iACMWDATA,
ACMADDR => iACMADDR,
ACMRDATA => iACMRDATA,

RTCCLK => iRTCCLK,
RTCXTLSEL => iRTCSELMODE,
RTCXTLMODE => iRTCMODE,
RTCMATCH => open,
RTCPSMMATCH => open

);

end architecture myRTC;
116 Revision 0

Fusion FPGA Fabric User’s Guide
Example: Crystal Oscillator Driving Clock Macros
The following example manually instantiates the crystal oscillator using the XTLOSC macro and
connects the external crystal to the input pin of a SmartGen-generated PLL. Since the external crystal
does not connect to FPGA core logic, the CLKSRC macro is not needed.

Verilog
module myXTAL (

CLK50MHZ,
NSYSRESET,
XTAL10MHZ

);

input XTAL10MHZ;
input NSYSRESET;
output CLK50MHZ;

wire iXTLCLK;

XTLOSC uXTLOSC (
.XTL (XTAL10MHZ),
.CLKOUT (iXTLCLK),
.SELMODE (1’b0),
.MODE (2’b11),
.RTCMODE (2’b0)

);

myPLL myPLL1 (
.POWERDOWN (1'b1),
.CLKA (iXTLCLK),
.LOCK (),
.GLA (CLK50MHZ),
.OADIVRST (NSYSRESET)

);

endmodule
Revision 0 117

Fusion Clock Resources
VHDL
library ieee;
use ieee.std_logic_1164.all;

entity myXTAL is
port (

CLK50MHZ: out std_logic;
NSYSRESET: in std_logic;
XTAL10MHZ: in std_logic

);
end entity myXTAL;

architecture myXTAL is
signal iXTLCLK : std_logic;

component XTLOSC
port (

XTL: in std_logic;
CLKOUT: out std_logic;
SELMODE: in std_logic_vector(1 downto 0);
RTCMODE: in std_logic_vector(1 downto 0);
MODE: in std_logic_vector(1 downto 0)

);

component myPLL
port (

POWERDOWN: in std_logic;
CLKA: out std_logic;
LOCK: out std_logic;
GLA: out std_logic;
OADIVRST: in std_logic

);

begin
uXTLOSC : XTLOSC
port map (

XTL => XTAL10MHZ,
CLKOUT => iXTLCLK,
SELMODE => ‘0’,
MODE => “11”,
RTCMODE => “00”

);

myPLL1 : myPLL
port map (

POWERDOWN => ‘1’,
CLKA => iXTLCLK,
LOCK => open,
GLA => CLK50MHZ,
OADIVRST => NSYSRESET

);

end architecture myXTAL;
118 Revision 0

Fusion FPGA Fabric User’s Guide
Example: Crystal Oscillator Driving FPGA Core Logic
The following example manually instantiates the crystal oscillator and connects the external crystal
output to the FPGA core logic, which in turn generates a clock divided by four. Both the XTLOSC and
CLKSRC macros are used, XTLOSC to instantiate the crystal oscillator and CLKSRC to connect the
XTLOSC output to FPGA core logic.

Verilog
module myCLKDIV (

CLKDIV4,
NSYSRESET,
XTAL10MHZ

);

input XTAL10MHZ;
input NSYSRESET;
output CLKDIV4;

wire iXTLCLK;
wire SYSCLK;

reg [1:0] iCOUNT;

XTLOSC uXTLOSC (
.XTL (XTAL10MHZ),
.CLKOUT (iXTLCLK),
.SELMODE (1’b0),
.MODE (2’b11),
.RTCMODE (2’b0)

);

CLKSRC uCLKSRC (
.A (iXTLCLK),
.Y (SYSCLK)

);

always @ (negedge NSYSRESET or posedge SYSCLK)
begin

if (NSYSRESET == 1'b0)
iCOUNT = 2'b0;

else iCOUNT = iCOUNT + 1'b1;
end

assign CLKDIV4 = iCOUNT[1];

endmodule
Revision 0 119

Fusion Clock Resources
VHDL
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity myCLKDIV is
port (

CLKDIV4: out std_logic;
NSYSRESET: in std_logic;
XTAL10MHZ: in std_logic

);
end entity myCLKDIV;

architecture myCLKDIV is
signal iXTLCLK : std_logic;
signal SYSCLK : std_logic;

component XTLOSC
port (

XTL: in std_logic;
CLKOUT: out std_logic;
SELMODE: in std_logic_vector(1 downto 0);
RTCMODE: in std_logic_vector(1 downto 0);
MODE: in std_logic_vector(1 downto 0)

);

component CLKSRC
port (

A: in std_logic;
Y: out std_logic

);

begin

uXTLOSC : XTLOSC
port map (

XTL => XTAL10MHZ,
CLKOUT => iXTLCLK,
SELMODE => ‘0’,
MODE => “11”,
RTCMODE => “00”

);

uCLKSRC : CLKSRC
port map (

A => iXTLCLK,
Y => SYSCLK

);

process (NSYSRESET, SYSCLK)
variable iCOUNT: std_logic_vector(1 downto 0);
begin

if (NSYSRESET = ‘0’)
iCOUNT := (others => ‘0’);

elsif (SYSCLK'event and SYSCLK = '1')
iCOUNT := iCOUNT + ‘1’;

end

CLKDIV4 <= iCOUNT(1);

end architecture myCLKDIV;
120 Revision 0

Fusion FPGA Fabric User’s Guide
Crystal Oscillator Tips and Package Connections
When using the crystal oscillator, the GNDOSC and VCCOSC external package pins must be connected
to provide power and ground sources for this resource and the internal RC oscillator (Table 4-2). If
neither the RC nor the crystal oscillator is used, refer to the Actel Fusion Mixed-Signal FPGAs datasheet
for accurate termination guidelines.
In addition, the XTL pin of the XTLOSC macro is connected to the XTAL1 package pin, the crystal
oscillator circuit input. When using an external RC network the XTAL2 package pin must be left
unconnected.

No-Glitch Multiplexer (NGMUX)
Up to two No-Glitch Multiplexers, positioned downstream from the PLL/CCC blocks, are integrated into
the Fusion device, as shown in Figure 4-4. The NGMUX provides a special switching sequence between
two asynchronous clock domains, which avoids generating any unwanted narrow glitch pulses. It
switches between two different clock sources and the output goes to the global network, as shown in
Figure 4-5 on page 122.

Table 4-2 • Crystal Oscillator Tips and Package Connections

Signal
Name Direction Description

XTAL1 Input Input to crystal oscillator circuit. This pin is used to connect the external
crystal, ceramic resonator, RC network, or external clock input. When using
an external crystal or ceramic oscillator, Actel recommends using external
capacitors (refer to the Actel Fusion Mixed-Signal FPGAs datasheet for the
recommended capacitor values). If using an external RC network or clock
input, use XTAL1 and leave XTAL2 unconnected.

XTAL2 Input Input to crystal oscillator circuit. This pin is used to connect the external
crystal, ceramic resonator, RC network, or external clock input. When using
an external crystal or ceramic oscillator, Actel recommends using external
capacitors (refer to the Actel Fusion Mixed-Signal FPGAs datasheet for the
recommended capacitor values). If using an external RC network or clock
input, use XTAL1 and leave XTAL2 unconnected.

VCCOSC Input External power supply (3.3 V) for both the integrated RC and crystal oscillator
circuits

GNDOSC Input External ground supply for both the integrated RC and crystal oscillator
circuits

Figure 4-4 • No-Glitch MUX

GLINT or
Internal Net

GLA

GLC

GLMUXSEL

CLKOUT

PLL/
CCC NGMUX

To Clock Rib Driver
Revision 0 121

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Fusion Clock Resources
The NGMUX allows the following inputs: PLL outputs GLA and GLC, and GLINT or any internal net.
However, there are some restrictions on these signals, which are described in "NGMUX Usage" on
page 124.

NGMUX Modes of Operation
The signals driving NGMUX have the same specifications as the output clock of the PLL/CCC. The
following examples show various scenarios for the switching sequence between two asynchronous clock
domains CLK0 and CLK1.

Case 1: Both CLK0 and CLK1 Active
When both the CLK0 and CLK1 inputs to the NGMUX are active, the switching sequence between the
two clock sources (from CLK0 to CLK1) is as below. An example is shown in Figure 4-6.

1. A transition on S initiates the clock source switch.
2. GL drives one last complete CLK0 positive pulse (i.e., one rising edge followed by one falling

edge).
3. GL stays LOW until the second rising edge of CLK1 occurs.
4. At the second CLK1 rising edge, GL continuously delivers CLK1.

Figure 4-5 • No-Glitch MUX Macro

Note: Minimum tsw = 0.05 ns at 35°C (typical conditions)
Figure 4-6 • Active CLK0/CLK1 Inputs to NGMUX

CLK0
CLK1

S

GL

CLK0

CLK1

S

GL

tSW
122 Revision 0

Fusion FPGA Fabric User’s Guide
Case 2: CLK0 Stopped or at Very Low Frequency
If CLK0 stops or runs at a very low frequency after S transition, the timeout circuitry inside the FPGA is
used. The sequence of switching between the two clock sources (from CLK0 to CLK1) is described and
illustrated below.

Case 2A: No Rising CLK0 Edge
If CLK0 does not have a rising edge before the seventh CLK1 rising edge, the switching sequence
between the two clock sources (from CLK0 to CLK1) is as shown in Figure 4-7.

1. At the seventh CLK1 rising edge, GL will go LOW until the ninth CLK1 rising edge.
2. At the ninth CLK1 rising edge, GL will continuously deliver the CLK1 signal.

Case 2B: No Falling CLK0 Edge
If a CLK0 rising edge occurs before the seventh CLK1 rising edge but a CLK0 falling edge does not occur
before the fifteenth CLK1 rising edge, the sequence of switching between the two clock sources (from
CLK0 to CLK1) is as shown in Figure 4-8.

1. At the fifteenth CLK1 rising edge, GL will go LOW until the seventeenth CLK1 rising edge.
2. At the seventeenth CLK1 rising edge, GL will continuously deliver the CLK1 signal.

Figure 4-7 • Low-Frequency CLK0 after S Transition, No Rising CLK0 Edge before Seventh
Rising CLK1 Edge

Figure 4-8 • Low-Frequency CLK0 after S Transition, Rising CLK0 Edge before Seventh Rising
CLK1 Edge

CLK0

CLK1

S

GL

CLK0

CLK1

S

GL
Revision 0 123

Fusion Clock Resources
NGMUX Usage
The software implementation of the NGMUX has been simplified to a 2:1 multiplexer, as shown in
Figure 4-5 on page 122. The two clock input ports are CLK0 and CLK1, and the output clock port is GL.
The allowable inputs to the NGMUX are as follows:

• The GLA and GLC outputs of a PLL
• The GLA output of a PLL and GLINT (the fanout of GLINT must be 1)
• The GLA output of a PLL and an internal net

SmartGen can also be used to implement these macros. For more information on using SmartGen, refer
to the SmartGen, FlashROM, Analog System Builder, and Flash Memory System Builder User's Guide.
The following example manually instantiates the No-Glitch Multiplexer using the NGMUX macro and
connects the CLK0 and CLK1 ports to the output ports of a SmartGen-generated PLL.

Verilog
module myCLKMUX (

SYSCLK,
CLK75MHZ,
CLKSEL

);

input CLKSEL;
input CLK75MHZ;
output SYSCLK;

wire iGLA, iGLC;

NGMUX uNGMUX (
.CLK0 (iGLA),
.CLK1 (iGLC),
.S (CLKSEL),
.GL (SYSCLK)

);

myPLL myPLL1 (
.POWERDOWN (1'b1),
.CLKA (CLK75MHZ),
.LOCK (),
.GLA (iGLA),
.GLC (iGLC),
.OADIVRST (NSYSRESET)

);

endmodule
124 Revision 0

http://www.actel.com/documents/genguide_ug.pdf

Fusion FPGA Fabric User’s Guide
VHDL
library ieee;
use ieee.std_logic_1164.all;

entity my CLKMUX is
port (

SYSCLK: out std_logic;
CLK75MHZ: in std_logic;
CLKSEL: in std_logic

);
end entity my CLKMUX;

architecture my CLKMUX is
signal iGLA : std_logic;
signal iGLC : std_logic;

component NGMUX
port (

CLK0: in std_logic;
CLK1: in std_logic;
S: in std_logic;
GL : out std_logic

);

component myPLL
port (

POWERDOWN: in std_logic;
CLKA: out std_logic;
LOCK: out std_logic;
GLA: out std_logic;
GL C: out std_logic;
OADIVRST: in std_logic

);

begin
uNGMUX : NGMUX
port map (

CLK0 => iGLA,
CLK1 => iGLC,
S => CLKSEL,
GL => SYSCLK

);

myPLL1 : myPLL
port map (

POWERDOWN => ‘1’,
CLKA => CLK75MHZ,
LOCK => open,
GLA => iGLA,
GL C => iGLC,
OADIVRST => NSYSRESET

);

end architecture my CLKMUX;
Revision 0 125

Fusion Clock Resources
NGMUX Tips
The following design considerations are recommended when using the NGMUX:

• The NGMUX has a fixed design location and is intended to be placed downstream from the PLL.
• Hardwire the NGMUX CLK0 input to PLL output GLA, as GLA must drive the NGMUX CLK0

input. GLA can only have a fanout of one, as the GLA global driver is used for the NGMUX output.
• If the two inputs to the NGMUX are PLL outputs GLA and GLC, you may lose the global network

driver for GLC because it is consumed by the PLL output. Since the global network in Fusion is
segmented, local clock networks can be used even though the whole global network is not
available.

• Since the NGMUX macro has a fixed location (downstream from the PLL), routing delay can
occur when the input to NGMUX comes from a regular net.

• The NGMUX GL output uses the GLA global network.

NGMUX Timing Analysis
Timing analysis verifies the functionality of the design with timing information. To check the design
functionality for NGMUX, designers should check both the static and dynamic timing analyses as follows.

NGMUX Static Timing Analysis
Static timing analysis on both clock inputs is performed separately using the SmartTime tool in Designer
(Figure 4-9). Run setup and hold checks on the source pins of CLK0 and CLK1.

Figure 4-9 • Static Timing Analysis Example
126 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 4-9 on page 126 shows how the two inputs of the NGMUX are connected from the
uCLK_DIVIDER and uCLKSRC components. In this instance, setup and hold time checks in SmartTime
are done for both clocks, uCLK_DIVIDER/Inst1:GL and uCLKSRC:Y, as shown in Figure 4-10.

NGMUX Dynamic Timing Analysis
For dynamic timing analysis, run a back-annotated timing simulation using the ModelSim® tool, and
check the NGMUX signals, as shown in Figure 4-11.

A transition of S from High to Low initiates a switch to CLK0, and from Low to High initiates a switch to
CLK1. The output of the NGMUX is undefined if S switches again before the previous switch operation
has completed.

Figure 4-10 • Checking Setup and Hold Times for Clocks

Figure 4-11 • Dynamic Timing Analysis for NGMUX Signals
Revision 0 127

Fusion Clock Resources
NGMUX Connections
The NGMUX has two input ports that are intended to be connected to clock signals. Connect the CLK0
input to a net driven by a clock signal. The fanout of the net connecting CCC:GLA to NGMUX:CLK0
should always be one. The driver of this clock signal will automatically be placed in the GLA tile for the
CCC location in which the NGMUX is placed.
There are two possible connections for the NGMUX:CLK1 input:

1. The CLK1 port can be driven by a clock signal. The fanout of the net connecting CCC:GLC to
NGMUX:CLK1 should always be one. The driver will automatically be placed in the CCC:GLC tile
for the location in which the NGMUX is placed.

2. The CLK1 port can also be driven by a routed net; in this case, there is no restriction on the
placement or fanout of the logic/net driving NGMUX:CLK1.

The integrated Fusion oscillators cannot drive the NGMUX directly, as they do not produce the clock
signals. You must connect them to the NGMUX inputs through a valid clock macro (i.e., CLKSRC), refer
to "Internal RC Oscillator" on page 108 and "Crystal Oscillator (XTLOSC)" on page 112 for more
information.

NGMUX Placement
The NGMUX macros are placed automatically during layout. The NGMUX macros can be manually
placed by doing the following:

1. Placing NGMUX. One of the two available locations for NGMUX must be chosen: TILE5 of the
central CCC locations (shown in yellow in Figure 4-12).

2. Placing the driver for CLK0. The driver for CLK0 has to be a CCC macro that can be placed in
the CCC:GLA tile (shown in green in Figure 4-12). The CCC macros that can be placed here are
as follows:
– CLKBUF (only non-VREF versions)
– CLKBIBUF
– CLKSRC
– CLKDLY
– CLKDIVDLY
– PLL

3. Placing the driver for CLK1. If the driver for CLK1 is a CCC macro, it infers a hardwired
connection. This macro must be placed in the CCC:GLC tile (shown in pink in Figure 4-12) and
has the same CCC macro restrictions as CLK0.
When the CLK1 port drives a PLL:GLC instance, the PLL:GLA instance of the same PLL must
become the driver for CLK0.
When the CCC macro is driven from the hardwired I/O, placing the I/O controls the placement of
the CCC macro.

Figure 4-12 • NGMUX Interconnects

West CCC East CCC
128 Revision 0

Fusion FPGA Fabric User’s Guide
Real-Time Counter (RTC)
The addition of the real-time counter enables the Fusion mixed-signal FPGA to support both standby and
sleep modes of operation, greatly reducing power consumption in many applications. The RTC also
provides implementation of a time and date calendar, enabling embedded systems to log data with time
and date stamps.

RTC Usage
The RTC resides within the Fusion Analog Block and has the following features and requirements:

• The RTC must be driven by the crystal oscillator circuit, and the crystal oscillator must be
configured to operate in RTC mode.

• The MATCH signal on the output of the RTC system asserts when the value in the counter
matches the value specified in the match register.

• There is an optional output RTCPSMMATCH that is triggered on a match. The RTCPSMMATCH
signal can be used to signal the internal voltage regulator to power up/down and must be
connected to the RTCPSM macro so the voltage regulator actives when the MATCH signal is
asserted.

The MATCH signal asserts when the counter is equal to the value contained in MATCHREG.
MATCHREG is a 40-bit register located in the ACM.
The RTC count register (COUNTER) can be preloaded with a zero or non-zero start value. The default
value is zero. This is also a 40-bit register located in the ACM.
The control/status register (CTRL_STAT) is an 8-bit register located within the ACM that defines the
operation of the RTC. The control register can reset the RTC, enabling operation to begin with all zeroes
in the counter. The RTC can be configured to clear upon a match with the match register, or it can
continue to count while the match signal is still asserted. Designers can also enable the Fusion device to
power on at a specific time or at periodic intervals. For more information on the CTRL_STAT register,
refer to the Actel Fusion Mixed-Signal FPGAs datasheet.
SmartGen can also be used to implement these macros. For more information on using SmartGen, refer
to the SmartGen, FlashROM, Analog System Builder, and Flash Memory System Builder User's Guide.
The following example manually instantiates the crystal oscillator using the XTLOSC macro and
connects the external 32.768 KHz crystal output to the RTC in the AB. Since the 32.768 KHz clock
output is not connected to FPGA core logic, the CLKSRC macro is not needed. The example below
assumes that the ACM has been previously configured and is controlling the functionality of the RTC. For
more information on the ACM refer to the "Designing the Fusion Analog System" section on page 231.
Revision 0 129

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/genguide_ug.pdf

Fusion Clock Resources
Verilog
module myRTC (

CLK10MHZ,
CLK32kHz

);

input CLK10MHZ;
input CLK32kHz;

wire iRTCCLK, iRTCSELMODE;
wire [1:0] iRTCMODE;

wire iACMCLK, iACMWEN, iACMRESET;
wire [7:0] iACMADDR, iACMRDATA, iACMWDATA;

XTLOSC uXTLOSC (
.XTL (CLK32kHz),
.CLKOUT (iRTCCLK),
.SELMODE (iRTCSELMODE),
.MODE (2’b0),
.RTCMODE (iRTCMODE)

);

AB uAB (
// Note: Several of the Analog Block signals
// have been omitted from this
// example, only the critical signals
// are present.

.SYSCLK (CLK10MHZ),

.ACMCLK (iACMCLK),

.ACMWEN (iACMWEN),

.ACMRESET (iACMRESET),

.ACMWDATA (iACMWDATA),

.ACMADDR (iACMADDR),
(iACMRDATA),

.RTCCLK (iRTCCLK),

.RTCXTLSEL (iRTCSELMODE),

.RTCXTLMODE (iRTCMODE),

.RTCMATCH (),

.RTCPSMMATCH ()
);

endmodule
130 Revision 0

Fusion FPGA Fabric User’s Guide
VHDL
library ieee;
use ieee.std_logic_1164.all;

entity myRTC is
port (

CLK10MHZ: in std_logic;
CLK32kHz: in std_logic

);
end entity my RTC;

architecture my RTC is
signal iRTCCLK : std_logic;
signal iRTCSELMODE : std_logic;
signal iRTCMODE : std_logic_vector(1 downto 0);

signal iACMCLK : std_logic;
signal iACMRESET : std_logic;
signal iACMWEN : std_logic;
signal iACMADDR : std_logic_vector(7 downto 0;
signal iACMRDATA : std_logic_vector(7 downto 0;
signal iACMWDATA : std_logic_vector(7 downto 0;

component XTLOSC
port (

XTL: in std_logic;
CLKOUT: out std_logic;
SELMODE: in std_logic_vector(1 downto 0);
RTCMODE: in std_logic_vector(1 downto 0);
MODE: in std_logic_vector(1 downto 0)

);

component AB
-- Note: Several of the Analog Block signals
-- have been omitted from this
-- example, only the critical signals
-- are present.
port (

SYSCLK: in std_logic;

ACMCLK: in std_logic;
ACMWEN: in std_logic;
ACMRESET: in std_logic;
ACMADDR: in std_logic_vector(7 downto 0);
ACMWDATA: in std_logic_vector(7 downto 0);
ACMRDATA: out std_logic_vector(7 downto 0);

RTCCLK: in std_logic;
RTCXTLSEL: out std_logic;
RTCXTLMODE: out std_logic_vector(1 downto 0);
RTCMATCH: out std_logic;
RTCPSMATCH: out std_logic

);

begin

uXTLOSC : XTLOSC
port map (

XTL => CLK32kHz,
CLKOUT => iRTCCLK,
SELMODE => iRTCSELMODE,
MODE => “00”,
RTCMODE => iRTCMODE

);
Revision 0 131

Fusion Clock Resources
uAB : AB
-- Note: Several of the Analog Block signals
-- have been omitted from this
-- example, only the critical signals
-- are present.
port map (

SYSCLK => CLK10MHZ,

ACMCLK => iACMCLK,
ACMWEN => iACMWEN,
ACMRESET => iACMRESET,
ACMWDATA => iACMWDATA,
ACMADDR => iACMADDR,
ACMRDATA => iACMRDATA,

RTCCLK => iRTCCLK,
RTCXTLSEL => iRTCSELMODE,
RTCXTLMODE => iRTCMODE,
RTCMATCH => open,
RTCPSMMATCH => open

);

end architecture myRTC;
132 Revision 0

Fusion FPGA Fabric User’s Guide
RTC Tips
The following design considerations are advised when using the RTC:

• When the RTC is not configured to reset the counter when a match occurs, the time interval
between active RTCMATCH occurrences is equal to the total cumulative time count of the 40-bit
RTC. In other words, the counter must overflow and reach the MATCHREG value again to create
an active RTCMATCH output. The time required for the counter to overflow would not be practical
for most applications; Actel recommends that the counter be reset upon a match condition if the
RTCMATCH signal is needed.

• Each bit of the 40-bit COUNTER is compared to each bit of the 40-bit MATCHREG via XNOR
gates, and the result is stored in the MATCHBITS register, enabling the designer to check
whether an individual bit match has occurred.

• The location of the RTC registers within the ACM is shown in Table 4-3.

Table 4-3 • Location of the RTC within the Analog Configuration MUX

ACM_ADDR[7:0] Register Name Description

0x40 COUNTER0 Counter Bits [7:0]

0x41 COUNTER1 Counter Bits [15:8]

0x42 COUNTER2 Counter Bits [23:16]

0x43 COUNTER3 Counter Bits [31:24]

0x44 COUNTER4 Counter Bits [39:32]

0x48 MATCHREG0 Match Register Bits [7:0]

0x49 MATCHREG1 Match Register Bits [15:8]

0x4A MATCHREG2 Match Register Bits [23:16]

0x4B MATCHREG3 Match Register Bits [31:24]

0x4C MATCHREG4 Match Register Bits [39:32]

0x50 MATCHBITS0 Individual Match Bits [7:0]

0x51 MATCHBITS1 Individual Match Bits [15:8]

0x52 MATCHBITS2 Individual Match Bits [23:16]

0x53 MATCHBITS3 Individual Match Bits [31:24]

0x54 MATCHBITS4 Individual Match Bits [39:32]

0x58 CTRL_STAT Control / Status Register Bits

0x59 TEST_REG Test Register
Revision 0 133

Fusion Clock Resources
RTC Interconnection
Figure 4-13 shows the interconnection between the RTC and the various components in the Fusion
device. If any hardwired input is not used, connect it to GND, and leave unused outputs floating (see the
"Verilog" section on page 130 and the "VHDL" section on page 131 for an example of unused outputs left
floating). For all hardwired connections, the fanout of the net connecting the two hardwired pins must be
one.

Related Documents

Datasheet
Actel Fusion Mixed-Signal FPGAs datasheet
http://www.actel.com/documents/Fusion_DS.pdf

User’s Guides
SmartGen, FlashROM, ASB, and Flash Memory System Builder User's Guide
http://www.actel.com/documents/genguide_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Figure 4-13 • RTC Interconnection Diagram

RTC

RTCCLK

RTCPSMMATCH

RTCMODE [1:0]

SELMODE

RTCMATCH

Crystal Oscillator

XTAL2

XTAL1
EN

MODE [1:0]

CLKOUT

1.5 V Voltage
Regulator

FPGA Fabric

VRPU

PTBASE

PTEM

1.5 V FPGA Supply Input

0

VR Logic

VR Init

PUB

ACM

VRINITSTATE

VRON

RTCPSMMATCH

Flash Bits

VRPSM

FPGAGOOD

Power-Up/-Down
Toggle Control
Switch

1.5 V
Output

External
Pass
Transistor

3.3 V

1.5/3.3 V Level Shift Circuitry

FPGA_VRON

VCC33UP

From
Core Flash
Bits

Date Changes Page

v1.1
(August 2009)

The "Crystal Oscillator" section was revised to remove Table 4-1 · RC Oscillator
Tips and Package Connections and Table 4-2 · Crystal Oscillator Mode Settings.
The text of the "Crystal Oscillator Usage" section was replaced with new text and
Figure 4-2 • XTLOSC Macro was replaced.

112

Figure 4-3 • Crystal Oscillator: RC Time Constant Values vs. Frequency (typical) is
new.

114
134 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/genguide_ug.pdf
http://www.actel.com/documents/genguide_ug.pdf

5 – Fusion Embedded Flash Memory Blocks

Actel has not only utilized flash memory technology to configure the Actel Fusion® FPGA core tiles, but
Fusion also offers up to four embedded flash Blocks (FBs), each 2 Mbits in density, for system
initialization and general data storage. The embedded flash memory blocks are accessible by both on-
chip and off-chip resources. Internally, the FPGA core fabric can directly access the FB’s data bus.
Externally, the embedded flash memory is accessible via the JTAG port or through interfaces
implemented within the FPGA fabric: AMBA AHB (Advanced Microcontroller Bus Architecture Advanced
High-Performance Bus), CoreCFI (Common Flash Interface), or a proprietary interface. It can be
partitioned along page boundaries, giving designers better control over memory space usage, and the
ability to individually protect each memory space against page loss, page overwrite, and external access.
It also offers priority action control of the memory operations during simultaneous access requests.
The embedded flash memory can be configured using the Flash Memory System Builder in Actel Libero®

Integrated Design Environment (IDE), using the CoreConsole IP Deployment Platform (IDP) for
microprocessor usage, and manually through RTL. The following sections discuss design usage details
for each method of configuration.

Using the Embedded Flash Memory for Initialization
The Flash Memory System Builder in Libero IDE enables designers to easily configure the embedded
flash memory via a simple GUI interface. The GUI interface provides FPGA designers the ability to
quickly partition and configure the embedded flash memory for initialization or general data storage
purposes. This section discusses the uses of the initialization IP offered in Libero IDE as a block within
the embedded Flash Memory System.
The Flash Memory System Builder offers the ability to support five types of clients. A client is a design
block whose functionality is dependent on or configured by the data stored in the embedded flash
memory. These clients also utilize the custom IP functionality added to the flash memory control logic,
only available through the Flash Memory Block System Builder. Two of the client types are used to add
general-purpose data storage capability to the Flash Memory System. These clients are described in the
"Using the Embedded Flash Memory for General Data Storage" section on page 156. The other three
clients are described in the following subsections. As clients are added to the Flash Memory System
Builder, the Flash Memory System is partitioned and configured accordingly. Once each client’s memory
partition is configured, the HDL code is generated for the Flash Memory System and is ready to be
interfaced with the design project. Figure 5-1 on page 136 portrays the embedded flash with initialization
IP system interconnects to its clients.
The Flash Memory Block System Builder supports the following initialization clients:

• The Analog System Client is used to configure the flash memory for the storage of the Fusion
Analog System initialization and configuration parameters, which are stored in the spare pages of
the flash memory.

• The RAM Initialization Client is used to create and configure a flash memory partition to store
RAM initialization data to be reloaded at power-up for context-saving applications.

• The Standalone Initialization Client is used to create and configure a general-purpose flash
memory partition to store initialization data interfaced to, for example, a RAM/FIFO or ROM
emulation. The initialization interface must be custom-designed.
Revision 0 135

Fusion Embedded Flash Memory Blocks
Each client spans a minimum of one page (128 bytes) and can span up to 2,048 pages, depending on
the number of free pages available. The Analog System Client itself does not take any of the regular
pages; it is stored entirely in the reserved (spare) pages.

Embedded Flash Initialization IP Interface
The Flash Memory System Builder has the capability to generate the embedded flash with an integrated
initialization IP circuit. The initialization circuit was designed to read data from embedded flash and store
its contents in usable volatile registers or RAM for quick and easy accesses by the on-chip systems. The
initialization circuit includes a common interface between the flash memory block and its supported
clients. Specific write enable or data control signals are included in the circuit to control the write and read
accesses between the clients and embedded flash.
The Analog System Client and RAM Initialization Client are the two key clients that interface directly to
the flash initialization circuit. A user design block can also be interfaced to the embedded flash for
initialization with the use of the Standalone Initialization Client. However, the initialization interface bridge
must be designed by the user and added to the user block design.
Once the initialization clients and flash memory have been configured, the HDL is generated per the
specifications entered in the Libero IDE GUI. The embedded flash memory module includes a common
initialization interface between all clients and the control signals specific to the client. Table 5-1 on
page 137 includes a list of all the common initialization interface ports and their descriptions.

Figure 5-1 • Embedded Flash with Initialization Client System Interconnects

Embedded Flash with
Initialization Client Interface

Embedded
Flash Memory

Init/
Config

IP

Control

Standalone Initialization

Init/
Config
Design

RTL Block

RAM with Initialization

Init/
Config

IP
RAM

Analog System Block

Analog System Soft IP

ASSC RAM
SMEV RAM
SMTR RAM

Analog Block

ACM
Registers

RTC

RTC
Registers
136 Revision 0

Fusion FPGA Fabric User’s Guide
Table 5-1 • Flash Initialization Interface Common Client Ports

Flash Port Direction Description

SYS_RESET Input Asynchronous active-low system reset signal that will hold the
flash memory in an initial state until released. This input is often
common to the FPGA design’s main reset.

INIT_CLK Input Initialization clock input whose maximum operating frequency is
10 MHz; it is rising-edge-active. For synchronous operation
between the flash and its clients, its source clock should be
common.

INIT_POWER_UP Input Active-high input to the flash, used to activate the initialization IP
circuitry at power-up. INIT_POWER_UP must be HIGH at least
until INIT_DONE transitions from LOW to HIGH. It can typically
be tied HIGH unless performing on-demand updates to the
system volatile registers as described in the "Managing the
Initialization Process for Power Management" section on
page 140. If being controlled, its transitions must be
synchronous to INIT_CLK.

INIT_DONE Output Active-high initialization-done signal. Upon flash SYS_RESET,
INIT_DONE defaults to LOW and remains LOW during the
initialization activity. It transitions HIGH synchronously to
INIT_CLK once the initialization process completes.

INIT_ADDR Output This 9-bit initialization address bus is common to the entire flash
initialization system. During initialization and the save-to-flash
activity, INIT_ADDR synchronously transitions with the rising
edge of INIT_CLK. After flash SYS_RESET, INIT_ADDR
defaults to 0x000. For each initialization client, INIT_ADDR
begins at 0x000 and sequentially increments through all
addresses in the flash page(s) assigned to the client’s memory
partition.

INIT_DATA Output The 9-bit initialization data bus is common to the entire flash
initialization system. During the initialization activity, INIT_DATA
synchronously transitions with the rising edge of INIT_CLK.
After flash SYS_RESET, INIT_DATA defaults to 0x000.
Depending on the client being initialized, either all nine bits or
only the eight least significant bits are utilized as data.

INIT_x_WEN Output Active-high write enable (chip select) control signals from flash
to the Analog System’s volatile registers. INIT_x_WEN is a
generic description for multiple signals to the Analog Block (AB).
Refer to the "Analog System Client" section on page 141 for
name specifics. Each signal is a 1-bit port from the Flash Block.
After flash SYS_RESET, all signals default to LOW. During
initialization activity, each signal synchronously transitions with
the rising edge of INIT_CLK. Only one signal is activated at a
time. Once activated, it will remain active until all addresses in
the defined memory space are accessed.
Revision 0 137

Fusion Embedded Flash Memory Blocks
At power-up, after the flash reset is inactive, the initialization circuit reads the partitions from flash and
writes the data to volatile memory. The INIT_POWER_UP signal must be HIGH, and INIT_DONE LOW,
to trigger this process. If all clients are to initialize only at power-up, the INIT_POWER_UP signal can be
tied HIGH. Once the initialization process begins, the INIT_DONE output flag is asserted LOW. During its
LOW state, the main system design can use the INIT_DONE signal as a mask to prevent the system
design from accessing the Analog System or the other clients being initialized during this process. None
of the initialization clients should be used, including the on-chip ADC, until the initialization process
completes.
The initialization circuit first initializes the Analog System block, followed by the RAM and other clients.
For each client being initialized, a chip select or data valid control signal is produced by the Flash
Memory System. As shown in Figure 5-2 on page 139, the INIT_x_WEN signal pulses HIGH when the
write action to the volatile memory can be synchronously executed. Once the initialization process
completes, the INIT_DONE signal transitions from LOW to HIGH, indicating that the process has
completed and normal device operation can proceed. Figure 5-3 on page 139 shows a simplified
simulation of the initialization process at power-up. The specific write enable or data valid signals are
shown pulsing, activating the initialization process for each particular client in the system.

<RAM_CLIENT>_x_DAT_VAL Output Active-high data valid control signal (chip select) from the flash
to the RAM block(s). <RAM_CLIENT>_x_DAT_VAL is a generic
description for multiple signals to the RAM block. Refer to the
"RAM Initialization Client" section on page 144 for name
specifics. Each signal is a 1-bit port from the Flash Block. After
flash SYS_RESET, all signals default to LOW. During
initialization or save-to-flash activity, each signal synchronously
transitions with the rising edge of INIT_CLK. Only one signal is
activated at a time. Once activated, it will remain active until all
addresses in the client’s defined memory space are accessed.

<CLIENT_NAME>_<CHIP_SELECT> Output Active-high chip select for the initialization client from the flash to
the defined block. <CLIENT_NAME>_<CHIP_SELECT> is a
generic description for multiple signals to the block to be
initialized. Refer to the "Standalone Initialization Client" section
on page 148 for name specifics. Each signal is a 1-bit port from
the Flash Block. After flash SYS_RESET, all signals default to
LOW. During initialization or save-to-flash activity, each signal
synchronously transitions with the rising edge of INIT_CLK. Only
one signal is activated at a time. Once activated, it will remain
active until all addresses in the client’s defined memory space
are accessed.

Table 5-1 • Flash Initialization Interface Common Client Ports (continued)

Flash Port Direction Description
138 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 5-2 • Basic Initialization Timing Diagram

Figure 5-3 • Complete Initialization Process at Power-Up

SYS_RESET

INIT_CLK

INIT_POWER_UP

INIT_DONE

INIT_DATA

INIT_ADDR ADDR1

DATA1

ADDR2

DATA2

ADDRn

DATAn

...

...

INIT_x_WEN

Note: INIT_x_WEN is a generic description of the write enable (or chip select) output
signal behavior from flash to the volatile memory. Refer to the individual client sections
for the exact signal names.
Revision 0 139

Fusion Embedded Flash Memory Blocks
Clock Configuration Options
The initialization process must operate at a frequency of 10 MHz or less. For a synchronous design, the
flash module INIT_CLK input should also be connected to the flash initialization client’s clock input pins.
The Fusion No-Glitch MUX (NGMUX) macro can be used to switch between the slower frequency for the
initialization process (INIT_CLK network) and a higher frequency that will utilize the full performance of
the embedded Flash Block. Figure 5-4 shows an example of NGMUX usage in a system design.

Managing the Initialization Process for Power Management
The initialization process can be managed to perform on-demand context (data) save and reload for
power management purposes so critical data will not be lost in sleep or standby low-power modes. When
entering a low-power mode, the main system design can perform a context save, for example, from RAM
to flash. Once the context save is complete, the FPGA can be powered off or placed in low-power state
without losing its critical data. Once the FPGA is to resume its normal operation, the initialization process
begins performing the context reload operation with the preserved data from the last context save. For a
complete Fusion context save and reload reference design, refer to the Context Save and Reload
application note.
The Flash Initialization IP circuitry has the built-in capability to perform the context save and reload
operations via the RAM Initialization Client and Standalone Initialization Client. The CLIENT_UPDATE
input to the flash module is used to control the context save operation, and the INIT_POWER_UP signal
is used to control the context reload. The "RAM Initialization Client" section on page 144 provides details
on performing the context save operation.
After FPGA power-up, if the INIT_POWER_UP signal is HIGH, the initialization process will occur,
performing the context reload. However, if an on-demand context reload operation is needed in the
application, the initialization circuitry can be manipulated to perform addition context reload operations
without powering the device down. The key is to clear the INIT_DONE signal so the HIGH
INIT_POWER_UP can trigger a new context reload. This can be achieved by creating a controlled flash
SYS_RESET signal (FLASH_RESET).
FLASH_RESET should be a registered active-low signal with a reset that is the main system reset for the
design. If Fusion’s internal Voltage Regulator Power Supply Monitor (VRPSM) is being used, a power-on
reset pulse can be generated by connecting a simple external RC circuit to the 3.3 V power supply. For
an internal power-on reset, if the PLL is being used in the design, the PLL lock signal can also serve as
the FPGA system reset. After a system reset, the FLASH_RESET should default to HIGH. Once a
command is received by the control logic to perform a context reload, the FLASH_RESET signal should
be synchronously pulsed LOW, clearing the INIT_DONE signal and triggering a new initialization
process, which performs the context reload. The initialization process will, however, initialize all its clients
connected to the initialization interface. The write enable or data valid control signals to those clients that

Figure 5-4 • Analog System and Flash Memory Block NGMUX Example

CLK N
G

M
U

X

SLOWCLK

FASTCLK

Analog System
Block

PLL

A

C

LOCK

B

SYS_CLK

Flash Memory
Block

INIT_CLK INIT_DONE
140 Revision 0

http://www.actel.com/documents/Fusion_ContextSaving_AN.pdf

Fusion FPGA Fabric User’s Guide
should not be updated must be masked to LOW, preventing the writes from occurring. This is especially
recommended for the Analog System module. Refer to the Context Save and Reload application note for
complete implementation details. The INIT_DONE signal should also be masked to HIGH for the Analog
System.

Analog System Client
When creating the Analog System in Libero IDE using the Analog System Builder, a configuration file is
generated and its data stored in the spare pages within the embedded flash memory during FPGA
programming. The Flash Memory Analog System Client is used to create the memory partitions to store
this configuration data.
The Analog System uses the embedded flash memory to hold the nonvolatile configuration data for the
analog subsystem. After power-up and during the initialization process, the flash memory is read and the
data stored in the Analog System’s volatile register or RAM blocks within the analog subsystem.
The analog subsystem functions initialized during the initialization process are as follows (if selected
during the Analog System configuration):

• Analog Configuration MUX (ACM)
• Programmable Real-Time Counter (RTC)
• ADC Sample Sequence Controller (ASSC)
• System Monitor Evaluation Phase State Machine (SMEV)
• System Monitor Transition Phase State Machine (SMTR)

Figure 5-5 • Reset and Clock Connection Diagram for On-Demand Context Reload

CLK N
G

M
U

X

SLOWCLK

FASTCLK

Analog System
Block

RAM Block

Flash Memory
Block

PLL

A

C

LOCK

B

D

CLK
R

QFLASH_RESET Control FLASH_RESET

SYS_RESET
INIT_CLK

SYS_RESET

SYS_RESET

SYS_CLK

RWCLK

INIT Interface

NGMUX Sel Control
(a function of INIT_DONE)
Revision 0 141

http://www.actel.com/documents/Fusion_ContextSaving_AN.pdf

Fusion Embedded Flash Memory Blocks
Analog System and Flash Memory Interconnects
The Flash Initialization IP circuitry includes a common interface connected to all clients, as described in
Table 5-1 on page 137. However, each client includes interconnects that serve purposes specific to the
client, such as the write enable signals to the Analog System register and RAM blocks. The write enable
signals are active only during the initialization process triggered by the HIGH state of INIT_POWER_UP
and the LOW state of INIT_DONE. Table 5-2 describes all Analog System Client–specific signals from
the Flash Initialization IP circuit to the Analog System block.

Table 5-2 • Analog System Client-Specific Flash Ports

Flash Port Direction Description

INIT_ACM_RTC_WEN Output Active-high RTC peripheral chip select and write enable control signals from
flash to the Analog System’s RTC volatile registers. After flash SYS_RESET,
INIT_ACM_RTC_WEN defaults to LOW. During the initialization activity,
INIT_ACM_RTC_WEN synchronously transitions with the rising edge of
INIT_CLK. Once activated, it will remain active until all addresses in the RTC
memory space are accessed. No other chip select signals will be activated until
the INIT_ACM_RTC_WEN activity completes.

INIT_ACM_WEN Output Active-high ACM registers’ chip select and write enable control signals from
flash to the Analog System’s ACM volatile registers. After flash SYS_RESET,
INIT_ACM_WEN defaults to LOW. During the initialization activity,
INIT_ACM_WEN synchronously transitions with the rising edge of INIT_CLK.
Once activated, it will remain active until all addresses in the ACM memory
space are accessed. No other chip select signals will be activated until the
INIT_ACM_WEN activity completes.

INIT_ASSC_WEN Output Active-high ASSC memory chip select and write enable control signals from
flash to the Analog System’s ACM RAM block. After flash SYS_RESET,
INIT_ASSC_WEN defaults to LOW. During the initialization activity,
INIT_ASSC_WEN synchronously transitions with the rising edge of INIT_CLK.
Once activated, it will remain active until all addresses in the ACM memory
space are accessed. No other chip select signals will be activated until the
INIT_ASSC_WEN activity completes.

INIT_EV_WEN Output Active-high SMEV memory chip select and write enable control signals from
flash to the Analog System’s SMEV RAM block. After flash SYS_RESET,
INIT_EV_WEN defaults to LOW. During the initialization activity, INIT_EV_WEN
synchronously transitions with the rising edge of INIT_CLK. Once activated, it
will remain active until all addresses in the SMEV memory space are accessed.
No other chip select signals will be activated until the INIT_EV_WEN activity
completes.

INIT_TR_WEN Output Active-high SMTR memory chip select and write enable control signals from
flash to the Analog System’s SMTR RAM block. After flash SYS_RESET,
INIT_TR_WEN defaults to LOW. During the initialization activity, INIT_TR_WEN
synchronously transitions with the rising edge of INIT_CLK. Once activated, it
will remain active until all addresses in the SMTR memory space are accessed.
No other chip select signals will be activated until the INIT_TR_WEN activity
completes.
142 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 5-6 is a connection diagram showing the interconnects between the flash memory and the Analog
System. If other flash memory clients exist in the system, they will also be connected to the common
initialization interface ports.

Figure 5-7 is a timing diagram showing the write activity from flash memory to the Analog System’s
ASSC RAM block. At the positive edge of clock, the initialization circuit synchronously generates the
address of the data to be written. At the following positive edge of the clock, the data is produced and
INIT_ASSC_WEN is pulsed HIGH. The INIT_ASSC_WEN signal to the Analog System serves as an
ASSC RAM chip select and write enable. The data is then synchronously written to the ASSC RAM
memory on the next positive edge of the clock.

Note: The above names represent the actual port names for the flash and Analog System HDL modules.
Figure 5-6 • Analog System and Flash Memory Initialization Interface Connection Diagram

SYS_RESET

INIT_CLK

INIT_POWER_UP

INIT_DONE

INIT_DATA

INIT_ADDR

INIT_ACM_WEN

INIT_ASSC_WEN

INIT_EV_WEN

INIT_RT_WEN

SYS_RESET

SYS_CLK

INIT_DONE

INIT_DATA

INIT_ADDR

INIT_ACM_WEN

INIT_ASSC_WEN

INIT_EV_WEN

INIT_TR_WEN

9

9

Analog System ModuleFlash System Module

Design’s System Reset

10 MHz Clock

INIT_POWER_UP
Control Signal

Figure 5-7 • Initialization Interface Writing to ASSC RAM

Note: The data write to the ASSC RAM occurs synchronously with the rising edge of
the clock. The RAM is configured to have a write data bus (DATAA) pass-through
to the read data bus (QA).

INIT_CLK

INIT_POWER_UP

INIT_DATA

INIT_ADDR ADDR1

DATA1

ADDR2

DATA2

ADDRn

DATAn

...

...

INIT_ASSC_WEN

Analog_assc_ram_inst/BLKA

Analog_assc_ram_inst/DATAA

Analog_assc_ram_inst/ADDRESSA ADDR1

DATA1

ADDR2

DATA2

ADDRn

DATAn

...

...

Analog_assc_ram_inst/RWA

Analog_assc_ram_inst/QA DATA1 DATA2 DATAn...
Revision 0 143

Fusion Embedded Flash Memory Blocks
RAM Initialization Client
The RAM Initialization Client allows the user to create a flash memory partition to permanently store the
RAM initialization data. After power-up, during the initialization process, the data stored in the RAM
initialization flash memory partition is read, and its data is written to the RAM blocks. The Flash Memory
System Builder allows for multiple RAM initialization flash memory partitions, giving the designer better
flexibility over the system design’s critical data. A JTAG read and/or write protection option is also
available for each RAM Initialization Client.
When creating the RAM in Libero IDE, the RAM with Initialization option must be selected before
generating the RAM so the initialization IP is included in the RAM block. The RAM initialization core’s
configuration GUI allows for the configuration of both two-port and dual-port RAMs with combined or
separate read and write clocks. It also provides the ability to save the RAM contents back into flash via
the Enable On-Demand Save to Flash Memory option in the RAM with Initialization configuration GUI.
The initialization interface for the RAM shares the RAM’s clocks; therefore, during the initialization or
save-to-flash process, the RAM clock frequency must be no greater than 10 MHz.

RAM and Flash Memory Initialization Interconnects
The Flash Initialization IP circuitry includes a common interface connected to all clients, as described in
Table 5-1 on page 137. However, each client includes interconnects that serve purposes specific to the
client, such as the save-to-flash interface signals of the RAM with Initialization core IP. These signals are
active only during the initialization process triggered by the HIGH state of INIT_POWER_UP while
INIT_DONE is LOW, and during a save-to-flash process triggered by a HIGH state of CLIENT_UPDATE.
Table 5-3 describes all signals from the Flash Initialization IP circuit specific to RAM with Initialization.

Table 5-3 • RAM with Initialization Client-Specific Flash Ports

Flash Port Direction Description

<RAM_CLIENT>_x_DAT_VAL Output Active-high data valid signal that behaves as a chip select
for the RAM client. The number of data valid signals
(labeled 0 to x) depends on the number of RAM blocks
used to satisfy the RAM configuration selected in Libero
IDE. Each signal is a 1-bit output port of the Flash Block.
After flash SYS_RESET, the data valid signal(s) default to
LOW. <RAM_CLIENT>_x_DAT_VAL synchronously
transitions with the rising edge of INIT_CLK during
initialization and save-to-flash activity. Once activated, it
will remain active until all addresses in the RAM memory
space are accessed. No other chip select signals will be
activated until all <RAM_CLIENT>_x_DAT_VAL activity
completes.

CLIENT_UPDATE Input Active-high control input signal used to trigger the save-to-
flash process, which reads data from RAM and stores it to
flash for context saving. CLIENT_UPDATE is only
available if the Enable On-Demand Save to Flash
Memory feature was selected in the Libero IDE GUI.
CLIENT_UPDATE must be LOW at power-up and held
LOW until the initialization process completes (INIT_DONE
transitions from LOW to HIGH with INIT_POWER_UP held
HIGH). To trigger the save-to-flash activity,
CLIENT_UPDATE must be transitioned from LOW to
HIGH synchronously with INIT_CLK. It must be held HIGH
until the save-to-flash activity completes
(SAVE_COMPLETE pulses HIGH). Once complete,
CLIENT_UPDATE must then be transitioned LOW
synchronously with INIT_CLK.
144 Revision 0

Fusion FPGA Fabric User’s Guide
SAVE_COMPLETE Output Active-high output flag used to identify when the on-
demand save-to-flash memory operation completes.
SAVE_COMPLETE is only available if the Enable On-
Demand Save to Flash Memory feature was selected in
the Libero IDE GUI. After flash SYS_RESET,
SAVE_COMPLETE defaults to LOW. The save-to-flash
activity is triggered by the HIGH state of
CLIENT_UPDATE. Once complete, SAVE_COMPLETE
will transition HIGH and back LOW synchronously with
INIT_CLK.

<RAM_CLIENT>_x_AVAIL Input Active-high data available input that behaves as a chip-
select to the RAM-Initialization flash memory partition. The
number is data valid signals (labeled ‘0’ to ‘x’) depend on
the number of RAM blocks used to satisfy the RAM
configuration selected in Libero IDE. Each signal is a 1-bit
input port of the Flash Block. <RAM_CLIENT>_x_AVAIL is
only available if the “Enable On-Demand save to Flash
Memory” feature was selected in the Libero IDE GUI.
These input(s) can be connected directly to the
CLIENT_UPDATE control input port.
<RAM_CLIENT>_x_AVAIL must be Low at power-up and
held Low the save to flash activity is triggered by the High
state of CLIENT_UPDATE. <RAM_CLIENT>_x_AVAIL
must transition High and held High until the save to flash
activity completes. Once complete,
<RAM_CLIENT>_x_AVAIL must be transitioned Low
synchronously with INIT_CLK.

<RAM_CLIENT>_block_x_DIN Input The 9-bit save-to-flash data bus that supplies the data read
from RAM to be written to flash.
<RAM_CLIENT>_block_x_DIN is only available if the
Enable On-Demand Save to Flash Memory feature was
selected in the Libero IDE GUI. The number of data
busses (labeled 0 to x) depends on the number of RAM
blocks used to satisfy the RAM configuration selected in
Libero IDE. Each data bus is a 9-bit input port of the Flash
Block. During save-to-flash activity,
<RAM_CLIENT>_block_x_DIN synchronously transitions
with the rising edge of the RAM block’s RWCLK, RCLK, or
port-B clock (depending on the RAM configuration). After
flash SYS_RESET, <RAM_CLIENT>_block_x_DIN
defaults to 0x000. Depending on the client configuration,
either all nine bits or only the eight least significant bits are
utilized as data.

Table 5-3 • RAM with Initialization Client-Specific Flash Ports (continued)

Flash Port Direction Description
Revision 0 145

Fusion Embedded Flash Memory Blocks
Figure 5-8 is a connection diagram showing the interconnects between the flash memory and RAM
initialization ports. If other flash memory clients exist in the system, they will also be connected to the
common initialization interface ports.

Figure 5-9 is a timing diagram showing the write activity from flash memory to the RAM block through the
initialization interface. At the positive edge of the clock, the initialization circuit synchronously generates
the address of the data to be written. At the following positive edge of the clock, the data is produced and
the SRAM_block_0_DAT_VAL signal is pulsed HIGH. The SRAM_block_0_DAT_VAL signal to the RAM
serves as a chip select and write enable. The data is then synchronously written to the RAM on the next
positive edge of the clock.

Figure 5-10 on page 147 is a simulation example showing the complete save-to-flash process. To start
the process, at the positive edge of the clock, CLIENT_UPDATE is transitioned HIGH. The flash
initialization circuit provides the read address from RAM on the positive edge of the clock, as shown in
Figure 5-11 on page 147. At the following positive edge of the clock, the data is read and put out from
INITDOUT0. The flash initialization circuit then stores the data in the page buffer at the next positive edge
of the clock. Once all data has been read from RAM and stored in flash, the SAVE_COMPLETE signal is

Note: The above names represent the actual port names for the flash and RAM HDL modules.
Figure 5-8 • Two-Port RAM and Flash Memory Initialization Interface Connection Diagram

Figure 5-9 • RAM Initialization Process Timing Detail

SYS_RESET

INIT_CLK

INIT_POWER_UP

INIT_DONE

INIT_DATA
INIT_ADDR

RESET

RWCLK

INITDATA

INITADDR

INIT_CLIENT_0

SAVEACTIVE

INITDOUT0

RAM ModuleFlash System Module

Design’s System Reset

10 MHz Clock

INIT_POWER_UP_Control

INITACTIVE

9

9

9

SRAM_block_0_DIN
SRAM_block_0_AVAIL

CLIENT_UPDATE

SRAM_block_0_DAT_VAL

SAVE_COMPLETE

CLIENT_UPDATE_Control

SRAM_block_0_DAT_VAL

INIT_CLK

INIT_POWER_UP

INIT_DATA

INIT_ADDR ADDR1

DATA1

ADDR2

DATA2

ADDRn

DATAn

...

...

Note: The data write to the RAM occurs synchronously with the rising edge of the clock.
146 Revision 0

Fusion FPGA Fabric User’s Guide
synchronously pulsed HIGH at the positive edge of the clock, holding a HIGH state for several clock
cycles.

Two-Port vs. Dual-Port RAM with Initialization Clock Configurations
The RAM with Initialization core IP can be configured with a single clock for both read and write
operations, or with separate read and write clocks. Since the RAM initialization IP blocks share the
standard RAM clock ports, the 10 MHz maximum frequency of the initialization interface must be
considered when defining the system clocks.
For both the two-port and dual-port RAM with Initialization core configurations, if a single read and write
clock is selected, the NGMUX macro can be used to switch between the slower frequency for the
initialization or save-to-flash process and the faster frequency used to perform normal RAM accesses.
Figure 5-5 on page 141 gives a possible clock configuration using the NGMUX as described.
For the two-port RAM with Initialization core configuration, if separate read and write clock ports are
selected, the write clock port is used by the RAM during the initialization process. If the on-demand save-
to-flash feature is enabled, the read clock port is used by the RAM during the save-to-flash process, and
the read data bus is configured as non-pipelined.
For the dual-port RAM with Initialization core configuration, if the separate port-A and port-B clock option
is selected, the port-A clock is used to perform the RAM write actions during the initialization process. If
the on-demand save-to-flash feature is enabled, the port-B clock is used to perform the RAM read
actions during the save-to-flash process, and the output data bus on port-B is configured as non-
pipelined. If on-demand save-to-flash is not enabled, port-B is free to run at any desired frequency within
the RAM operating range.
Both the initialization and save-to-flash processes must operate at a frequency no greater than 10 MHz.
The NGMUX can be used to switch between a slower and a faster clock. For a synchronous design,

Figure 5-10 • Complete Save-to-Flash Process

Figure 5-11 • Save-to-Flash Timing Details

CLIENT_UPDATE

INIT_CLK

INIT_ADDR

SRAM_block_0_DAT_VAL

SRAM_block_0_DIN

Note: The data is read from RAM synchronously with the rising edge of the clock.

ADDR1

DATA1

ADDR2

DATA2

ADDRn

DATAn

...

...
Revision 0 147

Fusion Embedded Flash Memory Blocks
Actel recommends that a common clock source be used for all initialization modules, as shown in
Figure 5-12.

Standalone Initialization Client
The standalone Flash Memory System initialization IP initializes all its clients with the data stored in the
associated flash memory partition during the initialization process at power-up. The initialization client
provides the ability to create a flash memory partition to initialize a desired block’s volatile memory or
registers. Once the partition has been created, access is given to the flash memory’s initialization IP
interface ports specific to the client’s needs.
The Flash Memory System Builder’s Initialization Client Libero IDE GUI allows the user to specify the
client’s name, starting address, word size, and memory-contents file. The memory-contents file supplies
the initialization data values to be stored in the client’s flash memory partition during FPGA programming.
The user can also select the Enable On-Demand Save to Flash Memory feature, and protect the flash
memory partition from JTAG access. And the user can name the client’s chip select and save request
ports.

Initialization Client Flash Memory Ports
The Flash Initialization IP circuitry includes a common interface connected to all clients, as described in
Table 5-1 on page 137. However, each client includes interconnects that serve purposes specific to the
client, such as the save-to-flash interface signals. These signals are active only during the initialization
process triggered by the HIGH state of INIT_POWER_UP while INIT_DONE is LOW, and during a save-
to-flash process triggered by a HIGH state of CLIENT_UPDATE. Table 5-4 on page 149 describes all
Standalone Initialization Client–specific signals from the Flash Initialization IP circuit.

Figure 5-12 • RAM Initialization Two-Clock Configuration Diagram

CLK N
G

M
U

X

SLOWCLK

FASTCLK

Flash Memory
Block

PLL

A

C

LOCK

B

INIT_CLK

NGMUX Sel Control
(a function of INIT_DONE)

Two-/Dual-Port
RAM Block

RCLK/CLKBWCLK/CLKA

INIT Interface
148 Revision 0

Fusion FPGA Fabric User’s Guide
Table 5-4 • Initialization Client-Specific Flash Ports

Flash Port Direction Description

<CLIENT_NAME>_<CHIP_SELECT> Output Active-high chip select for the Standalone
Initialization Client. After flash SYS_RESET,
<CLIENT_NAME>_<CHIP_SELECT> defaults to
LOW. During initialization and save-to-flash
activity, <CLIENT_NAME>_<CHIP_SELECT>
synchronously transitions with the rising edge of
INIT_CLK. Once activated, it will remain active
until all addresses in the client’s memory space
are accessed. No other chip select signals will be
activated until the
<CLIENT_NAME>_<CHIP_SELECT> activity
completes.

CLIENT_UPDATE Input Active-high control input signal used to trigger the
save-to-flash process, which reads data from
client and stores it to flash for context saving.
CLIENT_UPDATE is only available if the Enable
On-Demand Save to Flash Memory feature was
selected in the Libero IDE GUI.
CLIENT_UPDATE must be LOW at power-up
and held LOW until the initialization process
completes (INIT_DONE transitions from LOW to
HIGH with INIT_POWER_UP held HIGH). To
trigger the save-to-flash activity,
CLIENT_UPDATE must be transitioned from
LOW to HIGH synchronously with INIT_CLK. It
must be held HIGH until the save-to-flash activity
completes (SAVE_COMPLETE pulses HIGH).
Once complete, CLIENT_UPDATE must then be
transitioned LOW synchronously with INIT_CLK.

SAVE_COMPLETE Output Active-high output flag used to identify when the
on-demand save-to-flash memory operation
completes. SAVE_COMPLETE is only available if
the Enable On-Demand Save to Flash Memory
feature was selected in the Libero IDE GUI. After
flash SYS_RESET, SAVE_COMPLETE defaults
to LOW. Save-to-flash activity is triggered by the
HIGH state of CLIENT_UPDATE. Once
complete, SAVE_COMPLETE will transition
HIGH and back LOW synchronously with
INIT_CLK.
Revision 0 149

Fusion Embedded Flash Memory Blocks
Initialization Client Usages
The Standalone Initialization Client provides designers the utmost flexibility, providing access to the
Flash Initialization IP interface to set initial values—for example, for the Fusion synchronous FIFO, for
ROM emulation, and for CoreABC (AMBA Bus Controller) IP instruction memory space. An initialization
wrapper for the initialization clients must be generated by the designer (except when used with the
CoreABC IP). An example of the initialization wrapper design for the Fusion synchronous FIFO is
described in the "Fusion FIFO with Initialization Example" section on page 151.
To perform ROM emulation, the flash memory’s initialization client and RAM blocks are required. A
wrapper must be created providing the Flash Initialization IP interface write access to the RAM. The user
interface should only include the read access ports of the RAM (RADDR, RD, RCLK, and REN).
Depending on the data bus width, proper bus width handling must be taken into consideration in the
wrapper design, since the initialization interface writes nine bits of data per chip select. Within the
wrapper, the RAM write access ports may be set to a default state tying the WEN port HIGH. The WCLK
port should be connected to the 10 MHz initialization clock network.
In some cases, the RAM with Initialization core IP may be the simplest approach for ROM emulation. The
initialization interface IP is already included in the RAM core module. When generating the RAM with
Initialization block, the two-port RAM with separate read and write clock ports is a recommended
configuration. When creating the flash memory RAM Initialization Client partition, the Enable On-
Demand Save to Flash Memory option should be cleared. All user RAM write access ports may be set
to a default state, tying off the WEN port to HIGH. The WCLK port should be connected to the 10 MHz
initialization clock network.

<CLIENT_NAME>_<SAVE_REQUEST> Input Active-high save request input that behaves as a
chip select to the initialization client’s flash
memory partition. The
<CLIENT_NAME>_<SAVE_REQUEST> signal is
only available if the Enable On-Demand Save to
Flash Memory feature was selected in the Libero
IDE GUI. These input(s) can be connected
directly to the CLIENT_UPDATE control input
port. The
<CLIENT_NAME>_<SAVE_REQUEST> signal
must be LOW at power-up and held LOW. Save-
to-flash activity is triggered by the HIGH state of
the CLIENT_UPDATE signal. The
<CLIENT_NAME>_<SAVE_REQUEST> signal
must transition HIGH and be held HIGH until the
save-to-flash activity completes.
<CLIENT_NAME>_<SAVE_REQUEST> must be
transitioned LOW synchronously with INIT_CLK
once complete.

<CLIENT_NAME>_DIN Input The 9-bit save-to-flash data bus that supplies the
data read from initialization client to be written to
flash. <CLIENT_NAME>_DIN is only available if
the Enable On-Demand Save to Flash Memory
feature was selected in the Libero IDE GUI.
During the save-to-flash activity,
<CLIENT_NAME>_DIN synchronously
transitions with the rising edge of INIT_CLK. After
flash SYS_RESET, <CLIENT_NAME>_DIN
should default to 0x000. Depending on the client
configuration, either all nine bits or only the eight
least significant bits are utilized as data.

Table 5-4 • Initialization Client-Specific Flash Ports (continued)

Flash Port Direction Description
150 Revision 0

Fusion FPGA Fabric User’s Guide
CoreABC is a simple, low-gate-count controller that uses the Flash Memory System’s initialization client
to initialize at power-up the RAM used for instruction code execution. A complete design example can be
found in the Design Example section of the "Designing the Fusion Analog System" section on page 231.

Fusion FIFO with Initialization Example
When creating the FIFO with Initialization design, the flash memory initialization client and synchronous
FIFO blocks are required. A wrapper must be created providing the Flash Initialization IP interface write
access to the FIFO, and the save-to-flash interface read access. Depending on the data bus width,
proper bus width handling must be taken into consideration in the wrapper design, since the initialization
interface writes nine bits of data per chip select. Figure 5-13 shows the selected synchronous FIFO
configuration used in this example.

Figure 5-13 • Synchronous FIFO Configuration
Revision 0 151

Fusion Embedded Flash Memory Blocks
The Flash Memory System Builder’s initialization client is used to generate the flash memory partition for
the FIFO. Figure 5-14 shows the required initialization client configuration based on the FIFO
configuration shown in Figure 5-13 on page 151.

Once the flash memory block with the FIFO initialization partition has been generated, the following
initialization ports, given in Verilog, are added to the Flash Block:
input INIT_CLK;
input SYS_RESET;
input INIT_POWER_UP;
output INIT_DONE;
output [8:0] INIT_DATA;
output [7:0] INIT_ADDR;
output FIFO_INIT_CS;
input FIFO_INIT_SAVEREQ;
input [8:0] FIFO_INIT_DIN;
output SAVE_COMPLETE;
input CLIENT_UPDATE;

Figure 5-14 • Initialization Client Configuration for the FIFO
152 Revision 0

Fusion FPGA Fabric User’s Guide
The FIFO with Initialization interface wrapper must connect to the above ports. The INIT_ADDR port is
not used in this design, since the Flash Block is being interfaced to a FIFO. Figure 5-15 shows the
connections between the Flash Block and the FIFO with Initialization wrapper.

The FIFO with Initialization wrapper design should multiplex the control signals from the flash memory’s
initialization circuit with the FIFO’s user access ports for a dual read and write access FIFO configuration.
The following, given in Verilog, describes the main wrapper design:
assign FIFO_DATA = (INIT_POWER_UP & !INIT_DONE) ? INIT_DATA[7:0] : DATA;
assign FIFO_WEN = (INIT_POWER_UP & !INIT_DONE) ? !FIFO_INIT_CS : WE;
assign FIFO_REN = CLIENT_UPDATE ? !FIFO_INIT_CS : RE;
assign INIT_DOUT = {1'b0,Q};
FIFO U_FIFO(

.DATA(FIFO_DATA),

.Q(Q),

.WE(FIFO_WEN),

.RE(FIFO_REN),

.WCLOCK(WCLOCK),

.RCLOCK(RCLOCK),

.FULL(FULL),

.EMPTY(EMPTY),

.RESET(RESET),

.AEMPTY(AEMPTY),

.AFULL(AFULL));

Note: The above names represent the actual port names for the flash and FIFO HDL modules.
Figure 5-15 • FIFO with Initialization Interface Connection Diagram

SYS_RESET
INIT_CLK

INIT_POWER_UP
INIT_DONE

INIT_DATA
INIT_ADDR

RESET
WCLOCK

INIT_DATA

FIFO Memory Module
with InitializationFlash System Module

Design’s System Reset
INIT_POWER_UP Control

CLIENT_UPDATE

9
9

9

FIFO_INIT_DIN

FIFO_INIT_SAVEREQ
CLIENT_UPDATE

FIFO_INIT_CS

SAVE_COMPLETE

CLIENT_UPDATE Control

RCLOCK
INIT_POWER_UP
INIT_DONE

FIFO_INIT_CS

INIT_DOUT
WE
RE
DATA
Q
EMPTY
FULL
AEMPTY
AFULL

8

8

CLK N
G

M
U

X

SLOWCLK

FASTCLKPLL

A

C

LOCK

B

NGMUX Sel Control
(a function of INIT_DONE)
Revision 0 153

Fusion Embedded Flash Memory Blocks
Figure 5-16 is a simulation example showing the FIFO’s complete initialization process. A HIGH state on
INIT_POWER_UP while INIT_DONE is LOW will trigger the initialization process. During this process,
the FIFO should be in an empty state. The FIFO_INIT_CS signal is pulsed with the positive edge of the
clock when a FIFO write operation should occur, as shown in Figure 5-17. With every HIGH state of
FIFO_INIT_CS, INIT_DATA has valid data to be written into the FIFO. At the positive edge of the clock
while FIFO_INIT_CS is HIGH, the data is synchronously written. Once all data values have been written
into the FIFO, the FIFO’s AFULL flag and the flash memory’s INIT_DONE signals synchronously
transition HIGH. The user must take care not to access the FIFO via the user access ports or the save-
to-flash interface unless the INIT_DONE signal is HIGH.

Figure 5-16 • Complete FIFO Initialization Process

Figure 5-17 • FIFO Initialization Write Operation Timing Details

SYS_CLOCK

FIFO_INIT_CS

INIT_POWER_UP

FIFO_DATA

INIT_DATA

INIT_ADDR

FIFO_WEN

Note: The data write into the FIFO occurs synchronously with the rising edge of the clock.

EMPTY

FULL

AEMPTY

AFULL

ADDR1 = 0x00

DATA1

ADDR2 = 0x01

DATA2

...

... DATAn

DATA1 DATA2 ... DATAn

ADDRn
154 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 5-18 is a simulation example showing the FIFO’s complete save-to-flash process. To start the
process, CLIENT_UPDATE is transitioned HIGH at the positive edge of the clock. However, the user
must take care not to activate CLIENT_UPDATE while INIT_DONE is LOW or if the FIFO is not full. The
AFULL flag should be used to monitor the filled state of the FIFO, since the FULL flag will not transition
HIGH unless the entire physical FIFO memory has been filled. In this example, although the FIFO is
configured as 256×8 and all locations are written, the FIFO4K18 macro is instantiated for this
configuration. The FIFO_INIT_CS signal is pulsed with the positive edge of clock when a FIFO read
operation should occur, as shown in Figure 5-19. Once all data values have been read from the FIFO
and stored in flash, the FIFO EMPTY signal and the flash memory SAVE_COMPLETE signal are
synchronously transitioned HIGH at the positive edge of the clock. The SAVE_COMPLETE signal will
hold a HIGH state for several clock cycles before transitioning LOW.

Figure 5-18 • Complete FIFO Save-to-Flash Process

Figure 5-19 • FIFO Save-to-Flash Read Operation Timing Details

SYS_CLOCK

FIFO_INIT_CS

CLIENT_UPDATE

Q

INIT_DOUT

INIT_ADDR

FIFO_REN

*Note: The data is read from the FIFO synchronously with the rising edge of the clock.

EMPTY

FULL

AEMPTY

AFULL

ADDR1 = 0x00

DATA1

ADDR2 = 0x01

DATA2

ADDR(n – 1)

DATA(n – 1)

...

... DATAn...

DATA1 DATA2 DATA(n – 1)... DATAn...

ADDRn...
Revision 0 155

Fusion Embedded Flash Memory Blocks
Using the Embedded Flash Memory for General Data Storage
A key feature of the embedded flash memory is its ability to be used as general data storage by the
FPGA fabric. The nonvolatile nature of the flash allows for permanent storage of the design system’s key
parameters and variables. Fusion’s embedded flash memory blocks can be instantiated in a design for
general data storage via the following methods:

• The embedded flash memory macro can be instantiated directly into the RTL design in text or
through SmartDesign.

• The Flash Memory System Builder’s Data Storage Client in Libero IDE can be used to configure
the embedded flash memory to be used for general-purpose data storage.

• CoreConsole IDP can be used to interface the embedded flash memory with the Common Flash
Interface via the CoreCFI IP. The Flash Memory System Builder in Libero IDE is then used to
configure the embedded flash memory to be paired with CoreCFI.

The following sections discuss the basic flash memory operations available to Fusion’s embedded flash
memory, and its three general data storage usages. Details related to the silicon implementation of the
embedded flash memory block, including timing characteristics, can be found in the Fusion Family of
Mixed-Signal Flash FPGAs datasheet.

Flash Memory Macro and Interface
Fusion contains up to four embedded flash memory blocks, each 2 Mbits in density. In an RTL design, a
single embedded flash memory block corresponds to a single instance of the embedded flash memory
block (NVM) macro. The embedded flash memory block is referenced as “FB” in this section and in the
Fusion Family of Mixed-Signal Flash FPGAs datasheet. However, the macro used to instantiate an
embedded flash memory block in a design is named “NVM” and will be referenced as such throughout
this section.
The NVM macro can be instantiated directly into an RTL design without the intervention of Libero IDE’s
Flash Memory System Builder. With the exception of a RESET operation, all operations on an NVM
instance are synchronous to the rising edge of the clock. Table 5-5 contains a complete list of the input
and output ports for the NVM macro.

Table 5-5 • Flash Block Macro Port Descriptions

Flash Port Direction Description

RESET Input Asynchronous active-low reset input signal. Holds the Flash
Block’s control logic in an initial state until released.

CLK Input Flash memory input clock whose maximum clock period is
dictated by tMPWCLKNVM. All memory operations and status are
synchronous to the rising edge of this clock.

ADDR[17:0] Input The 18-bit byte-based Flash Block input address bus. ADDR
must transition synchronously with the rising edge of CLK. The
minimum addressable data size is 8 bits. For a data width of 16
bits, ADDR[0] is ignored and ADDR[1] becomes the lowest-order
address; for a data width of 32 bits, ADDR[1:0] is ignored and
ADDR[2] becomes the lowest-order address.

WEN Input Active-high write enable control input signal used for writing data
into the flash memory Page Buffer. WEN must transition
synchronously with the rising edge of CLK.

PROGRAM Input Active-high program operation control input signal used for
writing the contents of the Page Buffer into the flash memory
array page addressed. PROGRAM must transition
synchronously with the rising edge of CLK.
156 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Fusion FPGA Fabric User’s Guide
REN Input Active-high read enable control input signal used for read data
from the flash memory array, Page Buffer, block buffer, or status
registers. REN must transition synchronously with the rising edge
of CLK.

READNEXT Input Active-high read-next operation control input signal. This feature
loads the next block relative to that stored in the block buffer from
the flash memory array while reads from the block buffer are
being performed. READNEXT must be asserted along with REN
to initiate the read-next operation, and must transition
synchronously with the rising edge of CLK.

RD[31:0] Output The 32-bit output read data bus. The data on RD transitions
synchronously with the rising edge of CLK. After REN has been
asserted, issuing a data read operation, all data must be
sampled from RD when BUSY is not asserted (when LOW). Data
put out on RD are LSB-oriented. Upon a RESET, RD is initialized
to zero.

WD[31:0] Input The 32-bit input write data bus. Data put in on WD must be LSB-
oriented; any unused pins must be grounded or driven LOW. The
data on WD must transition synchronously with the rising edge of
CLK.

DATAWIDTH[1:0] Input The 2-bit RD and WD data bus width control input signal.
DATAWIDTH must transition synchronously with the rising edge
of CLK.
• If DATAWIDTH is '00', the data busses contain one byte of

data forming an 8-bit word (RD/WD[7:0]).
• If DATAWIDTH is '01', the data busses contain two bytes of

data forming a 16-bit word (RD/WD[15:0]).
• If DATAWIDTH is '1x', the data busses contain four bytes of

data forming a 32-bit word (RD/WD[31:0]).

PIPE Input Active-high pipeline stage control input signal. When asserted, a
pipeline stage is added to the read data output. Read operations
complete in five cycles instead of the typical four. The addition of
the pipeline stage is recommended to be used for CLK
frequencies greater than 50 MHz. PIPE must transition
synchronously with the rising edge of CLK and be asserted along
with REN.

PAGESTATUS Input Active-high page status control input signal. When asserted, a
page status read operation is initiated. PAGESTATUS must
transition synchronously with the rising edge of CLK and be
asserted along with REN.

ERASEPAGE Input Active-high page erase control input signal asserted when the
addressed page is to be programmed with all zeros.
ERASEPAGE must transition synchronously with the rising edge
of CLK.

DISCARDPAGE Input Active-high discard page control input signal asserted when the
contents of the Page Buffer are to be discarded so that a new
page write can be started. DISCARDPAGE must transition
synchronously with the rising edge of CLK.

Table 5-5 • Flash Block Macro Port Descriptions (continued)

Flash Port Direction Description
Revision 0 157

Fusion Embedded Flash Memory Blocks
AUXBLOCK Input Active-high auxiliary block select input signal asserted when the
page address is used to access the auxiliary block within the
page addressed. AUXBLOCK must transition synchronously with
the rising edge of CLK.

SPAREPAGE Input Active-high spare page select input signal asserted when the
sector addressed is used to access the spare page within that
sector. SPAREPAGE must transition synchronously with the
rising edge of CLK.

UNPROTECTPAGE Input Active-high unprotect page control input signal used to clear the
protection of the addressed page. UNPROTECTPAGE must
transition synchronously with the rising edge of CLK.

OVERWRITEPAGE Input Active-high overwrite page control input signal asserted when the
page addressed is to be overwritten, if writable, with the contents
of the Page Buffer. OVERWRITEPAGE must transition
synchronously with the rising edge of CLK and must be asserted
along with PROGRAM.

OVERWRITEPROTECT Input Active-high overwrite protect control input signal used to change
the protection bit of the addressed page.
OVERWRITEPROTECT must transition synchronously with the
rising edge of CLK and must be asserted along with PROGRAM
or ERASEPAGE.

PAGELOSSPROTECT Input Active-high page-loss protect control input signal used to prevent
writes to any other page except the current addressed page in
the Page Buffer, until the page is either discarded or
programmed. PAGELOSSPROTECT must transition
synchronously with the rising edge of CLK and be asserted along
with PROGRAM or ERASEPAGE.

LOCKREQUEST Input Active-high lock request control input signal asserted when user
access (including JTAG) to the flash memory array is to be
prevented. LOCKREQUEST must transition synchronously with
the rising edge of CLK.

Table 5-5 • Flash Block Macro Port Descriptions (continued)

Flash Port Direction Description
158 Revision 0

Fusion FPGA Fabric User’s Guide
Below are the Verilog and VHDL representations of an NVM macro instantiation. For simulation
purposes, the NVM macro may reference an Actel Memory File used to preload the memory with user-
defined data. This is achieved by overriding the MEMORYFILE parameter in the simulation model during
the NVM instantiation. The following is the NVM macro instantiation in Verilog and VHDL with the
MEMORYFILE parameter override.

BUSY Output Active-high busy control output signal used to indicate when the
flash memory is performing an operation. BUSY transitions
synchronously with the rising edge of CLK. Upon a RESET,
BUSY pulses HIGH for several cycles before settling to a LOW
state.

STATUS[1:0] Output The 2-bit flash memory operation status output signals used to
indicate the status of the last completed operation. STATUS
transitions synchronously with the rising edge of CLK. Upon a
RESET, STATUS is initialized to 0x00.
• When STATUS is '00', it indicates that the last operation

completed successfully.
• When STATUS is '01' after a read operation, it indicates that

a single error was detected during the last completed
operation and was corrected.

• When STATUS is '01' after a write operation, it indicates that
the last completed operation addressed a write-protected
page.

• When STATUS is '01' after an erase-page/program
operation, it indicates that the Page Buffer was unmodified
during the last completed operation.

• When STATUS is '10' after a read operation, it indicates that
two or more errors were detected during the last completed
operation.

• When STATUS is '10' after an erase-page/program
operation, it indicates that the compare operation failed
during the last completed operation.

• When STATUS is '11' after a write operation, it indicates that
the attempt to write to another page before programming the
current page was made during the last completed operation.

Table 5-5 • Flash Block Macro Port Descriptions (continued)

Flash Port Direction Description
Revision 0 159

Fusion Embedded Flash Memory Blocks
Verilog NVM Macro Instance
NVM U_NVM (

.CLK (CLK),

.RESET (RESET),

.ADDR (ADDR),

.REN (REN),

.WEN (WEN),

.READNEXT (READNEXT),

.ERASEPAGE (ERASEPAGE),

.PROGRAM (PROGRAM),

.DATAWIDTH (DATAWIDTH),

.RD (RD),

.WD (WD),

.BUSY (BUSY),

.STATUS (STATUS),

.SPAREPAGE (SPAREPAGE),

.AUXBLOCK (AUXBLOCK),

.UNPROTECTPAGE (UNPROTECTPAGE),

.DISCARDPAGE (DISCARDPAGE),

.OVERWRITEPROTECT (OVERWRITEPROTECT),

.PAGELOSSPROTECT (PAGELOSSPROTECT),

.PAGESTATUS (PAGESTATUS),

.OVERWRITEPAGE (OVERWRITEPAGE),

.PIPE (PIPE),

.LOCKREQUEST (LOCKREQUEST)
);

Verilog NVM Macro Instance with Memory File
NVM #(.MEMORYFILE("<FLASH_INIT_FILE_NAME>.mem") U_NVM (

...
);

VHDL NVM Macro Instance with Memory File
architecture DEF_ARCH of <FLASH_NAME> is

component NVM

generic (MEMORYFILE:string := "");

port(
...

);
end component;

begin

NVM_INST : NVM
generic map(MEMORYFILE => "<FLASH_INIT_FILE_NAME>.mem")

port map(
...

);

end DEF_ARCH;
160 Revision 0

Fusion FPGA Fabric User’s Guide
The memory array declared in the simulation model stores data that is one block wide. It is 64k×140 bits.
The addressing scheme for accessing this array consists of 16 bits, as shown in Figure 5-20.

ADDR[17:0] is the embedded flash memory interface address; SPAREPAGE and AUXBLOCK are input
signals. The memory file for preloading the Flash Array consists of strings of address and data in
hexadecimal notation with address delimiters (‘@’), and must conform to the rules given below:

1. Each line must contain a string of fixed length (35 characters) and start with an ‘@’ if it
corresponds to an address.

2. Each line following the address line corresponds to a block of data starting at the block address
specified in the address line. This applies until the next line with an address specifier (‘@’) is
encountered.

3. Each data block consists of 35 hex characters. Hex[31:0] are the data characters corresponding
to 16 bytes of user data, where Hex[1:0] corresponds to Byte0 and Hex[31:30] corresponds to
Byte15. Hex[34:32] are ECC-related bits and must be addressed manually.

Based on these rules, the format looks like the following:
@Block_Address_0
Block_Data_0 (required)
Block_Data_1 (optional)
Block_Data_2 (optional)
...
...
Block_Data_8 (Aux block data for this page, optional)
@Block_Address_n
Block_Data_n (required)
Block_Data_n+1 (optional)
Block_Data_n+2 (optional)
...
...
...
Block_Data_n+8 (Aux block data for this page, optional)

A typical memory file looks like the following:
@000...0000 // Beginning with @, start address in hex format. 0s to be padded

// between @ and hex address to get a string of length 35.
ab101fd01... // 35 hexadecimal characters corresponding to each block of flash memory

// block cell
eab9c4......
@0004030.... // Start address for next data stream
c805489e.... // 35 hexadecimal characters corresponding to each block of flash memory

// block cell
96986391

Figure 5-20 • Addressing Scheme for Accessing the Flash Memory Array

Block ADDR

Page ADDR

Sector ADDR

ADDR[17:12] SPAREPAGE ADDR[11:7] AUXBLOCK ADDR[6:4]
Revision 0 161

Fusion Embedded Flash Memory Blocks
Data Storage Client Interface
The Flash Memory System Builder’s Data Storage Client in Libero IDE can be used to configure the
embedded flash memory to be used as general-purpose data storage. The Data Storage Client allows
the user to create a flash memory partition, configure the address and data busses, and select an
initialization file containing the flash array’s initial values. JTAG read and/or write protections can also be
added to prevent external access to the embedded flash memory array contents. Figure 5-21 shows the
Data Storage Configuration window in Libero IDE.

The Data Storage Client spans a minimum of one page (128 bytes) and can go up to 2,048 pages,
depending on the number of free pages available. The starting address for the Data Storage Client must
be set to a value along the page boundaries—e.g., 0x00, 0x80, 0x100, etc. The word size for the read
and write data busses can be either 8, 16, or 32 bits. The total number of words can be anywhere from
one to 262,144 for 8-bit words, one to 131,072 for 16-bit words, and one to 65,536 for 32-bit words.
Once the Data Storage Client configuration is complete and the Flash Memory System Builder’s IP is
generated, the user can then instantiate the embedded flash memory system in the design. The overall
ports list for the embedded flash memory system module may vary depending on the total number of
clients added to the Flash Memory System. Refer to the "Using the Embedded Flash Memory for
Initialization" section on page 135 and the "Common Flash Interface Data Client" section on page 167 for
additional details regarding the other clients available in the Flash Memory System Builder. Table 5-6 on
page 163 describes the Data Storage Client–specific ports.

Figure 5-21 • Data Storage Client Configuration Window
162 Revision 0

Fusion FPGA Fabric User’s Guide
Table 5-6 • Data Storage Client–Specific Port Descriptions

Flash Port Direction Description

USER_RESET Input Asynchronous active-low reset input signal. Holds the
Flash Block’s control logic in an initial state until
released.

USER_CLK Input Flash memory input clock whose maximum clock
period is dictated by tMPWCLKNVM. All memory
operations and status are synchronous to the rising
edge of this clock.

USER_ADD[17:0] Input The 18-bit byte-based Flash Block input address bus.
USER_ADD must transition synchronously with the
rising edge of USER_CLK. For a data width of 16 bits,
USER_ADD[0] is ignored and USER_ADD[1] becomes
the lowest-order address; for a data width of 32 bits,
USER_ADD[1:0] is ignored and USER_ADD[2]
becomes the lowest-order address.

USER_WRITE Input Active-high write enable control input signal used for
writing data into the flash memory Page Buffer.
USER_WRITE must transition synchronously with the
rising edge of USER_CLK.

USER_PROGRAM Input Active-high program operation control input signal used
for writing the contents of the Page Buffer into the flash
memory array page addressed. USER_PROGRAM
must transition synchronously with the rising edge of
USER_CLK.

USER_READ Input Active-high read enable control input signal used for
read data from the flash memory array, Page Buffer,
block buffer, or status registers. USER_READ must
transition synchronously with the rising edge of
USER_CLK.

USER_READ_NEXT Input Active-high read-next operation control input signal.
This feature loads the next block relative to that stored
in the block buffer from the flash memory array while
reads from the block buffer are being performed.
USER_READ_NEXT must be asserted along with
USER_READ to initiate the read-next operation, and
must transition synchronously with the rising edge of
USER_CLK.

USER_DOUT[7:0], [15:0], or [31:0] Output The 8-, 16-, or 32-bit output read data bus. The data on
USER_DOUT transitions synchronously with the rising
edge of USER_CLK. After USER_READ has been
asserted issuing a data read operation, all data must
be sampled from USER_DOUT when
USER_NVM_BUSY is not asserted (when LOW). Data
put out on USER_DOUT are LSB-oriented. Upon a
RESET, RD is initialized to zero. Upon a
USER_RESET, RD is initialized to zero.

USER_DATA[7:0], [15:0], or [31:0] Input The 8-, 16-, or 32-bit input write data bus. Data put in
on USER_DATA must be LSB-oriented; any unused
pins must be grounded or driven LOW. The data on
USER_DATA must transition synchronously with the
rising edge of USER_CLK.
Revision 0 163

Fusion Embedded Flash Memory Blocks
USER_WIDTH or
USER_WIDTH[1:0]

Input The 1- or 2-bit USER_DOUT and USER_DATA data
bus width control input signal. DATAWIDTH must
transition synchronously with the rising edge of
USER_CLK.
• If USER_WIDTH is '00', the data busses contain

one byte of data forming an 8-bit word
(USER_DOUT/USER_DATA[7:0]).

• If USER_WIDTH is '01', the data busses contain
two bytes of data forming a 16-bit word
(USER_DOUT/USER_DATA[15:0]).

• If USER_WIDTH is '1x', the data busses contain
four bytes of data forming a 32-bit word
(USER_DOUT/USER_DATA[31:0]).

For a 1-bit USER_WIDTH: If USER_WIDTH is 1, the
data busses are 16 bits wide; otherwise, they are 8 bits
wide.

USER_PAGE_STATUS Input Active-high page status control input signal. When
asserted, a page status read operation is initiated.
USER_PAGE_STATUS must transition synchronously
with the rising edge of USER_CLK and must be
asserted along with USER_READ.

USER_ERASE_PAGE Input Active-high page erase control input signal asserted
when the addressed page is to be programmed with all
zeros. USER_ERASE_PAGE must transition
synchronously with the rising edge of USER_CLK.

USER_DISCARD_PAGE Input Active-high discard page control input signal asserted
when the contents of the Page Buffer are to be
discarded so a new page write can be started.
USER_DISCARD_PAGE must transition
synchronously with the rising edge of USER_CLK.

USER_OVERWRITE_PAGE Input Active-high overwrite page control input signal asserted
when the page addressed is to be overwritten, if
writable, with the contents of the Page Buffer.
USER_OVERWRITE_PAGE must transition
synchronously with the rising edge of USER_CLK and
must be asserted along with USER_PROGRAM.

USER_AUX_BLOCK Input Active-high auxiliary block select input signal asserted
when the page address is used to access the auxiliary
block within the page addressed. USER_AUX_BLOCK
must transition synchronously with the rising edge of
USER_CLK.

USER_SPARE_PAGE Input Active-high spare page select input signal asserted
when the sector addressed is used to access the spare
page within that sector. USER_SPARE_PAGE must
transition synchronously with the rising edge of
USER_CLK.

USER_UNPROT_PAGE Input Active-high unprotect page control input signal used to
clear the protection of the addressed page.
USER_UNPROT_PAGE must transition synchronously
with the rising edge of USER_CLK.

Table 5-6 • Data Storage Client–Specific Port Descriptions (continued)

Flash Port Direction Description
164 Revision 0

Fusion FPGA Fabric User’s Guide
USER_OVERWRITE_PROT Input Active-high overwrite protect control input signal used
to change the protection bit of the addressed page.
USER_OVERWRITE_PROT must transition
synchronously with the rising edge of USER_CLK and
must be asserted along with USER_PROGRAM or
USER_ERASE_PAGE.

USER_PAGELOSS_PROT Input Active-high page-loss protect control input signal used
to prevent writes to any other page than the current
addressed page in the Page Buffer, until the page is
either discarded or programmed.
USER_PAGELOSS_PROT must transition
synchronously with the rising edge of USER_CLK and
must be asserted along with USER_PROGRAM or
USER_ERASE_PAGE.

USER_LOCK Input Active-high lock request control input signal asserted
when user access (including JTAG) to the flash
memory array is to be prevented. USER_LOCK must
transition synchronously with the rising edge of
USER_CLK.

Table 5-6 • Data Storage Client–Specific Port Descriptions (continued)

Flash Port Direction Description
Revision 0 165

Fusion Embedded Flash Memory Blocks
USER_NVM_BUSY Output Active-high busy control output signal used to indicate
when the flash memory is performing an operation.
USER_NVM_BUSY transitions synchronously with the
rising edge of USER_CLK. Upon a USER_RESET,
USER_NVM_BUSY pulses HIGH for several cycles
before settling to a LOW state.

USER_NVM_STATUS[1:0] Output The 2-bit flash memory operation status output signals
used to indicate the status of the last completed
operation. USER_NVM_STATUS transitions
synchronously with the rising edge of USER_CLK.
Upon a USER_RESET, USER_NVM_STATUS is
initialized to 0x00.
• When USER_NVM_STATUS is '00', it indicates

that the last operation completed successfully.
• When USER_NVM_STATUS is '01' after a read

operation, it indicates that a single error was
detected during the last completed operation and
was corrected.

• When USER_NVM_STATUS is '01' after a write
operation, it indicates that the last completed
operation addressed a write-protected page.

• When USER_NVM_STATUS is '01' after an erase-
page/program operation, it indicates that the Page
Buffer was unmodified during the last completed
operation.

• When USER_NVM_STATUS is '10' after a read
operation, it indicates that two or more errors were
detected during the last completed operation.

• When USER_NVM_STATUS is '10' after an erase-
page/program operation, it indicates that the
compare operation failed during the last completed
operation.

• When USER_NVM_STATUS is '11' after a write
operation, it indicates that an attempt to write to
another page before programming the current page
was made during the last completed operation.

Table 5-6 • Data Storage Client–Specific Port Descriptions (continued)

Flash Port Direction Description
166 Revision 0

Fusion FPGA Fabric User’s Guide
Common Flash Interface Data Client
The CoreCFI IP is available to designers through Actel’s CoreConsole IDP. CoreCFI provides an
industry-standard interface to the embedded flash memory blocks within the Fusion family of FPGAs.
The CoreCFI IP module is targeted to provide a functional subset of the Common Flash Interface
standards with a design emphasis given to minimizing design size.
Using CoreConsole IDP to generate the CoreCFI IP HDL code, users must perform the following steps:

1. Open CoreConsole IDP through Libero IDE and add CoreCFI to the CoreConsole project.
2. Configure the CoreCFI IP. Figure 5-22 shows the CoreCFI IP Configuration GUI window in

CoreConsole. The FPGA Family selected must be Fusion. The Size (address width) can be 6 to
18 bits. The number of address bits selected indicates the amount of the embedded flash memory
accessible through CoreCFI—e.g., 10 bits = 1 kB, 12 bits = 4 kB, 18 bits = 256 kB.

3. Using the Auto-Stitch to Top Level feature of CoreConsole, bring all ports to the top on the
block so that CoreCFI can be interfaced to the embedded flash memory module and other
controlling circuits.

Once the CoreCFI IP is configured, use the Save and Generate function to deploy the HDL code and
other related files, including the query data memory file. The query data memory file contains the Actel-
specific 16-bit Command Set and Control Interface ID code as well as the embedded flash memory
parameters and interface configuration data. Refer to the CoreConsole User’s Guide and CoreCFI
Handbook for additional configuration details.
The Flash Memory System Builder’s CFI Data Client in Libero IDE is used to store the query data for the
CoreCFI IP into the reserved (spare) pages of the embedded flash memory. This client does not take up
any of the 2,048 pages available to designers for initialization or general data storage use.
Figure 5-23 on page 168 shows the CFI Data Client Configuration window in Libero IDE. Using the dialog
box, the location of the query data memory file generated by CoreConsole during CoreCFI IP

Figure 5-22 • CoreCFI IP Configuration Window
Revision 0 167

http://www.actel.com/ipdocs/CoreCFI_HB.pdf
http://www.actel.com/ipdocs/CoreCFI_HB.pdf
http://www.actel.com/documents/CoreConsole_ug.pdf

Fusion Embedded Flash Memory Blocks
deployment must be specified. The memory file format is Actel Binary and should not be modified by the
user. CoreConsole deploys the query data memory file to the following directory location:

C:\Actelprj\<Libero_Project>\coreconsole\common\CORECFI\rtl\vlog\test\user\corecfi_query.mem

During CoreCFI IP deployment, CoreConsole generates a sample HDL top file, named corecfi_chip, that
instantiates both CoreCFI and the embedded flash memory system. Figure 5-24 illustrates an example
CoreCFI IP system, complete with all interconnects between the main system blocks. The interface
between CoreCFI and the embedded flash memory is through the Data Storage Client interface ports, as
listed in Table 5-6 on page 163. Table 5-7 on page 169 describes the CoreCFI-specific ports.

Figure 5-23 • CFI Data Client Configuration Window

Figure 5-24 • CoreCFI IP System Diagram

1’b0

1’b1

18
32
32
2

2

18

32

Internal/External
Microprocessor with CFI

CoreCFI IP

nvm_address

nvm_page_status

nvm_data_in

nvm_discard_page
nvm_erase_page
nvm_overwrite_protect
nvm_program
nvm_read

nvm_unprotect_page

nvm_data_width
nvm_write

nvm_data_out

CLK
RP_N

A

CE_N

DQ_IN

WE_N

RY_BY_N

WORD_N

OE_N

DQ_OE_N
BYTE_N

DQ_OUT

nvm_busy
nvm_status

nvm_spare_page

Embedded Flash Memory System

Embedded
Flash Memory
(preloaded with

corecfi_query.mem)

Data
Storage
Client

Interface

USER_CLK
USER_RESET

USER_ADD

USER_AUX_BLOCK

USER_DATA

USER_DISCARD_PAGE
USER_ERASE_PAGE

USER_OVERWRITE_PAGE

USER_OVERWRITE_PROT

USER_PAGELOSS_PROT

USER_PROGRAM
USER_READ

USER_READ_NEXT

USER_LOCK

USER_SPARE_PAGE
USER_UNPROT_PAGE

USER_WIDTH
USER_WRITE

USER_DOUT

USER_NVM_BUSY
USER_NVM_STATUS

USER_PAGE_STATUS
168 Revision 0

Fusion FPGA Fabric User’s Guide
Table 5-7 • CoreCFI-Specific Port Descriptions

CoreCFI Port Direction Description

RP_N Input Asynchronous active low reset input signal that holds CoreCFI in an initial state until
released. It is recommended that RP_N not be asserted while RY_BY_N is asserted;
otherwise, the embedded flash memory may be damaged. When RP_N is asserted,
CoreCFI is placed in Read Array mode, the status register is set to 0x80 (ready), and the
data bus ports are tristated.

CLK Input Flash memory input clock whose maximum clock period is dictated by tMPWCLKNVM. All
operations and status are synchronous to the rising edge of this clock.

CE_N Input Active low chip enable control input signal. When asserted, CoreCFI is enabled. CE_N
must transition synchronously with the rising edge of CLK and must be asserted along
with WE_N.

WE_N Input Active low write enable control input signal used to initiate a write operation. WE_N must
transition synchronously with the rising edge of CLK and must be asserted along with
CE_N. If CE_N and WE_N are not both asserted, the write command will be ignored. A
write command takes one clock cycle to execute; both CE_N and WE_N must be
deasserted upon completion.

OE_N Input Active low output enable control input signal used to control the direction of the CFI
bidirectional data bus, and asserted during a read command. However, the bidirectional
CFI data bus as listed in the CFI specification is split into an input data bus (DQ_IN) and
an output data bus (DQ_OUT) in CoreCFI. The bidirectional CFI data bus must be
formed outside of CoreCFI, where the direction control signal is an output of CoreCFI
(DQ_OE_N), as shown in Figure 5-24 on page 168, and is a function of OE_N. OE_N
must transition synchronously with the rising edge of CLK and must be asserted along
with CE_N. If CE_N and OE_N are not both asserted, the read command will be ignored.

A[17:0] Input Active high 18-bit input address bus used to address a location in the Flash Array during
a command execution. For a data width of 16 bits, A[0] is ignored and A[1] becomes the
lowest-order address; for a data width of 32 bits, A[1:0] is ignored and A[2] becomes the
lowest-order address.

WORD_N Input The 2-bit {WORD_N, BYTE_N} data bus width control input signal. Both WORD_N and
BYTE_N must transition synchronously with the rising edge of CLK and must be
asserted together.
• If 'x0', the data bus contains one byte of data forming an 8-bit word (DQ_IN/OUT

[7:0]).
• If '01', the data bus contains two bytes of data forming a 16-bit word (DQ_IN/OUT

[15:0]).
• If '11', the data bus contains four bytes of data forming a 32-bit word (DQ_IN/OUT

[31:0]).

BYTE_N Input

DQ_OE_N Output Active-low output enable control output signal used to control the direction of the CFI
bidirectional data bus formed external to the CoreCFI IP, as shown in Figure 5-24 on
page 168. DQ_OE_N transitions synchronously with the rising edge of CLK and is
asserted when both CE_N and OE_N are asserted. Upon an RP_N assertion,
DQ_OE_N is initialized to zero.
Revision 0 169

Fusion Embedded Flash Memory Blocks
CoreCFI supports the Read Query, Read, Automatic Erase, Automatic Write, Lock, and Status CFI
operations. The command descriptions are summarized in Table 5-8 and Table 5-9 on page 171. Refer to
the CoreCFI Handbook (available on the Actel website or in CoreConsole) for the CFI command
details.

DQ_IN[31:0] Input The 32-bit input data bus used during a write command. The data on DQ_IN must
transition synchronously with the rising edge of CLK. Data put in on DQ_IN must be LSB-
oriented. Configuration depends on the state of {WORD_N, BYTE_N}: if in the 8-bit word
mode, the DQ_IN[31:8] ports are ignored; if in the 16-bit word mode, the DQ_IN[31:16]
ports are ignored. As shown in Figure 5-24 on page 168, DQ_IN should be connected to
the CFI bidirectional bus.

DQ_OUT[31:0] Output The 32-bit output data bus used during a read command. The data on DQ_OUT
transitions synchronously with the rising edge of CLK. Data put out on DQ_OUT is LSB-
oriented. Configuration depends on the state of {WORD_N, BYTE_N}: if in the 8-bit word
mode, the DQ_OUT[31:8] ports are ignored; if in the 16-bit word mode, the
DQ_OUT[31:16] ports are ignored. As shown in Figure 5-24 on page 168, DQ_OUT
should be connected to the CFI bidirectional bus. Upon an RP_N assertion, DQ_OUT is
initialized to zero.

Table 5-7 • CoreCFI-Specific Port Descriptions (continued)

CoreCFI Port Direction Description

Table 5-8 • Supported CFI Command Descriptions

Command Description

Read Query The Read Query command causes CoreCFI to load the query database from a spare page of the
embedded flash memory. Query data is always supplied on the least significant 8 bits of DQ_OUT.
The address of the query data starts at 10h in 32-bit, 20h in 16-bit, or 40h in 8-bit mode.

Read ID Codes The Read ID Codes command causes CoreCFI to load either the manufacturer code, die size code,
or page lock status from the embedded flash memory onto DQ_OUT. The identifier codes returned
are either values stored in the query data spare page or the lock status of a page in the Flash Array.

Read Array The Read Array command causes CoreCFI to be placed in read array mode, where the content of
the addressed location of the Flash Array is loaded onto DQ_OUT. Upon a reset, CoreCFI is
initialized to the read array mode state.

Read Status The Read Status command causes CoreCFI to load the status register onto DQ_OUT. The status
register provides the status of the last write, erase, or lock command execution.

Clear Status The Clear Status command causes CoreCFI to clear registered status register bits.

Erase Page The Erase Page command causes CoreCFI to erase the addressed page of the Flash Array. A page
erase activity fills the contents of a page with zeros.

Single Write The Single Write command causes CoreCFI to write the data placed on DQ_IN to the addressed
location of the Flash Array. This command reads the entire addressed page, modifies the address
location, and programs the page into the Flash Array. If more than one location is to be modified, the
Multiple Write command should be used.

Multiple Write The Multiple Write command causes CoreCFI to be placed in the page write mode, where the
contents of DQ_IN are written to the Page Buffer of the embedded flash memory. If the write activity
exceeds the page boundary, the data written will wrap to the top of the page. Once all values are
written into the page, the page is written into the Flash Array.

Page Lock The Page Lock command causes CoreCFI to lock the addressed page, preventing any erase or
write commands to the page from executing.

Page Unlock The Page Unlock command causes CoreCFI to unlock the addressed page, allowing all erase or
write commands to the page to execute.
170 Revision 0

http://www.actel.com/ipdocs/CoreCFI_HB.pdf

Fusion FPGA Fabric User’s Guide
Flash Operation Priority
The embedded flash memory has a built-in priority for operations when multiple actions are requested
simultaneously. Table 5-10 shows the operation priority order—priority 0 is the highest. Access to the
embedded flash memory is controlled by the BUSY (USER_BUSY in the Data Storage Client interface)
signal. The BUSY output is synchronous to the CLK (USER_CLK in the Data Storage Client interface)
signal. The embedded flash memory operations are only accepted in cycles where BUSY is not asserted
(LOW).

The system initialization operation is the highest in the priority order. The system initialization occurs
upon a system reset of a Fusion FPGA. All FPGA operations should be halted during the system
initialization process. Refer to the "Using the Embedded Flash Memory for Initialization" section on
page 135 for additional information.
If read and write operations are performed simultaneously, for example, the read operation takes
precedence over the write operation. The write data supplied during this operation is ignored, and the
data remains unchanged. Also, if an erase page and a write operation are performed simultaneously, the
write operation takes precedence over the erase page operation. The write data supplied during this
operation executes. All other priority order situations behave similarly.

Table 5-9 • CFI Command Algorithm Summary

Command

No. of
Bus

Cycles

First Bus Cycle Second Bus Cycle

Operation Address Data Operation Address Data

Read Query 2 Write X 0x98 Read Query Address Query Data

Read ID Codes 2 Write X 0x90 Read Identifier Address Identifier Data

Read Array 1 or 2 Write X 0xFF Read Array Address Array Data

Read Status 2 Write X 0x70 Read X Status Data

Clear Status 1 Write X 0x50 – – –

Erase Page 2 Write Page Address 0x20 Write Page Address D0h

Single-Write 2 Write Page Address 0x40 Write Array Address Array Data

Multi-Write 2 Write Page Address 0xE8 Write Page Address N = Num. of elements – 1

Page Lock 2 Write X 0x60 Write Page Address 0x01

Page Unlock 2 Write X 0x60 Write Page Address 0xD0

Table 5-10 • Flash Memory Operation Priority

Operation Priority

System Initialization 0 (highest)

Flash Memory Reset 1

Read 2

Write 3

Erase Page 4

Program 5

Unprotect Page 6

Discard Page 7
Revision 0 171

Fusion Embedded Flash Memory Blocks
Flash Busy Signal Handling
The BUSY (USER_BUSY in the Data Storage Client interface) signal is one of the most important signals
in the embedded flash memory; all operations on the embedded flash memory should be designed
based on the BUSY signal. The BUSY signal is asserted HIGH whenever a flash operation is in progress,
then deasserted after the operation is complete. To shorten simulation run time, the run time of the
different operations (Write/Program/Erase/Read) is shortened in the simulation model. Therefore, the
system design should be based on the BUSY signal assertion and deassertion status instead of counting
the operation cycles for each operation. All flash memory inputs are ignored while BUSY is asserted.
Inputs can be updated for the next operation at the rising edge of the clock with no hold time requirement.
During an embedded flash memory reset, the contents of the flash memory control logic block, such as
the contents of the Block Buffer and Page Buffer, are cleared. Once RESET (USER_RESET in the Data
Storage Client interface) is asserted LOW, the BUSY signal is asserted HIGH. After RESET is
deasserted, the BUSY signal is deasserted approximately 25 µs later. Therefore, the system design
should accommodate this BUSY period by monitoring the BUSY signal status. All operations can be
executed only after the BUSY signal is deasserted.
For continuous operations, like the continuous reads for microprocessor instruction executions, the flash
clock may be adjusted to compensate for the flash memory BUSY period—for example, during the
loading of a new page from the Flash Array into the page buffer. Typically, the flash clock is sourced by
the microprocessor system clock in an application. SmartTime, Actel’s gate-level static timing analysis
tool available in Actel’s Designer software, will provide the maximum frequency for the system design.
This maximum frequency will be adjusted to compensate for these BUSY periods.
172 Revision 0

Fusion FPGA Fabric User’s Guide
Write Operations and Page Programming
The embedded flash memory offers a write operations class of commands. These commands include the
page buffer write, discard page, program page, erase page, and overwrite page operations. All write
commands are page-based operations. The embedded flash memory write operations modify the
contents of both the Block and Page Buffers. As shown in Figure 5-25, the Block and Page Buffers are
sub-blocks of the embedded flash memory and consist of volatile registers.

A write operation to a location in a page that is not already in the Page Buffer will cause the page to be
read from the Flash Array and stored in the Page Buffer. The number of BUSY cycles required to
complete the page buffer load is variable. The block that was addressed during the write operation will be
loaded into the Block Buffer, and the data written by WD (USER_DATA in the Data Storage Client
interface) will overwrite the data in the Block Buffer. After the data is written to the Block Buffer, the Block
Buffer is then written to the Page Buffer to keep both buffers in sync. Subsequent writes to the same
block will overwrite both the Block and Page Buffers without incurring BUSY cycles. A write operation to
another block in the page will cause the addressed block to be loaded from the Page Buffer and into the
Block Buffer, and the write will be performed as previously described. The Block Buffer load will incur four
BUSY cycles (five cycles with PIPE asserted). The contents of the Page Buffer will be stored into the
Flash Array only when a program page operation is executed. During the program page operation
execution, the BUSY (USER_BUSY in the Data Storage Client interface) signal will be asserted HIGH for
~8 ms until the page programming completes. Figure 5-26 on page 174 is the timing diagram for a
program page operation.

Figure 5-25 • Flash Memory Block Diagram

RD[31:0]

WD[31:0]

ADDR[17:0]
DATAWIDTH[1:0]

REN
READNEXT

PAGESTATUS
WEN

ERASEPAGE
PROGRAM

SPAREPAGE
AUXBLOCK

UNPROTECTPAGE
OVERWRITEPAGE

DISCARDPAGE
OVERWRITEPROTECT

PAGELOSSPROTECT
PIPE

LOCKREQUEST
CLK

RESET
STATUS[1:0]

BUSY

Output
MUX

Control
Logic

Block Buffer
(128 bits)

ECC
Logic

Page Buffer =
8 Blocks

plus AUX Block

Flash Array =
64 Sectors
Revision 0 173

Fusion Embedded Flash Memory Blocks
A page write operation is initiated by asserting the WEN (USER_WRITE in the Data Storage Client
interface) signal HIGH. The page write operation automatically triggers a Block or Page Buffer load
operation when a change in the block or page address is detected. During a Block Buffer load operation,
the embedded flash memory logic loads the contents of the addressed block from the Page Buffer into
the Block Buffer volatile registers. During a Page Buffer load operation, the embedded flash memory
logic loads the contents of the addressed page from the Flash Array into the Page Buffer volatile
registers. The BUSY signal is asserted HIGH during both loading processes. Figure 5-27 is the timing
diagram for a page write operation. Any page being written using a page write or program page operation
that is overwrite-protected will result in the STATUS signals being set to '01'; the page data stored in the
Page Buffer or Flash Array are left unchanged. During a page write operation, the protected page is
detected during both the page and block buffer loading processes.

Writing to more than one page without executing a program page operation before changing the page
address will result in the loss of the Page Buffer data. The page-loss protection option can be enabled to
protect against the loss of the Page Buffer data by asserting the PAGELOSSPROTECT
(USER_PAGELOSS_PROT in the Data Storage Client interface) signal HIGH during a program or erase
page operation. Any page that is page-loss-protected will result in the STATUS (USER_NVM_STATUS
in the Data Storage Client interface) signals being set to '11' when an attempt is made to write to a new
page leaving the Page Buffer unchanged. The PAGELOSSPROTECT signal can be tied permanently
HIGH; it is only sampled when the PROGRAM or ERASEPAGE signals are asserted HIGH. Actel
recommends always enabling the page-loss protection option. Figure 5-28 on page 175 is the timing
diagram showing the page-loss protection fault STATUS update.

Figure 5-26 • Program Page Operation Timing Diagram

CLK

BUSY

ADDR PAGE ADDR

PROGRAM

Figure 5-27 • Page Write Operation Timing Diagram

CLK

BUSY

ADDR ADDR1

WEN

WD DATA1

ADDR2

DATA2

ADDR3

DATA3

... ADDR17

... DATA17

0x00DATAWIDTH

ADDR18

DATA18

ADDR19

DATA19

Page Buffer Load Block Buffer Load
174 Revision 0

Fusion FPGA Fabric User’s Guide
To discard the contents of the modified Page Buffer, the discard page operation can be initiated by
asserting the DISCARDPAGE (USER_DISCARD_PAGE in the Data Storage Client interface) signal
HIGH for one clock cycle. This command will result in the Page Buffer being marked as unmodified. The
BUSY signal will remain asserted until the discard page operation completes.
The erase page operation erases the addressed Flash Array page by filling the Page Buffer volatile
registers with all zeros and issuing a program page operation. It is initiated by asserting the
ERASEPAGE (USER_ERASE_PAGE in the Data Storage Client interface) signal HIGH while
addressing the page to be erased. During the erase page operation execution, the BUSY signal will be
asserted HIGH until the operation completes. Both the erase page and page write operations require
fewer cycles when executing on the same page rather than a new page. Any page that is overwrite-
protected will result in the STATUS signals being set to '01' when an attempt is made to erase the page,
and the addressed page’s data will be left unchanged.
The overwrite page operation can be used to overwrite any addressed page in the Flash Array with the
contents of the Page Buffer. The operation can be initiated by asserting the OVERWRITEPAGE
(USER_OVERWRITE_PAGE in the Data Storage Client interface) signal HIGH during a program page
operation. Any page that is overwrite-protected will result in the STATUS signals being set to '01' when
an attempt is made to program a page with OVERWRITEPAGE asserted, and the addressed page’s
data will be left unchanged. Figure 5-29 is the timing diagram showing the overwrite protection fault
STATUS update.

The overwrite protect mechanism is used to protect the contents of the selected Flash Array’s pages
from being overwritten. Asserting the OVERWRITEPROTECT (USER_OVERWRITE_PROT in the Data
Storage Client interface) signal HIGH when a program page operation is undertaken will set the overwrite

Figure 5-28 • Page-Loss Protection Fault Timing Diagram

Figure 5-29 • Overwrite Protection Fault Timing Diagram

CLK

BUSY

ADDR PAGE1-ADDR1

WEN

PAGE2-ADDR1

WD PAGE1-DATA1 PAGE2-DATA1

STATUS 0x0 0x3

PAGE2-ADDR2

PAGE2-DATA2

Page-Loss Protection Fault data
in PAGE2 remains unchanged.

CLK

BUSY

ADDR PAGE ADDR

STATUS 0x0 0x1

Overwrite Protection Fault data in
addressed page remains unchanged.

:

PROGRAM

OVERWRITEPAGE
Revision 0 175

Fusion Embedded Flash Memory Blocks
protection option for the addressed page. OVERWRITEPROTECT can be held HIGH if multiple pages
are to be overwritten; it is only sampled when the PROGRAM or ERASEPAGE signals are asserted
HIGH. OVERWRITEPROTECT is ignored in all other operations. Any page that is overwrite-protected
will result in the STATUS signals being set to '01' when an attempt is made to either write, program, or
erase the protected page, as shown in Figure 5-30.
To clear the overwrite protect option for a given page, the unprotect page operation must be performed,
and the page must be programmed with the OVERWRITEPROTECT pin cleared to save the new
protection settings. An unprotect page operation is initiated by asserting the UNPROTECTPAGE
(USER_UNPROT_PAGE in the Data Storage Client interface) signal HIGH while addressing the page. If
the addressed page is not in the Page Buffer, the unprotect page operation will trigger a Page Buffer load
operation. The load operation occurs only if the current page in the Page Buffer was programmed into
the Flash Array or is not page-loss-protected. During the unprotect page operation execution, the BUSY
signal will be asserted HIGH until the operation completes. If either the OVERWRITEPROTECT or
UNPROTECTPAGE signal is asserted, the other must be deasserted. The unprotect page operation may
result in the STATUS signals being set to '01' when the page has a single-bit correctable error, '10' for a
double-bit uncorrectable error, or '11' when the Page Buffer has encountered a page-loss protection
situation, during the operation execution. Figure 5-30 is the timing diagram showing the page-loss
protection fault STATUS update during an unprotect page operation.

Read Operations
Read operations are designed to read data from the Flash Array and page status registers. The read
operations support read operations with and without read-next or pipeline stage enabled. All read
commands are page-based operations. The embedded flash memory read operation reads the contents
of the Block Buffers, which are loaded from either the Page Buffer or the Flash Array. The Block and
Page Buffers are sub-blocks of the embedded flash memory, consisting of volatile registers. Refer to
Figure 5-25 on page 173 for the flash memory block diagram.
A read operation to a location in a page that is not already stored in the Page Buffer will cause the data
from the Flash Array to be read and stored directly into the Block Buffer. The BUSY (USER_BUSY in the
Data Storage Client interface) signal is asserted HIGH during the Block Buffer loading process for
approximately four or five clock cycles. Any subsequent blocks addressed within the same page will be
filled with data from the Flash Array with the same BUSY period consequence. However, a read
operation to a location already stored in the Page Buffer is loaded into the Block Buffer without a BUSY
period.
A read operation is initiated by asserting the REN (USER_READ in the Data Storage Client interface)
signal HIGH. If the Block Buffer load is from the Flash Array, the BUSY signal is asserted HIGH for
approximately four or five clock cycles during the Block Buffer loading process. The contents of the block
that was addressed during the read operation will be placed on the RD (USER_DOUT in the Data
Storage Client interface) output data bus. For frequencies greater that 50 MHz, a pipeline stage before
the data read is placed on the RD data bus may be added by asserting the PIPE signal HIGH along with
REN. If the pipeline stage is enabled, the BUSY signal is asserted for five clock cycles during each Block

Figure 5-30 • Unprotect Page Operation Page-Loss Protection Fault Timing Diagram

CLK

BUSY

ADDR PAGE ADDR

UNPROTECTPAGE

STATUS 0x0 0x3

Page-Loss Protection Fault
During Unprotect Page Operation
176 Revision 0

Fusion FPGA Fabric User’s Guide
Buffer load process; otherwise, it is asserted for four cycles. Figure 5-31 is the timing diagram for a page
read operation.

The read-next operation is a feature by which the next block to the current block in the Block Buffer is
read from the Flash Array while performing reads from the Block Buffer, to minimize BUSY wait states
during a sequential read operation. It is enabled by asserting the READNEXT (USER_READ_NEXT in
the Data Storage Client interface) signal HIGH along with REN. Since the read-next operation executes
look-ahead reads, it is performed in a predetermined manner, as follows:

• When reading within a page, the next block fetched will be the next in linear address.
• When reading the last data block of a page, it will fetch the first block of the next page.
• When reading spare pages, it will read the first block of the next sector's spare page.
• When reading the last sector, it will wrap around to sector 0.
• When reading the auxiliary blocks, it will read the next linear page's auxiliary block.

When an address on the ADDR (USER_ADD in the Data Storage Client interface) bus does not agree
with the predetermined look-ahead address, there is a time penalty for this access. The embedded flash
memory must complete the current look-ahead read before starting the next. The worst-case BUSY
period is a total of nine cycles before data is delivered. Figure 5-32 is the timing diagram for a pipeline-
staged read-next page read operation.

Figure 5-31 • Page Read Operation Timing Diagram

CLK

BUSY

ADDR ADDR1

REN

RD {DATA1:
DATA4}

{DATA5:
DATA8}

{DATA9:
DATA12}

{DATA13:
DATA16}

{DATA17:
DATA20}

{DATA21:
DATA24}

ADDR5 ADDR9 ADDR17

0x11DATAWIDTH

ADDR21 ADDR25

0x00000000

Block Buffer Load Block Buffer Load

4 Cycles

ADDR13 ADDR29

0x00000000

4 Cycles

Note: With 16- and 32-bit RD data bus widths, bytes are placed on the bus in big-endian byte order.

Figure 5-32 • Pipeline-Staged Read-Next Page Read Operation Timing Diagram

CLK

BUSY

ADDR

REN

RD

DATAWIDTH

READNEXT

PIPE

ADDR1

{DATA1:
DATA4}

{DATA5:
DATA8}

{DATA9:
DATA12}

{DATA13:
DATA16}

{DATA17:
DATA20}

{DATA21:
DATA24}

ADDR5 ADDR9 ADDR17

0x11

ADDR21 ADDR25

0x00...00

Block Buffer Load Block Buffer Load

5 Cycles

ADDR13 ADDR29

0x00000000

1 Cycle

Note: With 16- and 32-bit RD data bus widths, bytes are placed on the bus in big-endian byte order.
Revision 0 177

Fusion Embedded Flash Memory Blocks
The status registers of each page of the embedded flash memory can be read by asserting the
PAGESTATUS (USER_PAGE_STATUS in the Data Storage Client interface) signal along with REN.
The contents of the addressed page’s status register will be driven onto the RD data bus. The format of
the data returned by a page status read is shown in Table 5-11. Figure 5-33 on page 178 is the timing
diagram for a page status register read operation.

Note on Updating the Contents of Flash
The possibility of data corruption due to a programming interruption is common to flash technology, and
precautions must be taken when updating the data contents of any flash memory, including Fusion’s
embedded flash memory block. An interruption may occur, for example, as a result of a loss of power to
the Fusion FPGA or an unexpected reset operation of the Flash Block control logic. Therefore, it is
recommended that the appropriate measure in the application be taken to prevent such interruptions
from occurring by adding power-down ramp control circuitry, low voltage detection circuitry, etc., to allow
for the 8 ms program and erase page operations to complete their execution.
If an interruption of the write or read operation occurs, the immediate data stored in the Block or Page
Buffer is lost, but the Flash Array’s data (a sub-block of Flash Block holding the nonvolatile data contents,
as shown in Figure 5-25 on page 173) remains valid. However, if an interruption of a program or erase
operation occurs, the page addressed during the interruption may be left in a locked state. Although it
may be that no physical damage to the Flash Array will have occurred, data corruption of the page is
likely to have occurred, resulting in the possible corruption of the page’s auxiliary block control data. Only
the page addressed at the time of the interruption may incur data corruption; no other page should be
affected.

Table 5-11 • Page Status Register Bit Definitions

Bit(s) Name Description

[31:8] Write Count The number of times the page addressed has been programmed or erased

[7:4] Reserved Reads as 0.

[3] Over-Threshold Over-threshold indicator. See the “Program Operation” section of the Fusion Family of
Mixed-Signal Flash FPGAs datasheet for details.

[2] Read Protect The read protect bit for the page set via the JTAG interface. If 1, the page is read-
protected.

[1] Write Protect The write protect bit for the page set via the JTAG interface. If 1, the page is write-
protected.

[0] Overwrite Protect The overwrite protect bit used to protect the page from being inadvertently overwritten.
The bit must be set by asserting the OVERWRITEPROTECT signal during a program
operation. The page cannot be overwritten without first performing an unprotect page
operation. Refer to the "Write Operations and Page Programming" section on page 173
for additional information.

Figure 5-33 • Page Status Register Read Operation

CLK

BUSY

ADDR PAGE ADDR

REN

PAGESTATUS

RD STATUS DATA
178 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Fusion FPGA Fabric User’s Guide
A Flash Block’s page contains eight blocks of user data and one auxiliary block. The auxiliary block is
mostly used for storing control data. The auxiliary block control bits of concern are the write protect, read
protect, overwrite protect, and write count bits. If the protection bits are corrupted, in most cases,
reprogramming the embedded flash memory contents with the programming (STAPL) file will restore the
protection bits to their predefined states; however, the page’s write count will be lost. If the overwrite
protection bit is the only bit of concern, the application can set/clear this bit by using the
OVERWRITEPROTECT or UNPROTECTPAGE input signals to the NVM macro, as described in the
"Write Operations and Page Programming" section on page 173.

Microprocessor/Microcontroller Interface
The embedded flash memory can be interfaced to a microprocessor or microcontroller for use as its
nonvolatile instruction execution memory space and data storage memory space. To enable the
embedded flash memory to communicate with the microprocessor’s or microcontroller’s bus architecture,
an interface bridge must be developed and added to the design. Actel offers, as a DirectCore IP through
CoreConsole IDP, the CoreAhbNvm IP, which contains a hardware bridge between the embedded flash
memory block and the industry-standard Advanced Microcontroller Bus Architecture’s high-performance
system backbone bus (AHB). Microprocessors can then access data stored in the flash memory via the
software-driven CFI command protocol. The following sections describe CoreAhbNvm’s design
configuration and CFI commands.

CoreAhbNvm IP Configuration
CoreConsole IDP is used to develop a microcontroller design for Actel FPGAs, utilizing the ARM7,™
Cortex-M1, and CoreABC microprocessor or microcontroller IP offerings, together with the various
AMBA-AHB and AMBA-APB (Advanced Peripheral Bus) IP peripherals. For Fusion FPGA designs,
CoreAhbNvm can be paired with either the ARM7 (CoreMP7 IP) or Cortex-M1 microprocessors. The
microprocessors must communicate with CoreAhbNvm through an AHB master, also available through
CoreConsole as CoreAHB and CoreAHBLite.
When using CoreAhbNvm’s embedded flash memory as the microprocessor’s instruction execution
memory, CoreAhbNvm must be connected as CoreAHB or CoreAHBLite’s slave-0 (AHBmslave0) port.
After system reset, CoreAhbNvm defaults to the CFI’s read-array mode for the continuous reading of the
instruction code stored in memory. Since data is read from the embedded flash memory’s page buffer,
when changing the instruction address to a new page in flash, the microprocessor must allow for the time
required to load a new flash memory page into its page buffer before capturing the data. Therefore, the
microprocessor and AHB-master system clock must be reduced appropriately, such that continuous
reads can be performed without needing to pause for page buffer loading. When performing static timing
analysis using SmartTime, the maximum operating frequency of the microprocessor’s system clock is
typically reduced to, for example, 15 MHz for the ARM7.
When using CoreAhbNvm’s embedded flash memory as the microprocessor’s nonvolatile data storage,
CoreAhbNvm must be connected to any slave port other than slave-0 (AHBmslave1–AHBmslave15),
reserving slave-0 for the instruction execution memory. Note that the Remap input to CoreAHB and
CoreAHBLite is used to swap between the slave-0 (AHBmslave0) and slave-1 (AHBmslave1) ports. The
Remap feature of the AHB architecture is typically used to swap boot memory spaces (from flash to RAM
and vice versa). Therefore, be sure to plan the AHB system carefully taking all AHB slave configurations
into consideration. For additional details, refer to the CoreAHB, CoreAHBLite, and CoreRemap
datasheets.
Revision 0 179

http://www.actel.com/documents/CoreAHB_DS.pdf
http://www.actel.com/ipdocs/CoreAHBLite_HB.pdf
http://www.actel.com/documents/CoreRemap_DS.pdf

Fusion Embedded Flash Memory Blocks
Once the entire microcontroller design is complete, CoreConsole’s “Save & Generate” operation will
produce the RTL code and testbench for the design and save it in a project directory, which then is
imported into Libero IDE. Libero IDE can then be used to complete the Fusion FPGA design flow. Refer
to the CoreConsole User’s Guide and the Libero IDE User’s Guide for additional usage information.
Figure 5-34 on page 180 is an example of a simple Fusion CoreMP7 microcontroller CoreConsole
project, with CoreAhbNvm used as its instruction execution memory.

Figure 5-34 • Simple Fusion CoreConsole Project with CoreAhbNvm Used as the Instruction Execution
Memory

AHBmslave0 Connection
180 Revision 0

http://www.actel.com/documents/CoreConsole_ug.pdf
http://www.actel.com/documents/libero_ug.pdf

Fusion FPGA Fabric User’s Guide
CoreConsole allows designers to easily configure the IP though a simple GUI. Figure 5-35 shows the
CoreAhbNvm IP CoreConsole configuration GUI window.

CoreAhbNvm can be configured to include the embedded flash as a 256-kbyte, 512-kbyte, or 1-Mbyte
flash memory data space. By default, CoreAhbNvm is configured to include a 256-kbyte flash memory.
Up to four CoreAhbNvm blocks can be instantiated for a single Fusion design, depending on the targeted
Fusion FPGA device. Be sure to size the flash memory for each CoreAhbNvm block appropriately, such
that the total number of Flash Block instances does not exceed the total number available on the
targeted Fusion FPGA device. Table 5-12 lists the required number of Flash Block instances for each
flash memory space size configuration option. Cross-reference the required number of Flash Block
instances with the number of blocks available in the targeted Fusion device, as found in the Fusion
Family of Mixed-Signal Flash FPGAs datasheet.

Figure 5-35 • CoreAhbNvm CoreConsole Configuration GUI

Table 5-12 • Flash Memory Space Size vs. Required Number of Memory Block Instances

Flash Memory Size Option Number of Flash Block Instances

256 kbytes 1

512 kbytes 2

1 Mbytes 4
Revision 0 181

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Fusion Embedded Flash Memory Blocks
The CoreAhbNvm port signals are described in Table 5-13. If CoreAhbNvm is paired with either the on-
chip ARM7 or Cortex-M1, CoreConsole’s Auto Stitch feature can be used to make all the required
interconnects between CoreAhbNvm and CoreAHB/CoreAHBLite. CoreAhbNvm, however, can also be
used as an extension of an external microprocessor’s nonvolatile memory space by placing all its AHB
interface signals at the top of the chip design. CoreAhbNvm can then be connected and controlled by an
external AHB master.

Table 5-13 • CoreAhbNvm Port Signal Descriptions

Signal Direction Description

HCLK Input Bus Clock Rising-edge-active AHB clock, which times all bus transfers and all
signal timings

HRESETn Input Reset Active-low asynchronous bus reset signal used to reset the system
and the bus. This is the only active-low AHB signal.

HTRANS[1:0] Input Transfer control input signals that indicate the type of the current
transfer:
00 – Idle
01 – Busy
10 – Non-Sequential
11 – Sequential
HTRANS transitions synchronously with the rising edge of HCLK.

HADDR[19:0] Input The 32-bit AHB system address bus from the AHB master. HADDR
transitions synchronously with the rising edge of HCLK.

HWRITE Input Transfer direction control signal. When HIGH, this signal indicates a
write transfer; when LOW, a read transfer. HWRITE transitions
synchronously with the rising edge of HCLK.

HSIZE[2:0] Input Indicates the size of the transfer, which can be byte (8-bit), halfword
(16-bit), or word (32-bit). HSIZE transitions synchronously with the
rising edge of HCLK.

HWDATA[31:0] Input 32-bit write input data bus from the AHB master. HWDATA
transitions synchronously with the rising edge of HCLK.

HREADYIN Input Active-high ready signal input from all other AHB slaves.
HREADYIN transitions synchronously with the rising edge of HCLK.

HSEL Input Active-high slave select signal input, which is a combinatorial
decode of HADDR. Indicates that this slave is currently being
selected. HSEL transitions synchronously with the rising edge of
HCLK.

HRDATA[31:0] Output 32-bit read output data bus written back to the AHB master.
HRDATA transitions synchronously with the rising edge of HCLK.
Upon an HRESETn reset, the HRDATA output is zero.
182 Revision 0

Fusion FPGA Fabric User’s Guide
Supported CFI Commands
The data stored within CoreAhbNvm’s flash memory blocks for instruction execution or data storage can
be accessed by the microprocessor or microcontroller via the software-driven Common Flash Interface.
The CFI is a command-driven interface standard used to standardize the low-level flash software
algorithms. The CoreAhbNvm IP supports a subset of the CFI commands. The supported commands are
summarized in Table 5-14.

Upon a system reset (LOW on HRESETn), CoreAhbNvm defaults to the read-array operation mode to
support the microprocessor instruction execution usage. No write command is needed to place the
CoreAhbNvm IP in the read-array mode as instructed in Table 5-14.
As part of the CFI, a status register is used to provide feedback to the software regarding command
execution. During each command, the status register should be read to ensure that the flash memory is
not busy executing a command (bit 7 set to 1) and that the command executed appropriately. All new
commands are ignored while the flash memory is busy (bit 7 set to 0). The status register also includes
the Program/Erase, Write, and Read/Protection Error flags (bits 5, 4, and 1, respectively). All three error
flags are registered; therefore, once an error is detected, the status register must be cleared using the
Clear Status command. Once a CFI command is issued and bit 7 (the Ready flag) is set to 1, the error
flags should be checked to ensure that the completed operation did not incur an error. Table 5-15 on
page 184 includes a bit description of the status register flags.

HREADY Output Transfer-done control output signal. When HIGH, the HREADY
signal indicates that a transfer has finished on the bus. This signal
can be driven LOW to extend a transfer. HREADY transitions
synchronously with the rising edge of HCLK. Upon an HRESETn
reset, the HREADY output is HIGH.

HRESP[1:0] Output Transfer response output signals, which have the following
meanings:
00 – Okay
01 – Error
10 – Retry
11 – Split
HRESP transitions synchronously with the rising edge of HCLK.
Upon an HRESETn reset, the HRESP output is in an Okay state
(0x00).

Table 5-13 • CoreAhbNvm Port Signal Descriptions (continued)

Signal Direction Description

Table 5-14 • Supported CFI Command Descriptions

Command

No. of
Bus

Cycles

First Bus Cycle Second Bus Cycle

Operation Address Data Operation Address Data

Read Status 2 Write X 0x70 Read X Status Data

Clear Status 1 Write X 0x50 – – –

Read Array 1 or 2 Write X 0xFF Read Array Address Array Data

Erase Page 2 Write Page Address 0x20 Write Page Address D0h

Single Write 2 Write Page Address 0x40 Write Array Address Array Data

Multi-Write 2 Write Page Address 0xE8 Write Page Address No. of elements – 1
Revision 0 183

Fusion Embedded Flash Memory Blocks
Read Status Command
The status register contains flags used to inform the user when the flash is ready for the next operation or
when an error occurred with the last operation performed. Prior to issuing any new array write or read
commands to the CFI control logic, the Ready flag (bit 7 of the status register) should be checked. If
Ready is set to 1, the flash memory is ready to receive a new command. If Ready is set to 0, the flash
memory is busy performing an operation and all new commands issued will be ignored. Once the Ready
flag is set to 1, the Program/Erase, Write, and Read/Protection Error flags (bits 5, 4, and 1, respectively)
should be checked to ensure that the completed operation did not incur an error. All three error flags are
registered; therefore, once an error is detected, the status register must be cleared using the Clear
Status command.
Read Status command execution is performed as follows:

1. Issue the Read Status command by writing the command value 0x70 to any location in the flash
array.
[Any Array Address] = 0x70

2. Once the command has been issued, read and store the contents of the status register to a
temporary variable. To read the contents of the status register, issue a read operation at any
address in the flash array. The value read will be the contents of the status register.
Status_Register_Contents = [Any Array Address]

Table 5-15 • Status Register Bit Descriptions

Bit(s) Flag Description

7 Ready Active-high Ready flag used to indicate when the flash memory is ready to
receive new commands or is busy processing a command’s operation. If
Ready is set to 1, the flash memory is ready to receive new commands, and
the previous command’s operation is complete. If Ready is set to 0, the flash
memory is busy processing the command’s operation. No new commands
should be issued until the Ready flag is at 1. Upon an HRESETn reset, the
Ready flag defaults to 1.

6 – –

5 Program or
Erase Error

Active-high Program or Erase Error flag used to indicate whether an error
occurred during a program or erase operation. If the Program or Erase Error
flag is set to 1, the flash memory incurred an error during a program or erase
operation. A locked page access will cause a program or erase operation to
fail, triggering the error flag to transition to 1. If the flag transitions to 1, it will
remain there until cleared by the Clear Status command operation. Upon an
HRESETn reset, the Program or Erase Error flag defaults to 0.

4 Write Error Active-high Write Error flag used to indicate whether an error occurred during
a write operation. If the Write Error flag is set to 1, an error occurred during
the page buffer write operation. If the Write Error flag is set to 0, the page
buffer write operation was successful. If the flag transitions to 1, it will remain
there until cleared by the Clear Status command operation. Upon an
HRESETn reset, the Write Error flag defaults to 0.

3–2 – –

1 Read or
Protection Error

The Read or Protection Error flag is used to indicate whether an error
occurred during a read, program, or erase operation. If a read operation
completed and the Read Error flag is set to 1, an error occurred during the
read operation. If a program/erase operation completed and the Protection
Error flag is set to 1, the page program or erase operation failed because the
page being accessed is protected. If the flag is set to 0, the read, program, or
erase operation completed successfully. If the flag transitions to 1, it will
remain there until cleared by the Clear Status command operation. Upon an
HRESETn reset, the Read or Protection Error flag defaults to 0.

0 – –
184 Revision 0

Fusion FPGA Fabric User’s Guide
Clear Status Command
The Clear Status command clears the Program/Erase, Write, and Read/Protection Error flags (bits 5, 4,
and 1, respectively) of the status register. Clear Status command execution is performed in a single step:

Issue the Clear Status command by writing the command value 0x50 to any location in the flash
array.
[Any Array Address] = 0x50

Read Array Command
The Read Array command is used to place CoreAhbNvm in read-array mode. Once CoreAhbNvm is in
read-array mode, it will remain in this mode until a new CFI command is issued. Upon an HRESETn
reset, CoreAhbNvm defaults to read-array mode to support microprocessor instruction execution usage.
When performing a continuous read and a page boundary has been crossed, the embedded flash
memory must reload the page buffer with the new flash page being accessed. In this situation, either the
Ready flag of the status register must be monitored or the system clock frequency must be adjusted to
allow for the loading of the page buffer. If monitoring the Ready flag, once it is at 1, the Read Error flag
should be checked to ensure that the completed operation did not incur an error. The Read Error flag is
registered; therefore, once an error is detected, the status register must be cleared using the Clear
Status command.
Read Array command execution is performed as follows:

1. Issue the Read Array command by writing the command value 0xFF to any location in the Flash
Array.
[Any Array Address] = 0xFF

2. Once the command has been issued, the contents of the array can be read by issuing a read
operation at the selected array address in flash.
Array_Contents = [Array Address]

If monitoring the Ready flag, perform the following:
3. The Ready flag (bit 7) of the status register must be monitored to determine when the read

operation completes. Using the Read Status command, the status register should be polled until
Ready flag is set to 1, signaling that the write operation has completed.
Ready = Status_Register_Contents & 0x80

4. The Read Error flag (bit 1) of the status register should also be checked to determine if an error
occurred during the read operation. Once the Ready flag is set to 1, the status of the flag can be
read.
Read_Error = Status_Register_Contents & 0x02

Erase Page Command
The Erase Page command is used to erase an entire page by writing 0x00 to all locations of the selected
page in the embedded flash memory array. Once the Erase Page command has completed, the
Protection and Erase Error flags (bits 1 and 5 of the status register) should be checked to determine
whether an erase error occurred and whether the page was protected.
Erase Page command execution is performed as follows:

1. Issue the Erase Page command by writing the command value 0x20 to any location within the
flash array page to be erased.
[Page Address] = 0x20

2. Issue the Erase Confirm command by writing the command value 0xD0, addressing any location
within the flash array page to be erased. Any other command issued will abort the Erase Page
command.
[Page Address] = 0xD0

3. The Ready flag (bit 7) of the status register must be monitored to determine when the erase
operation completes. Using the Read Status command, the status register should be polled until
the Ready flag is at 1, signaling that the write operation has completed.
Ready = Status_Register_Contents & 0x80
Revision 0 185

Fusion Embedded Flash Memory Blocks
4. The Protection and Erase Error flags (bits 1 and 5) of the status register should also be checked
to determine whether an error occurred during the write operation. Once the Ready flag is at 1,
the status of both flags can be read.
Protection_Error = Status_Register_Contents & 0x02

Erase_Error = Status_Register_Contents & 0x20

Single Write Command
The Single Write command is used to write a single byte, halfword, or word to the embedded flash
memory. When performing a Single Write command operation, the entire page buffer will be written to
the embedded flash memory. Therefore, users should avoid a Single Write command operation when
more than one location in a page must be written; a Multi-Write command operation should be used
wherever possible. Once the write command has completed, the Write and Program Error flags (bits 4
and 5 of the status register) should be check to determine whether an error occurred.
Single Write command execution is performed as follows:

1. Issue the Single Write command by writing the command value 0x40 to any location within the
flash array page. It may be simplest to write the command value to the array address of the data
to be written.
[Page Address] = 0x40

2. Once the command has been issued, a second write operation must be issued. The write
operation consists of writing the array data contents to the array address.
[Array Address] = New_Array_Data

3. The Ready flag (bit 7) of the status register must be monitored to determine when the write
operation completes. Using the Read Status command, the status register should be polled until
the Ready flag is at 1, signaling that the write operation has completed.
Ready = Status_Register_Contents & 0x80

4. The Write and Program Error flags (bits 4 and 5) of the status register should also be checked to
determine whether an error occurred during the write operation. Once the Ready flag is at 1, the
status of both flags can be captured.
Write_Error = Status_Register_Contents & 0x10

Program_Error = Status_Register_Contents & 0x20

Multi-Write Command
The Multi-Write command is used to write multiple consecutive bytes, half-words, or words to a single
page of the embedded flash memory. Initially, the flash memory page is read from the array and loaded
into the flash memory’s page buffer. N, the number of data elements (bytes, words, or double words) to
be written to the array, minus one, is then written to CoreAhbNvm and serves as the maximum number of
data elements used by the internal counter. The expected N count ranges are N = 00h to N = 7Fh (e.g., 1
to 128 bytes) in 8-bit mode, N = 00h to N = 3Fh in 16-bit mode, and N = 00h to N = 1Fh in 32-bit mode.
All data is written into the page buffer sequentially, starting from the first address of the page data is
written to. If N exceeds the starting address plus N addresses of the selected page, the data writes will
wrap around onto the top of the current page stored in the page buffer. Once all data values are written
into the page buffer, the Program Buffer Confirm command (0xD0) is expected to be issued at the next
write cycle after the last data element is written; any other command issued at this point in the sequence
will prevent the programming of the page buffer into the array (the Multi-Write command will be aborted).
Once the program operation has completed, the Write and Program Error flags (bits 4 and 5 of the status
register) should be checked to determine whether an error occurred.
186 Revision 0

Fusion FPGA Fabric User’s Guide
Multi-Write command execution is performed as follows:
1. Issue the Multi-Write command by writing the command value 0xE8, addressing the flash page to

be written. It may be simplest to write the command value to the starting address of the sequence
of data values to be written.
[Page Address] = 0xE8

2. The Ready flag (bit 7) of the status register must be monitored to determine when the page buffer
fill operation completes. Using the Read Status command, the status register should be polled
until the Ready flag is at 1, signaling that the page buffer fill operation has completed.
Ready = Status_Register_Contents & 0x80

3. Issue a write operation, writing the number of elements to be written to the flash array, minus one
(N), to the page address. Again, it may be simplest to write N to the starting address.
[Page Address] = N // (N = number of elements - 1)

4. Once the command and number of elements has been issued, a sequence of write operations
must be issued. The write operation consists of writing the array data contents to the array
address. All data is written sequentially, beginning from the starting address, set by the address
of the first data value written. Repeat this step until all N elements have been written into the page
buffer.
[Array Address] = New_Array_Data

5. Issue the Buffer Program Confirm command by writing the command value 0xD0, addressing the
flash page to be written. Any other command issued will abort the programming of the page
buffer.
[Page Address] = 0xD0

6. The Ready flag (bit 7) of the status register must be monitored to determine when the page buffer
write operation completes. Using the Read Status command, the status register should be polled
until the Ready flag is at 1, signaling that the write operation has completed.
Ready = Status_Register_Contents & 0x80

7. The Write and Program Error flags (bits 4 and 5) of the status register should also be checked to
determine whether an error occurred during the write operation. Once the Ready flag is at 1, the
status of both flags can be captured.
Write_Error = Status_Register_Contents & 0x10

Program_Error = Status_Register_Contents & 0x20
Revision 0 187

6 – FlashROM in Actel’s Low Power Flash Devices

Introduction
The Fusion, IGLOO,® and ProASIC®3 families of low power flash-based devices have a dedicated
nonvolatile FlashROM memory of 1,024 bits, which provides a unique feature in the FPGA market. The
FlashROM can be read, modified, and written using the JTAG (or UJTAG) interface. It can be read but
not modified from the FPGA core. Only low power flash devices contain on-chip user nonvolatile memory
(NVM).

Architecture of User Nonvolatile FlashROM
Low power flash devices have 1 kbit of user-accessible nonvolatile flash memory on-chip that can be
read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits (16 bytes) during
programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the
FlashROM from the FPGA core. Figure 6-1 shows the FlashROM logical structure.
The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports
synchronous read. The address is latched on the rising edge of the clock, and the new output data is
stable after the falling edge of the same clock cycle. For more information, refer to the timing diagrams in
the DC and Switching Characteristics chapter of the appropriate datasheet. The FlashROM can be read
on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank
being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16
bytes in the bank is being accessed.

Figure 6-1 • FlashROM Architecture

B
an

k
N

um
be

r 3
 M

SB
 o

f
A

D
D

R
 (R

EA
D

)

Byte Number in Bank 4 LSB of ADDR (READ)

7

0

1

2

3

4

5

6

0123456789101112131415
Revision 0 189

FlashROM in Actel’s Low Power Flash Devices
FlashROM Support in Flash-Based Devices
The flash FPGAs listed in Table 6-1 support the FlashROM feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 6-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 6-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 6-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
190 Revision 0

http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf

Fusion FPGA Fabric User’s Guide
Figure 6-2 • Fusion Device Architecture Overview (AFS600)

Figure 6-3 • ProASIC3 and IGLOO Device Architecture

VersaTile

CCC

CCC

I/Os

OSC

CCC/PLL

Bank 0

B
an

k
4 B

ank 2

Bank 1

Bank 3

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

Flash Memory Blocks Flash Memory BlocksADC

Analog
Quad

ISP AES
Decryption

User Nonvolatile
FlashROM Charge Pumps

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

4,608-Bit Dual-Port SRAM
or FIFO Block

VersaTile

RAM Block

CCC

I/Os

ISP AES Decryption Nonvolatile Memory
FlashROM Charge Pumps

4,608-Bit Dual-Port SRAM
or FIFO Block

RAM Block
Revision 0 191

FlashROM in Actel’s Low Power Flash Devices
FlashROM Applications
The SmartGen core generator is used to configure FlashROM content. You can configure each page
independently. SmartGen enables you to create and modify regions within a page; these regions can be
1 to 16 bytes long (Figure 6-4).

The FlashROM content can be changed independently of the FPGA core content. It can be easily
accessed and programmed via JTAG, depending on the security settings of the device. The SmartGen
core generator enables each region to be independently updated (described in the "Programming and
Accessing FlashROM" section on page 194). This enables you to change the FlashROM content on a
per-part basis while keeping some regions "constant" for all parts. These features allow the FlashROM to
be used in diverse system applications. Consider the following possible uses of FlashROM:

• Internet protocol (IP) addressing (wireless or fixed)
• System calibration settings
• Restoring configuration after unpredictable system power-down
• Device serialization and/or inventory control
• Subscription-based business models (e.g., set-top boxes)
• Secure key storage
• Asset management tracking
• Date stamping
• Version management

Figure 6-4 • FlashROM Configuration

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7
6
5
4
3
2
1
0

Byte Number in Page

Pa
ge

 N
um

be
r

192 Revision 0

Fusion FPGA Fabric User’s Guide
FlashROM Security
Low power flash devices have an on-chip Advanced Encryption Standard (AES) decryption core,
combined with an enhanced version of the Actel flash-based lock technology (FlashLock®). Together,
they provide unmatched levels of security in a programmable logic device. This security applies to both
the FPGA core and FlashROM content. These devices use the 128-bit AES (Rijndael) algorithm to
encrypt programming files for secure transmission to the on-chip AES decryption core. The same
algorithm is then used to decrypt the programming file. This key size provides approximately 3.4 × 1038

possible 128-bit keys. A computing system that could find a DES key in a second would take
approximately 149 trillion years to crack a 128-bit AES key. The 128-bit FlashLock feature in low power
flash devices works via a FlashLock security Pass Key mechanism, where the user locks or unlocks the
device with a user-defined key. Refer to the "Security in Low Power Flash Devices" section on page 363.
If the device is locked with certain security settings, functions such as device read, write, and erase are
disabled. This unique feature helps to protect against invasive and noninvasive attacks. Without the
correct Pass Key, access to the FPGA is denied. To gain access to the FPGA, the device first must be
unlocked using the correct Pass Key. During programming of the FlashROM or the FPGA core, you can
generate the security header programming file, which is used to program the AES key and/or FlashLock
Pass Key. The security header programming file can also be generated independently of the FlashROM
and FPGA core content. The FlashLock Pass Key is not stored in the FlashROM.
Low power flash devices with AES-based security allow for secure remote field updates over public
networks such as the Internet, and ensure that valuable intellectual property (IP) remains out of the
hands of IP thieves. Figure 6-5 shows this flow diagram.

Figure 6-5 • Programming FlashROM Using AES

Flash Device

AES
Encryption

Encrypted Data

AES-128
Decryption

Core

Encrypted Data

FlashROM

FPGA Core

Programming
Data

Untrusted
Medium

Same AES Key
Revision 0 193

FlashROM in Actel’s Low Power Flash Devices
Programming and Accessing FlashROM
The FlashROM content can only be programmed via JTAG, but it can be read back selectively through
the JTAG programming interface, the UJTAG interface, or via direct FPGA core addressing. The pages of
the FlashROM can be made secure to prevent read-back via JTAG. In that case, read-back on these
secured pages is only possible by the FPGA core fabric or via UJTAG.
A 7-bit address from the FPGA core defines which of the eight pages (three MSBs) is being read, and
which of the 16 bytes within the selected page (four LSBs) are being read. The FlashROM content can
be read on a random basis; the access time is 10 ns for a device supporting commercial specifications.
The FPGA core will be powered down during writing of the FlashROM content. FPGA power-down during
FlashROM programming is managed on-chip, and FPGA core functionality is not available during
programming of the FlashROM. Table 6-2 summarizes various FlashROM access scenarios.

Figure 6-6 shows the accessing of the FlashROM using the UJTAG macro. This is similar to FPGA core
access, where the 7-bit address defines which of the eight pages (three MSBs) is being read and which
of the 16 bytes within the selected page (four LSBs) are being read. Refer to the "UJTAG Applications in
Actel’s Low Power Flash Devices" section on page 417 for details on using the UJTAG macro to read the
FlashROM.
Figure 6-7 on page 195 and Figure 6-8 on page 195 show the FlashROM access from the JTAG port.
The FlashROM content can be read on a random basis. The three-bit address defines which page is
being read or updated.

Table 6-2 • FlashROM Read/Write Capabilities by Access Mode

Access Mode FlashROM Read FlashROM Write

JTAG Yes Yes

UJTAG Yes No

FPGA core Yes No

Figure 6-6 • Block Diagram of Using UJTAG to Read FlashROM Contents

FlashROM

Addr [6:0]

Data[7:0]
CLK

Enable

SDO

SDI

RESET

Addr [6:0]

Data [7:0]

TDI

TCK

TDO

TMS

TRST
UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD

URSTB

UIREG [7:0]

Control

UJTAG
Address Generation and

Data Serialization
194 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 6-7 • Accessing FlashROM Using FPGA Core

Figure 6-8 • Accessing FlashROM Using JTAG Port

01234567
7
6
5
4
3
2
1
0

89101112131415
Word Number in Page 4 LSB of ADDR (READ)Page N

um
ber

3 M
SB

 of
A

D
D

R
 (R

EA
D

)

3-Bit Page Address

111

1110000
7-Bit Address from Core

0000

4-B
it W

ord A
ddress

8-Bit Data

8-Bit Data
to FPGA Core

8-Bit Data from Page 7 Word 0

01234567
7
6
5
4
3
2
1
0

89101112131415
Word Number in Page 4 LSB of ADDR (READ)Page N

um
ber

3 M
SB

 of
A

D
D

R
 (R

EA
D

)

4-Bit Page Address
from JTAG Interface

To/From JTAG Interface

...........................00001:128 Bit Data
Revision 0 195

FlashROM in Actel’s Low Power Flash Devices
FlashROM Design Flow
The Actel Libero® Integrated Design Environment (IDE) software has extensive FlashROM support,
including FlashROM generation, instantiation, simulation, and programming. Figure 6-9 shows the user
flow diagram. In the design flow, there are three main steps:

1. FlashROM generation and instantiation in the design
2. Simulation of FlashROM design
3. Programming file generation for FlashROM design

Figure 6-9 • FlashROM Design Flow

Simulator

FlashPoint

SmartGen

Programmer

Synthesis

Designer

Security
Header
Options

Programming
Files

UFC
File

FlashROM
Netlist

User
Design

User
Netlist

Core
Map

MEM
File

Back-
Annotated

Netlist
196 Revision 0

Fusion FPGA Fabric User’s Guide
FlashROM Generation and Instantiation in the Design
The SmartGen core generator, available in Libero IDE and Designer, is the only tool that can be used to
generate the FlashROM content. SmartGen has several user-friendly features to help generate the
FlashROM contents. Instead of selecting each byte and assigning values, you can create a region within
a page, modify the region, and assign properties to that region. The FlashROM user interface, shown in
Figure 6-10, includes the configuration grid, existing regions list, and properties field. The properties field
specifies the region-specific information and defines the data used for that region. You can assign values
to the following properties:

1. Static Fixed Data—Enables you to fix the data so it cannot be changed during programming time.
This option is useful when you have fixed data stored in this region, which is required for the
operation of the design in the FPGA. Key storage is one example.

2. Static Modifiable Data—Select this option when the data in a particular region is expected to be
static data (such as a version number, which remains the same for a long duration but could
conceivably change in the future). This option enables you to avoid changing the value every time
you enter new data.

3. Read from File—This provides the full flexibility of FlashROM usage to the customer. If you have
a customized algorithm for generating the FlashROM data, you can specify this setting. You can
then generate a text file with data for as many devices as you wish to program, and load that into
the FlashPoint programming file generation software to get programming files that include all the
data. SmartGen will optionally pass the location of the file where the data is stored if the file is
specified in SmartGen. Each text file has only one type of data format (binary, decimal, hex, or
ASCII text). The length of each data file must be shorter than or equal to the selected region
length. If the data is shorter than the selected region length, the most significant bits will be
padded with 0s. For multiple text files for multiple regions, the first lines are for the first device. In
SmartGen, Load Sim. Value From File allows you to load the first device data in the MEM file for
simulation.

4. Auto Increment/Decrement—This scenario is useful when you specify the contents of FlashROM
for a large number of devices in a series. You can specify the step value for the serial number and
a maximum value for inventory control. During programming file generation, the actual number of
devices to be programmed is specified and a start value is fed to the software.

Figure 6-10 • SmartGen GUI of the FlashROM
Revision 0 197

FlashROM in Actel’s Low Power Flash Devices
SmartGen allows you to generate the FlashROM netlist in VHDL, Verilog, or EDIF format. After the
FlashROM netlist is generated, the core can be instantiated in the main design like other SmartGen
cores. Note that the macro library name for FlashROM is UFROM. The following is a sample FlashROM
VHDL netlist that can be instantiated in the main design:
library ieee;
use ieee.std_logic_1164.all;
library fusion;

entity FROM_a is
port(ADDR : in std_logic_vector(6 downto 0); DOUT : out std_logic_vector(7 downto 0));

end FROM_a;

architecture DEF_ARCH of FROM_a is

component UFROM
generic (MEMORYFILE:string);
port(DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7 : out std_logic;

ADDR0, ADDR1, ADDR2, ADDR3, ADDR4, ADDR5, ADDR6 : in std_logic := 'U') ;
end component;

component GND
port(Y : out std_logic);

end component;

signal U_7_PIN2 : std_logic ;

begin

GND_1_net : GND port map(Y => U_7_PIN2);
UFROM0 : UFROM
generic map(MEMORYFILE => "FROM_a.mem")
port map(DO0 => DOUT(0), DO1 => DOUT(1), DO2 => DOUT(2), DO3 => DOUT(3), DO4 => DOUT(4),

DO5 => DOUT(5), DO6 => DOUT(6), DO7 => DOUT(7), ADDR0 => ADDR(0), ADDR1 => ADDR(1),
ADDR2 => ADDR(2), ADDR3 => ADDR(3), ADDR4 => ADDR(4), ADDR5 => ADDR(5),
ADDR6 => ADDR(6));

end DEF_ARCH;

SmartGen generates the following files along with the netlist. These are located in the SmartGen folder
for the Libero IDE project.

1. MEM (Memory Initialization) file
2. UFC (User Flash Configuration) file
3. Log file

The MEM file is used for simulation, as explained in the "Simulation of FlashROM Design" section on
page 199. The UFC file, generated by SmartGen, has the FlashROM configuration for single or multiple
devices and is used during STAPL generation. It contains the region properties and simulation values.
Note that any changes in the MEM file will not be reflected in the UFC file. Do not modify the UFC to
change FlashROM content. Instead, use the SmartGen GUI to modify the FlashROM content. See the
"Programming File Generation for FlashROM Design" section on page 199 for a description of how the
UFC file is used during the programming file generation. The log file has information regarding the file
type and file location.
198 Revision 0

Fusion FPGA Fabric User’s Guide
Simulation of FlashROM Design
The MEM file has 128 rows of 8 bits, each representing the contents of the FlashROM used for
simulation. For example, the first row represents page 0, byte 0; the next row is page 0, byte 1; and so
the pattern continues. Note that the three MSBs of the address define the page number, and the four
LSBs define the byte number. So, if you send address 0000100 to FlashROM, this corresponds to the
page 0 and byte 4 location, which is the fifth row in the MEM file. SmartGen defaults to 0s for any
unspecified location of the FlashROM. Besides using the MEM file generated by SmartGen, you can
create a binary file with 128 rows of 8 bits each and use this as a MEM file. Actel recommends that you
use different file names if you plan to generate multiple MEM files. During simulation, Libero IDE passes
the MEM file used as the generic file in the netlist, along with the design files and testbench. If you want
to use different MEM files during simulation, you need to modify the generic file reference in the netlist.
…………………
UFROM0: UFROM
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_a.mem")
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_b.mem")
…………………….

The VITAL and Verilog simulation models accept the generics passed by the netlist, read the MEM file,
and perform simulation with the data in the file.

Programming File Generation for FlashROM Design
FlashPoint is the programming software used to generate the programming files for flash devices.
Depending on the applications, you can use the FlashPoint software to generate a STAPL file with
different FlashROM contents. In each case, optional AES decryption is available. To generate a STAPL
file that contains the same FPGA core content and different FlashROM contents, the FlashPoint software
needs an Array Map file for the core and UFC file(s) for the FlashROM. This final STAPL file represents
the combination of the logic of the FPGA core and FlashROM content.
FlashPoint generates the STAPL files you can use to program the desired FlashROM page and/or FPGA
core of the FPGA device contents. FlashPoint supports the encryption of the FlashROM content and/or
FPGA Array configuration data. In the case of using the FlashROM for device serialization, a sequence
of unique FlashROM contents will be generated. When generating a programming file with multiple
unique FlashROM contents, you can specify in FlashPoint whether to include all FlashROM content in a
single STAPL file or generate a different STAPL file for each FlashROM (Figure 6-11). The programming
software (FlashPro) handles the single STAPL file that contains the FlashROM content from multiple
devices. It enables you to program the FlashROM content into a series of devices sequentially
(Figure 6-11). See the FlashPro User’s Guide for information on serial programming.

Figure 6-11 • Single or Multiple Programming File Generation

FlashPoint

FPGA Array
Map File

FPGA Array
Map File

Security SettingsSecurity Settings

UFC File for
Multiple FlashROM

Contents

UFC File for
Single FlashROM

Contents

FlashPoint

Single
STAPL

File

Single
STAPL

File

Single
STAPL

File
Revision 0 199

http://www.actel.com/documents/flashpro_ug.pdf

FlashROM in Actel’s Low Power Flash Devices
Figure 6-12 shows the programming file generator, which enables different STAPL file generation
methods. When you select Program FlashROM and choose the UFC file, the FlashROM Settings
window appears, as shown in Figure 6-13. In this window, you can select the FlashROM page you want
to program and the data value for the configured regions. This enables you to use a different page for
different programming files.

The programming hardware and software can load the FlashROM with the appropriate STAPL file.
Programming software handles the single STAPL file that contains multiple FlashROM contents for
multiple devices, and programs the FlashROM in sequential order (e.g., for device serialization). This
feature is supported in the programming software. After programming with the STAPL file, you can run
DEVICE_INFO to check the FlashROM content.

Figure 6-12 • Programming File Generator

Figure 6-13 • Setting FlashROM during Programming File Generation
200 Revision 0

Fusion FPGA Fabric User’s Guide
DEVICE_INFO displays the FlashROM content, serial number, Design Name, and checksum, as shown
below:
EXPORT IDCODE[32] = 123261CF
EXPORT SILSIG[32] = 00000000
User information :
CHECKSUM: 61A0
Design Name: TOP
Programming Method: STAPL
Algorithm Version: 1
Programmer: UNKNOWN
===
FlashROM Information :
EXPORT Region_7_0[128] = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
===
Security Setting :
Encrypted FlashROM Programming Enabled.
Encrypted FPGA Array Programming Enabled.
===

The Libero IDE file manager recognizes the UFC and MEM files and displays them in the appropriate
view. Libero IDE also recognizes the multiple programming files if you choose the option to generate
multiple files for multiple FlashROM contents in Designer. These features enable a user-friendly flow for
the FlashROM generation and programming in Libero IDE.

Custom Serialization Using FlashROM
You can use FlashROM for device serialization or inventory control by using the Auto Inc region or Read
From File region. FlashPoint will automatically generate the serial number sequence for the Auto Inc
region with the Start Value, Max Value, and Step Value provided. If you have a unique serial number
generation scheme that you prefer, the Read From File region allows you to import the file with your
serial number scheme programmed into the region. See the FlashPro User's Guide for custom
serialization file format information.
The following steps describe how to perform device serialization or inventory control using FlashROM:

1. Generate FlashROM using SmartGen. From the Properties section in the FlashROM Settings
dialog box, select the Auto Inc or Read From File region. For the Auto Inc region, specify the
desired step value. You will not be able to modify this value in the FlashPoint software.

2. Go through the regular design flow and finish place-and-route.
3. Select Programming File in Designer and open Generate Programming File (Figure 6-12 on

page 200).
4. Click Program FlashROM, browse to the UFC file, and click Next. The FlashROM Settings

window appears, as shown in Figure 6-13 on page 200.
5. Select the FlashROM page you want to program and the data value for the configured regions.

The STAPL file generated will contain only the data that targets the selected FlashROM page.
6. Modify properties for the serialization.

– For the Auto Inc region, specify the Start and Max values.
– For the Read From File region, select the file name of the custom serialization file.

7. Select the FlashROM programming file type you want to generate from the two options below:
– Single programming file for all devices: generates one programming file with all FlashROM

values.
– One programming file per device: generates a separate programming file for each FlashROM

value.
8. Enter the number of devices you want to program and generate the required programming file.
9. Open the programming software and load the programming file. The programming software,

FlashPro3 and Silicon Sculptor II, supports the device serialization feature. If, for some reason,
the device fails to program a part during serialization, the software allows you to reuse or skip the
serial data. Refer to the FlashPro User’s Guide for details.
Revision 0 201

http://www.actel.com/documents/flashpro_ug.pdf
http://www.actel.com/documents/flashpro_ug.pdf

FlashROM in Actel’s Low Power Flash Devices
Conclusion
The Fusion, IGLOO, and ProASIC3 families are the only FPGAs that offer on-chip FlashROM support.
This document presents information on the FlashROM architecture, possible applications, programming,
access through the JTAG and UJTAG interface, and integration into your design. In addition, the Libero
IDE tool set enables easy creation and modification of the FlashROM content.
The nonvolatile FlashROM block in the FPGA can be customized, enabling multiple applications.
Additionally, the security offered by the low power flash devices keeps both the contents of FlashROM
and the FPGA design safe from system over-builders, system cloners, and IP thieves.

Related Documents

User’s Guides
FlashPro User’s Guide
http://www.actel.com/documents/FlashPro_UG.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 6-1 • Flash-Based
FPGAs.

190

v1.3
(October 2008)

The "FlashROM Support in Flash-Based Devices" section was revised to include
new families and make the information more concise.

190

Figure 6-2 • Fusion Device Architecture Overview (AFS600) was replaced.
Figure 6-5 • Programming FlashROM Using AES was revised to change "Fusion" to
"Flash Device."

191, 193

The FlashPoint User’s Guide was removed from the "User’s Guides" section, as its
content is now part of the FlashPro User’s Guide.

202

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 6-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

190

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

N/A
202 Revision 0

http://www.actel.com/documents/FlashPro_UG.pdf
http://www.actel.com/documents/FlashPro_UG.pdf

7 – SRAM and FIFO Memories in Actel's Low
Power Flash Devices

Introduction
As design complexity grows, greater demands are placed upon an FPGA's embedded memory. Actel
Fusion,® IGLOO,® and ProASIC®3 devices provide the flexibility of true dual-port and two-port SRAM
blocks. The embedded memory, along with built-in, dedicated FIFO control logic, can be used to create
cascading RAM blocks and FIFOs without using additional logic gates.
IGLOO, IGLOO PLUS, and ProASIC3L FPGAs contain an additional feature that allows the device to be
put in a low power mode called Flash*Freeze. In this mode, the core draws minimal power (on the order
of 2 to 127 µW) and still retains values on the embedded SRAM/FIFO and registers. Flash*Freeze
technology allows the user to switch to Active mode on demand, thus simplifying power management
and the use of SRAM/FIFOs.

Device Architecture
The low power flash devices feature up to 504 kbits of RAM in 4,608-bit blocks (Figure 7-1 on page 204
and Figure 7-2 on page 205). The total embedded SRAM for each device can be found in the
datasheets. These memory blocks are arranged along the top and bottom of the device to allow better
access from the core and I/O (in some devices, they are only available on the north side of the device).
Every RAM block has a flexible, hardwired, embedded FIFO controller, enabling the user to implement
efficient FIFOs without sacrificing user gates.
In the IGLOO and ProASIC3 families of devices, the following memories are supported:

• 30 k gate devices and smaller do not support SRAM and FIFO.
• 60 k and 125 k gate devices support memories on the north side of the device only.
• 250 k devices and larger support memories on the north and south sides of the device.

In Fusion devices, the following memories are supported:
• AFS090 and AFS250 support memories on the north side of the device only.
• AFS600 and AFS1500 support memories on the north and south sides of the device.
Revision 0 203

SRAM and FIFO Memories in Actel's Low Power Flash Devices
Notes:
1. AES decryption not supported in 30 k gate devices and smaller.
2. Flash*Freeze is supported in all IGLOO devices and the ProASIC3L devices.
Figure 7-1 • IGLOO and ProASIC3 Device Architecture Overview

ISP AES
Decryption

User Nonvolatile
FlashRom

Flash*Freeze
Technology

Charge
Pumps2

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC

I/Os

Bank 0
B

an
k

3
B

an
k

3 B
ank 1

B
ank 1

Bank 2

1

204 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 7-2 • Fusion Device Architecture Overview (AFS600)

Flash Array Flash ArrayADC

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

VersaTile

CCC/PLL

I/Os

OSC

CCC

ISP AES
Decryption

User Nonvolatile
FlashROM (FROM) Charge Pumps

Bank 0

B
an

k
4 B

ank 2

Bank 1

Bank 3

RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block
Revision 0 205

SRAM and FIFO Memories in Actel's Low Power Flash Devices
SRAM/FIFO Support in Flash-Based Devices
The flash FPGAs listed in Table 7-1 support SRAM and FIFO blocks and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 7-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 7-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 7-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
206 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf

Fusion FPGA Fabric User’s Guide
SRAM and FIFO Architecture
To meet the needs of high-performance designs, the memory blocks operate strictly in synchronous
mode for both read and write operations. The read and write clocks are completely independent, and
each can operate at any desired frequency up to 250 MHz.

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—2 read / 2 write or 1 read / 1 write)
• 512×9, 256×18 (2-port RAM—1 read / 1 write)
• Sync write, sync pipelined / nonpipelined read

Automotive ProASIC3 devices support single-port SRAM capabilities or dual-port SRAM only under
specific conditions. Dual-port mode is supported if the clocks to the two SRAM ports are the same and
180° out of phase (i.e., the port A clock is the inverse of the port B clock). The Actel Libero® Integrated
Design Environment (IDE) software macro libraries support a dual-port macro only. For use of this macro
as a single-port SRAM, the inputs and clock of one port should be tied off (grounded) to prevent errors
during design compile. For use in dual-port mode, the same clock with an inversion between the two
clock pins of the macro should be used in the design to prevent errors during compile.
The memory block includes dedicated FIFO control logic to generate internal addresses and external flag
logic (FULL, EMPTY, AFULL, AEMPTY).
Simultaneous dual-port read/write and write/write operations at the same address are allowed when
certain timing requirements are met.
During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes.
The low power flash device architecture enables the read and write sizes of RAMs to be organized
independently, allowing for bus conversion. For example, the write size can be set to 256×18 and the
read size to 512×9.
Both the write width and read width for the RAM blocks can be specified independently with the WW
(write width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4,
2k×2, and 4k×1. When widths of one, two, or four are selected, the ninth bit is unused. For example,
when writing nine-bit values and reading four-bit values, only the first four bits and the second four bits of
each nine-bit value are addressable for read operations. The ninth bit is not accessible.
Conversely, when writing four-bit values and reading nine-bit values, the ninth bit of a read operation will
be undefined. The RAM blocks employ little-endian byte order for read and write operations.

Memory Blocks and Macros
Memory blocks can be configured with many different aspect ratios, but are generically supported in the
macro libraries as one of two memory elements: RAM4K9 or RAM512X18. The RAM4K9 is configured
as a true dual-port memory block, and the RAM512X18 is configured as a two-port memory block. Dual-
port memory allows the RAM to both read from and write to either port independently. Two-port memory
allows the RAM to read from one port and write to the other using a common clock or independent read
and write clocks. If needed, the RAM4K9 blocks can be configured as two-port memory blocks. The
memory block can be configured as a FIFO by combining the basic memory block with dedicated FIFO
controller logic. The FIFO macro is named FIFO4KX18 (Figure 7-3 on page 208).
Clocks for the RAM blocks can be driven by the VersaNet (global resources) or by regular nets. When
using local clock segments, the clock segment region that encompasses the RAM blocks can drive the
RAMs. In the dual-port configuration (RAM4K9), each memory block port can be driven by either rising-
edge or falling-edge clocks. Each port can be driven by clocks with different edges. Though only a rising-
edge clock can drive the physical block itself, the Actel Designer software will automatically bubble-push
the inversion to properly implement the falling-edge trigger for the RAM block.
Revision 0 207

SRAM and FIFO Memories in Actel's Low Power Flash Devices
Note: Automotive ProASIC3 devices restrict RAM4K9 to a single port or to dual ports with the same clock 180° out of
phase (inverted) between clock pins. In single-port mode, inputs to port B should be tied to ground to prevent
errors during compile. For FIFO4K18, the same clock 180° out of phase (inverted) between clock pins should be
used.

Figure 7-3 • Supported Basic RAM Macros

FIFO4K18

RW2 RD17
RW1 RD16
RW0
WW2
WW1
WW0 RD0
ESTOP
FSTOP FULL

 AFULL
EMPTY

AFVAL11

AEMPTY

AFVAL10

AFVAL0

AEVAL11
AEVAL10

AEVAL0

REN
RBLK
RCLK

WEN
WBLK
WCLK

RPIPE

WD17
WD16

WD0

RESET

ADDRA11 DOUTA8
DOUTA7

DOUTA0

DOUTB8
DOUTB7

DOUTB0

ADDRA10

ADDRA0
DINA8
DINA7

DINA0

WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA

ADDRB11
ADDRB10

ADDRB0

DINB8
DINB7

DINB0

WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB

RAM4K9

RADDR8 RD17
RADDR7 RD16

RADDR0 RD0

WD17
WD16

WD0

WW1
WW0

RW1
RW0

PIPE

REN
RCLK

RAM512x18

WADDR8
WADDR7

WADDR0

WEN
WCLK

RESETRESET
208 Revision 0

Fusion FPGA Fabric User’s Guide
SRAM Features
RAM4K9 Macro
RAM4K9 is the dual-port configuration of the RAM block (Figure 7-4). The RAM4K9 nomenclature refers
to both the deepest possible configuration and the widest possible configuration the dual-port RAM block
can assume, and does not denote a possible memory aspect ratio. The RAM block can be configured to
the following aspect ratios: 4,096×1, 2,048×2, 1,024×4, and 512×9. RAM4K9 is fully synchronous and
has the following features:

• Two ports that allow fully independent reads and writes at different frequencies
• Selectable pipelined or nonpipelined read
• Active-low block enables for each port
• Toggle control between read and write mode for each port
• Active-low asynchronous reset
• Pass-through write data or hold existing data on output. In pass-through mode, the data written to

the write port will immediately appear on the read port.
• Designer software will automatically facilitate falling-edge clocks by bubble-pushing the inversion

to previous stages.

Signal Descriptions for RAM4K9
Note: Automotive ProASIC3 devices support single-port SRAM capabilities, or dual-port SRAM

only under specific conditions. Dual-port mode is supported if the clocks to the two SRAM
ports are the same and 180° out of phase (i.e., the port A clock is the inverse of the port B
clock). Since Actel Libero IDE macro libraries support a dual-port macro only, certain
modifications must be made. These are detailed below.

The following signals are used to configure the RAM4K9 memory element:

WIDTHA and WIDTHB
These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 7-2 on
page 210).
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WIDTHB

should be tied to ground.

Note: For timing diagrams of the RAM signals, refer to the appropriate family datasheet.
Figure 7-4 • RAM4K9 Simplified Configuration

DINA

DOUTA DOUTB

Write Data

RAM4K9

Reset

Write Data

Read DataRead Data
DINB

ADDRA Address Address ADDRB

BLKA
BLK BLK BLKB

WENA
WEN WEN WENB

CLKA
CLK CLK CLKB
Revision 0 209

SRAM and FIFO Memories in Actel's Low Power Flash Devices
BLKA and BLKB
These signals are active-low and will enable the respective ports when asserted. When a BLKx signal is
deasserted, that port’s outputs hold the previous value.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, BLKB should

be tied to ground.
WENA and WENB
These signals switch the RAM between read and write modes for the respective ports. A LOW on these
signals indicates a write operation, and a HIGH indicates a read.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WENB should

be tied to ground.
CLKA and CLKB
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.
Note: For Automotive ProASIC3 devices, dual-port mode is supported if the clocks to the two

SRAM ports are the same and 180° out of phase (i.e., the port A clock is the inverse of the
port B clock). For use of this macro as a single-port SRAM, the inputs and clock of one port
should be tied off (grounded) to prevent errors during design compile.

PIPEA and PIPEB
These signals are used to specify pipelined read on the output. A LOW on PIPEA or PIPEB indicates a
nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A HIGH
indicates a pipelined read, and data appears on the corresponding output in the next clock cycle.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, PIPEB should

be tied to ground. For use in dual-port mode, the same clock with an inversion between the
two clock pins of the macro should be used in the design to prevent errors during compile.

WMODEA and WMODEB
These signals are used to configure the behavior of the output when the RAM is in write mode. A LOW
on these signals makes the output retain data from the previous read. A HIGH indicates pass-through
behavior, wherein the data being written will appear immediately on the output. This signal is overridden
when the RAM is being read.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WMODEB

should be tied to ground.

RESET
This active-low signal resets the control logic, forces the output hold state registers to zero, disables
reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not
reset the contents of the memory array.
While the RESET signal is active, read and write operations are disabled. As with any asynchronous
reset signal, care must be taken not to assert it too close to the edges of active read and write clocks.

ADDRA and ADDRB
These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is
specified, the unused high-order bits must be grounded (Table 7-3 on page 211).

Table 7-2 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA[1:0] WIDTHB[1:0] D×W

00 00 4k×1

01 01 2k×2

10 10 1k×4

11 11 512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.
210 Revision 0

Fusion FPGA Fabric User’s Guide
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, ADDRB
should be tied to ground.

DINA and DINB
These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all
configurations. When a data width less than nine is specified, unused high-order signals must be
grounded (Table 7-4).
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, DINB should

be tied to ground.
DOUTA and DOUTB
These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA
and DINB, high-order bits may not be used (Table 7-4). The output data on unused pins is undefined.

RAM512X18 Macro
RAM512X18 is the two-port configuration of the same RAM block (Figure 7-5 on page 212). Like the
RAM4K9 nomenclature, the RAM512X18 nomenclature refers to both the deepest possible configuration
and the widest possible configuration the two-port RAM block can assume. In two-port mode, the RAM
block can be configured to either the 512×9 aspect ratio or the 256×18 aspect ratio. RAM512X18 is also
fully synchronous and has the following features:

• Dedicated read and write ports
• Active-low read and write enables
• Selectable pipelined or nonpipelined read
• Active-low asynchronous reset
• Designer software will automatically facilitate falling-edge clocks by bubble-pushing the inversion

to previous stages.

Table 7-3 • Address Pins Unused/Used for Various Supported Bus Widths

D×W

ADDRx

Unused Used

4k×1 None [11:0]

2k×2 [11] [10:0]

1k×4 [11:10] [9:0]

512×9 [11:9] [8:0]

Note: The "x" in ADDRx implies A or B.

Table 7-4 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

D×W
DINx/DOUTx

Unused Used
4k×1 [8:1] [0]

2k×2 [8:2] [1:0]

1k×4 [8:4] [3:0]

512×9 None [8:0]

Note: The "x" in DINx or DOUTx implies A or B.
Revision 0 211

SRAM and FIFO Memories in Actel's Low Power Flash Devices
Signal Descriptions for RAM512X18
RAM512X18 has slightly different behavior from RAM4K9, as it has dedicated read and write ports.

WW and RW
These signals enable the RAM to be configured in one of the two allowable aspect ratios (Table 7-5).

WD and RD
These are the input and output data signals, and they are 18 bits wide. When a 512×9 aspect ratio is
used for write, WD[17:9] are unused and must be grounded. If this aspect ratio is used for read, RD[17:9]
are undefined.

WADDR and RADDR
These are read and write addresses, and they are nine bits wide. When the 256×18 aspect ratio is used
for write or read, WADDR[8] and RADDR[8] are unused and must be grounded.

WCLK and RCLK
These signals are the write and read clocks, respectively. They can be clocked on the rising or falling
edge of WCLK and RCLK.

WEN and REN
These signals are the write and read enables, respectively. They are both active-low by default. These
signals can be configured as active-high.

RESET
This active-low signal resets the control logic, forces the output hold state registers to zero, disables
reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not
reset the contents of the memory array.
While the RESET signal is active, read and write operations are disabled. As with any asynchronous
reset signal, care must be taken not to assert it too close to the edges of active read and write clocks.

PIPE
This signal is used to specify pipelined read on the output. A LOW on PIPE indicates a nonpipelined
read, and the data appears on the output in the same clock cycle. A HIGH indicates a pipelined read, and
data appears on the output in the next clock cycle.

Note: For timing diagrams of the RAM signals, refer to the appropriate family datasheet.
Figure 7-5 • 512X18 Two-Port RAM Block Diagram

Table 7-5 • Aspect Ratio Settings for WW[1:0]

WW[1:0] RW[1:0] D×W

01 01 512×9

10 10 256×18

00, 11 00, 11 Reserved

WD

WADDR RADDR

Write Data Read Data

Read AddressWrite Address

RD

WEN
Write Enable Read Enable

REN

WCLK
Write CLK Read CLK

RCLK

RAM512X18

Reset
212 Revision 0

Fusion FPGA Fabric User’s Guide
SRAM Usage
The following descriptions refer to the usage of both RAM4K9 and RAM512X18.

Clocking
The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered
clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on
either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge and by
separate clocks by port. Note that for Automotive ProASIC3, the same clock, with an inversion between
the two clock pins of the macro, should be used in design to prevent errors during compile.
Low power flash devices support inversion (bubble-pushing) throughout the FPGA architecture, including
the clock input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic
or in the HDL code will be automatically accounted for during design compile without incurring additional
delay in the clock path.
The two-port SRAM can be clocked on the rising or falling edge of WCLK and RCLK.
If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion
management (bubble-pushing) is automatically used within the development tools, without performance
penalty.

Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from address to data but enables operation at a much higher frequency. The read address
is registered on the read port active clock edge, and the read data is registered and appears at
RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is HIGH. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock.

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG
mechanism. The shift register for a target block can be selected and loaded with the proper bit
configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation.

FIFO Features
The FIFO4KX18 macro is created by merging the RAM block with dedicated FIFO logic (Figure 7-6 on
page 214). Since the FIFO logic can only be used in conjunction with the memory block, there is no
separate FIFO controller macro. As with the RAM blocks, the FIFO4KX18 nomenclature does not refer to
a possible aspect ratio, but rather to the deepest possible data depth and the widest possible data width.
FIFO4KX18 can be configured into the following aspect ratios: 4,096×1, 2,048×2, 1,024×4, 512×9, and
256×18. In addition to being fully synchronous, the FIFO4KX18 also has the following features:

• Four FIFO flags: Empty, Full, Almost-Empty, and Almost-Full
• Empty flag is synchronized to the read clock
• Full flag is synchronized to the write clock
• Both Almost-Empty and Almost-Full flags have programmable thresholds
• Active-low asynchronous reset
• Active-low block enable
• Active-low write enable
• Active-high read enable
• Ability to configure the FIFO to either stop counting after the empty or full states are reached or to

allow the FIFO counters to continue
Revision 0 213

SRAM and FIFO Memories in Actel's Low Power Flash Devices
• Designer software will automatically facilitate falling-edge clocks by bubble-pushing the inversion
to previous stages.

The FIFOs maintain a separate read and write address. Whenever the difference between the write
address and the read address is greater than or equal to the almost-full value (AFVAL), the Almost-Full
flag is asserted. Similarly, the Almost-Empty flag is asserted whenever the difference between the write
address and read address is less than or equal to the almost-empty value (AEVAL).
Due to synchronization between the read and write clocks, the Empty flag will deassert after the second
read clock edge from the point that the write enable asserts. However, since the Empty flag is
synchronized to the read clock, it will assert after the read clock reads the last data in the FIFO. Also,
since the Full flag is dependent on the actual hardware configuration, it will assert when the actual
physical implementation of the FIFO is full.
For example, when a user configures a 128×18 FIFO, the actual physical implementation will be a
256×18 FIFO element. Since the actual implementation is 256×18, the Full flag will not trigger until the

Figure 7-6 • FIFO4KX18 Block Diagram

Figure 7-7 • RAM Block with Embedded FIFO Controller

WD

FULL EMPTY

Write Data

FIFO4KX18

Reset

Read Data

Empty FlagFull Flag
RD

AFULL Almost-Full Flag Almost-Empty Flag AEMPTY

WEN
Write Enable

Write Clock

Read Enable REN

WCLK Read Clock RCLK

CNT 12

E =

E
=

CNT 12

AFVAL

AEVAL
SUB 12

RCLK
WD

WCLK

Reset

RBLK
REN

ESTOP

WBLK
WEN

FSTOP

RD[17:0]
WD[17:0]
RCLK
WCLK
RADD[J:0]
WADD[J:0]
REN

FREN FWEN
WEN

FULL

AEMPTY

AFULL

EMPTY

RD

R
P

IP
E

R
W

[2
:0

]
W

W
[2

:0
]

RAM
214 Revision 0

Fusion FPGA Fabric User’s Guide
256×18 FIFO is full, even though a 128×18 FIFO was requested. For this example, the Almost-Full flag
can be used instead of the Full flag to signal when the 128th data word is reached.
To accommodate different aspect ratios, the almost-full and almost-empty values are expressed in terms
of data bits instead of data words. SmartGen translates the user’s input, expressed in data words, into
data bits internally. SmartGen allows the user to select the thresholds for the Almost-Empty and Almost-
Full flags in terms of either the read data words or the write data words, and makes the appropriate
conversions for each flag.
After the empty or full states are reached, the FIFO can be configured so the FIFO counters either stop or
continue counting. For timing numbers, refer to the appropriate family datasheet.

Signal Descriptions for FIFO4K18
The following signals are used to configure the FIFO4K18 memory element:

WW and RW
These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 7-6).

WBLK and RBLK
These signals are active-low and will enable the respective ports when LOW. When the RBLK signal is
HIGH, that port’s outputs hold the previous value.

WEN and REN
Read and write enables. WEN is active-low and REN is active-high by default. These signals can be
configured as active-high or -low.

WCLK and RCLK
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.
Note: For the Automotive ProASIC3 FIFO4K18, for the same clock, 180° out of phase (inverted)

between clock pins should be used.
RPIPE
This signal is used to specify pipelined read on the output. A LOW on RPIPE indicates a nonpipelined
read, and the data appears on the output in the same clock cycle. A HIGH indicates a pipelined read, and
data appears on the output in the next clock cycle.

RESET
This active-low signal resets the control logic and forces the output hold state registers to zero when
asserted. It does not reset the contents of the memory array (Table 7-7 on page 216).
While the RESET signal is active, read and write operations are disabled. As with any asynchronous
RESET signal, care must be taken not to assert it too close to the edges of active read and write clocks.

WD
This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data
width less than 18 is specified, unused higher-order signals must be grounded (Table 7-7 on page 216).

Table 7-6 • Aspect Ratio Settings for WW[2:0]

WW[2:0] RW[2:0] D×W

000 000 4k×1

001 001 2k×2

010 010 1k×4

011 011 512×9

100 100 256×18

101, 110, 111 101, 110, 111 Reserved
Revision 0 215

SRAM and FIFO Memories in Actel's Low Power Flash Devices
RD
This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD
bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is
undefined (Table 7-7).

ESTOP, FSTOP
ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the
EMPTY flag goes HIGH). A HIGH on this signal inhibits the counting.
FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the FULL
flag goes HIGH). A HIGH on this signal inhibits the counting.
For more information on these signals, refer to the "ESTOP and FSTOP Usage" section.

FULL, EMPTY
When the FIFO is full and no more data can be written, the FULL flag asserts HIGH. The FULL flag is
synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent
overflows. Since the write address is compared to a resynchronized (and thus time-delayed) version of
the read address, the FULL flag will remain asserted until two WCLK active edges after a read operation
eliminates the full condition.
When the FIFO is empty and no more data can be read, the EMPTY flag asserts HIGH. The EMPTY flag
is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to
prevent underflows. Since the read address is compared to a resynchronized (and thus time-delayed)
version of the write address, the EMPTY flag will remain asserted until two RCLK active edges after a
write operation removes the empty condition.
For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on
page 217.

AFULL, AEMPTY
These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL,
respectively.
When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading,
the AEMPTY output will go HIGH. Likewise, when the number of words stored in the FIFO reaches the
amount specified by AFVAL while writing, the AFULL output will go HIGH.

AFVAL, AEVAL
The AEVAL and AFVAL pins are used to specify the almost-empty and almost-full threshold values. They
are 12-bit signals. For more information on these signals, refer to the "FIFO Flag Usage Considerations"
section on page 217.

FIFO Usage
ESTOP and FSTOP Usage
The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e.,
the EMPTY flag goes HIGH). Likewise, the FSTOP pin is used to stop the write counter from counting
any further once the FIFO is full (i.e., the FULL flag goes HIGH).
The FIFO counters in the device start the count at zero, reach the maximum depth for the configuration
(e.g., 511 for a 512×9 configuration), and then restart at zero. An example application for ESTOP, where
the read counter keeps counting, would be writing to the FIFO once and reading the same content over
and over without doing another write.

Table 7-7 • Input Data Signal Usage for Different Aspect Ratios

D×W WD/RD Unused

4k×1 WD[17:1], RD[17:1]

2k×2 WD[17:2], RD[17:2]

1k×4 WD[17:4], RD[17:4]

512×9 WD[17:9], RD[17:9]

256×18 –
216 Revision 0

Fusion FPGA Fabric User’s Guide
FIFO Flag Usage Considerations
The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values. The
FIFO contains separate 12-bit write address (WADDR) and read address (RADDR) counters. WADDR is
incremented every time a write operation is performed, and RADDR is incremented every time a read
operation is performed. Whenever the difference between WADDR and RADDR is greater than or equal
to AFVAL, the AFULL output is asserted. Likewise, whenever the difference between WADDR and
RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To handle different read and
write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits instead of total data
words. When users specify AFVAL and AEVAL in terms of read or write words, the SmartGen tool
translates them into bit addresses and configures these signals automatically. SmartGen configures the
AFULL flag to assert when the write address exceeds the read address by at least a predefined value. In
a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag will be asserted after a
write when the difference between the write address and the read address reaches 1,500 (there have
been at least 1,500 more writes than reads). It will stay asserted until the difference between the write
and read addresses drops below 1,500.
The AEMPTY flag is asserted when the difference between the write address and the read address is
less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY
flag will be asserted when a read causes the difference between the write address and the read address
to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be
configured with different read and write widths; in this case, the AFVAL setting is based on the number of
write data entries, and the AEVAL setting is based on the number of read data entries. For aspect ratios
of 512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The
number of words must be multiplied by 8 and 16 instead of 9 and 18. The SmartGen tool automatically
uses the proper values. To avoid halfwords being written or read, which could happen if different read
and write aspect ratios were specified, the FIFO will assert FULL or EMPTY as soon as at least one word
cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, the
FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not
completely empty, because in this case, a complete word cannot be read. The same is applicable in the
full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The
FULL flag will remain asserted because a complete word cannot be written at this point.

Variable Aspect Ratio and Cascading
Variable aspect ratio and cascading allow users to configure the memory in the width and depth required.
The memory block can be configured as a FIFO by combining the basic memory block with dedicated
FIFO controller logic. The FIFO macro is named FIFO4KX18. Low power flash device RAM can be
configured as 1, 2, 4, 9, or 18 bits wide. By cascading the memory blocks, any multiple of those widths
can be created. The RAM blocks can be from 256 to 4,096 bits deep, depending on the aspect ratio, and
the blocks can also be cascaded to create deeper areas. Refer to the aspect ratios available for each
macro cell in the "SRAM Features" section on page 209. The largest continuous configurable memory
area is equal to half the total memory available on the device, because the RAM is separated into two
groups, one on each side of the device.
The Actel SmartGen core generator will automatically configure and cascade both RAM and FIFO
blocks. Cascading is accomplished using dedicated memory logic and does not consume user gates for
depths up to 4,096 bits deep and widths up to 18, depending on the configuration. Deeper memory will
utilize some user gates to multiplex the outputs.
Generated RAM and FIFO macros can be created as either structural VHDL or Verilog for easy
instantiation into the design. Users of Actel Libero IDE can create a symbol for the macro and incorporate
it into a design schematic.
Table 7-10 on page 219 shows the number of memory blocks required for each of the supported depth
and width memory configurations, and for each depth and width combination. For example, a 256-bit
deep by 32-bit wide two-port RAM would consist of two 256×18 RAM blocks. The first 18 bits would be
stored in the first RAM block, and the remaining 14 bits would be implemented in the other 256×18 RAM
block. This second RAM block would have four bits of unused storage. Similarly, a dual-port memory
block that is 8,192 bits deep and 8 bits wide would be implemented using 16 memory blocks. The dual-
port memory would be configured in a 4,096×1 aspect ratio. These blocks would then be cascaded two
deep to achieve 8,192 bits of depth, and eight wide to achieve the eight bits of width.
Revision 0 217

SRAM and FIFO Memories in Actel's Low Power Flash Devices
Table 7-8 and Table 7-9 show the maximum potential width and depth configuration for each device. Note
that 15 k and 30 k gate devices do not support RAM or FIFO.

Table 7-8 • Memory Availability per IGLOO and ProASIC3 Device

Device

RAM
Block

s

Maximum Potential Width1 Maximum Potential Depth2

IGLOO
IGLOO nano
IGLOO PLUS

ProASIC3
ProASIC3 nano

ProASIC3L Depth Width Depth Width

AGL060
AGLN060
AGLP060

A3P060
A3PN060

4 256 72 (4×18) 16,384 (4,096×4) 1

AGL125
AGLN125
AGLP125

A3P125
A3PN125

8 256 144 (8×18) 32,768 (4,094×8) 1

AGL250
AGLN250

A3P250/L
A3PN250

8 256 144 (8×18) 32,768 (4,096×8) 1

AGL400 A3P400 12 256 216 (12×18) 49,152 (4,096×12) 1

AGL600 A3P600/L 24 256 432 (24×18) 98,304 (4,096×24) 1

AGL1000 A3P1000/L 32 256 576 (32×18) 131,072 (4,096×32) 1

AGLE600 A3PE600 24 256 432 (24×18) 98,304 (4,096×24) 1

A3PE1500 60 256 1,080 (60×18) 245,760 (4,096×60) 1

AGLE3000 A3PE3000/L 112 256 2,016 (112×18) 458,752 (4,096×112) 1

Notes:
1. Maximum potential width uses the two-port configuration.
2. Maximum potential depth uses the dual-port configuration.

Table 7-9 • Memory Availability per Fusion Device

Device RAM Blocks
Maximum Potential Width1 Maximum Potential Depth2

Depth Width Depth Width
AFS090 6 256 108 (6×18) 24,576 (4,094×6) 1

AFS250 8 256 144 (8×18) 32,768 (4,094×8) 1

AFS600 24 256 432 (24×18) 98,304 (4,096×24) 1

AFS1500 60 256 1,080 (60×18) 245,760 (4,096×60) 1

Notes:
1. Maximum potential width uses the two-port configuration.
2. Maximum potential depth uses the dual-port configuration.
218 Revision 0

219

Fusion FPGA Fabric User’s Guide

Tabl

16,384 32,768 65,536
Dual-Port Dual-Port Dual-Port

W
id

th

1 4 8 16 × 1
4 × (4,096 × 1)
Cascade Deep

8 × (4,096 × 1)
Cascade Deep

16 × (4,096 × 1)
Cascade Deep

2 8 16 32
8 × (4,096 × 1)

Cascaded 4 Deep
and 2 Wide

16 × (4,096 × 1)
Cascaded 8 Deep

and 2 Wide

32 × (4,096 × 1)
Cascaded 16

Deep and 2 Wide
4 16 32 64

16 × (4,096 × 1)
Cascaded 4 Deep

and 4 Wide

32 × (4,096 × 1)
Cascaded 8 Deep

and 4 Wide

64 × (4,096 × 1)
Cascaded 16

Deep and 4 Wide
8 32 64

32 × (4,096 × 1)
Cascaded 4 Deep

and 8 Wide

64 × (4,096 × 1)
Cascaded 8 Deep

and 8 Wide
9 32

32 × (512 × 9)
Cascaded Deep

1 64
32 × (4,096 × 1)

Cascaded 4 Deep
and 16 Wide

1

3

3

6

7

Note:
Revision 0

e 7-10 • RAM and FIFO Memory Block Consumption
Depth

256 512 1,024 2,048 4,096 8,192
Two-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port

Number Block 1 1 1 1 1 1 2
Configuration Any Any Any 1,024 × 4 2,048 × 2 4,096 × 1 2 × (4,096 × 1)

Cascade Deep
Number Block 1 1 1 1 1 2 4
Configuration Any Any Any 1,024×4 2,048 × 2 2 × (4,096 × 1)

Cascaded Wide
4 × (4,096 × 1)

Cascaded 2 Deep
and 2 Wide

Number Block 1 1 1 1 2 4 8
Configuration Any Any Any 1,024 × 4 2 × (2,048 × 2)

Cascaded Wide
4 × (4,096 × 1)
Cascaded Wide

4 × (4,096 × 1)
Cascaded 2 Deep

and 4 Wide
Number Block 1 1 1 2 4 8 16
Configuration Any Any Any 2 × (1,024 × 4)

Cascaded Wide
4 × (2,048 × 2)
Cascaded Wide

8 × (4,096 × 1)
Cascaded Wide

16 × (4,096 × 1)
Cascaded 2 Deep

and 8 Wide
Number Block 1 1 1 2 4 8 16
Configuration Any Any Any 2 × (512 × 9)

Cascaded Deep
4 × (512 × 9)

Cascaded Deep
8 × (512 × 9)

Cascaded Deep
16 × (512 × 9)

Cascaded Deep
6 Number Block 1 1 1 4 8 16 32

Configuration 256 × 18 256 × 18 256 × 18 4 × (1,024 × 4)
Cascaded Wide

8 × (2,048 × 2)
Cascaded Wide

16 × (4,096 × 1)
Cascaded Wide

32 × (4,096 × 1)
Cascaded 2 Deep

and 16 Wide
8 Number Block 1 2 2 4 8 18 32

Configuration 256 × 8 2 × (512 × 9)
Cascaded Wide

2 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded 2 Deep

and 2 Wide

8 × (512 × 9)
Cascaded 4 Deep

and 2 Wide

16 × (512 × 9)
Cascaded 8 Deep

and 2 Wide

16 × (512 × 9)
Cascaded 16

Deep and 2 Wide
2 Number Block 2 4 4 8 16 32 64

Configuration 2 × (256 × 18)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

8 × (1,024 × 4)
Cascaded Wide

16 × (2,048 × 2)
Cascaded Wide

32 × (4,096 × 1)
Cascaded Wide

64 × (4,096 × 1)
Cascaded 2 Deep

and 32 Wide
6 Number Block 2 4 4 8 16 32

Configuration 2 × (256 × 18)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded 2 Deep

and 4 Wide

16 × (512 × 9)
Cascaded 4 Deep

and 4 Wide

16 × (512 × 9)
Cascaded 8 Deep

and 4 Wide
4 Number Block 4 8 8 16 32 64

Configuration 4 × (256 × 18)
Cascaded Wide

8 × (512 × 9)
Cascaded Wide

8 × (512 × 9)
Cascaded Wide

16 × (1,024 × 4)
Cascaded Wide

32 × (2,048 × 2)
Cascaded Wide

64 × (4,096 × 1)
Cascaded Wide

2 Number Block 4 8 8 16 32
Configuration 4 × (256 × 18)

Cascaded Wide
8 × (512 × 9)

Cascaded Wide
8 × (512 × 9)

Cascaded Wide
16 × (512 × 9)

Cascaded Wide
16 × (512 × 9)

Cascaded 4 Deep
and 8 Wide

Memory configurations represented by grayed cells are not supported.

SRAM and FIFO Memories in Actel's Low Power Flash Devices
Initializing the RAM/FIFO
The SRAM blocks can be initialized with data to use as a lookup table (LUT). Data initialization can be
accomplished either by loading the data through the design logic or through the UJTAG interface. The
UJTAG macro is used to allow access from the JTAG port to the internal logic in the device. By sending
the appropriate initialization string to the JTAG Test Access Port (TAP) Controller, the designer can put
the JTAG circuitry into a mode that allows the user to shift data into the array logic through the JTAG port
using the UJTAG macro. For a more detailed explanation of the UJTAG macro, refer to the "FlashROM in
Actel’s Low Power Flash Devices" section on page 189.
A user interface is required to receive the user command, initialization data, and clock from the UJTAG
macro. The interface must synchronize and load the data into the correct RAM block of the design. The
main outputs of the user interface block are the following:

• Memory block chip select: Selects a memory block for initialization. The chip selects signals for
each memory block that can be generated from different user-defined pockets or simple logic,
such as a ring counter (see below).

• Memory block write address: Identifies the address of the memory cell that needs to be initialized.
• Memory block write data: The interface block receives the data serially from the UTDI port of the

UJTAG macro and loads it in parallel into the write data ports of the memory blocks.
• Memory block write clock: Drives the WCLK of the memory block and synchronizes the write

data, write address, and chip select signals.
Figure 7-8 shows the user interface between UJTAG and the memory blocks.

An important component of the interface between the UJTAG macro and the RAM blocks is a serial-
in/parallel-out shift register. The width of the shift register should equal the data width of the RAM blocks.
The RAM data arrives serially from the UTDI output of the UJTAG macro. The data must be shifted into a
shift register clocked by the JTAG clock (provided at the UDRCK output of the UJTAG macro).
Then, after the shift register is fully loaded, the data must be transferred to the write data port of the RAM
block. To synchronize the loading of the write data with the write address and write clock, the output of
the shift register can be pipelined before driving the RAM block.
The write address can be generated in different ways. It can be imported through the TAP using a
different instruction opcode and another shift register, or generated internally using a simple counter.
Using a counter to generate the address bits and sweep through the address range of the RAM blocks is

Figure 7-8 • Interfacing TAP Ports and SRAM Blocks

TRST

UJTAG

TDO

TDI
TMS
TCK

TRST

TDO

TDI

TMS

TCK

URSTB
UDRUPD

UDRSH
UDRCAP

UDRCK
UTDI

UTDO

UIREG[7:0] IR[7:0]
User Interface

WDATA
WADDR

WCLK
WEN1

WEN2
WEN3

Reset

DR_UPDATE
DR_SHIFT
DR_CAPTURE
DR_CLK
DIN
DOUT

WD
WADDR
WCLK

WEN

RAM1

WD
WADDR
WCLK

WEN

RAM2

WD
WADDR
WCLK

WEN

RAM3
220 Revision 0

Fusion FPGA Fabric User’s Guide
recommended, since it reduces the complexity of the user interface block and the board-level JTAG
driver.
Moreover, using an internal counter for address generation speeds up the initialization procedure, since
the user only needs to import the data through the JTAG port.
The designer may use different methods to select among the multiple RAM blocks. Using counters along
with demultiplexers is one approach to set the write enable signals. Basically, the number of RAM blocks
needing initialization determines the most efficient approach. For example, if all the blocks are initialized
with the same data, one enable signal is enough to activate the write procedure for all of them at the
same time. Another alternative is to use different opcodes to initialize each memory block. For a small
number of RAM blocks, using counters is an optimal choice. For example, a ring counter can be used to
select from multiple RAM blocks. The clock driver of this counter needs to be controlled by the address
generation process.
Once the addressing of one block is finished, a clock pulse is sent to the (ring) counter to select the next
memory block.
Figure 7-9 illustrates a simple block diagram of an interface block between UJTAG and RAM blocks.

In the circuit shown in Figure 7-9, the shift register is enabled by the UDRSH output of the UJTAG macro.
The counters and chip select outputs are controlled by the value of the TAP Instruction Register. The
comparison block compares the UIREG value with the "start initialization" opcode value (defined by the
user). If the result is true, the counters start to generate addresses and activate the WEN inputs of
appropriate RAM blocks.
The UDRUPD output of the UJTAG macro, also shown in Figure 7-9, is used for generating the write
clock (WCLK) and synchronizing the data register and address counter with WCLK. UDRUPD is HIGH
when the TAP Controller is in the Data Register Update state, which is an indication of completing the
loading of one data word. Once the TAP Controller goes into the Data Register Update state, the
UDRUPD output of the UJTAG macro goes HIGH. Therefore, the pipeline register and the address
counter place the proper data and address on the outputs of the interface block. Meanwhile, WCLK is
defined as the inverted UDRUPD. This will provide enough time (equal to the UDRUPD HIGH time) for
the data and address to be placed at the proper ports of the RAM block before the rising edge of WCLK.
The inverter is not required if the RAM blocks are clocked at the falling edge of the write clock. An
example of this is described in the "Example of RAM Initialization" section on page 222.

Figure 7-9 • Block Diagram of a Sample User Interface

nn

m

m

UTDI
UDRSH

UDRCK
UTDO

UDRUPDI

UIREG

URSTB

CLK

Enable

SIN
Serial-to-Port Shift Register

POUT

SOUT

D

En
Reset
CLK

En
Reset
CLK

Q

Q

CLK

WDATA

WCLK

WEN1
WEN2
WENi

WADDR

Chip Select

Data Reg.

Addr Counter

Ring
Counter

Binary
Counter

Compare
with

Defined Opcode
In Result
Revision 0 221

SRAM and FIFO Memories in Actel's Low Power Flash Devices
Example of RAM Initialization
This section of the document presents a sample design in which a 4×4 RAM block is being initialized
through the JTAG port. A test feature has been implemented in the design to read back the contents of
the RAM after initialization to verify the procedure.
The interface block of this example performs two major functions: initialization of the RAM block and
running a test procedure to read back the contents. The clock output of the interface is either the write
clock (for initialization) or the read clock (for reading back the contents). The Verilog code for the
interface block is included in the "Sample Verilog Code" section on page 223.
For simulation purposes, users can declare the input ports of the UJTAG macro for easier assignment in
the testbench. However, the UJTAG input ports should not be declared on the top level during synthesis.
If the input ports of the UJTAG are declared during synthesis, the synthesis tool will instantiate input
buffers on these ports. The input buffers on the ports will cause Compile to fail in Designer.
Figure 7-10 shows the simulation results for the initialization step of the example design.
The CLK_OUT signal, which is the clock output of the interface block, is the inverted DR_UPDATE output
of the UJTAG macro. It is clear that it gives sufficient time (while the TAP Controller is in the Data
Register Update state) for the write address and data to become stable before loading them into the RAM
block.
Figure 7-11 presents the test procedure of the example. The data read back from the memory block
matches the written data, thus verifying the design functionality.

Figure 7-10 • Simulation of Initialization Step

Figure 7-11 • Simulation of the Test Procedure of the Example
222 Revision 0

Fusion FPGA Fabric User’s Guide
The ROM emulation application is based on RAM block initialization. If the user's main design has
access only to the read ports of the RAM block (RADDR, RD, RCLK, and REN), and the contents of the
RAM are already initialized through the TAP, then the memory blocks will emulate ROM functionality for
the core design. In this case, the write ports of the RAM blocks are accessed only by the user interface
block, and the interface is activated only by the TAP Instruction Register contents.
Users should note that the contents of the RAM blocks are lost in the absence of applied power.
However, the 1 kbit of flash memory, FlashROM, in low power flash devices can be used to retain data
after power is removed from the device. Refer to the "SRAM and FIFO Memories in Actel's Low Power
Flash Devices" section on page 203 for more information.

Sample Verilog Code
Interface Block
`define Initialize_start 8'h22 //INITIALIZATION START COMMAND VALUE
`define Initialize_stop 8'h23 //INITIALIZATION START COMMAND VALUE

module interface(IR, rst_n, data_shift, clk_in, data_update, din_ser, dout_ser, test,
test_out,test_clk,clk_out,wr_en,rd_en,write_word,read_word,rd_addr, wr_addr);

input [7:0] IR;
input [3:0] read_word; //RAM DATA READ BACK
input rst_n, data_shift, clk_in, data_update, din_ser; //INITIALIZATION SIGNALS
input test, test_clk; //TEST PROCEDURE CLOCK AND COMMAND INPUT
output [3:0] test_out; //READ DATA
output [3:0] write_word; //WRITE DATA
output [1:0] rd_addr; //READ ADDRESS
output [1:0] wr_addr; //WRITE ADDRESS
output dout_ser; //TDO DRIVER
output clk_out, wr_en, rd_en;

wire [3:0] write_word;
wire [1:0] rd_addr;
wire [1:0] wr_addr;
wire [3:0] Q_out;
wire enable, test_active;

reg clk_out;

//SELECT CLOCK FOR INITIALIZATION OR READBACK TEST
always @(enable or test_clk or data_update)
begin

case ({test_active})
1 : clk_out = test_clk ;
0 : clk_out = !data_update;
default : clk_out = 1'b1;

endcase
end

assign test_active = test && (IR == 8'h23);
assign enable = (IR == 8'h22);
assign wr_en = !enable;
assign rd_en = !test_active;
assign test_out = read_word;
assign dout_ser = Q_out[3];

//4-bit SIN/POUT SHIFT REGISTER
shift_reg data_shift_reg (.Shiften(data_shift), .Shiftin(din_ser), .Clock(clk_in),

.Q(Q_out));

//4-bit PIPELINE REGISTER
D_pipeline pipeline_reg (.Data(Q_out), .Clock(data_update), .Q(write_word));
Revision 0 223

SRAM and FIFO Memories in Actel's Low Power Flash Devices
//
addr_counter counter_1 (.Clock(data_update), .Q(wr_addr), .Aset(rst_n),

.Enable(enable));
addr_counter counter_2 (.Clock(test_clk), .Q(rd_addr), .Aset(rst_n),

.Enable(test_active));

endmodule

Interface Block / UJTAG Wrapper
This example is a sample wrapper, which connects the interface block to the UJTAG and the memory
blocks.
// WRAPPER
module top_init (TDI, TRSTB, TMS, TCK, TDO, test, test_clk, test_ out);

input TDI, TRSTB, TMS, TCK;
output TDO;
input test, test_clk;
output [3:0] test_out;

wire [7:0] IR;
wire reset, DR_shift, DR_cap, init_clk, DR_update, data_in, data_out;
wire clk_out, wen, ren;
wire [3:0] word_in, word_out;
wire [1:0] write_addr, read_addr;

UJTAG UJTAG_U1 (.UIREG0(IR[0]), .UIREG1(IR[1]), .UIREG2(IR[2]), .UIREG3(IR[3]),
.UIREG4(IR[4]), .UIREG5(IR[5]), .UIREG6(IR[6]), .UIREG7(IR[7]), .URSTB(reset),
.UDRSH(DR_shift), .UDRCAP(DR_cap), .UDRCK(init_clk), .UDRUPD(DR_update),
.UT-DI(data_in), .TDI(TDI), .TMS(TMS), .TCK(TCK), .TRSTB(TRSTB), .TDO(TDO),
.UT-DO(data_out));

mem_block RAM_block (.DO(word_out), .RCLOCK(clk_out), .WCLOCK(clk_out), .DI(word_in),
.WRB(wen), .RDB(ren), .WAD-DR(write_addr), .RADDR(read_addr));

interface init_block (.IR(IR), .rst_n(reset), .data_shift(DR_shift), .clk_in(init_clk),
.data_update(DR_update), .din_ser(data_in), .dout_ser(data_out), .test(test),
.test_out(test_out), .test_clk(test_clk), .clk_out(clk_out), .wr_en(wen),
.rd_en(ren), .write_word(word_in), .read_word(word_out), .rd_addr(read_addr),
.wr_addr(write_addr));

endmodule

Address Counter
module addr_counter (Clock, Q, Aset, Enable);

input Clock;
output [1:0] Q;
input Aset;
input Enable;

reg [1:0] Qaux;

always @(posedge Clock or negedge Aset)
begin

if (!Aset) Qaux <= 2'b11;
else if (Enable) Qaux <= Qaux + 1;

end

assign Q = Qaux;

endmodule
224 Revision 0

Fusion FPGA Fabric User’s Guide
Pipeline Register
module D_pipeline (Data, Clock, Q);

input [3:0] Data;
input Clock;
output [3:0] Q;

reg [3:0] Q;

always @ (posedge Clock) Q <= Data;

endmodule

4x4 RAM Block (created by SmartGen Core Generator)
module mem_block(DI,DO,WADDR,RADDR,WRB,RDB,WCLOCK,RCLOCK);

input [3:0] DI;
output [3:0] DO;
input [1:0] WADDR, RADDR;
input WRB, RDB, WCLOCK, RCLOCK;

wire WEBP, WEAP, VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
INV WEBUBBLEB(.A(WRB), .Y(WEBP));
RAM4K9 RAMBLOCK0(.ADDRA11(GND), .ADDRA10(GND), .ADDRA9(GND), .ADDRA8(GND),

.ADDRA7(GND), .ADDRA6(GND), .ADDRA5(GND), .ADDRA4(GND), .ADDRA3(GND), .ADDRA2(GND),

.ADDRA1(RADDR[1]), .ADDRA0(RADDR[0]), .ADDRB11(GND), .ADDRB10(GND), .ADDRB9(GND),

.ADDRB8(GND), .ADDRB7(GND), .ADDRB6(GND), .ADDRB5(GND), .ADDRB4(GND), .ADDRB3(GND),

.ADDRB2(GND), .ADDRB1(WADDR[1]), .ADDRB0(WADDR[0]), .DINA8(GND), .DINA7(GND),

.DINA6(GND), .DINA5(GND), .DINA4(GND), .DINA3(GND), .DINA2(GND), .DINA1(GND),

.DINA0(GND), .DINB8(GND), .DINB7(GND), .DINB6(GND), .DINB5(GND), .DINB4(GND),

.DINB3(DI[3]), .DINB2(DI[2]), .DINB1(DI[1]), .DINB0(DI[0]), .WIDTHA0(GND),

.WIDTHA1(VCC), .WIDTHB0(GND), .WIDTHB1(VCC), .PIPEA(GND), .PIPEB(GND),

.WMODEA(GND), .WMODEB(GND), .BLKA(WEAP), .BLKB(WEBP), .WENA(VCC), .WENB(GND),

.CLKA(RCLOCK), .CLKB(WCLOCK), .RESET(VCC), .DOUTA8(), .DOUTA7(), .DOUTA6(),

.DOUTA5(), .DOUTA4(), .DOUTA3(DO[3]), .DOUTA2(DO[2]), .DOUTA1(DO[1]),

.DOUTA0(DO[0]), .DOUTB8(), .DOUTB7(), .DOUTB6(), .DOUTB5(), .DOUTB4(), .DOUTB3(),

.DOUTB2(), .DOUTB1(), .DOUTB0());
INV WEBUBBLEA(.A(RDB), .Y(WEAP));

endmodule
Revision 0 225

SRAM and FIFO Memories in Actel's Low Power Flash Devices
Software Support
The SmartGen core generator is the easiest way to select and configure the memory blocks
(Figure 7-12). SmartGen automatically selects the proper memory block type and aspect ratio, and
cascades the memory blocks based on the user's selection. SmartGen also configures any additional
signals that may require tie-off.
SmartGen will attempt to use the minimum number of blocks required to implement the desired memory.
When cascading, SmartGen will configure the memory for width before configuring for depth. For
example, if the user requests a 256×8 FIFO, SmartGen will use a 512×9 FIFO configuration, not 256×18.

Figure 7-12 • SmartGen Core Generator Interface
226 Revision 0

Fusion FPGA Fabric User’s Guide
SmartGen enables the user to configure the desired RAM element to use either a single clock for read
and write, or two independent clocks for read and write. The user can select the type of RAM as well as
the width/depth and several other parameters (Figure 7-13).

SmartGen also has a Port Mapping option that allows the user to specify the names of the ports
generated in the memory block (Figure 7-14).

SmartGen also configures the FIFO according to user specifications. Users can select no flags, static
flags, or dynamic flags. Static flag settings are configured using configuration flash and cannot be altered

Figure 7-13 • SmartGen Memory Configuration Interface

Figure 7-14 • Port Mapping Interface for SmartGen-Generated Memory
Revision 0 227

SRAM and FIFO Memories in Actel's Low Power Flash Devices
without reprogramming the device. Dynamic flag settings are determined by register values and can be
altered without reprogramming the device by reloading the register values either from the design or
through the UJTAG interface described in the "Initializing the RAM/FIFO" section on page 220.
SmartGen can also configure the FIFO to continue counting after the FIFO is full. In this configuration,
the FIFO write counter will wrap after the counter is full and continue to write data. With the FIFO
configured to continue to read after the FIFO is empty, the read counter will also wrap and re-read data
that was previously read. This mode can be used to continually read back repeating data patterns stored
in the FIFO (Figure 7-15).

FIFOs configured using SmartGen can also make use of the port mapping feature to configure the
names of the ports.

Limitations
Users should be aware of the following limitations when configuring SRAM blocks for low power flash
devices:

• SmartGen does not track the target device in a family, so it cannot determine if a configured
memory block will fit in the target device.

• Dual-port RAMs with different read and write aspect ratios are not supported.
• Cascaded memory blocks can only use a maximum of 64 blocks of RAM.
• The Full flag of the FIFO is sensitive to the maximum depth of the actual physical FIFO block, not

the depth requested in the SmartGen interface.

Figure 7-15 • SmartGen FIFO Configuration Interface
228 Revision 0

Fusion FPGA Fabric User’s Guide
Conclusion
Fusion, IGLOO, and ProASIC3 devices provide users with extremely flexible SRAM blocks for most
design needs, with the ability to choose between an easy-to-use dual-port memory or a wide-word two-
port memory. Used with the built-in FIFO controllers, these memory blocks also serve as highly efficient
FIFOs that do not consume user gates when implemented. The Actel SmartGen core generator provides
a fast and easy way to configure these memory elements for use in designs.

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

v1.5
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 7-1 • Flash-Based
FPGAs.

206

IGLOO nano and ProASIC3 nano devices were added to Figure 7-8 • Interfacing
TAP Ports and SRAM Blocks.

220

v1.4
(October 2008)

The "SRAM/FIFO Support in Flash-Based Devices" section was revised to
include new families and make the information more concise.

206

The "SRAM and FIFO Architecture" section was modified to remove "IGLOO and
ProASIC3E" from the description of what the memory block includes, as this
statement applies to all memory blocks.

207

Wording in the "Clocking" section was revised to change "IGLOO and ProASIC3
devices support inversion" to "Low power flash devices support inversion." The
reference to IGLOO and ProASIC3 development tools in the last paragraph of the
section was changed to refer to development tools in general.

213

The "ESTOP and FSTOP Usage" section was updated to refer to FIFO counters
in devices in general rather than only IGLOO and ProASIC3E devices.

216

v1.3
(August 2008)

The note was removed from Figure 7-7 • RAM Block with Embedded FIFO
Controller and placed in the WCLK and RCLK description.

214

The "WCLK and RCLK" description was revised. 215

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 7-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

206

v1.1
(March 2008)

The "Introduction" section was updated to include the IGLOO PLUS family. 203

The "Device Architecture" section was updated to state that 15 k gate devices do
not support SRAM and FIFO.

203

The first note in Figure 7-1 • IGLOO and ProASIC3 Device Architecture Overview
was updated to include mention of 15 k gate devices, and IGLOO PLUS was
added to the second note.

205
Revision 0 229

SRAM and FIFO Memories in Actel's Low Power Flash Devices
v1.1
(continued)

Table 7-1 • Flash-Based FPGAs and associated text were updated to include the
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

206

The text introducing Table 7-8 • Memory Availability per IGLOO and ProASIC3
Device was updated to replace "A3P030 and AGL030" with "15 k and 30 k gate
devices." Table 7-8 • Memory Availability per IGLOO and ProASIC3 Device was
updated to remove AGL400 and AGLE1500 and include IGLOO PLUS and
ProASIC3L devices.

218

Date Changes Page
230 Revision 0

8 – Designing the Fusion Analog System

Introduction
Actel Fusion® devices offer robust and flexible analog mixed-signal capability in addition to the high-
performance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a
configurable 32:1 analog MUX, up to 10 independent MOSFET gate driver outputs, and a configurable
analog-to-digital converter (ADC). Fusion also introduces the Analog Quad I/O structure; each Analog
Quad consists of three analog inputs and one gate driver. Each Quad can be configured in various built-
in circuit combinations, such as prescaler circuits, three-digital-input circuits, a current monitor circuit, or
a temperature monitor circuit. Each prescaler has multiple scaling factors programmed by FPGA signals
to support a large range of analog inputs with positive or negative polarity. When the current monitor
circuit is selected, two adjacent analog inputs measure the voltage drop across a small external sense
resistor. Built-in operational amplifiers amplify small voltage signals for accurate current measurement.
One analog input in each Quad can be connected to an external temperature monitor diode. These
components are used as the building blocks in designing an analog system.
The Analog Quad I/O configuration, ADC resolution, channel sampling sequence, and sampling rate are
programmable and implemented in the FPGA logic using Designer and Actel Libero® Integrated Design
Environment (IDE) software tool support. An overview of different design methodologies is covered in the
"Fusion Design Solutions and Methodologies" section on page 245. This chapter gives a detailed
description of the Analog Quads, ADC, and Analog Configuration MUX (ACM). It also covers the details
of the analog system with the explanation and sample calculations of accuracy, sample rate, sample
sequencing, acquisition time, ADC clocking, and prescaler selection.

Analog-to-Digital Converter Background
An analog-to-digital converter is used to capture discrete samples of a continuous analog voltage and
provide a discrete binary representation of the signal.
Analog-to-digital converters are generally characterized in three ways:

• Input voltage range
• Resolution
• Bandwidth or conversion rate

The input voltage range of an ADC is determined by its reference voltage (VREF). Actel Fusion™ devices
include an internal 2.56 V reference, or the user can supply an external reference of up to 3.3 V. The
following examples use the internal 2.56 V reference, so the full-scale input range of the ADC is 0 to
2.56 V. For input signal ranges less than or greater than VREF, an analog scaling function such as that
built into the Fusion Analog Quad Prescaler can be used to amplify or attenuate the input signal, thus
matching the input voltage range of the ADC.
The resolution (LSB) of the ADC is a function of the number of binary bits in the converter. The ADC
approximates the value of the input voltage using 2n “steps,” where n is the number of bits in the
converter. Each step therefore represents VREF / 2n volts. In the case of the Fusion ADC configured for
12-bit operation, the LSB is 2.56 V / 4096 = 0.625 mV.
Finally, bandwidth is an indication of the maximum number of conversions the ADC can perform each
second. The bandwidth of an ADC is constrained by its architecture and several key performance
characteristics. In addition, the bandwidth is limited by Fusion system considerations. See the "Sample
Rate and Sample Sequence Calculation" section on page 238.
Revision 0 231

Designing the Fusion Analog System
There are several popular ADC architectures, each with its own advantages and limitations. The analog-
to-digital converter in Fusion devices is a switched-capacitor Successive Approximation Register (SAR)
ADC. It supports 8-, 10-, and 12-bit modes of operation with a cumulative sample rate up to 600 k
samples per second (ksps). Built-in bandgap circuitry offers 1% internal voltage reference accuracy, or
an external reference voltage can be used.
As shown in Figure 8-1, a SAR ADC contains N capacitors with binary-weighted values.

To begin a conversion, all of the capacitors are quickly discharged. Then VIN is applied to all the
capacitors for a period of time (acquisition time) during which the capacitors are charged to a value very
close to VIN. Then all of the capacitors are switched to ground, and thus –VIN is applied across the
comparator.
Now the conversion process begins. First, C is switched to VREF. Because of the binary weighting of the
capacitors, the voltage at the input of the comparator is then –VIN + VREF / 2. If VIN is greater than
VREF / 2, the output of the comparator is 1; otherwise, the comparator output is 0. A register is clocked to
retain this value as the MSB of the result.
Next, if the MSB is 0, C is switched back to ground; otherwise, it remains connected to VREF, and C / 2 is
connected to VREF. The result at the comparator input is now either –VIN + VREF / 4 or –VIN + 3 VREF / 4
(depending on the state of the MSB), and the comparator output now indicates the value of the next most
significant bit. This bit is likewise registered, and the process continues for each subsequent bit until a
conversion is completed. The conversion process requires some acquisition time plus N + 1 ADC clock
cycles to complete.

Figure 8-1 • Example SAR ADC Architecture

Comparator

C C / 2 C / 4 C / 2N–2 C / 2N–1 C / 2N–1

VREFVIN
232 Revision 0

Fusion FPGA Fabric User’s Guide
This process results in a binary approximation of VIN. Generally, there is a fixed interval T, the sampling
period, between the samples. The inverse of the sampling period is often referred to as the sampling
frequency fs = 1 / T. The combined effect is illustrated in Figure 8-2.

Figure 8-2 demonstrates that if the signal changes faster than the sampling rate can accommodate, or if
the actual value of VIN falls between “counts” in the result, this information is lost during the conversion.
There are several techniques that can be used to address these issues.
First, the sampling rate must be chosen to provide enough samples to adequately represent the input
signal. Based on the Nyquist-Shannon Sampling Theorem, the minimum sampling rate must be at least
twice the frequency of the highest frequency component in the target signal (Nyquist Frequency). For
example, to re-create the frequency content of an audio signal with up to 22 kHz bandwidth, the user
must sample it at a minimum of 44 ksps. However, as shown in Figure 8-2, significant post-processing of
the data is required to interpolate the value of the waveform during the time between each sample.
Similarly, to re-create the amplitude variation of a signal, the signal must be sampled with adequate
resolution. Continuing with the audio example, the dynamic range of the human ear (the ratio of the
amplitude of the threshold of hearing to the threshold of pain) is generally accepted to be 135 dB, and the
dynamic range of a typical symphony orchestra performance is around 85 dB. Most commercial
recording media provide about 96 dB of dynamic range using 16-bit sample resolution. But 16-bit fidelity
does not necessarily mean that you need a 16-bit ADC. As long as the input is sampled at or above the
Nyquist Frequency, post-processing techniques can be used to interpolate intermediate values and
reconstruct the original input signal to within desired tolerances.
If sophisticated digital signal processing (DSP) capabilities are available, the best results are obtained by
implementing a reconstruction filter, which is used to interpolate many intermediate values with higher
resolution than the original data. Interpolating many intermediate values, increases the effective number
of samples, and higher resolution increases the effective number of bits in the sample. In many cases,
however, it is not cost-effective or necessary to implement such a sophisticated reconstruction algorithm.
For applications that do not require extremely fine reproduction of the input signal, alternative methods
can enhance digital sampling results with relatively simple post-processing. The details of such
techniques are out of the scope of this chapter; refer to the Improving ADC Results Through
Oversampling and Post-Processing of Data white paper for more information.

Figure 8-2 • Analog-to-Digital Conversion Example

T

LSB
Revision 0 233

http://www.actel.com/documents/Improve_ADC_WP.pdf
http://www.actel.com/documents/Improve_ADC_WP.pdf

Designing the Fusion Analog System
ADC Clock
When the Fusion ADC is used, the ADC clock determines the sampling throughput, and the system clock
determines the operating speed of the SmartGen IP and/or the user’s design logic. This section
examines the relationship between these two clocks and how the sampling rate is related to the
accuracy. A simplified block diagram of the ADC is given in Figure 8-3.
The ADC clock has a maximum frequency of 10 MHz and can be derived from the system clock. To
generate the ADC clock, the system clock is divided by a multiple of four. The exact multiple of four used
is determined by the 8-bit user-configurable TVC[7:0] register (EQ 1).

ADC Clock Frequency (MHz) = System Clock (MHz) / (4 × (TVC_reg + 1))

EQ 1
where TVC_reg is the TVC register value, from 0 to 255.
The TVC register setting is used to ensure that the ADC clock frequency does not exceed 10 MHz. Note
that the 10 MHz maximum frequency for the ADC clock implies that a higher system clock frequency
does not always result in a higher ADC clock frequency. For example, a 40 MHz system clock frequency
enables a maximum ADC clock frequency of 10 MHz (TVC register value of 0), whereas a 50 MHz
system frequency results in a slower maximum ADC clock frequency, 6.25 MHz, because a TVC register
value of 0 would give an ADC clock frequency of 12.5 MHz—above the 10 MHz limit. Note that this
10 MHz limit means that a higher system clock frequency does not always result in a higher ADC clock
frequency. For example, a 40 MHz system clock frequency enables a maximum ADC clock frequency of
10 MHz (TVC register value of 0). However, a 50 MHz system frequency results in a slower maximum
ADC clock frequency because a TVC register value of 0 would give an ADC clock frequency of
12.5 MHz—above the 10 MHz limit. Setting the TVC register value to 1 in this case gives a maximum
ADC clock frequency of 6.25 MHz.
In general, the performance of the ADC is the rate at which the ADC can acquire or sample the analog
input and convert it into a digital value. Datasheet specifications define this in terms of samples per
second (S/sec) or hertz (Hz). The inverse of the conversion time is the sampling rate for the channel.
However, the sampling rate reported by SmartGen includes the ADC Sample Sequence Controller
(ASSC) overhead time. This time, the turnaround time, defines how fast an ADC client can process data
and give another start conversion signal. With no wait states, the ASSC turnaround time is 10 system
clock cycles.

EQ 2

Figure 8-3 • Simplified ADC Diagram

Sample Rate 1
Conversion Time Turnaround Time+
---(S/sec)=

S/H

Analog Quad

Analog
MUX ADC

Analog Quad

Analog Soft IP

t_sample

t_conv

t_turnaround

ADCRESULT

StartConversion
234 Revision 0

Fusion FPGA Fabric User’s Guide
The conversion time (t_conv) is the total time required to convert an analog input signal into a digital
output (EQ 8-3).

t_conv = t_sync_read + t_sample + t_distrib + t_post_cal + t_sync_write

EQ 3
The components of EQ 3 are defined in Table 8-1.

Example 1
Given that only one channel is used without prescaler, the maximum sample rate of a channel can be
calculated as follows:

System Clock Period = 1 / (40 MHz) = 25 ns

ADC Clock Period = 1 / (10 MHz) = 100 ns

Acquisition Time = t_sample = 0.4 µs

Resolution = 8

t_conv = t_sync_read + t_sample + t_distrib + t_post_cal + t_sync_write

t_conv = 25 ns + 400 ns + 8 × 100 ns + 2 × 100 ns + 25 ns = 1.45 µs

t_turnaround = 10 × sys_clk = 250 ns

Note: To avoid using the prescaler, the maximum voltage value must be set between 2.01 V and 2.56 V
in the SmartGen GUI to configure the peripheral as a direct input.

Table 8-1 • ADC Conversion Time Formula Elements

Equation Description

t_sync_read = sys_clk_period • Time to latch the input data
• sys_clk_period is the ADC interface clock (10 ns to

250 ns).

t_sample = (2 + STC) × adc_clock_period • STC is the Sample Time Control in the SmartGen GUI.
This changes the acquisition time t_sample (sample-
and-hold time). STC[7:0] ranges from 0 to 255.

• adc_clock_period is the ADC internal clock period
(100 ns to 2 µs).

t_distrib = resolution × adc_clock_period • Time of charge redistribution
• adc_clock_period is the ADC internal clock period

(100 ns to 2 µs).
• Selectable 8-/10-/12-bit resolution mode

t_post_cal = 2 × adc_clock_period • Time for post-calibration
• adc_clock_period is the ADC internal clock period.

t_sync_write = sys_clk_period • Time for latching the output data
• sys_clk_period is the ADC interface clock period

(10 ns to 250 ns).

Sample Rate 1
1.45 µs 0.25 µs+
--ns 588 ksps= =
Revision 0 235

Designing the Fusion Analog System
Example 2
Given that only one channel is used with the prescaler, the maximum sample rate of a channel can be
calculated as follows:

System Clock Period = 1 / (80 MHz) = 12.5 ns

ADC Clock Period = 1 / (10 MHz) = 100 ns

Acquisition Time = Settling time = 10 µs (max.)

Resolution = 8

t_conv = t_sync_read + t_sample + t_distrib + t_post_cal + t_sync_write

t_conv = 12.5 ns + 10000 ns + 8 × 100 ns + 2 × 100 ns + 12.5 ns = 11.025 µs

Add turnaround time: 11.025 µs + 0.125 µs = 11.15 µs

Example 3
Given that only one channel is used with the prescaler, the maximum sample rate of a channel can be
calculated as follows:

System Clock Period = 1 / (40 MHz) = 25 ns

ADC Clock = 1 / (10 MHz) = 100 ns

Acquisition Time = Settling time = 10 µs (max.)

Resolution = 8

t_conv = t_sync_read + t_sample + t_distrib + t_post_cal + t_sync_write

t_conv = 25 ns + 10000 ns + 8 × 100 ns + 2 × 100 ns + 25 ns = 11.05 µs

Add turnaround time: 11.05 µs + 0.25 µs = 11.3 µs

Note that when the prescaler is used, a 10 µs settling/acquisition time is recommended for increased
accuracy. SmartGen automatically computes values for the STC, clock divider setting (TVC), and ADC
clock period. The goal of SmartGen is to meet the minimum sample time requirement with the highest
possible ADC clock frequency, which implies a low TVC value and high STC value.

Sample Rate 1
11.025 µs 0.125 µs+
--ns 89.68 ksps= =

Sample Rate 1
11.05 µs 0.25 µs+
---ns 88.49 ksps= =
236 Revision 0

Fusion FPGA Fabric User’s Guide
Sample Sequencing Overview
As described in the Fusion Family of Mixed-Signal Flash FPGAs datasheet and illustrated in Figure 8-4,
there is one ADC in the Analog Block (AB) and up to ten Analog Quads, with three analog inputs each:
AV, AC, and AT. The analog input to ADC is selected through a MUX architecture controlled by the
CHNUMBER select input. FPGA fabric access to the CHNUMBER input of the AB provides users the
flexibility to define custom sample sequencing among the Analog Quads.

The flexibility of sample sequencing in the Fusion AB architecture enables conditional sequences and
control of the sampling rate of each channel. For example, the designer can sample critical inputs
(requiring a higher sampling rate) more often than non-critical inputs. It is also feasible for the design to
change sampling sequence and/or rate of analog inputs during operation whenever required.
There is no automatic internal sequencing in the architecture shown in Figure 8-4. Therefore, the
CHNUMBER input of the MUX must be controlled and defined by the user’s design at all points

Figure 8-4 • Analog Block ADC and MUX Architecture

AV0
AC0
AG0
AT0

AV1
AC1
AG1
AT1
AV2
AC2
AG2
AT2

AV3
AC3
AG3
AT3
AV4
AC4
AG4
AT4

AV5
AC5
AG5
AT5
AV6
AC6
AG6
AT6

AV7
AC7
AG7
AT7
AV8
AC8
AG8
AT8

AV9
AC9
AG9
AT9

Analog
Quad 0

Analog
Quad 1

Analog
Quad 2

Analog
Quad 3

Analog
Quad 4

Analog
Quad 5

Analog
Quad 6

Analog
Quad 7

Analog
Quad 8

Analog
Quad 9

Analog MUX
(32 to 1)

Temperature
Monitor

Internal Diode
CHNNUMBER[4:0]

Digital Output to FPGA

ADC

12

These are hardwired
connections within
the Analog Quad.

31

0
1

VCC (1.5 V)

Pads

ATRETURN01

ATRETURN23

ATRETURN45

ATRETURN67

ATRETURN89
Revision 0 237

http://www.actel.com/documents/Fusion_DS.pdf

Designing the Fusion Analog System
throughout its implementation (e.g., Smartgen IP, CoreAI (Analog Interface) register space, and custom
logic).

Sample Rate and Sample Sequence Calculation
As the Fusion ADC can be shared among different channels (32 channels in all), the sample rate can be
calculated based on the system sampling rate or per-channel sampling rate (EQ 4 and EQ 5).

EQ 4

EQ 5

Example: Equal Weight and Equal Conversion Time
Each channel has a conversion time of 2 µs, as shown in Figure 8-5.

In this case, there are 10 samples, which take a total of 20 µs. Thus, the total system sampling rate is
10 / (20 µs) = 500 ksps.
Channel 1 sampling rate: (2 / 10) × 500 ksps = 100 ksps
Channel 2 sampling rate: (2 / 10) × 500 ksps = 100 ksps
Channel 3 sampling rate: (2 / 10) × 500 ksps = 100 ksps
Channel 4 sampling rate: (2 / 10) × 500 ksps = 100 ksps
Channel 5 sampling rate: (2 / 10) × 500 ksps = 100 ksps

Example: Unequal Weight and Equal Conversion Time
In this example, the channels are not equally weighted in the sampling sequences shown in Figure 8-6.

In this case, there are 10 samples that take a total of 20 µs, giving a total system sampling rate of
500 ksps (as above). However, the individual channel sampling rates are different.
Channel 1 sampling rate: (5 / 10) × 500 ksps = 250 ksps
Channel 2 sampling rate: (1 / 10) × 500 ksps = 50 ksps
Channel 3 sampling rate: (1 / 10) × 500 ksps = 50 ksps
Channel 4 sampling rate: (1 / 10) × 500 ksps = 50 ksps
Channel 5 sampling rate: (2 / 10) × 500 ksps = 100 ksps

Figure 8-5 • Equal Weight and Equal Conversion Time

Figure 8-6 • Unequal Weight and Equal Conversion Time

System Sampling Rate Total # of Samples
Total (conversion + turnaround) Time of All Samples
---=

Channel Sampling Rate Total # of Samples for a Channel
Total # All Samples

--- System Sampling Rate×=

2 4 6 8 10 12 14 16 18 20 μs0 μs

CH 2 CH 3 CH 5 CH 2 CH 4CH 1 CH 4 CH 1 CH 3 CH 5

2 4 6 8 10 12 14 16 18 20 μs0 μs

CH 1 CH3 CH 1 CH 5 CH 1CH 1 CH 2 CH 4 CH 5 CH 1
238 Revision 0

Fusion FPGA Fabric User’s Guide
Example: Unequal Weight and Unequal Conversion Time
In this example, channels have different conversion times and are not equally weighted in the sampling
sequence, as shown in Figure 8-7.

In this case, there are 12 samples in 20 µs, giving a total system sampling rate of 600 ksps.
Channel 1 sampling rate: (7 / 12) × 600 ksps = 349 ksps
Channel 2 sampling rate: (2 / 12) × 600 ksps = 99.6 ksps
Channel 3 sampling rate: (1 / 12) × 600 ksps = 49.8 ksps
Channel 4 sampling rate: (1 / 12) × 600 ksps = 49.8 ksps
Channel 5 sampling rate: (1 / 12) × 600 ksps = 49.8 ksps

Acquisition Time Calculation
Acquisition time (t_sample) specifies how long an analog input signal has to charge the internal capacitor
array. Figure 8-8 shows a simplified internal input sampling mechanism of a SAR ADC. The internal
impedance (ZINAD), external source resistance (Rsource), and sample capacitor (CINAD) form a simple RC
network. As a result, the accuracy of the ADC can be affected if the ADC is given insufficient time to
charge the capacitor. To resolve this problem, the user can either reduce the source resistance or
increase the sampling time by changing the acquisition time in the design or in the SmartGen GUI.

Using the ADC with Direct Input
When the Fusion ADC is driven by a direct input (the prescaler is not used), Actel recommends driving
the analog input pin with low source impedance (Rsource) for fast acquisition time. High source
impedance (Rsource) is acceptable, but the acquisition time will be increased.

Figure 8-7 • Unequal Weight and Unequal Conversion Time

2 4 6 8 10 12 14 16 18 20 μs0 μs

CH 2 CH3 CH 4 CH 5 CH 1 CH 1CH 1 CH 1 CH 1 CH 1 CH 2 CH 1

Figure 8-8 • Simplified Sample and Hold Circuitry

Sample and Hold

ZINAD

CINAD

Rsource
Revision 0 239

Designing the Fusion Analog System
EQ 6 can be used to approximate the acquisition time that can be entered in SmartGen. In this equation,
5ô is used as an example to approximate the acquisition time, but it is application-dependent. Based on
the acquisition time, SmartGen will provide the sample rate calculation using EQ 4 on page 238 and
EQ 5 on page 238. If the actual acquisition time is higher than the software setting, the settling time error
can affect the accuracy of the ADC, because the sampling capacitor is only partially charged within the
given sampling cycle, referred to as the acquisition period (t_sample).

Acquisition Time (t_sample) ~ 5 × (Rsource + ZINAD) × CINAD

EQ 6
Users can calculate the minimum actual acquisition time by using EQ 7:

VOUT = VIN(1 – e–t/RC)

EQ 7
For 0.5 LSB gain error, Vout should be replaced with (Vin – 0.5 × LSB Value):

(VIN – 0.5 × LSB Value) = VIN(1 – e–t/RC)

EQ 8
where VIN is the ADC reference voltage (VREFADC).
Solving EQ 8,

EQ 9
where R = ZINAD + Rsource and C = CINAD.
Examples are given in Table 8-2 and Table 8-3.

Using the ADC with Built-In Prescaler
When using the prescaler, the user can achieve the highest sampling rate by providing a recommended
10 µs acquisition time, which is the maximum settling time when prescaler is used with the ADC. Using
SmartGen, users can set the acquisition time in the software GUI so the corresponding sampling rate will
be calculated automatically. Users with other design flows must ensure the control logic is allocating
sufficient time for the ADC to perform a conversion that satisfies the accuracy requirement.

Table 8-2 • ADC Parameters – VIN = 2.56 V, R = 4000 Ω (Rsource ~ 0 Ω), and C = 18 pF

Resolution (bits) LSB Value (mV)
Min. Sample/Hold Time

for 0.5 LSB (µs)

8 10 0.449

10 2.5 0.549

12 0.625 0.649

Table 8-3 • ADC Parameters – VIN = 3.3 V, R = 4000 Ω (Rsource ~ 0 Ω), and C = 18 pF

Resolution (bits) LSB Value (mV)
Min. Sample/Hold Time

for 0.5 LSB (µs)

8 12.891 0.449

10 3.223 0.549

12 0.806 0.649

t RC ln
VIN

0.5 LSB Value×
---⎝ ⎠

⎛ ⎞×=
240 Revision 0

Fusion FPGA Fabric User’s Guide
Prescaler Selection
As mentioned in the "Analog-to-Digital Converter Background" section on page 231, the analog input
signals to the ADC must be mapped to the ADC reference voltage range. If the maximum value of an
analog input voltage is greater than or less than the ADC reference voltage, the embedded prescaler
feature can be used to amplify or attenuate the input voltage signal to match the input voltage range of
the ADC. In SmartGen design flows, designers can enter the expected voltage range, and the software
will configure the appropriate factors. If a design flow other than SmartGen is used, refer to Table 2-46,
“Prescaler Control Truth Table,” in the Fusion Family of Mixed-Signal Flash FPGAs datasheet to select
the appropriate scaling factor.

Analog Configuration MUX (ACM)
The FPGA core uses the Analog Configuration MUX to interface with the Analog Quad configuration
settings and Real-Time Counter (RTC) system. To use the Analog Quads, appropriate configuration
settings (scaling factor, polarity, prescaler usage, etc.) must be set before using these features. Each
Analog Quad has one byte of register space to store its configuration settings, and users can access
these registers via the ACM, which is part of the Analog Block Macro. Similarly, the RTC counter register
and match register can be accessed by the FPGA core via the ACM. Table 8-4 shows the ACM ports for
the FPGA core to interface with the Analog Quads and RTC system.
In a SmartGen design flow, the configuration setting in the GUI is translated into the corresponding
configuration bits for the Analog Quads and RTC registers. The configuration settings data is stored in
the embedded flash memory, and when the device is powered up or reset, the SmartGen IP loads the
configuration settings from the embedded flash memory into the corresponding registers. The Analog
Quads and RTC systems are functional after this initialization stage; INIT_DONE (active high) from the
SmartGen IP indicates the completion of the initialization stage.
With a different design flow, the Analog Quads and RTC registers must be configured. The configuration
data can be stored in the embedded FlashROM, flash memory, or core logic tiles.

Table 8-4 • ACM Interface

Port Name Type Description

ACMWDATA[7:0] Input Writing data from the FPGA core to the analog system

ACMRDATA[7:0] Output Reading the data from the analog system to the FPGA core

ACMADDRESS[7:0] Input Address

ACMWEN Input 0 for reading
1 for writing

ACMCLK Input Clock input from the FPGA (maximum frequency = 10 MHz)

ACMRESET Input Active-low asynchronous reset
Revision 0 241

http://www.actel.com/documents/Fusion_DS.pdf

Designing the Fusion Analog System
Figure 8-9 and Figure 8-10 show the ACM Read and Write operations. Refer to Table 2-44, “Analog
Configuration Multiplexer (ACM) Timing,” in the Fusion Family of Mixed Signal Flash FPGAs datasheet
for the corresponding timing parameters.

Figure 8-11 shows the block diagram of the Analog Block. The figure shows how the configuration byte
(B0–4) is connected to each block and how each block is interfaced with the user-accessible Analog
Block macro and the ADC. Note that the soft IP interface to the AB manages the configuration, making
connectivity transparent to the user.

Figure 8-9 • ACM Read Waveforms

Figure 8-10 • ACM Write Waveforms

ACMCLK

ACMADDRESS

ACMRDATA

A0 A1

tMPWCLKACM

tCLKQACM

RD0 RD1

ACMCLK

ACMADDRESS

ACMWDATA

A0 A1

tSUDACM tHDACM
D0 D1

ACMWEN

tSUAACM tHAACM

tHEACM
tSUEACM

Figure 8-11 • Analog Block

0

2

AC

Prescaler
IN OUT

Polarity
Gain 0–2

PwrDn PwrDn

G

Digital
Input
Buffer

Diff Amp
IN +

OUT
Polarity Polarity

PwrDn

IN –

CnvStrb

1

0

2

AT

Prescaler
IN OUT
Gain 0–2

G

Digital
Input
Buffer

Diff Amp
IN –

OUT

PwrDn

IN +

CnvStrb

1

AT
RTN

0

1

AV

Prescaler
IN OUT

Polarity
Gain 0–2

PwrDn

G

Digital
Input
Buffer

Voltage Monitor
Block Current Monitor Block Temperature Monitor

Block

Polarity

0

2

AG

OUT

On/Off

1

Gate Driver Block

3

Polarity
Drive

Chip Temp
Monitor

Note: x = 0 to 9

D
V_

EN
D

VO
U

T

B3
[5

]

B3
[7

]
B3

[6
]

B0
[3

]
Am

ux
_I

n[
0]

B1
[2

:0
]

B0
[5

]

B1
[3

]
Am

ux
_I

n[
1]

B3
[2

:0
]

B1
[4

]

C
M

_S
tr

Am
ux

_I
n[

2]
B2

[7
]

G
D

O
N

x

B3
[3

]
B3

[4
]

B2
[6

]
B2

[0
]

D
V_

EN
D

VO
U

T

B1
[5

]

B1
[7

]
B1

[6
]

B2
[3

:2
]

B0
[4

]

B0
[7

]

D
V_

EN

D
VO

U
T

B0
[6

]
B0

[2
:0

]

242 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf

Fusion FPGA Fabric User’s Guide
Refer to the Analog Quad ACM Byte Assignment table in the Fusion Family of Mixed-Signal Flash
FPGAs datasheet for the explanation of each bit setting and its corresponding configurations.
Refer to the ACM Address Decode Table for Analog Quad table in the Fusion Family of Mixed-Signal
Flash FPGAs datasheet for the corresponding address for each Analog Quad and RTC register.
Revision 0 243

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

9 – Fusion Design Solutions and Methodologies

With a rich mixture of analog and digital features, coupled with the ability to build mixed-signal designs
either in HDL or with a processor, the Actel Fusion® mixed-signal FPGA offers designers the ultimate in
flexibility. However, with product flexibility comes design complexity. Actel offers several design solutions
that make the design process simple for all users.

HDL Design with Analog System Soft IP
The Analog System Soft IP Design Flow is an IP-based design method for HDL designs, which
establishes a backbone to interconnect the Fusion FPGA fabric, the Analog System, the embedded flash
memory block, and other peripherals. Figure 9-1 on page 246 provides an overview of the design flow.
The Analog System Soft IP Design Flow offers a number of advantages to users. All the required soft IP
cores are free. Sample sequence control, averaging/filtering and threshold response functions are built-
in and specified by an intuitive GUI in Actel Libero® Integrated Design Environment (IDE). IP
configuration and connectivity are tightly integrated into SmartDesign and Libero IDE, enabling users to
rapidly and seamlessly implement the complete analog and peripheral interface. Users do not have to
write up their own code to control the analog and flash memory systems.
Users have several options for integrating the Analog System into their design, but at the heart of it all
are the Analog System Builder and Flash Memory System Builder from Libero IDE. The Analog System
Builder creates VHDL or Verilog source code and the configuration file to be stored in the embedded
flash memory. Users can invoke the Analog System Builder and Flash Memory System Builder, along
with the generators for other Fusion and IP cores, from the Cores Catalog window in Libero IDE, or
modify an existing configuration from within SmartDesign. Other Fusion-specific core generators in
Libero IDE include the No-Glitch MUX (NGMUX), RC Oscillator, Crystal Oscillator, SRAM, FIFO,
FlashROM, I/Os, and Voltage Regulator Power Supply Monitor (VRPSM).
SmartDesign is a unique block-diagram-based design entry tool introduced in Libero IDE v8.0 that gives
users the capability to visually create block-level system designs and automatically abstract the result
into synthesis-ready source code. Designers can build their entire design in SmartDesign. For Fusion
designs, SmartDesign identifies required connections between blocks in the Analog System and
automatically stitches them together. SmartDesign also provides a connectivity grid, which enables users
to graphically perform port mapping across all the blocks in the design. If the Analog System is used in
SmartDesign, SmartDesign will audit the connections and any updates made to the Analog System. For
example, if the Analog System is regenerated, the tool will remind the user that the NVM client must be
regenerated.
If users do not use SmartDesign, they can generate the Analog System and required embedded flash
memory clients from the Libero IDE Cores Catalog window. They must then manually stitch the Fusion
blocks together with the user HDL code.
Note: Any time the Analog System is regenerated, the Analog System client for the embedded flash

memory must also be regenerated from the Flash Memory System Builder in Libero IDE.
After building the HDL design, users should take their design through the rest of the FPGA design flow—
synthesis, post-synthesis simulation, and Designer functions including compile, place-and-route,
package pin assignment, and static timing analysis—and then perform back-annotated simulation. Once
the design is finalized and timing has been verified, the design is ready to be programmed into the FPGA
using the FlashPro programmer and software. The "Design State Management in SmartDesign" section
on page 247 and the "Changing Memory Content" section on page 247 discuss how to handle design
iterations for Fusion within Libero IDE.
FlashPoint provides the interface to generate programming files for Fusion devices. The FlashROM,
Fusion embedded flash memory, and security settings can be reset and reprogrammed using FlashPoint,
which is integrated into both Designer and the FlashPro software.
With FlashPoint integrated with FlashPro, users can modify the contents of the embedded flash memory
or the FlashROM without using Designer or Libero IDE. By default, Designer’s program file generation
Revision 0 245

Fusion Design Solutions and Methodologies
from FlashPoint generates a programming database file (PDB) file instead of a STAPL file. A PDB file is
required to enable users to make modifications using the FlashPro software. When users need to change
the programming settings in FlashPro, they can simply click the Configure PDB button. All modifications
are stored in the PDB file, and FlashPro uses the information to program the device with the appropriate
settings. Libero IDE/Designer does not have to be open to make these modifications.

Figure 9-1 • Analog System Soft IP Design Flow

Libero IDE:
Create Project for

Fusion

Is There an
AS in

the Design?

Libero Analog
System Builder:

Generate AS

AS = Analog System
EFM = Embedded Flash Memory
FROM = User FlashROM

Flash Memory
System Builder:

Generate EFM with
Analog Client

SmartDesign or
HDL: Create Top

Level and Connect
All Macros

WaveFormer Lite:
Generate Analog
Testbench File

Run RTL
Simulation

Synthesis /
Post-Synthesis

Simulation

Flash Memory
System Builder:

Generate EFM with
Non-Analog Client

Changes Needed
to Analog System?

Yes

Designer:
Compile,

Place-and-Route,
Pin Mapping

Static Timing
Analysis /

Back-Annotated
Simulation

Designer:
Generate PDB

Programming File

FlashPoint:
Program Device,
FROM, and EFM

Is There an
EFM Client in
the Design? No

No

Yes

Yes

No Changes Needed
to EFM or FROM?

Yes
246 Revision 0

Fusion FPGA Fabric User’s Guide
Design State Management in SmartDesign
When any component with instances in a SmartDesign design is changed, all instances of that
component detect the change. If the change only affects the memory content, user changes do not affect
the component's behavior or port interface, and the user’s SmartDesign design does not need to be
updated. If the change affects the behavior of the instantiated component but the change does not affect
the component's port interface, the design must be resynthesized, but the SmartDesign design does not
need to be updated.
If the port interface of the instantiated component is changed, the user must reconcile the new definition
for all instances of the component and resolve any mismatches. If a port is deleted, SmartDesign will
remove that port and clear all the connections to that port when the user reconciles all instances. If a new
port is added to the component, instances of that component will contain the new port when the user
reconciles all instances. The affected instances are identified in the SmartDesign design in the
Connectivity Grid and the Canvas with an exclamation point. Right-click an instance and choose Update
With Latest Component.
Note: For HDL modules instantiated in a SmartDesign design, if the modification causes syntax errors,

SmartDesign does not detect the port changes. The changes will be recognized when the syntax
errors are resolved.

Changing Memory Content
For certain cores such as Analog System Builder and Flash Memory, it is possible to change the
configuration such that only the memory content used for programming is altered. In this case, Libero
IDE only invalidates the programming file, but synthesis, compile, and place-and-route results remain
valid.
When the user modifies the memory content of a core—such as Analog System Builder or RAM with
Initialization—that is used by a Flash Memory core, the Flash Memory core indicates that one of its
dependent components has changed and that it needs to be regenerated. This indication is shown in the
Design Hierarchy or Files tab. In these cases, Libero IDE indicates that the programming file is out of
date, but synthesis and place-and-route remain valid. The user only needs to regenerate the
programming file in FlashPoint.
If any core is regenerated when the HDL file is not modified, the Libero IDE Project Manager design state
will not invalidate synthesis or place-and-route results. For these scenarios, the new embedded NVM
data file (EFC file) will be used to update the programming file within Libero IDE, or can be imported into
FlashPro. Some specific cores are listed below:

• RAM with Initialization core – The memory content can be modified without invalidating synthesis.
• Analog System Builder core – The following can be modified without invalidating synthesis:

– Existing flag settings: threshold levels, assertion/deassertion counts, OVER/UNDER type
– Modifying sequence order or adding sequence operations
– Changing acquisition times
– Resistor value for the current monitor
– RTC time settings
– Gate driver source current

• Flash Memory System Builder core – The following can be modified without invalidating
synthesis:
– Modifying memory file or memory content for clients
– JTAG protection for initialization clients
Revision 0 247

Fusion Design Solutions and Methodologies
Microprocessor/Microcontroller Design
Actel offers several microprocessor and microcontroller solutions for customers, all of which are tightly
integrated with Actel Libero IDE, optimized for Actel FPGA architecture, and supplied with a complete
toolset for code compile and debug. Here is a summary of Actel’s available solutions:

• Cortex-M1: The first ARM® processor developed specifically for implementation in FPGAs.
Cortex-M1 is available without license fees or royalties for use in Actel M1 ProASIC3/E and
Fusion devices.

• CoreMP7: CoreMP7 is a soft IP version of the ARM7TDMI-S™ that is optimized for use in Actel
M7 Fusion and ProASIC3/E flash-based FPGAs. CoreMP7 is available with no license fees or
royalties—bringing ARM7™ to the masses.

• Core8051(s): Both Core8051 and Core8051s are code-compatible with the industry-standard
8051 architecture, allowing designers to utilize existing code while shortening design time.
Further, both are single-cycle execution architectures, executing one instruction per clock cycle.
Core8051 has the traditional SFR memory space and includes the standard 8051 peripherals,
and Core8051s replaces the traditional SFR interface with an Advanced Peripheral Bus (APB)
interface, allowing the customization of the 8051 peripheral set.

• CoreABC: CoreABC (AMBA [Advanced Microcontroller Bus Architecture] Bus Controller) is the
smallest and first RTL-programmable soft microcontroller available for FPGAs. The free controller
resides on the APB, can be implemented in as few as 241 tiles, and can be used in the smallest
Actel devices.

• LEON3: LEON3 is a 32-bit processor based on the SPARC V8 architecture, optimized for use in
Actel FPGAs. A fault-tolerant version of the LEON3 processor is available for system-critical
applications.

• AMBA: Actel supplies a full range of subsystem IP cores: AMBA bus interfaces, memory
controllers, timers, and others. The subsystem IP connects to the processor via the AMBA bus
and is available for free in CoreConsole.

For the above ARM-based processors and CoreABC, Actel offers CoreAI (Analog Interface) to interface
with the Analog System. CoreAI allows for simple control of the analog peripherals within Fusion. Control
can be implemented with an internal or external microprocessor or microcontroller, or with user-created
custom logic within the FPGA fabric. The AMBA APB slave interface is used as the primary control
mechanism within CoreAI, as shown in Figure 9-2. CoreAI instantiates the Analog Block (AB) macro,
which includes the Analog Configuration MUX (ACM) interface, Analog Quads, and Real-Time Counter
(RTC). Several aspects of CoreAI can be configured using top-level parameters (Verilog) or generics
(VHDL). For a detailed description of the parameters/generics, refer to the CoreAI Handbook.

Figure 9-2 • Processor System Using CoreAI

Processor

UART GPIO

Interrupt
Controller

Static Memory
Controller

Watchdog

AHB2APB
Bridge

AHB

APB

Timers
CoreAI

Flash
Memory

AB

A
nalog I/O

AB is logically but not physically
implemented inside of CoreAI.

Fusion
Hardware

RTL IP
Components
248 Revision 0

http://www.actel.com/ipdocs/CoreAI_HB.pdf

Fusion FPGA Fabric User’s Guide
Tools Overview
Actel offers FPGA development tools for microprocessor and microcontrollers, and a complete
development and debug environment for Actel’s microprocessor solutions (Figure 9-3). With Actel
solutions, users can shorten development time using CoreConsole IP Deployment Platform (IDP), which
includes a graphical user interface and a block stitcher to simplify the assembly of IP cores for embedded
applications in FPGAs. This tool integrates with Actel Libero IDE, which includes Actel Designer software
for place-and-route. To enable Cortex-M1 and CoreMP7 users to debug the programs they write for their
processors, there is optional hardware within the core that implements JTAG debug features, such as
breakpoints. Various third-party tools, like the ARM RealView® Developer Kit and Actel’s own free
SoftConsole, provide tools for building, debugging, and managing software development projects that
run on the processor. The toolkit, available from Actel, contains an optimized C compiler, debugger,
assembler, and instruction set simulator. For an overview of the processor design flow, refer to the Actel
Processor Design Flow webcast. With a processor built into the Fusion FPGA fabric, the Fusion
embedded flash memory can be used for program storage, which can in turn be executed out of internal
or external memory. Implement the appropriate IP in CoreConsole for an internal or external RAM
interface. Use the Data Storage Client from the Flash Memory System Builder in Libero IDE to create a
partition in the flash memory and FlashPoint to load program code during device programming.
For CoreABC-based designs, users can choose either a soft or hard implementation of the core. In the
soft implementation, CoreABC operates on assembly instruction code residing in flash memory and
executed either directly out of flash or from local SRAM. In the hard implementation, CoreABC becomes
a VHDL- or Verilog-coded state machine derived from assembly code. For either implementation, Actel
recommends that users configure and generate the core using CoreConsole. With CoreConsole, users
can easily connect the required peripherals and build the subsystem including CoreAI on the APB. Once
the CoreConsole component including CoreABC and CoreAI is generated, users should follow a
standard HDL FPGA design flow. Note that if CoreABC soft mode is used, users must create an
initialization client for the RAM from the Embedded Flash Memory, using the Flash Memory System
Builder in Libero IDE. The initialization client can be created by loading the memory contents file that is
automatically created by CoreConsole during generation of CoreABC. For more information on building a
design with CoreABC, refer to the Fusion Starter Kit User’s Guide and Tutorial.

Figure 9-3 • Fusion Design Flow

D
es

ig
n

S
ta

rt

Stitch System
Together

Configure
IP Cores

Develop
or Acquire
User IP

Actel
IP

Vault

Determine HW and
SW Requirements

Fail

Circuit
Synthesis

Behavioral
Simulation

Pass

Timing-Driven
Simulation

Compile

Layout

Back-Annotate

Encrypted
PDB/STAPL

HW Design

Edit Sub-Block IP
and Testbench

Pass

SW Simulation
and Debug

Develop/Edit
SW Program

SW Design

Fail

Fail

Program FPGA
Device HW

SW Debug and
Coverification

Program SW to
FPGA Device

Pass Design
Complete

Development

C
or

eC
on

so
le

SoftConsole
and RealView

Board

Libero IDE

C Compile

Microprocessor
Flow
Revision 0 249

http://www.actel.com/support/webcasts/default.aspx?f=processor_designflow
http://www.actel.com/support/webcasts/default.aspx?f=processor_designflow
http://www.actel.com/documents/Fusion_StartKit_UG.pdf

10 – Interfacing with the Fusion Analog System:
Processor/Microcontroller Interface

Objective
This chapter describes the applications in which a microprocessor or microcontroller is the core of the
design that controls the Fusion Analog Block (AB). The design’s microprocessor/microcontroller interacts
with CoreAI (Analog Interface) as the Analog Block interface and does not access the AB macro directly.
The design in this chapter uses CoreAI within Actel CoreConsole IP Deployment Platform (IDP).
However, the contents and usage of this chapter are not limited to CoreConsole users.

CoreAI

Introduction
CoreAI is Actel’s Analog Interface core designed to facilitate access to the Actel Fusion® Analog Block
(AB) by a microprocessor/microcontroller. CoreAI provides register/address space that can be written to
or read from by a microprocessor/microcontroller to configure, control, and interact with the Analog
Block. For more information on CoreAI specifications and usage, refer to the CoreAI Handbook. This
section describes how the microprocessor/microcontroller accesses and configures CoreAI to implement
voltage, current, and temperature monitoring, as well as gate-driving applications.

CoreAI Settings in CoreConsole
CoreAI can be configured by writing the desired values into all required CoreAI address spaces. CoreAI’s
parameters and generics, used by the core’s source code, can be set within CoreConsole. Refer to the
CoreAI Parameter/Generic Descriptions table in the CoreAI Handbook for a complete list of parameters.

Analog Configuration MUX (ACM) Clocking, Interrupt, and Internal
Temperature Monitor Configuration
The first step of CoreAI configuration in CoreConsole is the ACM clock divider setting, shown in
Figure 10-1. The ACM clock (ACMCLK) maximum frequency is limited to 10 MHz, so the user must
select a setting that will ensure that ACMCLK is not greater than 10 MHz.

Figure 10-1 • ACM Clock Configuration in CoreConsole
Revision 0 251

http://www.actel.com/ipdocs/CoreAI_HB.pdf
http://www.actel.com/ipdocs/CoreAI_HB.pdf

Interfacing with the Fusion Analog System: Processor/Microcontroller Interface
In the ACM clock divider setting, select the dividing factor to be used based on EQ 1:

FACMCLK = FPCLK / n

EQ 1
where n = 2, 4, 8, or 16; FACMCLK is the frequency of the ACMCLK; and FPCLK is the frequency of PCLK,
the peripheral bus clock usually connected to the design main system clock.
The PCLK frequency is essentially the speed of the Advanced Peripheral Bus (APB) and the clock speed
of the design’s microprocessor/microcontroller. For example, if the system clock speed is designed to be
more than 20 MHz, the ACM clock divider factor cannot be set to two, since it correlates to an ACM clock
frequency of more than 10 MHz.

Analog Quad Configuration
The main part of CoreAI configuration in CoreConsole is dedicated to the Analog Quad settings
(Figure 10-2). Each quad consists of four settings—AV, AC, AT, and AG—and represents the Fusion
device architecture.

The CoreConsole GUI settings facilitate the configuration of the core’s internal register space
(initialization). The settings in CoreConsole set the parameters and generics of the CoreAI source code
and create information to be used in the Analog Block’s initialization. CoreConsole will export all files
used for initialization to the software export folder. Acm_defines.h contains definitions for the values used
to configure the ACM (defined per user settings in CoreConsole) in the Analog Block of a Fusion device.
Note: For CoreABC (AMBA [Advanced Microcontroller Bus Architecture] Bus Controller) users, if the

APBWRT ACM command is enabled, a Verilog or VHDL file will be generated. This file contains a
lookup table that will configure the ACM with user-specified settings. Initialization files and their
usage are discussed in further detail in "Analog Configuration MUX Initialization" on page 256.
The user can also configure the ACM bus without the CoreConsole-generated initialization files.

The following describes the Analog Quad software GUI settings and their effects on CoreAI
parameters/generics:

• AVn input: The AV configuration drop-down menu lists all supported analog input voltage ranges
and polarities for ACM initialization purposes. The main categories for AV configuration are as
follows:
– Analog voltage input enabled/disabled: If disabled, the specified analog AV input of the

Analog Block will be tied LOW internally and will not be listed as an accessible CoreAI port in
the code.

– AV input used as digital input: If used as a digital input, the corresponding DAVOUT output
port will be listed as a top-level port of the core, to be connected to the digital input of your
design.

• ACn input: The AC configuration drop-down menu supports all analog input voltage ranges and
polarities. The basic settings are as follows:
– AC pin disabled: If disabled, the specified analog AC input of the Analog Block will be tied

LOW internally and will not be listed as an accessible CoreAI port in the code.
– AC pin used as current monitor: If the AC pin is set to be used as a current monitor or

voltage monitor, the CFG_ACx bits will be set as described in the CoreAI Handbook. In
current monitoring applications, sampling the current from an Analog Quad (configured as
current monitor) is controlled by the corresponding CMSTB input. CoreConsole gives the
option to configure the CMSTB input of a current monitoring quad to be either register-driven

Figure 10-2 • Analog Quad Configuration in CoreConsole
252 Revision 0

http://www.actel.com/ipdocs/CoreAI_HB.pdf

Fusion FPGA Fabric User’s Guide
and controlled by the software, or hardware-driven. If configured to be hardware-driven, an
HD_CMSTB port is added to the CoreAI input pins and should be controlled by the user logic
in the FPGA fabric.

– AC pin used as voltage monitor: If the AC pin is set to be used as a voltage monitor, the
CFG_ACx bits will be set as described in the CoreAI Handbook.

– AC input used as digital input: If used as a digital input, the corresponding DACOUT output
port will be listed as a top-level port of the core, to be connected to the digital input of your
design.

• ATn input: In the AT configuration drop-down menu, the following parameters can be set:
– AT input enabled as temperature monitor or completely disabled: If disabled, the

specified analog AT input of the Analog Block will be tied LOW internally and will not be listed
as an accessible CoreAI port in the code.

– AT input used as digital input: If used as a digital input, the corresponding DATOUT output
port will be listed as a top-level port of CoreAI, to be connected the digital input of your design.

In temperature monitoring applications, sampling temperature from the AT input pin (configured
as temperature monitor) is controlled by the corresponding TMSTB input. CoreConsole gives the
option to configure the TMSTB input of a temperature monitoring quad to be either a software-
driven or a hardware-driven register space. If configured to be hardware-driven, an HD_TMSTB
port is added to the CoreAI input pins. The HD_TMSTB port must be controlled by the user’s logic
in the FPGA fabric. A similar implementation is used in the CoreAI module for internal
temperature monitoring.

• AGn output: In the AG configuration drop-down menu, the following parameters can be set:
– AG output disabled: If disabled, the specified AG output will be unused and omitted from the

top-level CoreAI ports. The corresponding GDON input of the Analog Block will be tied LOW
internal to the core.

– AG output enabled and driven by software-controlled register (software-driven): If the
AG output is enabled and driven by software, the AG output pin will turn on or off
(consequently turning the external PMOS or NMOS on and off) when 1 or 0 is written to the
desired location of the analog-to-digital converter (ADC) control registers.

– AG output enabled and driven by FPGA core logic (hardware-driven): If the AG output is
enabled and driven by hardware, the corresponding HD_GDONx input of CoreAI will be
added to the top-level ports of the core, and the AG output pin will follow the logic that drives
that HD_GDON input of CoreAI. In this case, the appropriate GDON bit in ADC control
register 5 will be set to 1 (enabled) during initialization of the CoreAI.

ADC Settings
The main ADC settings can be configured in CoreConsole:

• Mode
• TVC
• STC (Sample Time Control—used to define sampling time of ADC: {2 to 257} × ADC clock period)
• ADCRESET
• ADCSTART
• Power Down
• VAREF Selection
• ADC Channel Number Control

The purpose and specific usage of each setting are described in the Analog-to-Digital Converter section
of the "Designing the Fusion Analog System" section on page 231 and in the CoreAI Handbook. These
settings can be controlled in two manners: software- or hardware-driven. When software-driven, these
settings are controlled by an APB register/address space in CoreAI according to the address mapping
described in the CoreAI Handbook. When hardware driven, these settings are controlled by direct inputs
(e.g., HD_TVC) to the core and need to be managed accordingly by the user design in the FPGA fabric
or tied to specific values.
Revision 0 253

http://www.actel.com/ipdocs/CoreAI_HB.pdf
http://www.actel.com/ipdocs/CoreAI_HB.pdf
http://www.actel.com/ipdocs/CoreAI_HB.pdf

Interfacing with the Fusion Analog System: Processor/Microcontroller Interface
When the Analog Block (ADCSTART) and ADC (ADCRESET) are configured as software-driven, the
ADCSTART and ADCRESET registers are self-clearing, and ADCSTART or ADCRESET can be initiated
by writing 1 to the specific register address. These registers will clear themselves and be ready for the
next ADCSTART or ADCRESET request with no need for the user to set these registers back to 0 prior
to the next request. The self-clearing functionality does not exist when ADCSTART or ADCRESET are
hardware-driven, and these inputs must be reset to 0 before issuing the next request.

Clocking Scheme
There are four main clock domains in a basic mixed-signal Fusion design: the system clock (SYSCLK),
ACMCLK, ADCCLK, and the initialization clock.
Any basic, functional mixed-signal Fusion design that uses Analog Quads needs to interface with the
ACM and ADC. Besides the frequency requirements of ACMCLK and ADCCLK, there will be areas in
which data is transferred from one clock domain to another between SYSCLK and ACMCLK or ADCCLK.

SYSCLK
The system clock (SYSCLK) is the microprocessor clock. When CoreABC (or any other
processor/controller) and CoreAI are used together, SYSCLK and PCLK (the APB interface clock) are
normally connected together as the overall system clock.

ACMCLK
ACMCLK is the clock input to the ACM used for configuration/initialization of the Analog Quads. The
ACMCLK frequency is limited to 10 MHz. CoreAI uses an internal clock divider that divides the input
SYSCLK by a user-defined factor and drives it to the ACMCLK input of the Analog Block. When CoreAI is
used as an APB peripheral to the microprocessor, ACMCLK will be seamless if the PCLK / n factor is set
appropriately in the CoreAI settings to limit the ACMCLK frequency to below 10 MHz.

ADCCLK
ADCCLK is the clock input to the Analog Block used by the ADC. ADCCLK is used for internal ADC
operations and serves as a reference for determining the conversion time of the ADC (through the STC
setting). The ADCCLK maximum frequency is 10 MHz. An internal clock divider inside the Analog Block
is used to divide the input system clock (SYSCLK) and generate the ADCCLK input to the ADC. The
internal divider value is configurable through the 8-bit TVC register, where TVC can be set from 0 to 255
(EQ 2):

ADCCLK = SYSCLK / (4 × (1 + TVC))

EQ 2
Setting TVC to 0 sets the ADCCLK frequency to the SYSCLK frequency divided by four, and the
ADCCLK-to-SYSCLK division ratio increases in steps of four as the TVC value increases. This is
important if the design requires ADCCLK to run at specific speed to maintain a certain sampling rate. For
example, if the ADC is required to run at 10 MHz, the SYSCLK input to the Analog Block should be
40 MHz (TVC = 0), 80 MHz (TVC = 1), 120 MHz (TVC = 2), etc. If a required SYSCLK frequency does
not result in the determined ADCCLK frequency (governed by EQ 2), SYSCLK can be fed to the Fusion
CCC to generate an auxiliary SYSCLK signal with the desired frequency. This auxiliary SYSCLK signal
can then drive the Analog Block. Use EQ 2 and appropriate TVC settings to determine the appropriate
frequency of the auxiliary SYSCLK that will generate the desired ADCCLK frequency.

Initialization Clock
Typically in microprocessor-based applications, the processor’s program code is stored in a nonvolatile
memory, used during power-up boots. If the microprocessor program code is stored in the Fusion
embedded flash memory, clocking the embedded flash memory is an important part of the design’s
clocking scheme. If the embedded flash memory is used to store the processor’s program code, there
are two general options for the processor to access the code:
254 Revision 0

Fusion FPGA Fabric User’s Guide
• Accessing the embedded flash memory directly. The performance of SYSCLK is limited by the
speed of the embedded flash memory. In this scheme the embedded flash memory clock and
SYSCLK are driven by the same signal.

• Initializing embedded SRAM blocks with the contents of the embedded flash memory and running
the processor’s program from SRAM. The contents of the SRAM should be initialized by the
embedded flash memory (power-up initialization). The memory initialization clients can be
created using Actel Libero® Integrated Design Environment (IDE). The dual-port SRAM has one
port connected to the embedded flash memory and one port connected to the microprocessor.
The embedded flash memory (the initialization part of the design) is clocked separately from the
operational part of the design. The initialization clock (INIT_CLK) input of the initialization client is
limited to 10 MHz maximum frequency. Therefore, if the SYSCLK frequency is more than
10 MHz, INIT_CLK should be driven separately. The Fusion CCC can be used to generate
INIT_CLK with a frequency less than 10 MHz.
When CoreABC is the system’s microcontroller, the instruction program SRAMs are instantiated
within the CoreABC module exported from CoreConsole, and the clocking scheme, shown in
Figure 10-3, can be used to ensure that the initialization of the SRAM from flash memory is
performed by a clock of less than 10 MHz. Once the initialization is completed, INIT_DONE will
assert (active high), and the design runs from the high-speed system clock.

The clocking architecture shown in Figure 10-3 uses an NGMUX block as the multiplexer to
switch between the high- and low-speed clocks. The usage of the NGMUX macro is to prevent
glitches on the clock output of the MUX when switching between the two clock inputs. Refer to the
No-Glitch Multiplexer (NGMUX) section of the "Fusion Clock Resources" section on page 107 for
more information about the NGMUX.

Figure 10-3 • Clocking Scheme when Initializing SRAM with CoreABC Instructions

NGMUX

CoreABC

Flash Memory
Initialization Client

Initialization
Ports

SYSCLK

INIT_CLK

INIT_DONE

High Speed Clock

Low Speed Clock
(<10 MHz)
Revision 0 255

Interfacing with the Fusion Analog System: Processor/Microcontroller Interface
Analog Configuration MUX Initialization
The ACM is a register space in the Analog Block used to configure the Analog Quads and the Real-Time
Counter (RTC) architecture with the user’s specification. Since the configuration scheme is stored in
registers, the ACM needs to be initialized after each power-up. When using CoreAI as the interface to the
Analog Block, the initialization of the ACM should be done in two steps:

1. Reset the ACM register space to put unused Analog Quads into a known mode.
2. Configure used Analog Quads (and RTC if used in the design) to desired specification.

Note: In addition to ACM initialization, the ADC needs to be calibrated after power-up for correct
functionality; see "ADC Configuration and Calibration" on page 259.

ACM Reset
The ACM registers can be reset by activating the active-high ACMRESET bit of the CoreAI register
space.1 When configuring CoreAI, this input is controlled by bit 0 of the ACM control/status register. The
ACM can be reset by writing 1 to this bit. Note that bit 0 of the ACM control/status register is self-clearing:
when written with 1, it will clear itself; it does not need to be written with 0 to clear it. The ACM
control/status register is designed to be located at address 0x00 of the CoreAI internal register address
map.

ACM Initialization
Before a design enters the operational phase, the ACM must be initialized with the desired configuration
for the Analog Quads and/or RTC registers. When CoreConsole generates all the necessary files for a
microprocessor-based design, it also generates the files to be used for ACM initialization.
There are two files, found in the SoftwareExport folder of the CoreConsole directory, that can be used for
ACM initialization: acm_defines.h and quads_acm_cfg.h. These two files contain information on
initialization values for different ACM address spaces per user entries in the CoreAI settings within
CoreConsole. These files can be referenced by the general microprocessor program design to be used
for initialization prior to entry into operational sections.
The use of the above-mentioned files is optional. The user can manually write to the desired ACM
address space (from a microprocessor/microcontroller through the APB into CoreAI) with values that will
initialize the targeted Analog Quads and/or RTC registers to the desired configuration.
Note: When writing to ACM registers, the design should check the ACM status register to ensure that the

previous ACM actions (write, read, or reset) are completed and that the ACM is ready to be
accessed again.

1. Note that the ACMRESET input to the Analog Block is active low. To reset the ACM in the CoreAI register space, the ACM
RESET bit should be set to 1.
256 Revision 0

Fusion FPGA Fabric User’s Guide
ACM Initialization Specific to CoreABC
In addition to the initialization files and methodology described above, if the APBWRT ACM instruction is
activated in the CoreABC settings in CoreConsole, CoreConsole will export an HDL file named
acmtable.vhd. This file can be found in the CoreABC/RTL folder within the Libero IDE project. Below is
an example of an amctable.vhd file generated by CoreConsole:
-- ***/
-- Copyright 2007 Actel Corporation. All rights reserved.
-- IP Solutions Group
--
-- ANY USE OR REDISTRIBUTION IN PART OR IN WHOLE MUST BE HANDLED IN
-- ACCORDANCE WITH THE ACTEL LICENSE AGREEMENT AND MUST BE APPROVED
-- IN ADVANCE IN WRITING.
--
-- File: INSTRUCTIONS.vhd
--
-- Description: Simple APB Bus Controller
-- ACM Lookup table
--
-- Rev: 2.3 01Mar07 IPB : Production Release
--
-- Notes:
--
-- ***/

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

use work.support.all;

entity ACMTABLE is
generic (ID : integer range 0 to 9;

TM : integer range 0 to 99
);

port (ACMADDR : in std_logic_vector(7 downto 0);
ACMDATA : out std_logic_vector(7 downto 0);
ACMDO : out std_logic

);
end ACMTABLE;

architecture RTL of ACMTABLE is

begin

-- This is dummy data used for testing

process(ACMADDR)
variable ADDRINT : integer range 0 to 255;
begin

ADDRINT := conv_integer(ACMADDR);
ACMDO <= '1';

if TM>0 then
case ADDRINT is

when 0 to 99 => ACMDATA <= not ACMADDR;
when 101 to 255 => ACMDATA <= not ACMADDR;
when others => ACMDATA <= (others =>'-'); ACMDO <= '0';

end case;
end if;

if TM=0 then
-- CCDirective Insert code
Revision 0 257

Interfacing with the Fusion Analog System: Processor/Microcontroller Interface
--ACM lookup table for CoreABC_00(ID=0) with CoreAI_00
if ID=0 then

case ADDRINT is
when 1 => ACMDATA <= conv_std_logic_vector(16#83#, 8);
when 2 => ACMDATA <= conv_std_logic_vector(16#82#, 8);
when 5 => ACMDATA <= conv_std_logic_vector(16#82#, 8);
when 7 => ACMDATA <= conv_std_logic_vector(16#80#, 8);
when 9 => ACMDATA <= conv_std_logic_vector(16#83#, 8);
when 11 => ACMDATA <= conv_std_logic_vector(16#80#, 8);
when 13 => ACMDATA <= conv_std_logic_vector(16#82#, 8);
when 15 => ACMDATA <= conv_std_logic_vector(16#80#, 8);
when 17 => ACMDATA <= conv_std_logic_vector(16#82#, 8);
when 19 => ACMDATA <= conv_std_logic_vector(16#80#, 8);
when others => ACMDATA <= (others => '-'); ACMDO <= '0';

end case;
end if;

end if;

end process;

end RTL;

The last portion of the acmtable.vhd file defines the ACM address spaces and the corresponding values
used to initialize certain Analog Quads to user specifications.
If the user decides to perform all the initialization within the CoreABC program code without utilizing any
logic tiles from the FPGA fabric, this last portion of the acmtable.vhd file can be used to determine the
constant values in the ACM write commands. The following example shows a sample of a CoreABC
program in which location 1 of the ACM address space is initialized with 83h, as defined in the above
acmtable.vhd:
// The following example assumes that CoreAI is in slot 0 of the APB and CoreABC is the
// bus master. Refer to the table "CoreAI Internal Register Address Map" in the CoreAI
// Handbook for ACM address mapping. Write 1 (as ACM ADDRESS) to address 0x04 of the
// CoreAI register space.
APBWRT DAT 0 0x04 1
// Write 0x83 into ACM DATA of CoreAI register space. This will result in writing 0x83
// into address 1 of ACM address space.
APBWRT DAT 0 0x08 0x83
CALL $WAIT ACM_WRITE
$WAIT_ACM_WRITE

// Read ACM STATUS register of CoreAI
APBREAD 0 0x00
// Check to see if bit 4 of ACM status is cleared (write busy)
BITTST 4
// Remain in the loop if bit 4 is not cleared yet
JUMP IFNOT ZERO $WAIT_ACM_WRITE
RETURN

In the above example, the WAIT_ACM_WRITE function ensures that the write into ACM register space is
completed before proceeding to the next ACM write instruction.
The acmtable.vhd file represents a MUX architecture where the output value is determined by the
corresponding ACM address, which acts as the select lines. If the user intends to use the APBWRT ACM
command in the design, this MUX can be implemented in the FPGA fabric (using tiles) and can be
controlled by the CoreABC program to initialize ACM registers.
The following example shows the usage of the APBWRT ACM instruction in CoreABC to initialize the
ACM using ACM table files:
// The following example assumes that CoreAI is in slot 0 of the APB and CoreABC is the
// bus master. Refer to the table "CoreAI Internal Register Address Map" in the CoreAI
// Handbook for ACM address mapping.
// Only Analog Quads are being initialized in this example (no RTC). According to the
// "ACM Address Map for Configuring Analog Quads and RTC" table in the CoreAI
// Handbook, the maximum ACM size for configuration is assumed to be 28h.
258 Revision 0

Fusion FPGA Fabric User’s Guide
$WaitRegProg
CALL $WaitACMReady
// Write accumulator value in the ACM Address register of CoreAI
APBWRT ACC 0 0x04
// Write the value from acmtable file into ACM Data register and
// start an ACM write
APBWRT ACM 0 0x08
// Increment accumulator
INC
// Compare accumulator to 0x28
CMP 0x28
JUMP IFNOT ZERO $WaitRegProg

$WaitACMReady
PUSH

$WaitACMReady1
APBREAD 0 0x00
AND 0x001C
JUMP IFNOT ZERO $WaitACMReady1
POP
RETURN

In the above example, the CoreABC accumulator sweeps from address 0x00 to 0x28 of the ACM
address space, and for each of these addresses, the APBWRT ACM command writes the appropriate
values to the ACM data register space for initialization of all Analog Quads.

ADC Configuration and Calibration
ACM initialization is only used to configure the Analog Quads and/or RTC block. The ADC configuration
(Mode, TVC, STC, etc.) is done through several inputs to the Analog Block. When configuring CoreAI in
CoreConsole, the ADC settings can be set to be hardwired or register-controlled. When an ADC setting
is selected to be hardwired, there is no need to initialize that setting before the operational phase of the
design. However, when the ADC setting is selected to be software register-controlled, the settings are
driven by a set of registers generally labeled as ADC control registers in CoreAI.
The most important configuration settings are in ADC control registers 1 and 2. The only configuration
setting in ADC control register 2 is the STC value. Since this register also controls the ADCSTART and
CHNUMBER inputs to the ADC, it will be written to during the operational phase. Therefore, there is no
need for an initialization operation on STC (when selected to be register-controlled) before entering the
operational phase of the design. The desired settings need to be written to ADC control register 1 to
configure (TVC, PWRDOWN, VAREFSEL, and MODE). This only needs to happen once after each
power-up, similar to ACM initialization.
ADC will self-calibrate after device power-up and after deactivation of ADCRESET, if ADCRESET is
applied.
When the ADC is in calibration, bit 15 of the ADC status register will be set to 1 to flag that the ADC is
busy calibrating itself. When the calibration is completed, this bit will be reset to 0.
Note: Both ADC calibration and ACM initialization (see "ACM Initialization" on page 256) should be

completed after power-up before the Analog Block can properly function in the user’s design.
It is common design practice to issue an ADCRESET request and check the status of bit 15 of ADC
status register before entering the operation phase of the design. When this bit is cleared, the design
enters the operation phase.
Revision 0 259

Interfacing with the Fusion Analog System: Processor/Microcontroller Interface
In the following example, CoreABC issues an ADCRESET request and then checks the status of the
ADC for completion of calibration:
// In this example, ADC_STATUS and ADC_CTRL1 represent the address of the ADC status
// register and ADC control register 1, respectively, in the CoreAI address mapping.
// It is also assumed that CoreAI is in slot 0 of the APB.
// Write 0x0040 into ADC_CTRL1 register space of CoreAI
APBWRT 0 ADC_CTRL1 0x0040
$WaitCalibrate

// Read ADC_STATUS register space of CoreAI
APBREAD 0 ADC_STATUS
AND 0x8000
JUMP IFNOT ZERO $WaitCalibrate

Implementing Voltage Monitoring Applications
After completion of both ACM initialization and ADC calibration, the design enters the functional stage.
This section describes how to implement a voltage monitoring application and provides design
techniques to enhance sampling rate. The voltage monitoring operations are as follows:

• Selecting the analog voltage input pin to be monitored
• Sampling the voltage on the selected pin
• Translating the ADC output results into application-specific data
• Implementing a digital low-pass filter (or averaging) for voltage monitoring (optional)
• Implementing a sampling sequence

Channel Selection, ADC Sample, and Conversion Request
Voltage monitoring channel selection, requesting the ADC to start a sample, and conversion are all
implemented through ADC control register 2 in the CoreAI register space. This register also controls the
STC value input to the ADC. If, during the configuration of CoreAI in CoreConsole, the STC input to the
ADC is set to be hardwired, bits 7–0 of ADC control register 2 will be considered as “don’t care.” A
request to the ADC to sample and convert a specified channel is performed by activating ADCSTART.
Since ADCSTART and CHNUMBER are both controlled by ADC control register 2, these two signals will
be fed to ADC at the same time. Note that the ADCSTART bit is self-clearing and will be cleared to 0
after the user writes 1 to it to request an ADC start. The following example shows a CoreABC instruction
in which the ADC is requested to sample and convert channel 2, with STC set to 4:
// In this example, ADC_CTRL2 represents the address of ADC control register 2 in the
// CoreAI address mapping. It is also assumed that CoreAI is in slot 0 of the APB.
APBWRT 0 ADC_CTRL2 0x2204
260 Revision 0

Fusion FPGA Fabric User’s Guide
Obtaining Results from the ADC Output
The ADC status register in CoreAI contains status bits for the ADC and the ADC output results.
Immediately after issuing an ADCSTART request, the ADC starts sampling the selected channel. During
this period, the SAMPLE bit (bit 14) of the ADC status register will be set HIGH. When sampling is
completed, the ADC enters conversion mode. In this mode, the SAMPLE bit will be cleared and the
BUSY bit (bit 13) will be set HIGH. When the conversion is completed, the BUSY bit will be cleared, the
ADC output will be placed on the RESULTS bits (bits 11 to 0), and the DATAVALID bit (bit 12) will be set
HIGH. In a typical voltage monitoring application, the only status bit that needs to be monitored after
issuing an ADCSTART request is the DATAVALID bit. Once DATAVALID is set HIGH, the RESULTS bits
are ready to be used by the microprocessor/microcontroller. Depending on whether the ADC is
configured to operate in 12-, 10-, or 8-bit mode, the ADC output will be stored in RESULTS[11:0],
RESULTS[11:2], or RESULTS[11:4], respectively.
The following example shows a program routine in CoreABC instructions that continuously checks the
status of the DATAVALID pin after issuing an ADCSTART request. Once DATAVALID is HIGH, it will
clear all bits of the read value except the ADC RESULTS bits.
// In this example, ADC_STATUS represents the address of ADC status register in the
// CoreAI address mapping. It is also assumed that CoreAI is in slot 0 of the APB and
// that ADC is configured in 8-bit mode.
$ADC_Wait

APBREAD 0 ADC_STATUS
// Check to see of bit 12 of ADC_STATUS register is set or not
BITTST 12
// Remain in the loop if bit 12 is not set to 1
JUMP IF ZERO $ADC_Wait
AND 0x0FF0
RETURN

Instead of continuous reading of the ADC_STATUS register to check DATAVALID, ADC_STATUS can
be fed to the microprocessor as an interrupt and set HIGH. Then the microprocessor can read from the
ADC_STATUS register to obtain RESULTS. For more information, refer to the "ADC Configuration and
Calibration" section on page 259.

Sample Sequencing
When the microprocessor receives the latest results from the ADC status register, the microprocessor
can issue another ADCSTART request on the same channel (to achieve more sampling on a particular
channel) or a different channel. The desired sampling sequence can be achieved by writing the
appropriate value to the CHNUMBER bit of ADC control register 2 when issuing an ADCSTART request.
Refer to the Sample Sequencing Overview and Sample Rate and Sample Sequence Calculation
sections of the "Designing the Fusion Analog System" section on page 231 for background information
on sampling theory.
Revision 0 261

Interfacing with the Fusion Analog System: Processor/Microcontroller Interface
Sample Averaging
In applications where the measured voltage line is expected to be noisy or where voltage variations are
too fast for the application to respond to, it is recommended to take multiple samples from a voltage and
use the computed average value of the measured samples as representative of the sampled voltage.
The user can choose the filtering factor by deciding how many samples need to be taken and averaged
to acquire a single data point for processing. The higher the filtering factor, the lower the effective
sampling rate will be.
The following example shows a CoreABC program in which a low-pass filter on the voltage measured
from channel 2 is implemented with a filtering factor of four. In other words, four samples are taken from
the single channel (v1, v2, v3, and v4) and averaged: (v1 + v2 + v3 + v4) / 4. The ultimate result to be
used in the rest of the program is stored in address 0 of the internal memory.
// In this example, it is assumed that CoreAI is in slot 0 of the APB. Also,
// ADC_CTRL2 represents the ADC control register 2 address in the CoreAI register
// space. Also, this example calls the $ADC_WAIT function as described in
// "Obtaining Results from the ADC Output" on page 261. In the following example,
// the 8-bit output of the ADC is averaged using four samples, and the final average
// value is stored in internal RAM address 0 when the function is completed.
// Load Z register (used as loop counter) with value 4
LOADZ DAT 4
// Write 0 to internal RAM address 0
RAMWRT 0 DAT 0
$SAMPLE_FILTER

// Issue ADC sample and Conversion Request
APBWRT 0 ADC_CTRL2 0x2204
CALL $ADC_WAIT
// Divide by 4 and add to previous values
SHR0
SHR0
// Add content of internal RAM address 0 to accumulator
ADD RAM 0
// Write accumulator value to internal RAM address 0
RAMWRT 0 ACC
// Decrement the Z register value (loop counter)
DECZ
// Check to see of Z register (loop counter) is 0 or not
JUMP IFNOT ZZERO $SAMPLE_FILTER

$DONE
HALT

Once the four samples are averaged, the sampled values are discarded. Depending on the application
and sampling sequence, the user can only discard the oldest sampled value and keep the most recent
values to be used for averaging with the next sampled data.

Techniques to Enhance Design Performance/Throughput
After each ADCSTART request to the Analog Block, there is a period of time (duration of ADC sample
and conversion) during which the design’s microprocessor continuously checks the ADC status register
to indicate when the ADC is done and data is ready to be fetched from RESULTS bits. The processing
throughput of the design can improve significantly if the microprocessor/microcontroller can perform
other necessary tasks while waiting for the ADC to complete its cycle. There are two general methods to
do this, depending on the application’s requirements:

• After activating the ADCSTART input to the Analog Block and requesting an ADC sample and
conversion to start, the design’s microprocessor can go on performing other tasks that do not
need the results of the ADC conversion. When these tasks are completed (or periodically), the
microprocessor can return and check the ADC status register for DATAVALID assertion. The
drawback of this method is that the ADC maximum sampling rate capability may be
compromised. In other words, the ADC might complete conversion and sit idle prior to the
microprocessor’s checking the ADC status register.
262 Revision 0

Fusion FPGA Fabric User’s Guide
• The required flag in the ADC status register (DATAVALID) can be used as an interrupt input to
the microprocessor. In this case, it can be assured that the microprocessor will attend to the ADC,
read the data output, issue another ADCSTART request, and continue with the rest of the tasks
until the next interrupt from the DATAVALID bit. The time the ADC is idle is reduced to a minimal
level, enhancing the sampling rate of the ADC at the given operating frequency.

The maximum frequency of ADCCLK is 10 MHz, and the relationship between ADCCLK and SYSCLK
(the system clock) is governed by the TVC setting. Therefore, maximum ADCCLK frequency is achieved
at certain frequencies. For example, with a SYSCLK frequency of 40 MHz and TVC set to 0, the user can
achieve 10 MHz on the ADCCLK. On the other hand, if SYSCLK is at 50 MHz, the maximum achievable
ADCCLK frequency is 6.25 MHz (TVC = 1). Higher SYSCLK frequencies do not necessary translate into
higher ADCCLK frequencies. This is due to the fact that ADCCLK is bounded by a 10 MHz limit and is
also governed by the TVC value.

Implementing Current Monitor Applications
Regardless of the type of the signal being measured (i.e., voltage, current, or temperature), the ACM
needs to be initialized at power-up to configure the Analog Quads. The ADC may need to be configured
and calibrated on device power-up, a global reset event, or at the user’s discretion. "Analog
Configuration MUX Initialization" on page 256 and "ADC Configuration and Calibration" on page 259 still
apply when a current monitoring application is being implemented.
The current monitoring procedure is very similar to the voltage monitoring steps described in
"Implementing Voltage Monitoring Applications" on page 260. The only additional step required to
perform sampling on a current monitor channel is the accurate stimulation of the CMSTB inputs to the
Analog Block. For current sampling on a desired channel, CMSTB should be kept LOW for more than the
TMPWC value (refer to the values in the Fusion Family of Mixed-Signal Flash FPGAs datasheet) to
discharge previous measurements, and then HIGH for at least the TMPWC value prior to the
ADCSTART request. Figure 10-4 illustrates the assertion/deassertion of the CMSTB input of a specific
channel prior to starting sampling.

The user should not assert another ADCSTART prior to the completion of current ADC conversion.
When sampling a current, ADCSTART cannot be asserted for at least for 2 × TMPWC after the previous
ADCSTART. If the next ADCSTART is also a current monitor (or temperature monitor), there should be
at least another TMPWC waiting period during which CMSTB of the desired channel is kept LOW before
assertion of ADCSTART. The selected channel’s CMSTB should be deasserted after the ADC has
completed sampling the channel (as shown in Figure 10-4). CMSTB can be kept HIGH (after assertion of
ADCSTART) until DATAVALID is asserted.
If CoreAI is configured in CoreConsole to have a hardwired CMSTB input for the desired channels
(HD_CMSTBn input), the user will need to stimulate CMSTB to fulfill the requirements discussed in this
section.
In summary, the following are the necessary operations to implement current monitoring:

Figure 10-4 • Assertion/Deassertion of CMSTB Input

ADCCLK

TMSTB

ADCSTART

Time

>TMPWC >TMPWC

Don’t Care

SAMPLE
Revision 0 263

http://www.actel.com/documents/Fusion_DS.pdf

Interfacing with the Fusion Analog System: Processor/Microcontroller Interface
• Selecting the analog current input pin to be monitored
• Ensuring the corresponding CMSTB input pin is LOW for more than the required TMPWC value
• Asserting CMSTB HIGH for longer than TMPWC
• Issuing an ADCSTART request on the desired CHNUMBER
• Ensuring that CMSTB remains HIGH until sampling is completed or until assertion of DATAVALID
• Translating the ADC output results into application-specific data once DATAVALID is asserted
• Implementing a digital low-pass filter for voltage monitoring (optional)
• Implementing a sampling sequence (selecting the next channel)

Translating the ADC output results to the actual measured current is slightly different from the same
operation in voltage monitoring. As shown in Figure 2-56 of the Fusion Family of Mixed-Signal Flash
FPGAs datasheet, when configured as current monitor, a fixed 10× prescaler is used to buffer the
differential voltage measured across the external resistor into the ADC. Therefore, the maximum
differential voltage that can be measured with the ADC (before overflow) is limited by the VREF value
(EQ 3):

Max. Differential Voltage across Resistor = I(max) × R = VREF / 10

EQ 3
where R is the external resistor value in ohms. Therefore, the measured current value, based on the
ADC mode, can be calculated as shown in Table 10-1.

Implementing Temperature Monitor Applications
Regardless of the type of signal being measured (i.e., voltage, current, or temperature), the ACM needs
to be initialized at power-up to configure the Analog Quads. The ADC may need to be configured and
calibrated as well at device power-up, a global reset event, or the user’s discretion. Therefore, the
"Analog Configuration MUX Initialization" section on page 256 and the "ADC Configuration and
Calibration" section on page 259 still apply when a current monitoring application is being implemented.
The temperature monitoring procedure is very similar to the current monitoring steps described in the
"Implementing Current Monitor Applications" section on page 263. The only difference is the stimulation
of the TMSTB input for the temperature monitoring channels instead of CMSTB in current monitoring. For
accurate temperature sampling on a desired channel, TMSTB should be kept LOW for longer than the
TMPWT value to discharge previous measurements, and then HIGH for longer than the TMPWT value
prior to the ADCSTART request. The TMSTB input of the selected temperature monitoring input should
remain HIGH at least until the completion of sampling. Figure 10-5 on page 265 illustrates the
assertion/deassertion of the TMSTB input of a specific channel prior to starting sampling. TMSTB can be
kept HIGH (after assertion of ADCSTART) until DATAVALID is asserted.

Table 10-1 • ADC Output Translation in Current Monitoring Applications

LSB for 8-Bit ADC (mA) LSB for 10-Bit ADC (mA) LSB for 12-Bit ADC (mA)

VREF / (10 × R × 0.255) VREF / (10 × R × 1.023) VREF / (10 × R × 4.095)
264 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Fusion FPGA Fabric User’s Guide
Since, in CoreAI, the TMSTB inputs and ADCSTART are in two different register spaces, they cannot be
asserted at the same time (see Figure 10-5). Assert TMSTB HIGH first and then issue ADCSTART. If
CoreAI is configured in CoreConsole to have a hardwired TMSTB input for desired channels
(HD_TMSTBn input), stimulate TMSTB accordingly.
In summary, the following are the necessary operations to implement temperature monitoring:

• Selecting the analog temperature input pin to be monitored
• Ensuring the corresponding TMSTB input pin is Low for more than the minimum value of TMPWT
• Asserting TMSTB HIGH for more than the minimum value of TMPWT
• Issuing an ADCSTART request on the desired CHNUMBER
• Ensuring that TMSTB remains HIGH until completion of sampling or assertion of DATAVALID
• Translating the ADC output results into application-specific data once DATAVALID is asserted
• Implementing a digital low-pass filter for voltage monitoring (optional)
• Implementing a sampling sequence (selecting the next channel)

Translating the ADC output voltage in temperature monitoring applications depends on the VREF value of
the ADC, the ADC mode, and the characteristics of the external (temperature sensor) diode. The
relationship between the measured voltage and the external temperature is described in the Fusion
Family of Mixed-Signal Flash FPGAs datasheet.

Implementing Gate Driver Applications
Implementing gate driver applications is different from implementing voltage, temperature, and current
monitoring because gate drivers are outputs, and driving them does not require interaction with the ADC.
However, the ACM initialization procedure, described in the "Analog Configuration MUX Initialization"
section on page 256, is still necessary to configure the selected Analog Quads as gate drivers with
specific parameters, such as drive strength and polarity. Gate driver applications can be implemented as
software-/register-driven or hardware-driven.

Software-Controlled Gate Drivers
When a specific gate driver is configured in CoreAI to be software-controlled, the corresponding AG
output pad (analog gate driver) follows the contents of the corresponding bit in CoreAI ADC control
register 5. In this approach, the microprocessor can turn the external MOSFET (connected to the AG
output pad) off or on by writing 1 or 0 to the corresponding bit of ADC control register 5. A typical use
model for a software-driven gate is in power sequencing applications, where the system management
processor turns the voltage rails on/off in the desired sequence. The following example shows a sample
CoreABC program in which three gate drivers are turned on sequentially.
// In this example, it is assumed that CoreAI is in slot 0 of the APB. Also, ADC_CTRL5
// represents the ADC control register 5 address in the CoreAI register space.

Figure 10-5 • Assertion/Deassertion of TMSTB Input

ADCCLK

TMSTB

ADCSTART

Time

>TMPWT >TMPWT

Don’t Care

SAMPLE
Revision 0 265

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Interfacing with the Fusion Analog System: Processor/Microcontroller Interface
APBWRT DAT 0 ADC_CTRL5 0x0001
APBWRT DAT 0 ADC_CTRL5 0x0002
APBWRT DAT 0 ADC_CTRL5 0x0003

Hardware-Controlled Gate Drivers
When a specific gate driver is configured in CoreAI to be hardware-controlled, the corresponding AG
output pad (analog gate driver) follows the corresponding HDGDON input of CoreAI. When designing
with CoreConsole, the selected HDGDON inputs can be added to the top-level ports to be driven by the
FPGA fabric.
In a typical use model for hardware-controlled gate drivers, the AG pad drives the external MOSFET gate
with a pulse width modulation (PWM) signal.

Design Example
This section includes a practical example of a design using CoreABC and CoreAI to implement the
following applications:

• Voltage, current, and temperature monitors
• Gate drivers

Functionality
Figure 10-6 illustrates the top-level functionality of the example design.

Figure 10-6 shows two voltage supplies in the system: V15PS supplying 1.5 V and V33PS supplying
3.3 V. Two voltage rails (V15L and V33L) drive the power inputs of a load. These voltage rails are
powered up through two MOSFETs that are controlled by the AG3 and AG4 gate drivers of the Fusion
device. The current on the 3.3 V supply rail is measured across a 0.1 Ω resistor.

Figure 10-6 • Top-Level Functionality of the Example Design

R = 0.1 ohm
V33PS

V15PS

V33L

V15L

Load

Fusion

AV 0 AV 1 AC 1 AG 3 AG 4 AT 2 ATRTN 1
266 Revision 0

Fusion FPGA Fabric User’s Guide
Figure 10-7 shows the flow chart of the example design, implemented in Fusion using CoreABC and
CoreAI.

The operational phase of the design starts with measuring the power supplies and ensuring that they
satisfy the minimum requirements of the load voltage rails. Once the power supplies are up and running,
the V33L and V15L rails are powered up sequentially (3.3 V first and 1.5 V second after 10 µs). After
powering the rails, the design continuously monitors the 3.3 V supply, 1.5 V supply, 3.3 V rail current,
and operating temperature (defined sampling sequence). If no abnormal condition occurs, the design
remains in this loop monitoring the operating conditions until one of the supplies is turned off externally.
In case of an abnormal situation (e.g., current being more than 1 A), the design sets error flags, turns off
both V33L and V15L, and checks for supply lines, and if they are still up and running, it attempts to power
up the load again.

Figure 10-7 • Flow Chart of Example Design

Measure
Temperature

V15L and V33L
Off

Measure V33PS

V33PS > 3.1 V?

Measure V15PS

V15PS > 1.43?

Power Up
V33L

Power Up
V15L

Wait 10 μs

Measure V33PS

V33PS > 3.1 V?

Measure V15PS

V15PS > 1.43?

Measure 3.3 V
Load Current

I > 1 A?

Temp > 70°C?

Set Error
Flags

Start @
 Reset

YES

NO

YESNO

YES

NO

YES

NO

YES

NO

YES

NO
Revision 0 267

Interfacing with the Fusion Analog System: Processor/Microcontroller Interface
Implementation in a Fusion Device
This design example is implemented using CoreABC as the core microcontroller and CoreAI as the
interface to the Fusion Analog Block. The steps below describe the CoreABC and CoreAI settings and
connections and the CoreABC program that implements the flow chart illustrated in Figure 10-7 on
page 267.

Building the Example Design System in CoreConsole
CoreABC and CoreAI in this example are connected together using an APB, as shown in Figure 10-8.

The following are the major settings of the CoreABC and CoreAI configuration in CoreConsole:
CoreABC Settings:

APB address bus width: 8
APB data bus width: 16
Number of CoreABC outputs: 1
Instruction store: soft

CoreAI Settings:
ACM clock divider: 4
AV0: 0–2 V analog input
AV1: 0–4 V analog input
AC1: current monitor
AT2: temperature monitor
AG3: software-driven
AG4: software-driven
VAREF: internal 2.56 V
ADC mode: fixed 12-bit mode
TVC: fixed to 0
STC: register-controlled
APB interface width: 16 bits

The above settings result in the memory address map shown in Table 10-2 on page 269.

Figure 10-8 • Implementation of Example Design in CoreConsole
268 Revision 0

Fusion FPGA Fabric User’s Guide
The memory of the design in CoreConsole can be obtained from the following location:
<CoreConsole Project Directory>/SoftwareExport/<projectname>/memorymap.html

The initialization values for the ACM register space used to configure the Analog Quads can be
calculated as discussed in the Fusion Family of Mixed-Signal Flash FPGAs datasheet or obtained from
the acmtable.vhd (or acmtable.v) file. In this example, the ACM initialization is performed by using the
APBWRT instruction to write desired values to the corresponding ACM register space. As discussed in
"ACM Initialization Specific to CoreABC" on page 257, designers can take advantage of the APBWRT
ACM command and write to the ACM registers with the values defined in the acmtable.vhd (or .v) file.

CoreABC Instruction Program
The CoreABC program in the Fusion FPGA Fabric User’s Guide design files executes the functionality
depicted in Figure 10-7 on page 267. The CoreConsole project of this example can also be found in the
Fusion FPGA Fabric User’s Guide design files. $Wait_10us is called whenever needed to ensure that the
elapsed timing for TMSTB and CMSTB activation/deactivation is more than the minimum requirement.
Inside the function, a loop counter is loaded with a count value and then decremented until it reaches
zero. The count value should be chosen such that the elapsed time after exiting the function is 10 µs.
Each of the instructions used in the $Wait_10us routine takes three clock cycles to execute. Assuming
SYSCLK runs at 40 MHz, the count value can be obtained from EQ 4:

Delay = (3 + 3 + count_value × (3 + 3) + 3) / f

EQ 4
where f = 40 MHz.
Instructions in this example are based on CoreABC v2.1. Some instructions may vary (e.g., loop
instructions used in the $Wait_10us routine) if a different version of CoreABC is used.
In a real application design, the $Wait_10us routine can be replaced by a set of instructions that perform
part of the design functionality during the required TMPWC or TMPWT period. This increases the
processing performance of the design.

HDL Implementation
After building the core of the design in CoreConsole, the design has be to be completed in HDL where
the microprocessor and the CoreAI system (along with any other peripherals in the system) are imported
into Libero IDE in HDL format and connected to the rest of the design, to go through the rest of the FPGA

Table 10-2 • Memory Map of the Example Design

Address Type Width
Reset
Value Name Description

base address + 0x00 Read/write 16 0x0 ACM_CTRL_STATUS ACM Control Status Register

base address + 0x04 Read/write 16 0x0 ACM_ADDR ACM Address Register

base address + 0x08 Read/write 8 0x0 ACM_DATA ACM Data Register

base address + 0x0C Read/write 16 0x0 ADC_CTRL_1 ACM Control Register 1

base address + 0x10 Read/write 16 0x0 ADC_CTRL_2 ACM Control Register 2

base address + 0x14 Read/write 16 0x0 ADC_CTRL_3 ACM Control Register 3

base address + 0x18 Read/write 16 0x0 ADC_CTRL_4 ACM Control Register 4

base address + 0x1C Read/write 16 0x0 ADC_CTRL_5 ACM Control Register 5

base address + 0x20 Read-only 16 0x0 ADC_STATUS ADC Status Register

base address + 0x24 Read-only 16 0x0 READ_FIFO_DATA_OUTP
UT

Read FIFO Data Output

base address + 0x28 Read-only 8 0x0 READ_FIFO_STATUS Read FIFO Status

base address + 0x2C Read/write 16 0x0 IRQ_ENABLE Interrupt Enable Register

base address + 0x30 Read-only 16 0x0 IRQ_STATUS Interrupt Status Register
Revision 0 269

http://www.actel.com/documents/Fusion_HB_DF.zip
http://www.actel.com/documents/Fusion_HB_DF.zip
http://www.actel.com/documents/Fusion_DS.pdf

Interfacing with the Fusion Analog System: Processor/Microcontroller Interface
design flow. The HDL code in the Fusion FPGA Fabric User’s Guide design files is the top-level wrapper
used in the example design.
In this example, the CoreABC instructions are stored in soft mode. Therefore, the instructions can be
stored in the Fusion embedded flash memory or in external memory. The instructions are loaded into
SRAM from the flash memory at power-up (initialization), and the microprocessor runs off the SRAM;
CoreABC offers a feature to run directly off the flash memory as well. In the HDL code, Init_Block
represents the initialization client of the Fusion embedded flash memory. An embedded CCC is used to
generate two clock signals: a 10 MHz clock to drive the embedded flash memory and the initialization
process to load the SRAM with CoreABC instructions, and a 40 MHz clock used as the system clock for
the operational phase of the design.

Designing with the RTC
CoreAI enables you to interface with the Fusion RTC. When configuring CoreAI in CoreConsole, you
need to specify the RTC and its parameters. CoreAI provides the necessary I/Os, as described in the
CoreAI Handbook. ACM address space 0x40 to 0x58 is used to read or write specific RTC parameters,
such as count or match values. Reading from and writing to these registers is no different from other
ACM read/writes described in the "Analog Configuration MUX Initialization" section on page 256. The
only difference is the targeted address of the ACM register space.

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of the Fusion FPGA Fabric User’s Guide.

N/A

v1.0
(December 2007)

Corrected the operations given in the "Implementing Temperature Monitor
Applications" section.

264
270 Revision 0

http://www.actel.com/ipdocs/CoreAI_HB.pdf
http://www.actel.com/documents/Fusion_HB_DF.zip

11 – Interfacing with the Fusion Analog System: IP
Interface

Fusion Analog System Soft IP Design
The Analog System Soft IP Design Flow is an IP-based design method for HDL designs that establishes
a backbone to interconnect the Actel Fusion® FPGA fabric, the Analog System, the embedded flash
memory block, and other peripherals. The Analog System soft IP includes an Analog-to-Digital Converter
Sample Sequence Controller (ASSC) that sets up the ADC sample sequence, a System Monitor
Evaluation Phase State Machine (SMEV) that compares the ADC results to user-defined threshold
values, and a System Monitor Transition Phase State Machine (SMTR) that asserts threshold flags
accordingly. Using the IP configuration catalog in Actel Libero® Integrated Design Environment (IDE), the
user creates and configures the VHDL or Verilog Analog System soft IP along with the Flash Memory
Analog System Client. The user can configure over/under threshold flags, acquisition time, filtering factor,
and assert/deassert samples for analog inputs. More details are addressed in the "Basic Analog Block
Settings" section on page 281. Once the IP is configured, the user instantiates the Analog System into
HDL or builds the system in a SmartDesign project. Standard HDL design flow is used to complete the
design, as described in the "Fusion Design Solutions and Methodologies" section on page 245.
When creating the Analog System in Libero IDE using the Analog System Builder (ASB), a configuration
file is generated, and its data is stored in the spare pages within the embedded flash memory during
FPGA programming. The Flash Memory Analog System Client is used to create the memory partitions to
store this configuration data.
The Analog System uses the embedded flash memory to hold the nonvolatile configuration data for the
analog subsystem. After power-up and during the initialization process, the flash memory is read and the
data is stored in the Analog System’s volatile register or RAM blocks within the analog subsystem. More
information about the embedded flash memory system and clients is available in the "Fusion Embedded
Flash Memory Blocks" section on page 135.
Note: Any time the Analog System is regenerated, the Analog System Client must also be regenerated

from the Flash Memory System Builder in Libero IDE.
The Analog System Soft IP Design Flow offers a number of advantages to users. All the necessary soft
IP cores are free. Sample sequence control, averaging/filtering, and threshold response functions are
built-in and specified by an intuitive GUI in Libero IDE. IP configuration and connectivity are tightly
integrated into SmartDesign and Libero IDE, enabling users to rapidly and seamlessly implement the
complete analog and peripheral interface. Users do not have to write up their own code to control the
analog and flash memory systems.
For processor- or microcontroller-based designs, a more efficient implementation can be realized
through CoreAI (Analog Interface) and the methods discussed in the "Interfacing with the Fusion Analog
System: Processor/Microcontroller Interface" section on page 251.
Revision 0 271

Interfacing with the Fusion Analog System: IP Interface
System Overview – Interface Components
Figure 11-1 gives an overview of the interface between the Analog System soft IP, the ADC, the clock
circuitry, the device RAM, and the embedded flash memory. As shown in Figure 11-1, there are three
Analog Interface soft IP blocks and several blocks that interact directly or indirectly with the Analog
Interface soft IP blocks. The Analog Interface soft IP components are listed in Table 11-1 on page 273,
and the components that interact with these soft IP components are listed in Table 11-2 on page 273.
Detailed descriptions for each of the components listed in Table 11-1 on page 273 are included in the
"SmartGen Soft IP Blocks" section on page 275.

Figure 11-1 • Fusion Interface Components (relative to Analog Interface soft IP)

ClockCrystal
Oscillator

RC Oscillator

PLL

Interval
Gen

µs
ms
s

External Clock

Clock
Generation

General-Purpose
Digital Inputs

General-Purpose
Digital Outputs

This clock signal is
distributed to all
components in this
diagram.

JTAG

10

ADC Sample
Sequence Controller

1

System Monitor
Evaluation Phase

State Machine

2

System Monitor
Transition Phase
State Machine

3

512×9
Dual-Port RAM

512×9
Dual-Port RAM(s)

512×9
Dual-Port RAM(s)

4

5

6

Init/Config
RAM Initializer

7

ADC
8

Analog
MUX

SAR
ADC

User
Read

Access

User
Read

Access

User
Read

Access

Analog
Inputs

from
Quads

NVM

9

Hard IP

Soft IP
272 Revision 0

Fusion FPGA Fabric User’s Guide
Table 11-1 • Fusion Analog Interface Soft IP Components

Number Description

1 Analog-to-Digital Converter Sample Sequence Controller: The ASSC is a configurable sequencer that sets
up the order of samples from the ADC, controls various measurement parameters of the ADC samples,
and sends control commands to the ADC.

2 System Monitor Evaluation Phase State Machine: The SMEV reads ADC samples from the result locations
in the ASSC RAM and compares the results to user-defined threshold values. Comparison results are
stored in SMEV RAM.

3 System Monitor Transition Phase State Machine: The SMTR reads from SMEV RAM and, for each enabled
channel, checks comparison results (previously calculated by the SMEV block) and generates the
threshold flags defined by the user in the Analog System Builder.

Table 11-2 • Fusion Components that Interact with Analog Interface Soft IP Components

Number Description

4, 5, 6 512×9 dual-port RAM blocks: These RAM blocks are used to store “program” sequences for the SMTR and
SMEV. They are also used to store data samples calculated by the ADC and data values that control the
operation of the ASSC. They are initialized by the Init/Config soft IP block, which transfers data from
nonvolatile memory (NVM) after a system reset. Note that these RAM blocks can also be modified while
the system is live to allow the user to perform real-time system debugging before committing resources to
programming the NVM. This debugging feature is addressed by Synplicity® Identify software. For more
information, refer to the Identify user’s guide.

7 Init/Config RAM Initializer: The sole purpose of this soft IP block is to initialize the system RAM blocks after
a system reset, by reading data from the NVM.

8 ADC: This analog-to-digital converter hard IP component is the main interface between the external analog
voltage, current, and temperature sources, and the internal digital FPGA user logic (soft IP). It is selectable
for 8-, 10-, or 12-bit operation.

9 NVM: The nonvolatile memory (flash) will be used, at minimum, to store program sequences for the ASSC,
SMEV, and SMTR.

10 Clock Generation: Internal or external clock generation for digital system time base reference. The internal
PLL, internal RC oscillator circuit, or external crystal oscillator circuit can be used in this process.
Revision 0 273

Interfacing with the Fusion Analog System: IP Interface
System Operation
The Analog Block (AB) System contains the Analog Block hard IP and the Analog Interface soft IP, which
includes ASSC, SMEV, SMTR, and their corresponding SRAM blocks. The Flash Memory System
contains the embedded flash memory hard IP block and the interface soft IP, or the Init/Config IP block.
Figure 11-2 shows the generic connections between the Analog Block System and the Flash Memory
System in the SmartGen soft IP design flow.

Initialization
The Init/Config soft IP is used to accomplish the initialization of the Fusion Analog Block. All user-defined
Analog Block parameters are preprogrammed into the embedded flash memory and are loaded into the
corresponding Analog System soft IP RAM blocks and Analog Configuration MUX (ACM) registers by the
Init/Config IP during device power-up. For more information about Analog Client Initialization, refer to the
"Fusion Embedded Flash Memory Blocks" section on page 135.

Sample and Convert
Once the initialization and calibration is done, or INIT_DONE and calibrate_o are asserted HIGH, the
Analog System soft IP starts functioning. The ASSC IP controls the sample sequence, the SMEV applies
a moving average to the ADC conversion output and compares the outputs with the preset threshold
values, and the SMTR checks the comparison results and acts on them based on predefined behavior.

Figure 11-2 • SmartGen Soft IP Design Flow – Generic Connections

INIT_CLK

SYS_RESET

INIT_POWER_UP

INIT_DONE

INIT_DATA

INIT_ADDR

INIT_ACM_WEN

INIT_ACM_RTC_WEN

INIT_ASSC_WEN

INIT_EV_WEN

INIT_TR_WEN

INIT_DONE

INIT_DATA

INIT_ADDR

INIT_ACM_WEN

INIT_ACM_RTC_WEN

INIT_ASSC_WEN

INIT_EV_WEN

INIT_TR_WEN

SYS_CLK

SYS_RESET

VAREF

DATAVALID

ASSC_DONE

Flash
Memory
System

Analog
Block

System

HDL
Logic

Th
re

sh
ol

d
Fl

ag
s

A
D

C
_R

E
S

U
LT

Av
er

ag
ed

A
D

C
_R

E
S

U
LT
274 Revision 0

Fusion FPGA Fabric User’s Guide
The user can also probe and process the ADC output directly and set up corresponding reactions. The
two modes are described below.

Threshold Flags Operation Mode
The threshold values are preset during Analog System soft IP configuration in Libero IDE. The values are
programmed into the embedded flash through the Analog System Client, then loaded into the SRAM
during initialization. SMEV soft IP does the comparison between the average ADC results and the
threshold values, and saves the comparison results to the SMEV SRAM. The SMTR soft IP reads the
results from the SMEV SRAM and asserts or deasserts user-defined threshold flags, which are general-
purpose outputs (GPOs) of the Analog System Block. The GPOs can be used by internal logic in the
FPGA array, or they can trigger external I/Os directly.

ADC Result Direct Access Mode
Instead of reacting on the threshold value comparison result from the SMEV, users can directly access
the ADC results and convert them to meaningful voltage, current, or temperature values and process
these values for different purposes. To accomplish this, the user first needs to expose the necessary
ports from the ASSC or SMEV IP through the advanced options in the Analog System Builder. The
corresponding ports are listed in the ASSC and SMEV sections. Second, the user needs to build an
interface to read out the valid ADC results from the ASSC or SMEV RAM. The basic logic of the interface
is discussed in the CoreAI section of the "Interfacing with the Fusion Analog System:
Processor/Microcontroller Interface" section on page 251. Sample code for fetching the ADC result is
located in the "Sample Code" section on page 289. Once the ADC result has been fetched, it can be
translated back to a voltage, current, or temperature value. Sample code for this is also provided in the
"Sample Code" section on page 289.

SmartGen Soft IP Blocks

ADC Sample Sequence Controller (ASSC)
Function
The ASSC is a configurable sequencer that sets up the order of samples from the ADC, controls various
measurement parameters of the ADC samples, and sends control commands to the ADC. It also
contains multiplexer logic for reading from and writing to a 512×9 dual-port RAM block. In addition to
controlling sequencing of ADC samples, the ASSC block performs digital post-scaling of the ADC
samples, and ADC saturation detection, functions that were previously handled with additional soft IP
blocks.
Note: The ASSC does not control the various prescaler and other signals within each Analog Quad

(except for the current monitor and temperature monitor strobe connections). These are defined
during soft IP configuration in Libero IDE and initialized via the Init/Config soft IP block into the
ACM.
Revision 0 275

Interfacing with the Fusion Analog System: IP Interface
Interfaces

Note: All signals are active high (logic 1) unless otherwise noted. All port width specifications are in
Verilog notation. Any alphabetic text within port width brackets indicates that the specified port width
is controlled via a generic (VHDL) or parameter (Verilog) described in Table 11-3. All I/O signals are
synchronous to the rising edge of the CLK signal unless otherwise noted.

The signals in Table 11-3 are the typical signals users should monitor in the simulation for the regular
ADC conversion process.

Figure 11-3 • ASSC I/O Signal Diagram

Table 11-3 • ASSC I/O Signal Descriptions

Name Type Description

CLK Input System Clock: Reference clock for all internal logic
(100 MHz maximum). This signal is connected to the top
level as SYS_CLK.

NRESET Input Active-low asynchronous reset. This signal is connected to
the top level as SYS_RESET.

INIT_ADDR[8:0] Input Init/Config RAM Address: These address signals come
from the Init/Config soft IP block for writing to the 512×9
ASSC RAM.

INIT_DONE Input Init/Config Done: This static signal indicates that the
Init/Config soft IP block has completed loading all of its
clients (including the ASSC RAM block) from data stored in
the internal Fusion NVM block(s).

CLK
NRESET

ADC_START
ASSC_SEQIN[TS_WIDTH–1:0]

ASSC_XTRIG
ASSC_XMODE

ASSC_SEQJUMP

ASSC_SEQCHANGE
ASSC_SEQOUT[TS_WIDTH–1:0]

ADC_BUSY
ADC_CALIBRATE

ADC_MODE[3:0]

ADC_DVC[7:0]
ADC_STC[7:0]

ADC_VREFSEL
ADC_CHNR[4:0]

ADC_PDOWN
ADC_RESET

INIT_ADDR[8:0]

INIT_DI[8:0]
INIT_ASSC_WR

INIT_DONE
USER_ASSC_ADDR[8:0]
USER_ASSC_RD

ASSC_RAM_DO_B[8:0]

ASSC_RAM_ADDR_B[8:0]
ASSC_RAM_RW_B

ASSC_RAM_CSN_B
ASSC_RAM_DI_B[8:0]

USER_ASSC_RAM_BUSY

ADC_RESULT[11:0]

ASSC_CHSAT
ASSC_CHLATD

EV_ASSC_RD
EV_ASSC_ADDR[8:0]

ASSC_RAM_ADDR_A[8:0]
ASSC_RAM_RW_A

ASSC_RAM_CSN_A
ASSC_RAM_DI_A[8:0]

ASSC_DONE

ASSC_WAIT

CM_STB[9:0]
TM_STB[10:0]

ASSC_RAM_WR_BUSY_B

EV_EVFLAG
EV_DONE
TR_TRFLAG
TR_DONE

ASSC_SAMPFLAG
276 Revision 0

Fusion FPGA Fabric User’s Guide
ASSC_DONE Output ASSC Done: This output indicates that the ASSC block has
completed the current function and is either waiting for
further action (e.g., the power-down or stop function) or is
about to transition to the next sequence (e.g., the sample
or calibration function). If the ASSC_DONE signal is active
at the same time that the ASSC_SAMPFLAG signal is
active, this indicates that a sample function has just
completed and will cause the SMEV block to commence
with evaluation sequences followed by transition
sequences within the SMTR block; otherwise, if the
ASSC_DONE signal is active and the ASSC_SAMPFLAG
signal is inactive (logic 0), the SMEV block will not have
evaluation sequences for the current sequence (timeslot).
This output is connected to the SMEV block and may
optionally be used external to the Analog Interface soft IP
blocks by the user.

ADC_CALIBRATE Input ADC Calibration: This signal from the ADC indicates that
internal calibration is currently in effect. This input connects
to the calibrate_o output from the ADC.

ADC_RESULT[11:0] Input ADC Result: These signals comprise the conversion result
from the ADC. In 12-bit mode, the ADC uses all bits; in 10-
bit mode, it uses bits 11:2; and in 8-bit mode, it uses bits
11:4. All unused ADC bits are set to logic 0 when in 10-bit
or 8-bit mode. These inputs connect to the result_o[11:0]
outputs from the ADC.

The following signals are used for jump sequence control.

ASSC_XMODE Input External Trigger Mode: If this input is logic 1, the ASSC
uses the ASSC_XTRIG signal to transition to and complete
the current sequence timeslot. If this input is logic 0 (default
operation for automated sequencing), the internal timeslot
counter is used to automatically advance to the next
sequence number. This input can come from the SMTR
(from one of the GPO signals) or user logic external to the
Analog Interface soft IP blocks, or can be statically tied off
to logic 0 or logic 1.

ASSC_XTRIG Input External Trigger: If the ASSC_XMODE input is logic 1 and
this input is held at logic 1 for exactly one clock cycle, the
ASSC block will transition to and complete the current
sequence. If the ASSC_XMODE input is logic 0 (default
operation for automated sequencing), this input is ignored.
This input can come from the SMTR (from one of the GPO
signals) or user logic external to the Analog Interface soft
IP blocks, or can be statically tied off to logic 0. If this signal
is used to control external triggering, the user should
monitor the ASSC_DONE signal to know after which point
the ASSC_XTRIG will again have effect.

Table 11-3 • ASSC I/O Signal Descriptions (continued)

Name Type Description
Revision 0 277

Interfacing with the Fusion Analog System: IP Interface
ASSC_SEQJUMP Input Sequence Jump Enable: Setting this signal to logic 1 jumps
to the sequence number indicated on the
ASSC_SEQIN[TS_WIDTH–1:0] input pins after the current
sequence timeslot has completed. This input can come
from the SMTR (from one of the GPO signals) or user logic
external to the Analog Interface soft IP blocks, or can be
statically tied off to logic 0.

ASSC_SEQIN[TS_WIDTH–1:0] Input Sequence Number In: These inputs are used in conjunction
with the ASSC_SEQJUMP signal to jump to a particular
sequence number from the current sequence after the
current sequence timeslot has completed. The SMTR sets
these signals. These inputs can come from the SMTR
(from several of the GPO signals) or user logic external to
the Analog Interface soft IP blocks, or can be statically tied
off to any combination of logic 0 and logic 1 values.

ASSC_SEQOUT[TS_WIDTH–1:0] Output Sequence Number Out: These outputs denote the current
sequence timeslot. The SMEV block uses these signals.
These outputs are connected to the SMEV block and may
optionally be used external to the Analog Interface soft IP
blocks by the user.

ASSC_SEQCHANGE Output Sequence Change: This output indicates that the outputs
ASSC_SEQOUT[TS_WIDTH–1:0] will change after the
very next rising edge of CLK. This output is connected to
the SMEV block and may optionally be used external to the
Analog Interface soft IP blocks by the user.

Users should monitor the following signals if they want to access the ADC conversion results from the
ASSC RAM.

USER_ASSC_RAM_BUSY Output ASSC RAM Busy: This output signal indicates that either
the Init/Config soft IP block or the SMEV soft IP block is
busy accessing the A-port of the ASSC RAM. This signal
can optionally be used by user logic external to the Analog
Interface soft IP blocks, or can be left unconnected if
unused.

USER_ASSC_ADDR[8:0] Input User RAM Address: These address signals can be
controlled by the user to allow read access from the A-port
of the 512×9 ASSC RAM. If unused, these signals should
be tied off to logic 0 or logic 1.

USER_ASSC_RD Input User RAM Read Enable: This control signal can be
controlled by the user to allow read access from the A-port
of the 512×9 ASSC dual-port RAM (the user will need to
connect to the ASSC_RAM_DO_A[8:0] port for read data).
If unused, this signal should be tied off to logic 0. The user
must ensure that the ASSC_RAM_BUSY signal is
inactive at logic 0 while this signal is activated;
otherwise, the data read from the A-port of the ASSC
RAM will not be from the USER_ASSC_ADDR[8:0]
address.

ASSC_RAM_DI_A[8:0] Output ASSC RAM Write Data: These signals are connected to the
A-port data inputs (write data) of the 512×9 ASSC RAM.

Table 11-3 • ASSC I/O Signal Descriptions (continued)

Name Type Description
278 Revision 0

Fusion FPGA Fabric User’s Guide
System Monitor Evaluation Phase State Machine (SMEV)
Function
The SMEV reads ADC samples from the result[11:0] locations in the ASSC RAM after each channel
sequence has been processed by the ASSC block, and performs evaluation processing on the ADC
samples. The SMEV block performs digital low-pass filtering of these samples, compares the low-pass-
filtered samples against compare thresholds, and writes the results back into one or more 512×9 dual-
port RAM tiles (the number of 512×9 RAM tiles required will depend upon how many program sequences
are required for each application). Although the SMEV block deals with samples from the ADC, there is
no direct link between it and the ADC; the ASSC block writes all raw ADC samples into the ASSC 512×9
dual-port RAM, which the SMEV reads during the evaluation phase.

Interfaces

Note: All signals are active high (logic 1) unless otherwise noted. All port width specifications are in
Verilog notation. Any alphabetic text within port width brackets indicates that the specified port width
is controlled via a generic (VHDL) or parameter (Verilog) described in Table 11-4 on page 280.

Figure 11-4 • SMEV I/O Signal Diagram

CLK
NRESET

ASSC_SEQCHANGE

EV_CHHOLD[4:0]

ASSC_SEQOUT[TS_WIDTH–1:0]

EV_RAM_ADDR_B[EV_ASIZE-1:0]

EV_DONE

ADC_CHNR[4:0]
INIT_ADDR[EV_ASIZE–1:0]

INIT_DI[8:0]
INIT_EV_WR

INIT_DONE
USER_EV_ADDR[EV_ASIZE–1:0]
USER_EV_RD

TR_EV_RD
TR_EV_ADDR[EV_ASIZE–1:0]

EV_ASSC_RD
EV_ASSC_ADDR[8:0]

ASSC_RAM_DO_A[8:0]

EV_RAM_RW_B
EV_RAM_CSN_B

EV_RAM_DI_B[8:0]

EV_RAM_ADDR_A[EV_ASIZE-1:0]
EV_RAM_RW_A

EV_RAM_CSN_A
EV_RAM_DI_A[8:0]

USER_EV_RAM_BUSY

ASSC_DONE
ASSC_SAMPFLAG

EV_EVFLAG

EV_RAM_DO_B[8:0]
ASSC_RAM_WR_BUSY_B

EV_RAM_WR_BUSY_B
Revision 0 279

Interfacing with the Fusion Analog System: IP Interface
To access the ADC conversion results from the SMEV RAM, users should monitor the signals in
Figure 11-4.

Table 11-4 • SMEV I/O Signal Descriptions

Name Type Description

USER_EV_ADDR[EV_ASIZE–1:0] Input User RAM Address: These address signals can be
controlled by the user to allow read access from the
512×9 SMEV RAM(s). If unused, these signals should
be tied off to logic 0 or logic 1.

USER_EV_RD Input User RAM Read Enable: This control signal can be
controlled by the user to allow read access from the A-
port of the 512×9 SMEV dual-port RAM(s) (the user will
need to connect to the EV_RAM_DO_A[8:0] port for
read data). If unused, this signal should be tied off to
logic 0. The user must ensure that the
USER_EV_RAM_BUSY signal is inactive at logic 0
while this signal is activated; otherwise, the data
read from the A-port of the SMEV RAM(s) will not be
from the USER_EV_ADDR[EV_ASIZE–1:0] address.

USER_EV_RAM_BUSY Output SMEV RAM Busy: This output signal indicates that
either the Init/Config Soft IP block or the SMTR block is
busy accessing the A-port of the SMEV RAM(s). This
signal can optionally be used by user logic external to
the Analog Interface soft IP blocks or can be left
unconnected if unused.

ASSC_RAM_WR_BUSY_B Input ASSC Busy Writing: This active-high signal indicates
that the ASSC block is busy writing to the B-port of its
dual-port RAM (this input is only used for non-Fusion/-
ProASIC®3 technology implementation, such as
ProASICPLUS®, which has no true dual-port RAM).

EV_RAM_WR_BUSY_B Output SMEV Busy Writing: This active-high signal is for user
status monitoring and indicates that the SMEV block is
busy writing to the B-port of its dual-port RAM. It must be
connected to the SMTR block for non-Fusion/-ProASIC3
technology implementation, such as ProASICPLUS;
otherwise, it can be left unconnected.

EV_RAM_DI_A[8:0] Output SMEV RAM Write Data: These signals are connected to
the A-port data inputs (write data) of the 512×9 SMEV
RAM(s).
280 Revision 0

Fusion FPGA Fabric User’s Guide
System Monitor Transition Phase State Machine (SMTR)
Function
For each enabled channel, the SMTR checks comparison results previously calculated by the SMEV
block and stored in the SMEV RAM, and asserts or deasserts different user-defined threshold flags,
which are general purpose outputs (GPOs) of the Analog System Block. The GPOs can be used by
internal logic in the FPGA array, or they can trigger external I/Os directly.

Interfaces

Note: All signals are active high (logic 1) unless otherwise noted.

Basic Analog Block Settings
In the Analog System Builder main window, the user can enter system clock frequency and ADC
resolution. The system clock is used to drive the ASSC, SMEV, and SMTR soft IP blocks. Also,
ADC_CLK is derived from the system clock, and has to be equal to or less than 10 MHz. The ADC block
has a built-in divider (4×, minimum divider = 4) to automatically divide the system clock into the
appropriate ADC_CLK range. Users can achieve maximum rate for ADC_CLK (10 MHz) by selecting a
system clock frequency of 40 MHz or 80 MHz. For more information about the ADC sample rate and
accuracy, refer to the Analog-to-Digital Converter Background section in the "Designing the Fusion
Analog System" section on page 231.
Refer to the Fusion Starter Kit User’s Guide and Tutorial for a sample design implementing the following
settings.

AV Parameter Settings
To configure a voltage monitor, the user can choose to use either direct analog input or prescaled input.
Direct analog input limits the input voltage to less than the VAREF voltage. Usually, it is 2.56 V if the
internal reference voltage is chosen, or it can be 0 to 3.3 V if an external reference voltage is used.
For example, if internal VAREF (2.56 V) is selected, choosing a direct analog input to sample a signal
that swings between 0 to 2.56 V can avoid the gain and offset error that could be introduced by the
prescaler.
However, if the input voltage is too small (0 V – 0.2 V) compared to 2.56 V, and if direct input is used,
resolution will be degraded. At this time, a prescaler should be used to amplify the signal for better
resolution.

Figure 11-5 • SMTR I/O Signal Diagram

CLK
NRESET

EV_DONE

TR_EV_RDINIT_ADDR[TR_ASIZE–1:0]
TR_EV_ADDR[EV_ASIZE–1:0]

GPO[2GPO_BITS×32–1:0]

GPI[2GPI_BITS×32–1:0]

EV_CHHOLD[4:0]

INIT_DI[8:0]
INIT_TR_WR

INIT_DONE
USER_TR_ADDR[TR_ASIZE–1:0]
USER_TR_RD
EV_RAM_DO_A[8:0]

TR_RAM_ADDR_B[TR_ASIZE–1:0]
TR_RAM_RW_B

TR_RAM_CSN_B
TR_RAM_DI_B[8:0]

TR_RAM_ADDR_A[TR_ASIZE-1:0]
TR_RAM_RW_A

TR_RAM_CSN_A
TR_RAM_DI_A[8:0]

USER_TR_RAM_BUSY

TR_RAM_DO_B[8:0]
EV_RAM_WR_BUSY_B

TR_RAM_WR_BUSY_B

TR_DONE
TR_TRFLAG
Revision 0 281

http://www.actel.com/documents/Fusion_StartKit_UG.pdf

Interfacing with the Fusion Analog System: IP Interface
If the input signal is greater than VAREF, the prescaler must be used to scale down the input range
before the ADC can sample and convert it.
Once the ADC finishes converting the analog signal to a digital value, it filters (averages) the resulting
digital output. Digital filtering is a single-pole low-pass filter built in soft gates, that can be used to improve
the signal-to-noise ratio. If the ADC input data is very erratic, the filtering will smooth out the input and
reduce the noise.
The filtered value is calculated using EQ 1:

Filtering_resultn = filtering_resultn-1 + (ADC_Resultn / filtering_factor) – (filtering_resultn-1 / filtering_factor)

EQ 1
If the digital filtering factor is set to 1, it is ignored.
In some cases where the inputs have very low frequency and the electrical environment is not very noisy,
it may be possible to proceed without any special filtering of input analog signals. However, in most
applications it is desirable to at least implement a simple post-conversion digital filter inside the FPGA by
oversampling and averaging several results to reduce the effects of random noise in the conversion
signal path and improve overall accuracy. This simple averaging is automatically handled in the software
by setting the digital filtering factor in the Analog System Builder to specify how many samples are
averaged (when the factor = N, 2N samples are averaged together).
For situations where greater accuracy is required, an external analog filter may be needed to eliminate
non-random and out-of-band noise sources. If an analog filter is not used to restrict the input signal
content to the band of interest, any out-of-band signals or noise will be aliased into the conversion result
as random in-band noise.
Some applications—for example, those that require frequency detection—may need both external
analog filtering to limit out-of-band effects, and more sophisticated digital processing such as a multi-tap
Finite Impulse Response (FIR) filter. A wide variety of digital filtering methods are available through the
FPGA gates available in a Fusion device.
Once a digital filter factor is selected, the Initial Value option is activated. This initial value is used for
simulation purposes. The user can preset an initial value to imitate a real situation. For example, let the
input signal be a 3.3 V power supply that fluctuates around 3.3 V with a range of 50 mV. The user can set
3.3 V as the initial value for simulation mode.
Acquisition time defines how much time the user gives the ADC to conduct the sampling and conversion.
If the acquisition time is too short, the input signal may not even be settled yet, and the ADC will just
sample some invalid signals. The recommendation is at least 0.2 µs for direct analog input, and 10 µs for
the prescaled input. Refer to the Analog-to-Digital Converter Background section in the "Designing the
Fusion Analog System" section on page 231 for more info on acquisition time.
Maximum voltage defines the expected maximum input voltage on this particular channel.
Users can set threshold flags for SMEV IP to compare against the input voltage, and SMTR IP will trigger
the corresponding flags based on the SMEV comparison results.
The Assert Samples and Deassert Samples parameters define after how many consecutive events a flag
should be asserted or deasserted.

AC Parameter Settings
Besides all the parameters discussed in the voltage monitor configuration, a current monitor acquisition
time should be at least 5 µs. Users should also define the signal polarity and make sure that the potential
on the adjacent AV pad MUST be greater than the AC pad.
A realistic sense resistor value (0.005 – 100 Ω) should be entered in the AC peripheral configuration
window. The adjacent AV channel in the same Analog Quad can still be used as a voltage monitor.

AT Parameter Settings
Similar to the current monitor, a 5 µs acquisition time and digital filter factor value of greater than 512 are
recommended for better conversion accuracy.
282 Revision 0

Fusion FPGA Fabric User’s Guide
Sample Sequence Setting
Users can choose to sample some or all of the analog channels. To manually adjust the sample order,
select Allow manual modification of operating sequence in the sample sequence configuration
window.
The last operation should always jump back to the main procedure or jump to another procedure.

Package Pin Assignment
Users can assign the package pin number for the AV/AC/AT or gate driver peripherals in the Analog
System Builder window, and this assignment will be honored in the Designer software.

Soft IP Implementation Options

Default Implementation (ASSC, SMEV, and SMTR)
The default implementation for the Analog System soft IP includes the ASSC, SMEV, and SMTR IP
blocks for the Fusion Analog System and the Init/Config IP block for the Fusion flash memory system.
This section focuses on the Analog Block soft IP. The Init/Config IP is discussed in the Using the
Embedded Flash Memory for Initialization section in the "Fusion Embedded Flash Memory Blocks"
section on page 135.
Figure 11-6 is a view of the IP and the RAM blocks in the Analog System. The datapath of the system is
shown in the figure (MUXes are not shown for clarity).
Dual-port RAMs are used in the soft IP. All IP blocks access their corresponding RAMs through PORTB.
All IP blocks access each other’s RAM through PORTA. All user access is through PORTA.

The sequence of events for processing ADC data is as follows:
1. ASSC reads its opcode from the ASSC RAM for slot N processing.
2. ASSC processes ADC for slot N.
3. ASSC completes slot N processing and writes ADC result value to ASSC RAM.
4. ASSC signals DONE.

Figure 11-6 • Analog System – IP and RAM Blocks

AB ASSC

ASSC RAM

PORTB PORTA

SMEV

SMEV RAM

PORTB PORTA

SMTR

SMTR RAM

PORTB PORTA

Init. Access

ASSC RAM
User Access

SMEV RAM
User Access

1

6

2

3

4

5

7i i i
Revision 0 283

Interfacing with the Fusion Analog System: IP Interface
5. SMEV wakes up and begins reading SMEV RAM for opcodes.
6. ASSC reads its opcode from the ASSC RAM for slot N + 1 processing.
7. SMEV reads ASSC RAM for ADC result value of slot N processing.
8. The SMEV and SMTR state machines do not execute in parallel. The SMEV state machine

finishes its processing and then signals the SMTR to begin.
Figure 11-7 is the simulation result illustrating the soft IP events:

Figure 11-8 shows the soft IP process for multiple channels in a pipeline mode:

Figure 11-7 • Simulation Result Illustrating Soft IP Events

ASSC Activity

SMEV Activity

SMTR Activity

Figure 11-8 • Soft IP Process for Multiple Channels in Pipeline Mode

ASSC

SMEV

SMTR

Block
Activity

Time

ch1 ch2 ch3 ch4

ev ev ev

tr1 tr2 tr3
1 2 3
284 Revision 0

Fusion FPGA Fabric User’s Guide
Use Default Implementation and Expose ADC Result (ASSC I/Os,
SMEV I/Os, and ACM I/Os)
When users want to directly access the raw ADC results from the ADC or from the ASSC RAM, or
access the averaged ADC result from the SMEV RAM, they can select the corresponding ports in the
Advanced Options window. They will need to develop corresponding HDL code to access those
interfaces. Users can also export and access the ACM bus, as described in the Analog Configuration
MUX (ACM) section in the "Interfacing with the Fusion Analog System: Processor/Microcontroller
Interface" section on page 251. For sample HDL code, refer to the Fusion Starter Kit User’s Guide and
Tutorial.

User Accessing ADC_RESULT Directly
To read ADC_RESULT from the ADC directly, the following signals should be monitored closely:

ASSC_DONE (active-high)
DATAVALID (active-high)
ADC_CHNUMBER
ADC_RESULT

Figure 11-9 shows the timing relationship among the four signals listed above.

ASSC_DONE assertion determines which channel data is available on the ADC_RESULT bus.
DATAVALID assertion indicates that the new ADC_RESULT is ready.
When both ASSC_DONE and DATAVALID are asserted, the user should record which channel number
is active and then read ADC_RESULT for that channel.
The time elapsed from the rising edge of DATAVALID to the next channel number change is at least
eight SYSCLK cycles. If there is concern that ADC_RESULT may not be read out and processed as fast
as the channel changes, ADC_RESULT and ADC_CHNUMBER should be latched—this is one of the
functions of the ASSC RAM.

ASSC and User Accessing ASSC RAM
A signal is exported to indicate that the ASSC is reading or writing the SRAM
(USER_ASSC_RAM_BUSY). The user should not access this interface while that is occurring.

Figure 11-9 • How to Read Valid ADC_RESULT

ASSC_DONE

DATAVALID

ADC_CHNUMBER

ADC_RESULT
Previous

Data
Data for

Channel 1E

Minimum 8 SYSCLK Cycles
1E 01
Revision 0 285

http://www.actel.com/documents/Fusion_StartKit_UG.pdf
http://www.actel.com/documents/Fusion_StartKit_UG.pdf

Interfacing with the Fusion Analog System: IP Interface
SMEV and User Accessing ASSC RAM
The USER_ASSC_RAM_BUSY signal indicates that the SMEV is accessing the RAM, and as stated in
the documentation, the user should not access this interface while that is occurring.

SMEV and User Accessing SMEV RAM
A signal is exported to indicate that the SMEV is reading or writing the SRAM (USER_EV_RAM_BUSY).
This indicates to the user to stop reading.

SMTR and User Accessing SMEV RAM
The USER_EV_RAM_BUSY signal indicates that the SMTR is accessing the RAM, and as stated in the
documentation, the user should not access this interface while that is occurring.
In general, the USER_ASSC_RAM_BUSY or USER_EV_RAM_BUSY signal indicates that other IP is
accessing the corresponding RAM, and the user should not access the interface while that is occurring.
In other words, users can only access the RAM content while the BUSY signal is deasserted.
For a given channel, the ADC result is saved as two parts in two consecutive address locations inside the
RAM. For example:
**
 ASSC Memory Content Report
**
Slot Channel Address Bits Value
--
0 AV0

3| [08:00]| Raw ADC Result [08:00]
4| [02:00]| Raw ADC Result [11:09]

--

**
 SMEV Memory Content Report
**

Channel Address Bits Value
--

AV0
75| [08:00]| Averaged ADC Result [08:00]
76| [02:00]| Averaged ADC Result [11:09]

--

When the BUSY signal is deasserted, the user must execute two User Reads (RD1 and RD2) to read out
the whole ADC result. If the BUSY signal is asserted after RD1 but before RD2, the user must re-execute
RD1 to read the lower address data once the BUSY signal is deasserted again, followed by RD2 to read
the higher address data. Meanwhile, the user must control the address increment appropriately. For
sample HDL coding on this topic, refer to the "Sample Code" section on page 289. This code is also used
in the Fusion Starter Kit tutorial design example.
The user interfaces to the ASSC RAM or the SMEV RAM are the same. The glue logic to the interface
should keep monitoring the BUSY signal and sending the right RAM address at the appropriate time,
then execute the READ action. For more details, refer to the timing diagrams in Figure 11-10 on
page 287 and Figure 11-11 on page 287.
286 Revision 0

Fusion FPGA Fabric User’s Guide
Use IP Cores for ADC Sequence Control Only
When users do not need the SMEV (averaging ADC results) and SMTR (triggering threshold flags)
functions, but only need the ADC sequence control function (ASSC IP block), they can select the IP
cores for ADC sequence control only option in the Advanced Options window. Additionally, if they
want to directly access the raw ADC result from the ADC or from the ASSC RAM, or access the ACM
bus, they can select the corresponding ports in the Advanced Options window.

Figure 11-10 • User Read Soft IP Block RAMs

Figure 11-11 • User Read Soft IP Block RAMs (continued)

RAM Data Lower Address Data Higher Address Data

Lower Address Higher Address

Busy

User Read RD1 RD2

NRESET

000000000 000000000

RAM Data Lower Address Data Higher Address Data

Lower Address

Busy

User Read RD1 RD2

NRESET

Busy

Lower Address Higher Address

RD1

Lower Address Data
Revision 0 287

Interfacing with the Fusion Analog System: IP Interface
VAREF Capacitor Value Selection
The Fusion device can be configured to generate a 2.56 V internal reference voltage (VAREF) that can
be used by the ADC. When VAREF is internally generated by the Fusion device, a by-pass capacitor
must be connected from this pin to ground. For more information, please refer to the “Pin Description”
section of the Fusion Family of Mixed-Signal Flash FPGAs datasheet.
In the Smartgen Analog System Builder, under Advanced Options, users can select the capacitor value
based on the system level requirements. Depending on the capacitor value, a delay circuitry will be
automatically added to ensure the Smartgen IP will not perform an ADC conversion until the voltage level
on the VAREF is stable. Table 11-5 shows the corresponding settling time based on the selectable
capacitor value in the software. If the capacitor value is different than the selectable values in the
software, the user should pick the next higher capacitor value to ensure sufficient settling time is added.
The additional delay will significantly increase the simulation time, but the user may consider changing
the resolution of the simulator to speed up the simulation process.

Note: Users who are using the standalone AB macro and build their own control interface need to be
aware that there is no hold time check in SmartTime for the following signals: VAREFSEL, TVC,
STC, MODE, CHNUMBER. Users need to ensure these signals remain stable for at least one clock
cycle after the assertion of ADCSTART (see Figure 11-12) and the simulation model provides a
check to ensure this requirement is met.

Analog Configuration MUX (ACM)
The ACM is an interface between FPGA/JTAG test registers and Analog Quad configuration latches, and
the Real-Time Counter (RTC). The Analog Block consists of four 8-bit latches per Analog Quad, which
get initialized through the ACM. These latches act as configuration bits for Analog Quads. The Analog
System soft IP generated from Libero IDE configures the ACM latches automatically. If the user does not
use the soft IP, the ACM can be configured manually. For more information, refer to the Analog
Configuration MUX (ACM) Initialization in the "Interfacing with the Fusion Analog System:
Processor/Microcontroller Interface" section on page 251. The ACM block runs off the core voltage
supply (1.5 V).

Table 11-5 • Settling Time for Using the Internal VAREF Reference Voltage

Capacitor Value (µF) Settling Time (ms)

3.3 116.45

10.0 324.73

22.0 750.24

Figure 11-12 • ADCSTART Timing Diagram

SYSCLK

ADCSTART

VAREFSEL/TVC/STC/
MODE/CHNUMBER
288 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf

Fusion FPGA Fabric User’s Guide
Sample Code
The following sample VHDL code is used to read out the ADC conversion results from either the ASSC
RAM or the SMEV RAM.
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ram_reader is
 port (
 CLK : in std_logic; -- clk
 NRESET : in std_logic; -- active low reset

 ASSCDONE : in std_logic;
 EVDATA : in std_logic_vector(8 downto 0);
 EVBUSY : in std_logic;

 EVADDR : out std_logic_vector(8 downto 0);
 EVRD : out std_logic;

 AVGDATA : out std_logic_vector(11 downto 0)
);
end ram_reader;

architecture ctrl of ram_reader is

-- constants for ACM addresses
constant EV_AVG_DATA1 : std_logic_vector(8 downto 0) := "001001011"; --75d
constant EV_AVG_DATA2 : std_logic_vector(8 downto 0) := "001001100"; --76d

-- state machine
type fsm_type is (IDLE,
 RDWAIT,
 RD1,
 RD2
);

signal state : fsm_type;

-- internal registers to hold match values
signal avgdata_reg : std_logic_vector(11 downto 0);

-- internal signals
signal evrd_i : std_logic;
signal evaddr_i : std_logic_vector(8 downto 0);
signal ev_d1en, ev_d2en : std_logic;

begin

-- toplevel port maps
EVADDR <= evaddr_i;
EVRD <= evrd_i;
AVGDATA <= avgdata_reg;

-- EV AVG DATA REGISTER

process(CLK, NRESET)
begin
 if NRESET = '0' then
 avgdata_reg <= (others=>'0') ;
Revision 0 289

Interfacing with the Fusion Analog System: IP Interface
 elsif rising_edge(CLK) then
 if (ev_d1en = '1') then
 avgdata_reg(8 downto 0) <= EVDATA(8 downto 0);
 else
 avgdata_reg(8 downto 0) <= avgdata_reg(8 downto 0);
 end if;

 if (ev_d2en = '1') then
 avgdata_reg(11 downto 9) <= EVDATA(2 downto 0);
 else
 avgdata_reg(11 downto 9) <= avgdata_reg(11 downto 9);
 end if;

 end if;
end process;

-- MAIN STATE MACHINE

process(CLK, NRESET)
begin
 if NRESET = '0' then
 evaddr_i <= "000000000";
 evrd_i <= '0';
 ev_d1en <= '0';
 ev_d2en <= '0';
 state <= IDLE ;
 elsif rising_edge(CLK) then
 case state is
 when IDLE =>
 ev_d2en <= '0';
 if (ASSCDONE = '1') then
 state <= RDWAIT;
 else
 state <= IDLE;
 end if;
 when RDWAIT =>
 if (EVBUSY = '0') then
 evaddr_i <= EV_AVG_DATA1;
 evrd_i <= '1';
 state <= RD1;
 end if;
 when RD1 =>
 if (EVBUSY = '1') then
 state <= RDWAIT;
 else
 evaddr_i <= EV_AVG_DATA2;
 ev_d1en <= '1';
 evrd_i <= '1';
 state <= RD2;
 end if;
 when RD2 =>
 if (EVBUSY = '1') then
 state <= RD1;
 else
 evaddr_i <= "000000000";
 evrd_i <= '0';
 ev_d1en <= '0';
 ev_d2en <= '1';
 state <= IDLE;
 end if;
 when others =>
 state <= IDLE;
 end case;
 end if;
290 Revision 0

Fusion FPGA Fabric User’s Guide
end process;

end ctrl;

The following VHDL code is used to translate the ADC result back to a voltage, current, or temperature
value.
scale: process (reset_n, clock)
begin
if reset_n = '0' then
 scaled_input <= (others => '0');
elsif clock'event and clock = '1' then
 case format_select is
 when "VOLTAGE" =>
 -- 8V full scale, display volts
 -- need to multiply ADC counts x2
 scaled_input <= "000" & counts_in & '0';
 when "TEMPERATURE" =>
 -- drop two LSBs to read in deg K
 scaled_input <= "000000" & counts_in_int_int(11 downto 2);
 when others =>
 null;
 end case;
end if;

end process;

Note: For the current conversion, the ADC result is the differential voltage value across the current sense
resistor. To get the final current value, divide the differential voltage value by the sense resistor
value.

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of the Fusion FPGA Fabric User’s Guide.

N/A

v1.2
(December 2008)

EQ 1 was revised to correctly subscript portions of variable names. 282

v1.1
(October 2008)

Modified ADC_RESULT[11:0] description. 277

51700092-007-1 Added "VAREF Capacitor Value Selection" section. 288
Revision 0 291

12 – Temperature, Voltage, and Current Calibration
in Fusion FPGAs

Introduction
Actel Fusion® mixed-signal FPGAs integrate configurable analog features, including I/Os, prescalers,
low-pass filters, and an analog-to-digital converter (ADC), enabling customers to perform temperature,
voltage, and current measurements in their applications. Analog components have a specific accuracy
for a given set of conditions. The accuracy can have a broad range of definitions and is affected by many
parameters in the system. For example, in a temperature measurement application, the accuracy of the
measured temperature is influenced by the accuracy of on-chip elements (temperature sensor, op amps,
and ADC), use model (sample rate, ADC resolution setting, post-processing, etc.), and board-level
considerations. For the purpose of this document, accuracy can be defined as the difference/error
between the actual value and the measured value. For example, in a temperature measurement
application, an accuracy of ±2°C means that the measured value may be up to ±2°C different from the
actual value.
If the difference between the measured value and the actual value is too great, you can use calibration to
bring the measured value closer to the actual value. Calibration assumes a profile for the relationship
between the actual value and the measured value. This profile depends on the characteristics of the
components used in the measurement. There are two calibration profiles: one corrects for offset error
only, and the second accounts for both offset and gain errors. Figure 12-1 illustrates these typical profiles
that define the calibration implementation methodology.
To completely calibrate a system, users can calibrate individual components, or they can calibrate the
entire system, taking into account the error of all the individual components working together. Many users
may decide to perform both levels of calibration. This document provides a description of the factory
calibration methodology for voltage inputs on Fusion devices, and also provides recommendations on
system calibration methods for voltage, temperature, and current using Fusion. Using Actel’s device
calibration solution, the Fusion ADC sampling accuracy for voltage prescalar inputs can be improved to
1%, enabling Fusion to better meet customers' design requirements.

Figure 12-1 • Example Profiles of Measured Value and Actual Value Variations

Offs
et

Erro
r O

nlyIde
al

Offs
et

an
d G

ain
 E

rro
r

Actual

M
ea

su
re

d

Revision 0 293

Temperature, Voltage, and Current Calibration in Fusion FPGAs
General Calibration Concept

Calibration Methods
Based on the measured-versus-actual profile and the required accuracy, customers can define the most
efficient method for translating the measured value into an actual value. In most analog components,
including the Fusion FPGA, the relationship between measured and actual values follows the profiles
illustrated in Figure 12-1 on page 293. This document describes only calibration methodologies
associated with offset-only and offset-and-gain corrections.

Offset-Only Calibration
Offset-only calibration (sometimes known as one-point calibration) is based on the relationship between
the measured and actual values given in EQ 1:

y = x + c

EQ 1
where

As shown by EQ 1, offset-only calibration accounts for the offset between the actual and measured
values.

Offset-and-Gain Calibration
If the correlation between the actual and measured values is defined primarily by an offset, as shown in
the offset error line in Figure 12-1 on page 293, or if the actual measured value is naturally constrained to
a specific region, offset-only calibration may be sufficient to achieve a high degree of accuracy.
However, in some cases, especially if the range of the measurement varies widely, the difference
between the actual and measured values not only includes an offset but is also governed by a gain
variation, as shown in Figure 12-1 on page 293. In such cases, offset-only calibration may not provide
sufficient correction to achieve the accuracy required by the customer's application. In this case, offset-
and-gain calibration (also known as two-point calibration) can be implemented to achieve a higher level
of accuracy.
In two-point calibration, the relationship between the measured and actual values is governed by EQ 2:

y = mx + c

EQ 2
where

Choosing between one-point calibration and two-point calibration depends on many parameters, some of
which include the following:

• Customer application's required accuracy
• Measurement gain and offset error of electrical components, such as the Fusion FPGA
• Application's operating range

y = actual value
x = measured value
c = offset compensation between measured and actual values

y = actual value
x = measured value
c = offset compensation between measured and actual values
m = gain compensation between measured and actual values
294 Revision 0

Fusion FPGA Fabric User’s Guide
Customer Application's Required Accuracy
Given the required accuracy of an application within its operating range, designers can use the specified
gain and offset error of Fusion FPGAs to determine the suitable calibration method to achieve the
desired accuracy. Refer to the Fusion Family of Mixed-Signal Flash FPGAs datasheet for more
information.

Calibration Measurements
To calculate m or c in EQ 1 and EQ 2 on page 294, measurements must be taken in a known
environment so measured data can be compared against actual values. The number of required data
points depends on the method of calibration. One data point would suffice for one-point calibration
(determining offset), whereas for two-point calibration, two data points are needed to define gain and
offset. In calibration measurements, a known actual value (temperature, current, or voltage) is supplied
to the system, and the measured value is recorded.

Offset-Only Calibration Measurement
In offset-only (or one-point) calibration measurement, an actual value of Pa1 (e.g., temperature) is
applied to the system, and its value is measured as Pm1 by the system. Then, the offset value c in
Figure 1 on page 294 can be calculated as shown in EQ 3.

c = y1 – x1

EQ 3

Offset-and-Gain (two-point) Calibration Measurement
As shown in Figure 12-2, to calculate m and c in EQ 2 on page 294, two data points are needed for two-
point calibration.

Figure 12-2 • Two-Point Calibration for Offset-and-Gain Error

Pa1

Pa2

Ideal

ADC Result

Pm1
Pm2

Analog Input

O
ut

pu
t V

al
ue
Revision 0 295

http://www.actel.com/documents/Fusion_DS.pdf

Temperature, Voltage, and Current Calibration in Fusion FPGAs
Therefore, two known actual values (y1 and y2) must be applied to the system, and two measured points
(x1 and x2) must be recorded. The m and c values in EQ 2 on page 294 are calculated as shown in EQ 4
and EQ 5.

m = (y2 – y1) / (x2 – x1)

EQ 4

c = (y1 × x2 – y2 × x1) / (x2 – x1)

EQ 5

Choosing Calibration Data Points
In one-point calibration, from a practical point of view, Actel recommends that the applied actual value be
in the middle of the operating range as defined by the application. For example, if the system measures a
voltage that operates from 0 V to 5 V, taking the calibration measurement at ~2.5 V will typically give the
best results.
For two-point calibration measurement, Actel recommends that the two data points be taken at 20% and
80% of the operation range. For example, if a temperature measurement application is used in a system
that operates from 0°C to 50°C, Actel recommends that the calibration measurements be taken at 10°C
and 40°C.
In many voltage or current monitoring applications where the operating range includes 0 V or 0 A,
customers tend to choose 0 V or 0 A as one of their calibration measurement data points. This is mainly
driven by the simplicity of setup for measurements at the ground level. However, the ground level of the
system is typically noisy due to the operation of the system and other noise factors. In such situations,
the calibration measurement may not be sufficient to achieve the accuracy level required by the overall
design. Therefore, Actel recommends that zero-level measurements be avoided for voltage and current
calibration data collection.
Actel Fusion FPGAs offer up to 32 analog channels for temperature, current, or voltage measurements.
Many applications, such as system management, use more than one analog channel in their design.
Though all these channels use a single ADC inside Fusion, each prescaler circuit within the analog I/O
structure has a unique set of op amp circuits. Therefore, it is necessary to calibrate each channel that
requires the increased level of accuracy independently. In this case, each channel has its own calibration
coefficient based on the method used for calibration (one-point or two-point).
Furthermore, in an analog (voltage/current/temperature) measurement, application designers exploit
other components besides the Fusion FPGA to sense, transport, or amplify the measured parameters.
Customers can use two general approaches in calibrating these systems:

1. Calibrate each device used in the measurement individually.
2. Calibrate all the utilized devices when operating together in the system.

In the first approach, the customer calibrates each device individually in a controlled setting. In this case,
the methods and recommendations explained in this document are applicable for the Fusion device. For
other components, the customer should follow the recommendations and techniques provided by the
vendor of each component.
In the second approach, all the system components in the application are used to take the calibration
data points. In this case, the total measurement error can be adjusted by calibrating the measured values
after the ADC. If this method is used, all the recommendations and techniques in this document can be
applied.
296 Revision 0

Fusion FPGA Fabric User’s Guide
Actel Calibration Solution
Actel's device-level calibration solution offers significant improvement in ADC accuracy for voltage
monitor applications. There are two ways of exercising the Fusion ADC for voltage monitoring: sampling
prescaled analog input or sampling direct analog input. If a customer design requires better accuracy
than the default Fusion ADC performance, then calibration is needed. Since direct analog input sampling
accuracy is well within 1%, the Actel calibration solution does not offer any additional benefit, so it is only
available for prescaled inputs.
Temperature and current monitor calibration are not supported.
The Actel calibration solution is a two-point offset-and-gain calibration scheme. The implementation is
performed through the following two steps:

1. During production test and screening flows, m and c compensation values are determined for
each analog voltage channel and stored in the flash memory block of each Fusion device.

2. In Actel Libero® Integrated Design Environment (IDE) v8.2 SP1 and later, an RTL calibration IP
block is built into the SmartGen Fusion Analog System Builder core. This calibration block reads
the m and c values stored in the flash memory and uses them to calibrate data for each analog
voltage channel.

Coefficient Measurement and Programming
During the Fusion production test flow, in a controlled environment, Actel measures the calibration
coefficients, m and c, of every prescaler level of all 30 channels of each device. Measurements are done
with the Fusion ADC VAREF set to 2.56 V. In other words, the coefficients do not apply to any customer
designs that use a VAREF other than 2.56 V. Actel calibration implementation is disabled in software
when VAREF is set to another value.
Then coefficients are programmed into the dedicated spare page of Fusion flash memory block (FB) 0
(AFS600 has blocks 0 and 1), from page 50 to 62.
Customers should avoid overwriting these spare pages. An old design generated prior to Libero IDE v8.2
SP1 utilizes these spare pages for Analog System configuration data. Programming an old design to a
calibrated device could overwrite these spare pages and corrupt the coefficients. Calibration coefficients
of that device would then no longer be available.
On the other hand, programming a design with a calibration block generated from Libero IDE v8.2 SP1 or
newer to an uncalibrated device will result in erroneous data from the ADC. To avoid this, customers can
pre-program the device with the POPULATION.stp file provided in the Libero IDE v8.2 SP1 release. This
programming action populates the dedicated flash memory area for calibration with m = 1 and c = 0.
Then customers can program the device with the design STAPL file.

Calibration IP Deployment
To implement Actel's calibration solution, customers must generate a new Analog System and Flash
Memory System using Libero IDE v8.2 SP1 or newer. Actel's calibration IP solution is not available for
processor systems that use the CoreAI to interface to the analog block.

Analog System Builder Update
Through the Analog System Builder, customers have an option to deploy a calibration IP block named
"CalibIP" into Fusion designs. The CalibIP block is seamlessly inserted into the original Analog System
macro, as shown in Figure 12-3 on page 12-298. Figure 12-3 on page 298 shows only the insertion into a
Revision 0 297

Temperature, Voltage, and Current Calibration in Fusion FPGAs
full Analog System; the same concept applies to the Sequence Only (without SMEV and SMTR stages)
and ADC Only (without ASSC, SMEV, and SMTR stages) flows.

During power-up, the initialization state machine, INIT/CONFIG IP, loads the coefficients from the flash
memory block into a dedicated SRAM block for the CalibIP core. CalibIP reads the coefficients from the
SRAM block and applies the m and c values to the raw ADCRESULT, following EQ 2 on page 294 to
generate the calibrated ADCRESULT. The calibrated ADCRESULT then goes through the rest of the
process as in the original processing flow.
There are two new ports created at the Analog Block top level to support calibration initialization from the
flash memory block:

• INIT_CALIBROM_WEN – Write enable to ROM region, single-bit, active-high
• INIT_CALIBCOEFF_WEN – Write enable to coefficient region, single-bit, active-high

These are write enables for the INIT/CONFIG interface. Connect them to corresponding ports of the flash
memory block top level, as shown in Figure 12-4 on page 12-299.

Figure 12-3 • Full Analog System Macro with CalibIP

AB

CalibIP

ASSC

RAM

SMEV

RAM

SMTR

RAM

Interface

Analog Ports

ASSC External
Trigger Interface

ASSC Status

Flags

ADCRESULT
BUSY

DATAVALID

ADCRESULT
BUSY

DATAVALID
CHNUMBER
ADCSTART
298 Revision 0

Fusion FPGA Fabric User’s Guide
Flash Memory System Builder Update
Inside the Flash Memory System Builder (FMSB), customers can generate an analog client to properly
initialize the Analog System macro with CalibIP deployed. In addition to the regular Analog System
configuration data partition, FMSB also creates two other partitions for the analog client: one for the
coefficients’ storage (CALIBCOEFFICIENT), from spare page 50 to 62, and one for a lookup table
(CALIBROM) that records which channel and prescaler level need to be calibrated, from spare page 43
to 48.
Because of the new calibration coefficients’ storage partition, the SMTR configuration data is assigned to
flash memory block sector 63, from page 2,016 through 2,047 (or as addresses: 0x3F000 through
0x3FF80). SMTR uses up to 32 pages. The actual number of pages used in this sector depends on
whether (and how many) flags are used in the Analog System design. The Flash Memory System Builder
prevents customers from assigning any other clients to these pages.
The flash memory maps prior to and after the Libero IDE v8.2 SP1 release are shown in Figure 12-5 and
Figure 12-6 on page 301.

Figure 12-4 • Connectivity between Analog System Block and Flash Memory Block
Revision 0 299

Temperature, Voltage, and Current Calibration in Fusion FPGAs

Figure 12-5 • Flash Memory Map Prior to Libero IDE v8.2 SP1

SPO RESERVED
SP1 ACM
SP2 RTC (only if RTC configured)
SP3
SP4

Sector 0

Sector 1

Sector 2

Sector 60

Sector 61

Sector 62

Sector 63

SP10
SP11

SP41
SP42
SP43

SP61
SP62
SP63 CoreCFI

Flash Memory Block = 64 Sectors
Sector = 32 Pages and 1 Spare Page

ASSC (fixed at
8 pages)

SMEV (variable,
dependent on
number of flags)

SMTR (variable, dependent
on number of flags)

Spare Page User Area
300 Revision 0

Fusion FPGA Fabric User’s Guide
There are two new ports created at the flash memory block top level, corresponding to those created for
the Analog Block:

• INIT_CALIBROM_WEN
• INIT_CALIBCOEFF_WEN

Connect these ports to the Analog Block top level.

Figure 12-6 • Flash Memory Map after Libero IDE v8.2 SP1

SPO RESERVED
SP1 ACM
SP2 RTC (only if RTC configured)
SP3
SP4

Sector 0

Sector 1

Sector 2

Sector 60

Sector 61

Sector 62

Sector 63

SP10
SP11

SP41
SP42
SP43

SP48
SP49
SP50

SP61
SP62
SP63 CoreCFI SMTR (variable, dependent,

on number of flags)

Flash Memory Block = 64 Sectors
Sector = 32 Pages and 1 Spare Page

ASSC (fixed at
8 pages)

SMEV (variable,
dependent on
number of flags)

CALIBROM (fixed
at 6 pages)

CALIBCOEFFICIENT

Spare Page User Area
Revision 0 301

Temperature, Voltage, and Current Calibration in Fusion FPGAs
Design Flow and Tips
For calibrated Fusion devices, there are several implementation scenarios.

Scenario 1: Brand New Design
Follow the regular design flow to implement the Actel calibration solution in a new design:
By default, the calibration IP is enabled in the Analog System macro, and the flash memory block
initializes the IP. The Designer software places the corresponding analog client in flash memory block 0.
The content of the memory file (*.mem) is different from that of the embedded flash configuration file
(*.efc). The *.mem file produced by the Flash Memory Builder for simulation purposes is populated with
m = 1.0 and c = 0 for all channels and all prescaler combinations. CalibIP can function appropriately
during simulation. The *.efc file for programming file generation does not include the m and c content
because the coefficients are pre-programmed into the device during production test.
To disable the calibration IP, uncheck Include calibration IP in the Advanced Options of the Analog
System Builder, as shown in Figure 12-7.
For a calibration-enabled design, when Bypass calibration on saturated ADC input is selected, the
saturated ADC result is passed to the next level of computation without calibration. If unchecked, the
saturated ADC result is calibrated before it is passed to the next level.

Figure 12-7 • Disable CalibIP from Advanced Options (Libero IDE v8.2 SP1)
302 Revision 0

Fusion FPGA Fabric User’s Guide
Scenario 2: Update Existing Design to Implement Calibration Solution
To update existing Fusion designs and utilize the Actel calibration solution, take the following steps to
regenerate the design:

1. Open the design in Libero IDE v8.2 SP1 or newer.
2. Regenerate the Analog System macro in Analog System Builder.

Open Advanced Options, select the Include calibration IP option, then regenerate the macro.
3. Regenerate the flash memory block.
4. Make sure the additional ports (INIT_CALIBROM_WEN and INIT_CALIBCOEFF_WEN) are

properly connected, either through SmartDesign (Figure 12-8) or HDL coding.

Go through the rest of the regular design flow (synthesis, compile, and layout with proper simulation and
timing analysis).

Figure 12-8 • SmartDesign Connectivity Grid in Libero v8.2 SP1
Revision 0 303

Temperature, Voltage, and Current Calibration in Fusion FPGAs
Scenario 3: Existing Design for Firmware Image Update Only
To update the firmware image in the existing design without using the calibration IP, regenerate the Flash
Memory Block. Then go through the rest of design flow (synthesis, compile, and layout with proper
simulation and timing analysis).

Scenario 4: Maintain Existing Design in New Software Release without
Using Calibration Solution
Actel recommends that all customers regenerate the Analog System Block and the flash memory block in
Libero IDE v8.2 SP1 or newer software releases, unless the Analog System Block utilizes less than 20
channels and less than four flags per channel.
Programming a calibrated device with designs generated prior to Libero IDE v8.2 SP1 can overwrite and
corrupt the pre-programmed coefficient data in the dedicated flash memory partition. The FlashPro
software released with Libero IDE v8.2 SP1 detects whether there is a memory map overlap. If there is a
memory overlap, FlashPro cancels the programming action and asks the user to regenerate the Analog
System.
To program a design with calibration implemented to a targeted device that is uncalibrated, pre-program
the device with the POPULATION.stp file provided by Actel. This programming action populates the
dedicated flash memory area for calibration with m = 1 and c = 0. Then program the device with the
design STAPL file.

Utilization and Performance
The total RAM block and core tile utilization to implement CalibIP and the corresponding initialization
process is listed in Table 12-1. CalibIP and other IPs infer registers with enable. When these registers
have a SET or RESET signal, assign the SET or RESET signal to a global resource to make sure that
the register remains a one-tile implementation (NOT split into two tiles).

The CalibIP performance is listed in Table 12-2.

The performance of CalibIP is only limited by the latency introduced by the Compute Block. The
Compute Block adds a latency of 14 clock cycles. For example, 14 clock cycles of a 40 MHz system
clock is 0.35 microseconds. With calibration implemented, you can expect the ADC result 0.35
microseconds later than in a design without calibration implementation. The sampling rate is degraded by
2%.

Table 12-1 • Calibration Implementation Utilization Report

RAM Block

Tile Count for CalibIP

Optimized for Area Optimized for Speed

1 363 453

Table 12-2 • CalibIP Performance Report

Speed Grade

CalibIP Performance (MHz)

Optimized for Area Optimized for Speed

Std. 45 57

–2 75 96
304 Revision 0

Fusion FPGA Fabric User’s Guide
Improvement from Actel Calibration Solution
Table 12-3 shows typical error using Actel's calibration solution.

Microprocessor-Based Design Flow
In a microprocessor-based design flow, designers can use CoreAI (Analog Interface) to interface and
control the analog peripherals within the Fusion device family. Designers using Core8051, CoreMP7, or
Cortex™-M1 with CoreAI can take advantage of the CoreAI Driver (provided in C code) to support the
calibration features.
The CoreAI driver provides a set of Application Program Interface (API) functions to support different
calibration modes and automatically calculate the final calibrated value, based on the m and c coefficient
stored in the spare page of the Fusion flash memory block.
Currently, the calibration scheme only supports voltage monitor applications (AVx pins) and is only
needed for prescaled voltage inputs. If direct analog input sampling accuracy is well within 1%, the Actel
calibration solution does not offer any additional benefits. CoreAI driver must be used with CoreAI
version 2.1 (or higher) and CoreAhbNvm version 1.3.135 (or higher). Refer to the CoreAI Driver User's
Guide for more information.

Performing System-Level Calibration Using Fusion
Previous sections of this document describe the general approach to calibration using the offset-only and
offset-plus-gain approaches, and provided a detailed explanation of Actel’s calibration solution for Fusion
voltage input signals. In addition to this solution, users may desire calibration of temperature and current
inputs, as well as calibration of the entire system working together. A recommended approach to
accomplishing these tasks is provided below. This methodology may be added in the user’s design on
top of the device-level calibration solution.

Table 12-3 • Fusion Analog System Typical Error with CalibIP Deployed

Input
Voltage
(V)

Calibrated Typical Error per Positive Prescaler Setting1 (%)

Direct
ADC2, 3

(%)

16 V (AT)
16 V (12 V)

(AV/AC)
8 V

(AV/AC) 4 V (AT)
4 V

(AV/AC)
2 V

(AV/AC)
1 V

(AV/AC)
VAREF =

2.56 V

15 1

14 1

12 1 1

5 2 2 1

3.3 2 2 1 1 1

2.5 3 2 1 1 1 1

1.8 4 4 1 1 1 1 1

1.5 5 5 2 2 2 1 1

1.2 7 6 2 2 2 1 1

0.9 9 9 4 4 3 1 1 1

Notes:
1. Requires enabling Analog Calibration in the Actel tool flow.
2. Direct ADC mode using an external VAREF of 2.56V±4.6mV, without Analog Calibration macro.
3. For input greater than 2.56 V, the ADC output will saturate. A higher VAREF or prescaler usage is recommended.
Revision 0 305

Temperature, Voltage, and Current Calibration in Fusion FPGAs
The "Calibration Measurements" section on page 295 explains how the calibration coefficients, as
described in EQ 1 and EQ 2 on page 294, are calculated. EQ 1 and EQ 2 on page 294 (depending on
the calibration method used) are implemented using an adder (one-point calibration) or a combination of
an adder and a multiplier (two-point calibration), as shown in Figure 12-9.

The calibration coefficients (m and c in Figure 12-9) can be stored in the nonvolatile flash memory of
each Fusion device. Therefore, inside the flash memory architecture, different memory addresses can
contain the calibration coefficients for each channel in the design. Depending on which channel in the
design is performing the measurement at the time, appropriate calibration coefficients can be fetched
and fed into the adder and/or multiplier. For details on writing and reading to the Fusion flash memory
block, refer to the "Fusion Embedded Flash Memory Blocks" section on page 135.
Where and how the adder and multiplier are implemented depends highly on the application and the
user's design. Generally, there are three ways designers can implement the arithmetic functions in
Figure 12-9 to produce the calibrated results of measurement. The following explains each of these
implementations and their pros and cons:

Implementing a Dedicated Adder and Multiplier Using FPGA Core Gates
Pros

• High speed
• Efficient for one-point calibration

Cons
• Multiplier implementation consumes large number of gates

Using the Design’s Microprocessor/Microcontroller ALU to Perform
Calibration Calculations
Pros

• Saves FPGA gate resources compared to implementing dedicated multiplier

Cons
• May slow down microprocessor's performance depending on the overall sampling rate

Implementing the Numerical Calculations in Application Software
Pros

• Saves FPGA gates

Cons
• Depending on the application, may take up a lot of bandwidth from the host processor
• Only suitable for applications where there is software communicating with hardware

Figure 12-9 • Implementation of One-Point and Two-Point Calibration

Measured Value

Calibrated Result

c (offset)

(a) One-Point Calibration

Measured Value

Calibrated Result

c (offset)

(b) Two-Point Calibration

g (gain)
306 Revision 0

Fusion FPGA Fabric User’s Guide
Conclusion
Designers use calibration to increase the accuracy achievable in applications involving analog
components. Actel Fusion mixed-signal FPGAs offer the capability of measuring analog voltage, current,
and temperature. If customers require more accuracy than is inherent in Fusion FPGAs, calibration
techniques can be used to achieve these requirements. Fusion FPGAs offer the advantage of having the
calibration design and coefficients programmed into the FPGA itself without a need for any external
components. This document discusses the typical calibration techniques and the implementation of Actel
calibration solutions for Fusion FPGAs. The result shows that with the Actel calibration implementation,
customers can achieve 1% ADC sampling accuracy for all Fusion devices and all channels.

Related Documents

Datasheets
Fusion Family of Mixed-Signal Flash FPGAs
http://www.actel.com/documents/Fusion_DS.pdf

List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of the Fusion FPGA Fabric User’s Guide.

N/A

v1.0
(October 2008)

The "Microprocessor-Based Design Flow" section was added. 305

51900161-3/6.08
(June 2008)

This statement was added to the "Calibration IP Deployment" section:
Actel's calibration IP solution is not available for processor systems that use the
CoreAI to interface to the analog block.

297

In the "Performing System-Level Calibration Using Fusion" section, a reference to
the Fusion Handbook was added.

305

51900161-1/2.08
(February 2008)

Please read the document very carefully. A lot of helpful and useful information was
added to the document.

N/A

The "Introduction" section was updated. 293

The heading title "Calibration Measurements" section is new and all subsections
were significantly updated. Please note the variables in all equations were changed.
In addition, the variable g was changed to m throughout the document.

295

The "Actel Calibration Solution" section and all subsections are new. 297

The heading title "Implementing Calibration Design" was changed to "Performing
System-Level Calibration Using Fusion" section. In Figure 12-9 • Implementation of
One-Point and Two-Point Calibration, the m was changed to g.

305
Revision 0 307

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

13 – I/O Software Control in Low Power Flash
Devices

Actel Fusion,® IGLOO,® and ProASIC®3 I/Os provide more design flexibility, allowing the user to control
specific features by enabling certain I/O standards. Some features are selectable only for certain I/O
standards, whereas others are available for all I/O standards. For example, slew control is not supported
by differential I/O standards. Conversely, I/O register combining is supported by all I/O standards. For
detailed information about which I/O standards and features are available on each device and each I/O
type, refer to the I/O Structures section of the handbook for the device you are using.
Figure 13-1 shows the various points in the software design flow where a user can provide input or
control of the I/O selection and parameters. A detailed description is provided throughout this
document.

Figure 13-1 • User I/O Assignment Flow Chart

Design Entry

1. I/O Macro
Using

SmartGen

2. I/O Buffer
Cell Schematic

Entry

3. Instantiating
I/O Library

Macro in HDL
Code

4. Generic
Buffer Using

1, 2, 3
Method

5. Synthesis

6. Compile
6.1 I/O

Assignments by
PDC Import

7. I/O Assignments by Multi-View Navigator (MVN)

I/O Standard Selection
for Generic I/O Macro

I/O Standards and
VREF Assignment by

I/O Bank Assigner

I/O Attribute Selection
for I/O Standards

8. Layout
and Other

Steps
Revision 0 309

I/O Software Control in Low Power Flash Devices
Flash FPGAs I/O Support
The flash FPGAs listed in Table 13-1 support I/Os and the functions described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 13-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 13-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 13-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
310 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf

Fusion FPGA Fabric User’s Guide
Software-Controlled I/O Attributes
Users may modify these programmable I/O attributes using the I/O Attribute Editor. Modifying an I/O
attribute may result in a change of state in Designer. Table 13-2 details which steps have to be re-run as
a function of modified I/O attribute.

Table 13-2 • Designer State (resulting from I/O attribute modification)

I/O Attribute
Designer States

Compile Layout Fuse Timing Power
Slew Control No No Yes Yes Yes

Output Drive (mA) No No Yes Yes Yes

Skew Control No No Yes Yes Yes

Resistor Pull No No Yes Yes Yes

Input Delay No No Yes Yes Yes

Schmitt Trigger No No Yes Yes Yes

OUT_LOAD No No No Yes Yes

COMBINE_REGISTER Yes Yes N/A N/A N/A

Notes:
1. No = Remains the same, Yes = Re-run the step, N/A = Not applicable
2. Skew control and input delay do not apply to IGLOO nano, IGLOO PLUS, and ProASIC3 nano

devices.
Revision 0 311

I/O Software Control in Low Power Flash Devices
Implementing I/Os in Actel Software
Actel Libero® Integrated Design Environment (IDE) is integrated with design entry tools such as the
SmartGen macro builder, the ViewDraw schematic entry tool, and an HDL editor. It is also integrated with
the synthesis and Designer tools. In this section, all necessary steps to implement the I/Os are
discussed.

Design Entry
There are three ways to implement I/Os in a design:

1. Use the SmartGen macro builder to configure I/Os by generating specific I/O library macros and
then instantiating them in top-level code. This is especially useful when creating I/O bus
structures.

2. Use an I/O buffer cell in a schematic design.
3. Manually instantiate specific I/O macros in the top-level code.

If technology-specific macros, such as INBUF_LVCMOS33 and OUTBUF_PCI, are used in the HDL
code or schematic, the user will not be able to change the I/O standard later on in Designer. If generic I/O
macros are used, such as INBUF, OUTBUF, TRIBUF, CLKBUF, and BIBUF, the user can change the I/O
standard using the Designer I/O Attribute Editor tool.

Using SmartGen for I/O Configuration
The SmartGen tool in Libero IDE provides a GUI-based method of configuring the I/O attributes. The
user can select certain I/O attributes while configuring the I/O macro in SmartGen. The steps to configure
an I/O macro with specific I/O attributes are as follows:

1. Open Libero IDE.
2. On the left-hand side of the Catalog View, select I/O, as shown in Figure 13-2.

Figure 13-2 • SmartGen Catalog
312 Revision 0

Fusion FPGA Fabric User’s Guide
3. Expand the I/O section and double-click one of the options (Figure 13-3).

4. Double-click any of the varieties. The I/O Create Core window opens (Figure 13-4).

As seen in Figure 13-4, there are five tabs to configure the I/O macro: Input Buffers, Output Buffers,
Bidirectional Buffers, Tristate Buffers, and DDR.

Input Buffers
There are two variations: Regular and Special.
If the Regular variation is selected, only the Width (1 to 128) needs to be entered. The default value for
Width is 1.
The Special variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options (see
Figure 13-4). All the I/O standards and supply voltages (VCCI) supported for the device family are
available for selection.

Figure 13-3 • Expanded I/O Section

Figure 13-4 • I/O Create Core Window
Revision 0 313

I/O Software Control in Low Power Flash Devices
Output Buffers
There are two variations: Regular and Special.
If the Regular variation is selected, only the Width (1 to 128) needs to be entered. The default value for
Width is 1.
The Special variation has Width, Technology, Output Drive, and Slew Rate options.

Bidirectional Buffers
There are two variations: Regular and Special.
The Regular variation has Enable Polarity (Active High, Active Low) in addition to the Width option.
The Special variation has Width, Technology, Output Drive, Slew Rate, and Resistor Pull-Up/-Down
options.

Tristate Buffers
Same as Bidirectional Buffers.

DDR
There are eight variations: DDR with Regular Input Buffers, Special Input Buffers, Regular Output
Buffers, Special Output Buffers, Regular Tristate Buffers, Special Tristate Buffers, Regular Bidirectional
Buffers, and Special Bidirectional Buffers.
These variations resemble the options of the previous I/O macro. For example, the Special Input Buffers
variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options. DDR is not
available on IGLOO PLUS devices.

5. Once the desired configuration is selected, click the Generate button. The Generate Core
window opens (Figure 13-5).

6. Enter a name for the macro. Click OK. The core will be generated and saved to the appropriate
location within the project files (Figure 13-6 on page 315).

7. Instantiate the I/O macro in the top-level code.
The user must instantiate the DDR_REG or DDR_OUT macro in the design. Use SmartGen to
generate both these macros and then instantiate them in your top level. To combine the DDR
macros with the I/O, the following rules must be met:

Figure 13-5 • Generate Core Window
314 Revision 0

Fusion FPGA Fabric User’s Guide
Rules for the DDR I/O Function
• The fanout between an I/O pin (D or Y) and a DDR (DDR_REG or DDR_OUT) macro must be

equal to one for the combining to happen on that pin.
• If a DDR_REG macro and a DDR_OUT macro are combined on the same bidirectional I/O, they

must share the same clear signal.
• Registers will not be combined in an I/O in the presence of DDR combining on the same I/O.

Using the I/O Buffer Schematic Cell
Libero IDE includes the ViewDraw schematic entry tool. Using ViewDraw, the user can insert any
supported I/O buffer cell in the top-level schematic. Figure 13-6 shows a top-level schematic with
different I/O buffer cells. When synthesized, the netlist will contain the same I/O macro.

Figure 13-6 • I/O Buffer Schematic Cell Usage
Revision 0 315

I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero IDE integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero IDE. Refer to the Actel Libero IDE User’s Guide or Libero IDE online help for details on how to set
up the Libero IDE tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 13-7 on page 317).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist.
316 Revision 0

http://www.actel.com/documents/pa3_libguide_ug.pdf

http://www.actel.com/documents/pa3_libguide_ug.pdf

http://www.actel.com/documents/libero_ug.pdf

Fusion FPGA Fabric User’s Guide
– The I/O standard of technology-specific I/O macros cannot be changed in the I/O Attribute
Editor (see Figure 13-7).

– The user MUST instantiate differential I/O macros (LVDS/LVPECL) in the design. This is the
only way to use these standards in the design (IGLOO nano and ProASIC3 nano devices do
not support differential inputs).

– To implement the DDR I/O function, the user must instantiate a DDR_REG or DDR_OUT
macro. This is the only way to use a DDR macro in the design.

Performing Place-and-Route on the Design
The netlist created by the synthesis tool should now be imported into Designer and compiled. During
Compile, the user can specify the I/O placement and attributes by importing the PDC file. The user can
also specify the I/O placement and attributes using ChipPlanner and the I/O Attribute Editor under MVN.

Defining I/O Assignments in the PDC File
A PDC file is a Tcl script file specifying physical constraints. This file can be imported to and exported
from Designer.
Table 13-3 shows I/O assignment constraints supported in the PDC file.

Figure 13-7 • Assigning a Different I/O Standard to the Generic I/O Macro

Table 13-3 • PDC I/O Constraints

Command Action Example Comment

I/O Banks Setting Constraints

set_iobank Sets the I/O supply
voltage, VCCI, and the
input reference voltage,
VREF, for the specified I/O
bank.

set_iobank bankname
[-vcci vcci_voltage]
[-vref vref_voltage]

set_iobank Bank7 -vcci 1.50
-vref 0.75

Must use in case of mixed I/O
voltage (VCCI) design

set_vref Assigns a VREF pin to a
bank.

set_vref -bank [bankname]
[pinnum]

set_vref -bank Bank0
685 704 723 742 761

Must use if voltage-
referenced I/Os are used

set_vref_defaults Sets the default VREF
pins for the specified
bank. This command is
ignored if the bank does
not need a VREF pin.

set_vref_defaults bankname

set_vref_defaults bank2

Note: Refer to the Actel Libero IDE User’s Guide for detailed rules on PDC naming and syntax conventions.
Revision 0 317

http://www.actel.com/documents/libero_ug.pdf

I/O Software Control in Low Power Flash Devices
I/O Attribute Constraint

set_io Sets the attributes of an
I/O

set_io portname
[-pinname value]
[-fixed value]
[-iostd value]
[-out_drive value]
[-slew value]
[-res_pull value]
[-schmitt_trigger value]
[-in_delay value]
[-skew value]
[-out_load value]
[-register value]

set_io IN2 -pinname 28
-fixed yes -iostd LVCMOS15
-out_drive 12 -slew high
-RES_PULL None
-SCHMITT_TRIGGER Off
-IN_DELAY Off –skew off
-REGISTER No

If the I/O macro is generic
(e.g., INBUF) or technology-
specific (INBUF_LVCMOS25),
then all I/O attributes can be
assigned using this constraint.
If the netlist has an I/O macro
that specifies one of its
attributes, that attribute
cannot be changed using this
constraint, though other
attributes can be changed.
Example: OUTBUF_S_24
(low slew, output drive 24 mA)
Slew and output drive cannot
be changed.

I/O Region Placement Constraints

define_region Defines either a
rectangular region or a
rectilinear region

define_region
-name [region_name]
-type [region_type] x1 y1 x2 y2

define_region -name test
-type inclusive 0 15 2 29

If any number of I/Os must be
assigned to a particular I/O
region, such a region can be
created with this constraint.

assign_region Assigns a set of macros
to a specified region

assign_region [region name]
[macro_name...]

assign_region test U12

This constraint assigns I/O
macros to the I/O regions.
When assigning an I/O macro,
PDC naming conventions
must be followed if the macro
name contains special
characters; e.g., if the macro
name is \\$1I19\\, the correct
use of escape characters is
\\\\\$1I19\\\\.

Table 13-3 • PDC I/O Constraints (continued)

Command Action Example Comment

Note: Refer to the Actel Libero IDE User’s Guide for detailed rules on PDC naming and syntax conventions.
318 Revision 0

Fusion FPGA Fabric User’s Guide
Compiling the Design
During Compile, a PDC I/O constraint file can be imported along with the netlist file. If only the netlist file
is compiled, certain I/O assignments need to be completed before proceeding to Layout. All constraints
that can be entered in PDC can also be entered using ChipPlanner, I/O Attribute Editor, and PinEditor.
There are certain rules that must be followed in implementing I/O register combining and the I/O DDR
macro (refer to the I/O Registers section of the handbook for the device that you are using and the "DDR"
section on page 314 for details). Provided these rules are met, the user can enable or disable I/O register
combining by using the PDC command set_io portname –register yes|no in the I/O Attribute Editor
or selecting a check box in the Compile Options dialog box (see Figure 13-8). The Compile Options
dialog box appears when the design is compiled for the first time. It can also be accessed by choosing
Options > Compile during successive runs. I/O register combining is off by default. The PDC command
overrides the setting in the Compile Options dialog box.

Understanding the Compile Report
The I/O bank report is generated during Compile and displayed in the log window. This report lists the I/O
assignments necessary before Layout can proceed.
When Designer is started, the I/O Bank Assigner tool is run automatically if the Layout command is
executed. The I/O Bank Assigner takes care of the necessary I/O assignments. However, these
assignments can also be made manually with MVN or by importing the PDC file. Refer to the "Assigning
Technologies and VREF to I/O Banks" section on page 322 for further description.
The I/O bank report can also be extracted from Designer by choosing Tools > Report and setting the
Report Type to IOBank.
This report has the following tables: I/O Function, I/O Technology, I/O Bank Resource Usage, and I/O
Voltage Usage. This report is useful if the user wants to do I/O assignments manually.

Figure 13-8 • Setting Register Combining During Compile
Revision 0 319

I/O Software Control in Low Power Flash Devices
I/O Function
Figure 13-9 shows an example of the I/O Function table included in the I/O bank report:

This table lists the number of input I/Os, output I/Os, bidirectional I/Os, and differential input and output
I/O pairs that use I/O and DDR registers.
Note: IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Certain rules must be met to implement registered and DDR I/O functions (refer to the I/O Structures
section of the handbook for the device you are using and the "DDR" section on page 314).

I/O Technology
The I/O Technology table (shown in Figure 13-10) gives the values of VCCI and VREF (reference voltage)
for all the I/O standards used in the design. The user should assign these voltages appropriately.

Figure 13-9 • I/O Function Table

Figure 13-10 • I/O Technology Table
320 Revision 0

Fusion FPGA Fabric User’s Guide
I/O Bank Resource Usage
This is an important portion of the report. The user must meet the requirements stated in this table.
Figure 13-11 shows the I/O Bank Resource Usage table included in the I/O bank report:

The example in Figure 13-11 shows that none of the I/O macros is assigned to the bank because more
than one VCCI is detected.

I/O Voltage Usage
The I/O Voltage Usage table provides the number of VREF (E devices only) and VCCI assignments
required in the design. If the user decides to make I/O assignments manually (PDC or MVN), the issues
listed in this table must be resolved before proceeding to Layout. As stated earlier, VREF assignments
must be made if there are any voltage-referenced I/Os.
Figure 13-12 shows the I/O Voltage Usage table included in the I/O bank report.

The table in Figure 13-12 indicates that there are two voltage-referenced I/Os used in the design. Even
though both of the voltage-referenced I/O technologies have the same VCCI voltage, their VREF
voltages are different. As a result, two I/O banks are needed to assign the VCCI and VREF voltages.
In addition, there are six single-ended I/Os used that have the same VCCI voltage. Since two banks
are already assigned with the same VCCI voltage and there are enough unused bonded I/Os in

Figure 13-11 • I/O Bank Resource Usage Table

Figure 13-12 • I/O Voltage Usage Table
Revision 0 321

I/O Software Control in Low Power Flash Devices
those banks, the user does not need to assign the same VCCI voltage to another bank. The user needs
to assign the other three VCCI voltages to three more banks.

Assigning Technologies and VREF to I/O Banks
Low power flash devices offer a wide variety of I/O standards, including voltage-referenced standards.
Before proceeding to Layout, each bank must have the required VCCI voltage assigned for the
corresponding I/O technologies used for that bank. The voltage-referenced standards require the use of
a reference voltage (VREF). This assignment can be done manually or automatically. The following
sections describe this in detail.

Manually Assigning Technologies to I/O Banks
The user can import the PDC at this point and resolve this requirement. The PDC command is
set_iobank [bank name] –vcci [vcci value]

Another method is to use the I/O Bank Settings dialog box (MVN > Edit > I/O Bank Settings) to set up
the VCCI voltage for the bank (Figure 13-13).

Figure 13-13 • Setting VCCI for a Bank
322 Revision 0

Fusion FPGA Fabric User’s Guide
The procedure is as follows:
1. Select the bank to which you want VCCI to be assigned from the Choose Bank list.
2. Select the I/O standards for that bank. If you select any standard, the tool will automatically show

all compatible standards that have a common VCCI voltage requirement.
3. Click Apply.
4. Repeat steps 1–3 to assign VCCI voltages to other banks. Refer to Figure 13-12 on page 321 to

find out how many I/O banks are needed for VCCI bank assignment.

Manually Assigning VREF Pins
Voltage-referenced inputs require an input reference voltage (VREF). The user must assign VREF pins
before running Layout. Before assigning a VREF pin, the user must set a VREF technology for the bank
to which the pin belongs.

VREF Rules for the Implementation of Voltage-Referenced I/O
Standards
The VREF rules are as follows:

1. Any I/O (except JTAG I/Os) can be used as a VREF pin.
2. One VREF pin can support up to 15 I/Os. It is recommended, but not required, that eight of them

be on one side and seven on the other side (in other words, all 15 can still be on one side of
VREF).

3. SSTL3 (I) and (II): Up to 40 I/Os per north or south bank in any position
4. LVPECL / GTL+ 3.3 V / GTL 3.3 V: Up to 48 I/Os per north or south bank in any position (not

applicable for IGLOO nano and ProASIC3 nano devices)
5. SSTL2 (I) and (II) / GTL+ 2.5 V / GTL 2.5 V: Up to 72 I/Os per north or south bank in any position
6. VREF minibanks partition rule: Each I/O bank is physically partitioned into VREF minibanks. The

VREF pins within a VREF minibank are interconnected internally, and consequently, only one
VREF voltage can be used within each VREF minibank. If a bank does not require a VREF signal,
the VREF pins of that bank are available as user I/Os.

7. The first VREF minibank includes all I/Os starting from one end of the bank to the first power triple
and eight more I/Os after the power triple. Therefore, the first VREF minibank may contain (0 + 8),
(2 + 8), (4 + 8), (6 + 8), or (8 + 8) I/Os.
The second VREF minibank is adjacent to the first VREF minibank and contains eight I/Os, a
power triple, and eight more I/Os after the triple. An analogous rule applies to all other VREF
minibanks but the last.
The last VREF minibank is adjacent to the previous one but contains eight I/Os, a power triple,
and all I/Os left at the end of the bank. This bank may also contain (8 + 0), (8 + 2), (8 + 4), (8 + 6),
or (8 + 8) available I/Os.

Example:
4 I/Os → Triple → 8 I/Os, 8 I/Os → Triple → 8 I/Os, 8 I/Os → Triple → 2 I/Os

That is, minibank A = (4 + 8) I/Os, minibank B = (8 + 8) I/Os, minibank C = (8 + 2) I/Os.

Assigning the VREF Voltage to a Bank
When importing the PDC file, the VREF voltage can be assigned to the I/O bank. The PDC command is
as follows:
set_iobank –vref [value]

Another method for assigning VREF is by using MVN > Edit > I/O Bank Settings (Figure 13-14 on
page 324).
Revision 0 323

I/O Software Control in Low Power Flash Devices
Assigning VREF Pins for a Bank
The user can use default pins for VREF. In this case, select the Use default pins for VREFs check box
(Figure 13-14). This option guarantees full VREF coverage of the bank. The equivalent PDC command is
as follows:
set_vref_default [bank name]

To be able to choose VREF pins, adequate VREF pins must be created to allow legal placement of the
compatible voltage-referenced I/Os.
To assign VREF pins manually, the PDC command is as follows:
set_vref –bank [bank name] [package pin numbers]

For ChipPlanner/PinEditor to show the range of a VREF pin, perform the following steps:
1. Assign VCCI to a bank using MVN > Edit > I/O Bank Settings.
2. Open ChipPlanner. Zoom in on an I/O package pin in that bank.
3. Highlight the pin and then right-click. Choose Use Pin for VREF.

Figure 13-14 • Selecting VREF Voltage for the I/O Bank

VREF for GTL+ 3.3 V
324 Revision 0

Fusion FPGA Fabric User’s Guide
4. Right-click and then choose Highlight VREF range. All the pins covered by that VREF pin will be
highlighted (Figure 13-15).

Using PinEditor or ChipPlanner, VREF pins can also be assigned (Figure 13-16).

To unassign a VREF pin:
1. Select the pin to unassign.
2. Right-click and choose Use Pin for VREF. The check mark next to the command disappears. The

VREF pin is now a regular pin.
Resetting the pin may result in unassigning I/O cores, even if they are locked. In this case, a warning
message appears so you can cancel the operation.
After you assign the VREF pins, right-click a VREF pin and choose Highlight VREF Range to see how
many I/Os are covered by that pin. To unhighlight the range, choose Unhighlight All from the Edit
menu.

Figure 13-15 • VREF Range

Figure 13-16 • Assigning VREF from PinEditor
Revision 0 325

I/O Software Control in Low Power Flash Devices
Automatically Assigning Technologies to I/O Banks
The I/O Bank Assigner (IOBA) tool runs automatically when you run Layout. You can also use this tool
from within the MultiView Navigator (Figure 13-18). The IOBA tool automatically assigns technologies
and VREF pins (if required) to every I/O bank that does not currently have any technologies assigned to
it. This tool is available when at least one I/O bank is unassigned.
To automatically assign technologies to I/O banks, choose I/O Bank Assigner from the Tools menu (or
click the I/O Bank Assigner's toolbar button, shown in Figure 13-17).

Messages will appear in the Output window informing you when the automatic I/O bank assignment
begins and ends. If the assignment is successful, the message "I/O Bank Assigner completed
successfully" appears in the Output window, as shown in Figure 13-18.

Figure 13-17 • I/O Bank Assigner’s Toolbar Button

Figure 13-18 • I/O Bank Assigner Displays Messages in Output Window
326 Revision 0

Fusion FPGA Fabric User’s Guide
If the assignment is not successful, an error message appears in the Output window.
To undo the I/O bank assignments, choose Undo from the Edit menu. Undo removes the I/O
technologies assigned by the IOBA. It does not remove the I/O technologies previously assigned.
To redo the changes undone by the Undo command, choose Redo from the Edit menu.
To clear I/O bank assignments made before using the Undo command, manually unassign or reassign
I/O technologies to banks. To do so, choose I/O Bank Settings from the Edit menu to display the I/O
Bank Settings dialog box.

Conclusion
Actel Fusion, IGLOO, and ProASIC3 support for multiple I/O standards minimizes board-level
components and makes possible a wide variety of applications. The Actel Designer software, integrated
with Actel Libero IDE, presents a clear visual display of I/O assignments, allowing users to verify I/O and
board-level design requirements before programming the device. The device I/O features and
functionalities ensure board designers can produce low-cost and low power FPGA applications fulfilling
the complexities of contemporary design needs.

Related Documents

User’s Guides
Actel Libero IDE User’s Guide
http://www.actel.com/documents/libero_ug.pdf
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.actel.com/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.actel.com/documents/genguide_ug.pdf
Revision 0 327

http://www.actel.com/documents/genguide_ug.pdf
http://www.actel.com/documents/libero_ug.pdf
http://www.actel.com/documents/libero_ug.pdf
http://www.actel.com/documents/pa3_libguide_ug.pdf
http://www.actel.com/documents/pa3_libguide_ug.pdf
http://www.actel.com/documents/genguide_ug.pdf

I/O Software Control in Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

July 2010 Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 13-1 • Flash-Based
FPGAs.

310

The notes for Table 13-2 • Designer State (resulting from I/O attribute modification)
were revised to indicate that skew control and input delay do not apply to nano
devices.

311

v1.3
(October 2008)

The "Flash FPGAs I/O Support" section was revised to include new families and
make the information more concise.

310

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 13-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

310

v1.1
(March 2008)

This document was previously part of the I/O Structures in IGLOO and ProASIC3
Devices document. The content was separated and made into a new document.

N/A

Table 13-2 • Designer State (resulting from I/O attribute modification) was updated
to include note 2 for IGLOO PLUS.

311
328 Revision 0

14 – DDR for Actel’s Low Power Flash Devices

Introduction
The I/Os in Fusion, IGLOO,® and ProASIC®3 devices support Double Data Rate (DDR) mode. In this
mode, new data is present on every transition (or clock edge) of the clock signal. This mode doubles the
data transfer rate compared with Single Data Rate (SDR) mode, where new data is present on one
transition (or clock edge) of the clock signal. Low power flash devices have DDR circuitry built into the I/O
tiles. I/Os are configured to be DDR receivers or transmitters by instantiating the appropriate special
macros (examples shown in Figure 14-4 on page 334 and Figure 14-5 on page 335) and buffers
(DDR_OUT or DDR_REG) in the RTL design. This document discusses the options the user can choose
to configure the I/Os in this mode and how to instantiate them in the design.

Double Data Rate (DDR) Architecture
Low power flash devices support 350 MHz DDR inputs and outputs. In DDR mode, new data is present
on every transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity
requirements, making them very efficient for implementing very high-speed systems. High-speed DDR
interfaces can be implemented using LVDS (not applicable for IGLOO nano and ProASIC3 nano
devices). In IGLOOe, ProASIC3E, AFS600, and AFS1500 devices, DDR interfaces can also be
implemented using the HSTL, SSTL, and LVPECL I/O standards. The DDR feature is primarily
implemented in the FPGA core periphery and is not tied to a specific I/O technology or limited to any I/O
standard.

Figure 14-1 • DDR Support in Low Power Flash Devices

D QR

QF

CLR

PAD Y

INBUF_SSTL2_I DDR_REG

PAD

CLK

CLR

D PAD
DR Q

CLR

DF

DataR

DataF

OUTBUF_SSTL3_IDDR_OUT
Revision 0 329

DDR for Actel’s Low Power Flash Devices
DDR Support in Flash-Based Devices
The flash FPGAs listed in Table 14-1 support the DDR feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 14-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 14-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 14-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
330 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf

Fusion FPGA Fabric User’s Guide
I/O Cell Architecture
Low power flash devices support DDR in the I/O cells in four different modes: Input, Output, Tristate, and
Bidirectional pins. For each mode, different I/O standards are supported, with most I/O standards having
special sub-options. For the ProASIC3 nano and IGLOO nano devices, DDR is supported only in the
60 k, 125 k, and 250 k logic densities. Refer to Table 14-2 for a sample of the available I/O options.
Additional I/O options can be found in the relevant family datasheet.

Table 14-2 • DDR I/O Options

DDR Register
Type I/O Type I/O Standard Sub-Options Comments

Receive Register Input Normal None 3.3 V TTL (default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

Pull-Up None (default)

PCI/PCI-X None

GTL/GTL+ Voltage 2.5 V, 3.3 V (3.3 V default)

HSTL Class I / II (I default)

SSTL2/SSTL3 Class I / II (I default)

LVPECL None

LVDS None

Transmit Register Output Normal None 3.3 V TTL (default)

LVTTL Output Drive 2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

PCI/PCI-X None

GTL/GTL+ Voltage 1.8 V, 2.5 V, 3.3 V (3.3 V default)

HSTL Class I / II (I default)

SSTL2/SSTL3 Class I / II (I default)

LVPECL* None

LVDS* None

Note: *IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Revision 0 331

DDR for Actel’s Low Power Flash Devices
Transmit Register
(continued)

Tristate
Buffer

Normal Enable Polarity Low/high (low default)

LVTTL Output Drive 2, 4, 6, 8, 12,16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

Output Drive 2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

PCI/PCI-X Enable Polarity Low/high (low default)

GTL/GTL+ Voltage 1.8 V, 2.5 V, 3.3 V (3.3 V default)

Enable Polarity Low/high (low default)

HSTL Class I / II (I default)

Enable Polarity Low/high (low default)

SSTL2/SSTL3 Class I / II (I default)

Enable Polarity Low/high (low default)

Bidirectional
Buffer

Normal Enable Polarity Low/high (low default)

LVTTL Output Drive 2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

Enable Polarity Low/high (low default)

Pull-Up None (default)

PCI/PCI-X None

Enable Polarity Low/high (low default)

GTL/GTL+ Voltage 1.8 V, 2.5 V, 3.3 V (3.3 V default)

Enable Polarity Low/high (low default)

HSTL Class I / II (I default)

Enable Polarity Low/high (low default)

SSTL2/SSTL3 Class I / II (I default)

Enable Polarity Low/high (low default)

Table 14-2 • DDR I/O Options (continued)

DDR Register
Type I/O Type I/O Standard Sub-Options Comments

Note: *IGLOO nano and ProASIC3 nano devices do not support differential inputs.
332 Revision 0

Fusion FPGA Fabric User’s Guide
Input Support for DDR
The basic structure to support a DDR input is shown in Figure 14-2. Three input registers are used to
capture incoming data, which is presented to the core on each rising edge of the I/O register clock. Each
I/O tile supports DDR inputs.

Output Support for DDR
The basic DDR output structure is shown in Figure 14-1 on page 329. New data is presented to the
output every half clock cycle.
Note: DDR macros and I/O registers do not require additional routing. The combiner automatically

recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip.
The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR
macro.

Figure 14-2 • DDR Input Register Support in Low Power Flash Devices

D QR

QF
CLR

PAD Y
INBUF_SSTL2_IDDR_REG

QR

QF

PAD

CLK

CLR

Figure 14-3 • DDR Output Register (SSTL3 Class I)

D PAD
DR Q

CLR

DF
DataR
DataF

CLR

CLK

OUTBUF_SSTL3_IDDR_OUT
Revision 0 333

DDR for Actel’s Low Power Flash Devices
Instantiating DDR Registers
Using SmartGen is the simplest way to generate the appropriate RTL files for use in the design.
Figure 14-4 shows an example of using SmartGen to generate a DDR SSTL2 Class I input register.
SmartGen provides the capability to generate all of the DDR I/O cells as described. The user, through the
graphical user interface, can select from among the many supported I/O standards. The output formats
supported are Verilog, VHDL, and EDIF.
Figure 14-5 on page 335 through Figure 14-8 on page 338 show the I/O cell configured for DDR using
SSTL2 Class I technology. For each I/O standard, the I/O pad is buffered by a special primitive that
indicates the I/O standard type.

Figure 14-4 • Example of Using SmartGen to Generate a DDR SSTL2 Class I Input Register
334 Revision 0

Fusion FPGA Fabric User’s Guide
DDR Input Register

The corresponding structural representations, as generated by SmartGen, are shown below:

Verilog
module DDR_InBuf_SSTL2_I(PAD,CLR,CLK,QR,QF);

input PAD, CLR, CLK;
output QR, QF;

wire Y;

INBUF_SSTL2_I INBUF_SSTL2_I_0_inst(.PAD(PAD),.Y(Y));
DDR_REG DDR_REG_0_inst(.D(Y),.CLK(CLK),.CLR(CLR),.QR(QR),.QF(QF));

endmodule

VHDL
library ieee;
use ieee.std_logic_1164.all;
--The correct library will be inserted automatically by SmartGen
library proasic3; use proasic3.all;
--library fusion; use fusion.all;
--library igloo; use igloo.all;

entity DDR_InBuf_SSTL2_I is
port(PAD, CLR, CLK : in std_logic; QR, QF : out std_logic) ;

end DDR_InBuf_SSTL2_I;

architecture DEF_ARCH of DDR_InBuf_SSTL2_I is

component INBUF_SSTL2_I
port(PAD : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_REG
port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic) ;

end component;

signal Y : std_logic ;

begin

INBUF_SSTL2_I_0_inst : INBUF_SSTL2_I
port map(PAD => PAD, Y => Y);
DDR_REG_0_inst : DDR_REG
port map(D => Y, CLK => CLK, CLR => CLR, QR => QR, QF => QF);

end DEF_ARCH;

Figure 14-5 • DDR Input Register (SSTL2 Class I)

D QR

QF
CLR

PAD Y
INBUF_SSTL2_IDDR_REG

QR

QF

PAD

CLK

CLR
Revision 0 335

DDR for Actel’s Low Power Flash Devices
DDR Output Register

Verilog
module DDR_OutBuf_SSTL3_I(DataR,DataF,CLR,CLK,PAD);

input DataR, DataF, CLR, CLK;
output PAD;

wire Q, VCC;

VCC VCC_1_net(.Y(VCC));
DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
OUTBUF_SSTL3_I OUTBUF_SSTL3_I_0_inst(.D(Q),.PAD(PAD));

endmodule

VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_OutBuf_SSTL3_I is
port(DataR, DataF, CLR, CLK : in std_logic; PAD : out std_logic) ;

end DDR_OutBuf_SSTL3_I;

architecture DEF_ARCH of DDR_OutBuf_SSTL3_I is

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component OUTBUF_SSTL3_I
port(D : in std_logic := 'U'; PAD : out std_logic) ;

end component;

component VCC
port(Y : out std_logic);

end component;

signal Q, VCC_1_net : std_logic ;

begin

VCC_2_net : VCC port map(Y => VCC_1_net);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
OUTBUF_SSTL3_I_0_inst : OUTBUF_SSTL3_I
port map(D => Q, PAD => PAD);

end DEF_ARCH;

Figure 14-6 • DDR Output Register (SSTL3 Class I)

D PAD
DR Q

CLR

DF
DataR
DataF

CLR

CLK

OUTBUF_SSTL3_IDDR_OUT
336 Revision 0

Fusion FPGA Fabric User’s Guide
DDR Tristate Output Register

Verilog
module DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp(DataR, DataF, CLR, CLK, Trien,

PAD);

input DataR, DataF, CLR, CLK, Trien;
output PAD;

wire TrienAux, Q;

INV Inv_Tri(.A(Trien),.Y(TrienAux));
DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
TRIBUFF_F_8U TRIBUFF_F_8U_0_inst(.D(Q),.E(TrienAux),.PAD(PAD));

endmodule

VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp is
port(DataR, DataF, CLR, CLK, Trien : in std_logic; PAD : out std_logic) ;

end DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp;

architecture DEF_ARCH of DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp is

component INV
port(A : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component TRIBUFF_F_8U
port(D, E : in std_logic := 'U'; PAD : out std_logic) ;

end component;

signal TrienAux, Q : std_logic ;

begin

Inv_Tri : INV
port map(A => Trien, Y => TrienAux);

Figure 14-7 • DDR Tristate Output Register, LOW Enable, 8 mA, Pull-Up (LVTTL)

D PADDR Q

CLR

DF
DataR
DataF

CLR

CLK TRIBUFF_F_8U

DDR_OUT

Trien A Y

Tr
ie

nA
ux

INV
Revision 0 337

DDR for Actel’s Low Power Flash Devices
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
TRIBUFF_F_8U_0_inst : TRIBUFF_F_8U
port map(D => Q, E => TrienAux, PAD => PAD);

end DEF_ARCH;

DDR Bidirectional Buffer

Verilog
module DDR_BiDir_HSTL_I_LowEnb(DataR,DataF,CLR,CLK,Trien,QR,QF,PAD);

input DataR, DataF, CLR, CLK, Trien;
output QR, QF;
inout PAD;

wire TrienAux, D, Q;

INV Inv_Tri(.A(Trien), .Y(TrienAux));
DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
DDR_REG DDR_REG_0_inst(.D(D),.CLK(CLK),.CLR(CLR),.QR(QR),.QF(QF));
BIBUF_HSTL_I BIBUF_HSTL_I_0_inst(.PAD(PAD),.D(Q),.E(TrienAux),.Y(D));

endmodule

Figure 14-8 • DDR Bidirectional Buffer, LOW Output Enable (HSTL Class II)

D PADDR Q

CLR

DF
DataR
DataF

CLR

CLK BIBUF_HSTL_I

DDR_OUT

Trien A Y

E

YDQR

QF
CLR

QR

QF

INV

DDR_REG
338 Revision 0

Fusion FPGA Fabric User’s Guide
VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_BiDir_HSTL_I_LowEnb is
port(DataR, DataF, CLR, CLK, Trien : in std_logic; QR, QF : out std_logic;

PAD : inout std_logic) ;
end DDR_BiDir_HSTL_I_LowEnb;

architecture DEF_ARCH of DDR_BiDir_HSTL_I_LowEnb is

component INV
port(A : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component DDR_REG
port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic) ;

end component;

component BIBUF_HSTL_I
port(PAD : inout std_logic := 'U'; D, E : in std_logic := 'U'; Y : out std_logic) ;

end component;

signal TrienAux, D, Q : std_logic ;

begin

Inv_Tri : INV
port map(A => Trien, Y => TrienAux);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
DDR_REG_0_inst : DDR_REG
port map(D => D, CLK => CLK, CLR => CLR, QR => QR, QF => QF);
BIBUF_HSTL_I_0_inst : BIBUF_HSTL_I
port map(PAD => PAD, D => Q, E => TrienAux, Y => D);

end DEF_ARCH;
Revision 0 339

DDR for Actel’s Low Power Flash Devices
Design Example
Figure 14-9 shows a simple example of a design using both DDR input and DDR output registers. The
user can copy the HDL code in Actel Libero® Integrated Design Environment (IDE) and go through the
design flow. Figure 14-10 and Figure 14-11 on page 341 show the netlist and ChipPlanner views of the
ddr_test design. Diagrams may vary slightly for different families.

Figure 14-9 • Design Example

Figure 14-10 • DDR Test Design as Seen by NetlistViewer for IGLOO/e Devices

D QR

QF

CLR

PAD Y

INBUF_SSTL2_I DDR_REG

PAD

CLK

CLR

D PAD
DR Q

CLR

DF

DataR

DataF

OUTBUF_SSTL3_IDDR_OUT
340 Revision 0

Fusion FPGA Fabric User’s Guide
Verilog
module Inbuf_ddr(PAD,CLR,CLK,QR,QF);

input PAD, CLR, CLK;
output QR, QF;

wire Y;

DDR_REG DDR_REG_0_inst(.D(Y), .CLK(CLK), .CLR(CLR), .QR(QR), .QF(QF));
INBUF INBUF_0_inst(.PAD(PAD), .Y(Y));

endmodule

module Outbuf_ddr(DataR,DataF,CLR,CLK,PAD);

input DataR, DataF, CLR, CLK;
output PAD;

wire Q, VCC;

VCC VCC_1_net(.Y(VCC));
DDR_OUT DDR_OUT_0_inst(.DR(DataR), .DF(DataF), .CLK(CLK), .CLR(CLR), .Q(Q));
OUTBUF OUTBUF_0_inst(.D(Q), .PAD(PAD));

endmodule

Figure 14-11 • DDR Input/Output Cells as Seen by ChipPlanner for IGLOO/e Devices
Revision 0 341

DDR for Actel’s Low Power Flash Devices
module ddr_test(DIN, CLK, CLR, DOUT);

input DIN, CLK, CLR;
output DOUT;

Inbuf_ddr Inbuf_ddr (.PAD(DIN), .CLR(clr), .CLK(clk), .QR(qr), .QF(qf));
Outbuf_ddr Outbuf_ddr (.DataR(qr),.DataF(qf), .CLR(clr), .CLK(clk),.PAD(DOUT));

INBUF INBUF_CLR (.PAD(CLR), .Y(clr));
INBUF INBUF_CLK (.PAD(CLK), .Y(clk));

endmodule

Simulation Consideration
Actel DDR simulation models use inertial delay modeling by default (versus transport delay modeling).
As such, pulses that are shorter than the actual gate delays should be avoided, as they will not be seen
by the simulator and may be an issue in post-routed simulations. The user must be aware of the default
delay modeling and must set the correct delay model in the simulator as needed.

Conclusion
Fusion, IGLOO, and ProASIC3 devices support a wide range of DDR applications with different I/O
standards and include built-in DDR macros. The powerful capabilities provided by SmartGen and its GUI
can simplify the process of including DDR macros in designs and minimize design errors. Additional
considerations should be taken into account by the designer in design floorplanning and placement of I/O
flip-flops to minimize datapath skew and to help improve system timing margins. Other system-related
issues to consider include PLL and clock partitioning.
342 Revision 0

Fusion FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 14-1 • Flash-Based
FPGAs.

330

The "I/O Cell Architecture" section was updated with information applicable to nano
devices.

331

The output buffer (OUTBUF_SSTL3_I) input was changed to D, instead of Q, in
Figure 14-1 • DDR Support in Low Power Flash Devices, Figure 14-3 • DDR Output
Register (SSTL3 Class I), Figure 14-6 • DDR Output Register (SSTL3 Class I),
Figure 14-7 • DDR Tristate Output Register, LOW Enable, 8 mA, Pull-Up (LVTTL),
and the output from the DDR_OUT macro was connected to the input of the
TRIBUFF macro in Figure 14-7 • DDR Tristate Output Register, LOW Enable, 8 mA,
Pull-Up (LVTTL).

329,
333,

336, 337

v1.3
(October 2008)

The "Double Data Rate (DDR) Architecture" section was updated to include mention
of the AFS600 and AFS1500 devices.

329

The "DDR Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

330

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 14-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

330

v1.1
(March 2008)

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 330
Revision 0 343

15 – Prototyping With AFS600 for Smaller Devices

This document is designed as an aid for customers who may ultimately wish to use one of the smaller
members of the Fusion family (AFS090 and/or AFS250). The first device available in the Fusion family is
the AFS600, which can be used as a development or prototyping platform for the smaller devices. This
document will help highlight differences between the AFS600 and these smaller devices in order to ease
transition to the targeted device when it becomes available.
The Actel Fusion® family, based on the highly successful ProASIC®3E and ProASIC3 Flash FPGA
architecture, has been designed as a high-performance, programmable, mixed-signal platform. By
combining an advanced flash FPGA core with embedded flash memory and analog peripherals, Fusion
devices dramatically simplify system design, and save overall system cost and board space as a result.
Figure 15-1 shows the Fusion device architecture overview.

The state-of-the-art embedded flash memory technology offers high-density integrated flash memory
arrays, enabling savings in cost, power, and board area relative to external flash solutions, while
providing increased flexibility and performance.
Fusion devices offer a robust and flexible analog mixed-signal addition to the high-performance flash
FPGA fabric and embedded flash memory. The many built-in analog peripherals include a configurable
32:1 input analog multiplexer, up to 10 independent metal-oxide semiconductor field-effect transistor
(MOSFET) gate driver outputs, and a configurable analog-to-digital converter (ADC). The Analog Quad
is an I/O structure that contains three adjacent analog inputs and a gate driver output.

Figure 15-1 • Fusion Device Architecture Overview

VersaTile

CCC

CCC

I/Os

OSC

CCC/PLL

Bank 0

B
an

k
4 B

ank 2

Bank 1

Bank 3

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

Flash Memory Blocks Flash Memory BlocksADC

Analog
Quad

ISP AES
Decryption

User Nonvolatile
FlashROM Charge Pumps

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad
Revision 0 345

Prototyping With AFS600 for Smaller Devices
The addition of the real-time counter (RTC) system enables Fusion devices to support both standby and
sleep modes of operation, greatly reducing power consumption in many applications.

Prototype Guideline

AFS090, AFS250, AFS600, and AFS1500 Device Configuration
AFS600 is a medium size device in the Fusion family. It supports all of the Fusion features, as shown in
Table 15-1. The smaller devices (AFS090 and AFS250) in the Fusion family have lower gate counts and
fewer memory blocks, I/Os, and PLLs.

Table 15-1 • AFS090, AFS250, and AFS600 Device Summary
Part Number AFS090 AFS250 AFS600 AFS1500

General
Information

System Gates 90,000 250,000 600,000 1,500,000

Tiles (D-Flip-Flop) 2,304 6,144 13,824 38,400

Secure (AES) ISP Yes Yes Yes Yes

PLLs 1 1 2 2

Globals 18 18 18 18

Memory

Flash Memory Blocks (256
kbytes)

1 1 2 4

Flash Memory (kbytes) 256 256 512 1,024

FlashROM Bits 1 k 1 k 1 k 1 k

RAM Blocks (4,608 bits) 6 8 24 60

RAM kbits 27 36 108 270

Analog

Analog Quads 5 6 10 10

Analog Input Channels 15 18 30 30

Gate Driver Outputs 5 6 10 10

I/O

I/O Types Analog/
LVDS / Std+

Analog/
LVDS / Std+

Analog/
LVDS / Pro

Analog/
LVDS / Pro

I/O Banks (+ JTAG) 4 4 5 5

Maximum Digital I/Os 73 114 172 278

Analog I/Os 20 24 40 40

I/O:
Digital/Analog

QN108 36/14 – –

QN180 48/20 62/24 – –

PQ208 – 93/24 95/40 –

FG256 73/20 114/24 119/40 119/40

FG484 – – 172/40 228/40

FG676 – – – 278/40
346 Revision 0

Fusion FPGA Fabric User’s Guide
Table 15-2 shows compatible devices for each package. The FG256 package is designed to support
migration across all family members.

List of the Guidelines for Prototyping
Actel recommends AFS600-FG256 as the platform for prototyping smaller devices within the same
compatible package type. AFS600-FG256 is also the first available Fusion silicon in the rollout roadmap
and is used in the Fusion Starter Kit, which can serve as a prototype board to demonstrate the majority of
Fusion features.

Memory Blocks
The AFS250 and AFS090 have a single 256-kbyte block of embedded flash memory, whereas the
AFS600 has two 256-kbyte blocks (512 kbytes total). Therefore, the user must keep the usage less than
256 kbytes while doing prototyping with the AFS600.
The AFS250 has 8 RAM blocks, while the AFS600 has 24 RAM blocks. A SmartGen analog system
generated soft IP uses 3 to 9 blocks of RAM. The user needs to keep track of the RAM block usage,
especially if the design contains a RAM initialization application, data storage application or other
applications that utilize extra RAM blocks. Usage must be no more than 8 blocks. Likewise, if the user is
prototyping for AFS090, then the RAM block usage in AFS600 should not exceed 6 blocks.

PLLs
The AFS250 and AFS090 have one PLL on the west side of the device, whereas AFS600 has two
PLLs—one for each side of the device. During prototyping using AFS600, the user should only
implement the PLL on the west side and use the corresponding PLL input pin, so that the delays from the
PLL input through the PLL to the global network have a minimum variation between AFS090/AFS250
and AFS600.

I/Os
All special function I/Os (VCC, GND, JTAG, Programming Control, etc.) of the AFS250 and AFS090
devices are in exactly the same locations as in the AFS600 device, with one exception for the AFS090 as
listed below. The AFS250 device has 6 Analog Quads, whereas the AFS600 device has 10 Analog
Quads. The user should only use Analog Quads 0–5 while doing prototyping in AFS600, in order to have
exactly the same analog pin map. To prototype AFS090, the user should only use Analog Quads 0–4,
since AFS090 has 5 Analog Quads.
While the AFS250 differential I/Os have the same locations as the AFS600, the AFS090 differential
I/O locations are slightly different from those of the AFS600. More details on the pin list are
available in the Actel Fusion Family of Mixed Signal FPGAs datasheet. The user should be aware
that if the design has differential I/Os, the pinout needs to be changed from the AFS600 prototype
design to an AFS090 production design.

Prototype Consideration in Software
After validating the design in the AFS600, the user needs to create a new Actel Libero® Integrated
Design Environment (IDE) project for the AFS090 or AFS250, then recreate the SmartGen cores by
using the same parameters used for the AFS600. All other source code used in the AFS600 project can
be directly imported into the AFS090 or AFS250 project. The same validation process (simulation, static
timing analysis, and functional test on silicon) should be performed for the AFS090 or AFS250 design as
the user has done for AFS600.

Table 15-2 • Package Compatibility Table
Package Types PQ208 PQ208 FG256 FG484 FG676 QN108 QN180

Compatible
Devices

AFS90 AFS600 AFS090 AFS600 AFS1500 AFS90 AFS090

AFS250 AFS1500 AFS250 AFS1500 AFS250

AFS600

AFS1500
Revision 0 347

http://www.actel.com/documents/Fusion_DS.pdf

Prototyping With AFS600 for Smaller Devices
Summary
AFS600-FG256 is the recommended Fusion prototyping vehicle for smaller devices in the same
compatible package. It is also used on the Fusion Starter Kit board, which can demonstrate most of the
Fusion family features.
348 Revision 0

16 – Programming Flash Devices

Introduction
This document provides an overview of the various programming options available for the Actel flash
families. The electronic version of this document includes active links to all programming resources,
which are available at http://www.actel.com/products/hardware/default.aspx. For Actel antifuse devices,
refer to the Programming Antifuse Devices document.

Summary of Programming Support
FlashPro4 and FlashPro3 are high-performance in-system programming (ISP) tools targeted at the latest
generation of low power flash devices offered by Actel: SmartFusion,™ Fusion, IGLOO,® and
ProASIC®3, including ARM®-enabled devices. FlashPro4 and FlashPro3 offer extremely high
performance through the use of USB 2.0, are high-speed compliant for full use of the 480 Mbps
bandwidth, and can program ProASIC3 devices in under 30 seconds. Powered exclusively via USB,
FlashPro4 and FlashPro3 provide a VPUMP voltage of 3.3 V for programming these devices.
FlashPro4 replaced FlashPro3 in 2010. FlashPro4 supports SmartFusion, Fusion, ProASIC3,and IGLOO
devices as well as future generation flash devices. FlashPro4 also adds 1.2 V programming for IGLOO
nano V2 devices. FlashPro4 is compatible with FlashPro3; however it adds a programming mode
(PROG_MODE) signal to the previously unused pin 4 of the JTAG connector. The PROG_MODE goes
high during programming and can be used to turn on a 1.5 V external supply for those devices that
require 1.5 V for programming. If both FlashPro3 and FlashPro4 programmers are used for programming
the same boards, pin 4 of the JTAG connector must not be connected to anything on the board because
FlashPro4 uses pin 4 for PROG_MODE.

Figure 16-1 • FlashPro Programming Setup

FlashPro
Software

FlashPro3 or
 FlashPro4

JTAG
ProASIC3/E

Programming File:
PDB, STP, or FDB
Revision 0 349

http://www.actel.com/products/hardware/default.aspx
http://www.actel.com/documents/AntifuseProgram_AN.pdf

Programming Flash Devices
Programming Support in Flash Devices
The flash FPGAs listed in Table 16-1 support flash in-system programming and the functions described
in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 16-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 16-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 16-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution, supporting 1.2 V to 1.5 V
core voltage with Flash*Freeze technology

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V core voltage with Flash*Freeze
technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

SmartFusion SmartFusion Mixed-signal FPGA integrating FPGA fabric, programmable microcontroller
subsystem (MSS), including programmable analog and ARM® Cortex™-M3
hard processor and flash memory in a monolithic device

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

ProASIC ProASIC First generation ProASIC devices

ProASICPLUS Second generation ProASIC devices

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
350 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/ProASIC_DS.pdf
http://www.actel.com/documents/ProASICPlus_DS.pdf
http://www.actel.com/documents/ProASICPlus_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/SmartFusion_DS.pdf

Fusion FPGA Fabric User’s Guide
General Flash Programming Information

Programming Basics
When choosing a programming solution, there are a number of options available. This section provides a
brief overview of those options. The next sections provide more detail on those options as they apply to
Actel FPGAs.

Reprogrammable or One-Time-Programmable (OTP)
Depending on the technology chosen, devices may be reprogrammable or one-time-programmable. As
the name implies, a reprogrammable device can be programmed many times. Generally, the contents of
such a device will be completely overwritten when it is reprogrammed. All Actel flash devices are
reprogrammable.
An OTP device is programmable one time only. Once programmed, no more changes can be made to
the contents. Actel flash devices provide the option of disabling the reprogrammability for security
purposes. This combines the convenience of reprogrammability during design verification with the
security of an OTP technology for highly sensitive designs.

Device Programmer or In-System Programming
There are two fundamental ways to program an FPGA: using a device programmer or, if the technology
permits, using in-system programming. A device programmer is a piece of equipment in a lab or on the
production floor that is used for programming FPGA devices. The devices are placed into a socket
mounted in a programming adapter module, and the appropriate electrical interface is applied. The
programmed device can then be placed on the board. A typical programmer, used during development,
programs a single device at a time and is referred to as a single-site engineering programmer.
With ISP, the device is already mounted onto the system printed circuit board when programming occurs.
Typically, ISD programming is performed via a JTAG interface on the FPGA. The JTAG pins can be
controlled either by an on-board resource, such as a microprocessor, or by an off-board programmer
through a header connection. Once mounted, it can be programmed repeatedly and erased. If the
application requires it, the system can be designed to reprogram itself using a microprocessor, without
the use of any external programmer.
If multiple devices need to be programmed with the same program, various multi-site programming
hardware is available in order to program many devices in parallel. Actel In House Programming is also
available for this purpose.

Programming Features for Actel Devices
Flash Devices
The flash devices supplied by Actel are reprogrammable by either a generic device programmer or ISP.
Actel supports ISP using JTAG, which is supported by the FlashPro4 and FlashPro3, FlashPro Lite,
Silicon Sculptor 3, and Silicon Sculptor II programmers.
Levels of ISP support vary depending on the device chosen:

• All SmartFusion, Fusion, IGLOO, and ProASIC3 devices support ISP.
• IGLOO, IGLOOe, IGLOO nano V5, and IGLOO PLUS devices can be programmed in-system

when the device is using a 1.5 V supply voltage to the FPGA core.
• IGLOO nano V2 devices can be programmed at 1.2 V core voltage (when using FlashPro4 only)

or 1.5 V. IGLOO nano V5 devices are programmed with a VCC core voltage of 1.5 V.
Revision 0 351

Programming Flash Devices
Types of Programming for Flash Devices
The number of devices to be programmed will influence the optimal programming methodology. Those
available are listed below:

• In-system programming
– Using a programmer
– Using a microprocessor or microcontroller

• Device programmers
– Single-site programmers
– Multi-site programmers, batch programmers, or gang programmers
– Automated production (robotic) programmers

• Volume programming services
– Actel in-house programming
– Programming centers

In-System Programming
Device Type Supported: Flash
ISP refers to programming the FPGA after it has been mounted on the system printed circuit board. The
FPGA may be preprogrammed and later reprogrammed using ISP.
The advantage of using ISP is the ability to update the FPGA design many times without any changes to
the board. This eliminates the requirement of using a socket for the FPGA, saving cost and improving
reliability. It also reduces programming hardware expenses, as the ISP methodology is die-/package-
independent.
There are two methods of in-system programming: external and internal.

• Programmer ISP—Refer to the "In-System Programming (ISP) of Actel’s Low Power Flash
Devices Using FlashPro4/3/3X" section on page 389 for more information.
Using an external programmer and a cable, the device can be programmed through a header on
the system board. In Actel documentation, this is referred to as external ISP. Actel provides
FlashPro4, FlashPro3, FlashPro Lite, or Silicon Sculptor 3 to perform external ISP. Note that
Silicon Sculptor II and Silicon Sculptor 3 can only provide ISP for ProASIC and ProASICPLUS®

families, not for SmartFusion, Fusion, IGLOO, or ProASIC3. Silicon Sculptor II and Silicon
Sculptor 3 can be used for programming ProASIC and ProASICPLUS devices by using an adapter
module (Actel part number SMPA-ISP-ACTEL-3).
– Advantages: Allows local control of programming and data files for maximum security. The

programming algorithms and hardware are available from Actel. The only hardware required
on the board is a programming header.

– Limitations: A negligible board space requirement for the programming header and JTAG
signal routing

• Microprocessor ISP—Refer to the "Microprocessor Programming of Actel’s Low Power Flash
Devices" chapter of an appropriate FPGA fabric user’s guide for more information.
Using a microprocessor and an external or internal memory, you can store the program in
memory and use the microprocessor to perform the programming. In Actel documentation, this is
referred to as internal ISP. Both the code for the programming algorithm and the FPGA
programming file must be stored in memory on the board. Programming voltages must also be
generated on the board.
– Advantages: The programming code is stored in the system memory. An external programmer

is not required during programming.
– Limitations: This is the approach that requires the most design work, since some way of

getting and/or storing the data is needed; a system interface to the device must be designed;
and the low-level API to the programming firmware must be written and linked into the code
provided by Actel. While there are benefits to this methodology, serious thought and planning
should go into the decision.
352 Revision 0

Fusion FPGA Fabric User’s Guide
Device Programmers
Single Device Programmer
Single device programmers are used to program a device before it is mounted on the system board.
The advantage of using device programmers is that no programming hardware is required on the system
board. Therefore, no additional components or board space are required.
Adapter modules are purchased with single device programmers to support the FPGA packages used.
The FPGA is placed in the adapter module and the programming software is run from a PC. Actel
supplies the programming software for all of the Actel programmers. The software allows for the
selection of the correct die/package and programming files. It will then program and verify the device.

• Single-site programmers
A single-site programmer programs one device at a time. Actel offers Silicon Sculptor 3, built by
BP Microsystems, as a single-site programmer. Silicon Sculptor 3 and associated software are
available only from Actel.
– Advantages: Lower cost than multi-site programmers. No additional overhead for

programming on the system board. Allows local control of programming and data files for
maximum security. Allows on-demand programming on-site.

– Limitations: Only programs one device at a time.
• Multi-site programmers

Often referred to as batch or gang programmers, multi-site programmers can program multiple devices at
the same time using the same programming file. This is often used for large volume programming and by
programming houses. The sites often have independent processors and memory enabling the sites to
operate concurrently, meaning each site may start programming the same file independently. This
enables the operator to change one device while the other sites continue programming, which increases
throughput. Multiple adapter modules for the same package are required when using a multi-site
programmer. Silicon Sculptor I, II, and 3 programmers can be cascaded to program multiple devices in a
chain. Multi-site programmers, such as the BP2610 and BP2710, can also be purchased from BP
Microsystems. When using BP Microsystems multi-site programmers, users must use programming
adapter modules available only from Actel. Visit the Actel website to view the part numbers of the desired
adapter module: http://www.actel.com/products/hardware/program_debug/ss/modules.aspx.

Also when using BP Microsystems programmers, customers must use Actel
programming software to ensure the best programming result will occur.
– Advantages: Provides the capability of programming multiple devices at the same time. No

additional overhead for programming on the system board. Allows local control of
programming and data files for maximum security.

– Limitations: More expensive than a single-site programmer
• Automated production (robotic) programmers

Automated production programmers are based on multi-site programmers. They consist of a large input
tray holding multiple parts and a robotic arm to select and place parts into appropriate programming
sockets automatically. When the programming of the parts is complete, the parts are removed and
placed in a finished tray. The automated programmers are often used in volume programming houses to
program parts for which the programming time is small. BP Microsystems part number BP4710, BP4610,
BP3710 MK2, and BP3610 are available for this purpose. Auto programmers cannot be used to program
RTAX-S devices.
Where an auto-programmer is used, the appropriate open-top adapter module from BP Microsystems
must be used.
Revision 0 353

http://www.actel.com/products/hardware/program_debug/ss/modules.aspx

Programming Flash Devices
Volume Programming Services
Device Type Supported: Flash and Antifuse
Once the design is stable for applications with large production volumes, preprogrammed devices can be
purchased. Table 16-2 describes the volume programming services.

Advantages: As programming is outsourced, this solution is easier to implement than creating a
substantial in-house programming capability. As programming houses specialize in large-volume
programming, this is often the most cost-effective solution.
Limitations: There are some logistical issues with the use of a programming service provider, such as the
transfer of programming files and the approval of First Articles. By definition, the programming file must
be released to a third-party programming house. Nondisclosure agreements (NDAs) can be signed to
help ensure data protection; however, for extremely security-conscious designs, this may not be an
option.

• Actel In-House Programming
When purchasing Actel devices in volume, IHP can be requested as part of the purchase. If this
option is chosen, there is a small cost adder for each device programmed. Each device is marked
with a special mark to distinguish it from blank parts. Programming files for the design will be sent
to Actel. Sample parts with the design programmed, First Articles, will be returned for customer
approval. Once approval of First Articles has been received, Actel will proceed with programming
the remainder of the order. To request Actel IHP, contact your local Actel representative.

• Distributor Programming Centers
If purchases are made through a distributor, many distributors will provide programming for their
customers. Consult with your preferred distributor about this option.

Table 16-2 • Volume Programming Services
Programmer Vendor Availability
In-House Programming Actel Contact Actel Sales
Distributor Programming Centers Memec Unique Contact Distribution
Independent Programming Centers Various Contact Vendor
354 Revision 0

Fusion FPGA Fabric User’s Guide
Programming Solutions
Details for the available programmers can be found in the programmer user's guides listed in the
"Related Documents" section on page 359.
All of the programmers except FlashPro4, FlashPro3, FlashPro Lite, and FlashPro require adapter
modules, which are designed to support device packages. The modules are all listed on the Actel
website at http://www.actel.com/products/hardware/program_debug/ss/modules.aspx. They are not
listed in this document, since this list is updated frequently with new package options and any upgrades
required to improve programming yield or support new families.

Table 16-3 • Programming Solutions

Programmer Vendor ISP
Single
Device Multi-Device Availability

FlashPro4 Actel Only Yes Yes1 Available

FlashPro3 Actel Only Yes Yes1 Available

FlashPro Lite2 Actel Only Yes Yes1 Available

FlashPro Actel Only Yes Yes1 Discontinued

Silicon Sculptor 3 Actel Yes3 Yes Cascade option
(up to two)

Available

Silicon Sculptor II Actel Yes3 Yes Cascade option
(up to two)

Available

Silicon Sculptor Actel Yes Yes Cascade option
(up to four)

Discontinued

Sculptor 6X Actel No Yes Yes Discontinued

BP MicroProgrammers BP
Microsystems

No Yes Yes Contact BP
Microsystems at

www.bpmicro.com

Notes:
1. Multiple devices can be connected in the same JTAG chain for programming.
2. If FlashPro Lite is used for programming, the programmer derives all of its power from the target pc

board's VDD supply. The FlashPro Lite's VPP and VPN power supplies use the target pc board's
VDD as a power source. The target pc board must supply power to both the VDDP and VDD power
pins of the ProASICPLUS device in addition to supplying VDD to the FlashPro Lite. The target pc
board needs to provide at least 500 mA of current to the FlashPro Lite VDD connection for
programming.

3. Silicon Sculptor II and Silicon Sculptor 3 can only provide ISP for ProASIC and ProASICPLUS

families, not for Fusion, IGLOO, or ProASIC3 devices.
Revision 0 355

http://www.actel.com/products/hardware/program_debug/ss/modules.aspx
http://www.bpmicro.com

Programming Flash Devices
Programmer Ordering Codes
The products shown in Table 16-4 can be ordered through Actel sales and will be shipped directly from
Actel. Products can also be ordered from Actel distributors, but will still be shipped directly from Actel.
Table 16-4 includes ordering codes for the full kit, as well as codes for replacement items and any related
hardware. Some additional products can be purchased from external suppliers for use with the
programmers. Ordering codes for adapter modules used with Silicon Sculptor are available on the Actel
website at http://www.actel.com/products/hardware/program_debug/ss/modules.aspx.

Programmer Device Support
Refer to Actel website for the current information on programmer and device support.

Certified Programming Solutions
The Actel-certified programmers for flash devices are FlashPro4, FlashPro3, FlashPro Lite, FlashPro,
Silicon Sculptor II, Silicon Sculptor 3, and any programmer that is built by BP Microsystems. All other
programmers are considered noncertified programmers.

• FlashPro4, FlashPro3, FlashPro Lite, FlashPro
The Actel family of FlashPro device programmers provides in-system programming in an easy-to-
use, compact system that supports all flash families. Whether programming a board containing a
single device or multiple devices connected in a chain, the Actel line of FlashPro programmers
enables fast programming and reprogramming. Programming with the FlashPro series of
programmers saves board space and money as it eliminates the need for sockets on the board.
There are no built-in algorithms, so there is no delay between product release and programming
support. The FlashPro programmer is no longer available.

• Silicon Sculptor 3, Silicon Sculptor II
Silicon Sculptor 3 and Silicon Sculptor II are robust, compact, single-device programmers with
standalone software for the PC. They are designed to enable concurrent programming of multiple
units from the same PC with speeds equivalent to or faster than previous Actel programmers.

• Noncertified Programmers
Actel does not test programming solutions from other vendors, and DOES NOT guarantee
programming yield. Also, Actel will not perform any failure analysis on devices programmed on
non-certified programmers. Please refer to the Actel Programming and Functional Failure
Guidelines document for more information.

Table 16-4 • Programming Ordering Codes

Description Vendor Ordering Code Comment

FlashPro4 ISP
programmer

Actel FLASHPRO 4 Uses a 2×5, RA male header connector

FlashPro Lite ISP
programmer

Actel FLASHPRO LITE Supports small programming header or
large header through header converter (not
included)

Silicon Sculptor 3 Actel SILICON-SCULPTOR 3 USB 2.0 high-speed production
programmer

Silicon Sculptor II Actel SILICON-SCULPTOR II Requires add-on adapter modules to
support devices

Silicon Sculptor ISP
module

Actel SMPA-ISP-ACTEL-3-KIT Ships with both large and small header
support

ISP cable for small
header

Actel ISP-CABLE-S Supplied with SMPA-ISP-ACTEL-3-KIT

ISP cable for large
header

Actel PA-ISP-CABLE Supplied with SMPA-ISP-ACTEL-3-KIT
356 Revision 0

http://www.actel.com/products/hardware/program_debug/ss/modules.aspx
http://www.actel.com/documents/FA_Policies_Guidelines_5-06-00002.pdf
http://www.actel.com/documents/FA_Policies_Guidelines_5-06-00002.pdf

Fusion FPGA Fabric User’s Guide
• Programming Centers
Actel programming hardware policy also applies to programming centers. Actel expects all
programming centers to use certified programmers to program Actel devices. If a programming
center uses noncertified programmers to program Actel devices, the "Noncertified Programmers"
policy applies.

Important Programming Guidelines

Preprogramming Setup
Before programming, several steps are required to ensure an optimal programming yield.

Use Proper Handling and Electrostatic Discharge (ESD) Precautions
Actel FPGAs are sensitive electronic devices that are susceptible to damage from ESD and other types
of mishandling. For more information about ESD, refer to the Actel Quality and Reliability Guide,
beginning with page 41.

Use the Latest Version of the Designer Software to Generate Your
Programming File (recommended)
The files used to program Actel flash devices (*.bit, *.stp, *.pdb) contain important information about the
switches that will be programmed in the FPGA. Find the latest version and corresponding release notes
at http://www.actel.com/download/software/designer/. Also, programming files must always be zipped
during file transfer to avoid the possibility of file corruption.

Use the Latest Version of the Programming Software
The programming software is frequently updated to accommodate yield enhancements in FPGA
manufacturing. These updates ensure maximum programming yield and minimum programming times.
Before programming, always check the version of software being used to ensure it is the most recent.
Depending on the programming software, refer to one of the following:

• FlashPro: http://www.actel.com/download/program_debug/flashpro/
• Silicon Sculptor: http://www.actel.com/download/program_debug/ss/

Use the Most Recent Adapter Module with Silicon Sculptor
Occasionally, Actel makes modifications to the adapter modules to improve programming yields and
programming times. To identify the latest version of each module before programming, visit
http://www.actel.com/products/hardware/program_debug/ss/modules.aspx.

Perform Routine Hardware Self-Diagnostic Test
• Adapter modules must be regularly cleaned. Adapter modules need to be inserted carefully into

the programmer to make sure the DIN connectors (pins at the back side) are not damaged.
• FlashPro

The self-test is only applicable when programming with FlashPro and FlashPro3 programmers. It
is not supported with FlashPro4 or FlashPro Lite. To run the self-diagnostic test, follow the
instructions given in the "Performing a Self-Test" section of
http://www.actel.com/documents/FlashPro_UG.pdf.

• Silicon Sculptor
The self-diagnostic test verifies correct operation of the pin drivers, power supply, CPU, memory,
and adapter module. This test should be performed with an adapter module installed and before
every programming session. At minimum, the test must be executed every week. To perform self-
diagnostic testing using the Silicon Sculptor software, perform the following steps, depending on
the operating system:
– DOS: From anywhere in the software, type ALT + D.
– Windows: Click Device > choose Actel Diagnostic > select the Test tab > click OK.
Silicon Sculptor programmers must be verified annually for calibration. Refer to the Silicon
Sculptor Verification of Calibration Work Instruction document on the Actel website.
Revision 0 357

http://www.actel.com/documents/RelGuide.pdf
http://www.actel.com/download/software/designer/
http://www.actel.com/download/program_debug/flashpro/
http://www.actel.com/download/program_debug/ss/
http://www.actel.com/products/hardware/program_debug/ss/modules.aspx
http://www.actel.com/documents/FlashPro_UG.pdf
http://www.actel.com/documents/SiliSculptProgCali_UG.pdf
http://www.actel.com/documents/SiliSculptProgCali_UG.pdf

Programming Flash Devices
Signal Integrity While Using ISP
For ISP of flash devices, customers are expected to follow the board-level guidelines provided on the
Actel website. These guidelines are discussed in the datasheets and application notes (refer to the
“Related Documents” section of the datasheet for application note links). Customers are also expected to
troubleshoot board-level signal integrity issues by measuring voltages and taking oscilloscope plots.

Programming Failure Allowances
Actel has strict policies regarding programming failure allowances. Please refer to Programming and
Functional Failure Guidelines on the Actel website for details.

Contacting the Customer Support Group
Highly skilled engineers staff the Customer Applications Center from 7:00 A.M. to 6:00 P.M., Pacific time,
Monday through Friday. You can contact the center by one of the following methods:

Electronic Mail
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
Actel monitors the email account throughout the day. When sending your request to us, please be sure to
include your full name, company name, and contact information for efficient processing of your request.
The technical support email address is tech@actel.com.

Telephone
Our Technical Support Hotline answers all calls. The center retrieves information, such as your name,
company name, telephone number, and question. Once this is done, a case number is assigned. Then
the center forwards the information to a queue where the first available applications engineer receives
the data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific time, Monday
through Friday.
The Customer Applications Center number is (800) 262-1060.
European customers can call +44 (0) 1256 305 600.
358 Revision 0

http://www.actel.com/documents/FA_Policies_Guidelines_5-06-00002.pdf
http://www.actel.com/documents/FA_Policies_Guidelines_5-06-00002.pdf
mailto: tech@actel.com

Fusion FPGA Fabric User’s Guide
Related Documents
Below is a list of related documents, their location on the Actel website, and a brief summary of each
document.

Application Notes
Programming Antifuse Devices
http://www.actel.com/documents/AntifuseProgram_AN.pdf
Implementation of Security in Actel's ProASIC and ProASICPLUS Flash-Based FPGAs
http://www.actel.com/documents/Flash_Security_AN.pdf

User’s Guides
FlashPro Programmers
FlashPro4,1 FlashPro3, FlashPro Lite, and FlashPro2

http://www.actel.com/products/hardware/program_debug/flashpro/default.aspx
FlashPro User's Guide
http://www.actel.com/documents/FlashPro_UG.pdf
The FlashPro User’s Guide includes hardware and software setup, self-test instructions, use instructions,
and a troubleshooting / error message guide.

Silicon Sculptor 3 and Silicon Sculptor II
http://www.actel.com/products/hardware/program_debug/ss/default.aspx

Other Documents
http://www.actel.com/products/solutions/security/default.aspx#flashlock
The security resource center describes security in Actel Flash FPGAs.
Actel Quality and Reliability Guide
http://www.actel.com/documents/RelGuide.pdf
Programming and Functional Failure Guidelines
http://www.actel.com/documents/FA_Policies_Guidelines_5-06-00002.pdf

1. FlashPro4 replaced FlashPro3 in Q1 2010.
2. FlashPro is no longer available.
Revision 0 359

http://www.actel.com/documents/FA_Policies_Guidelines_5-06-00002.pdf
http://www.actel.com/documents/FlashPro_UG.pdf
http://www.actel.com/products/hardware/program_debug/flashpro/default.aspx
http://www.actel.com/documents/FlashPro_UG.pdf
http://www.actel.com/products/hardware/program_debug/ss/default.aspx
http://www.actel.com/products/solutions/security/default.aspx#flashlock
http://www.actel.com/products/hardware/program_debug/flashpro/default.aspx
http://www.actel.com/products/hardware/program_debug/flashpro/default.aspx
http://www.actel.com/products/hardware/program_debug/flashpro/default.aspx
http://www.actel.com/documents/AntifuseProgram_AN.pdf
http://www.actel.com/documents/AntifuseProgram_AN.pdf
http://www.actel.com/documents/RelGuide.pdf
http://www.actel.com/documents/Flash_Security_AN.pdf
http://www.actel.com/documents/Flash_Security_AN.pdf
http://www.actel.com/documents/Flash_Security_AN.pdf
http://www.actel.com/documents/RelGuide.pdf
http://www.actel.com/documents/FA_Policies_Guidelines_5-06-00002.pdf

Programming Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

FlashPro4 is a replacement for FlashPro3 and has been added to this chapter.
FlashPro is no longer available.

N/A

The chapter was updated to include SmartFusion devices. N/A

The following were deleted:
"Live at Power-Up (LAPU) or Boot PROM" section
"Design Security" section
Table 14-2 • Programming Features for Actel Devices and much of the text in the
"Programming Features for Actel Devices" section
"Programming Flash FPGAs" section
"Return Material Authorization (RMA) Policies" section

N/A

The "Device Programmers" section was revised. 353

The Independent Programming Centers information was removed from the "Volume
Programming Services" section.

354

Table 16-3 • Programming Solutions was revised to add FlashPro4 and note that
FlashPro is discontinued. A note was added for FlashPro Lite regarding power
supply requirements.

355

Most items were removed from Table 16-4 • Programming Ordering Codes,
including FlashPro3 and FlashPro.

356

The "Programmer Device Support" section was deleted and replaced with a
reference to the Actel website for the latest information.

356

The "Certified Programming Solutions" section was revised to add FlashPro4 and
remove Silicon Sculptor I and Silicon Sculptor 6X. Reference to Programming and
Functional Failure Guidelines was added.

356

The file type *.pdb was added to the "Use the Latest Version of the Designer
Software to Generate Your Programming File (recommended)" section.

357

Instructions on cleaning and careful insertion were added to the "Perform Routine
Hardware Self-Diagnostic Test" section. Information was added regarding testing
Silicon Sculptor programmers with an adapter module installed before every
programming session verifying their calibration annually.

357

The "Signal Integrity While Using ISP" section is new. 358

The "Programming Failure Allowances" section was revised. 358
360 Revision 0

http://www.actel.com/documents/FA_Policies_Guidelines_5-06-00002.pdf
http://www.actel.com/documents/FA_Policies_Guidelines_5-06-00002.pdf

Fusion FPGA Fabric User’s Guide
v1.3
(December 2008)

The "Programming Support in Flash Devices" section was updated to include
IGLOO nano and ProASIC3 nano devices.

350

The "Flash Devices" section was updated to include information for IGLOO nano
devices. The following sentence was added: IGLOO PLUS devices can also be
operated at any voltage between 1.2 V and 1.5 V; the Designer software allows
50 mV increments in the voltage.

351

Table 16-4 · Programming Ordering Codes was updated to replace FP3-26PIN-
ADAPTER with FP3-10PIN-ADAPTER-KIT.

356

Table 14-6 · Programmer Device Support was updated to add IGLOO nano and
ProASIC3 nano devices. AGL400 was added to the IGLOO portion of the table.

317

v1.2
(October 2008)

The "Programming Support in Flash Devices" section was revised to include new
families and make the information more concise.

350

Figure 16-1 · FlashPro Programming Setup and the "Programming Support in Flash
Devices" section are new.

349, 350

Table 14-6 · Programmer Device Support was updated to include A3PE600L with
the other ProASIC3L devices, and the RT ProASIC3 family was added.

317

v1.1
(March 2008)

The "Flash Devices" section was updated to include the IGLOO PLUS family. The
text, "Voltage switching is required in-system to switch from a 1.2 V core to 1.5 V
core for programming," was revised to state, "Although the device can operate at
1.2 V core voltage, the device can only be reprogrammed when the core voltage is
1.5 V. Voltage switching is required in-system to switch from a 1.2 V supply (VCC,
VCCI, and VJTAG) to 1.5 V for programming."

351

The ProASIC3L family was added to Table 14-6 · Programmer Device Support as a
separate set of rows rather than combined with ProASIC3 and ProASIC3E devices.
The IGLOO PLUS family was included, and AGL015 and A3P015 were added.

317

Date Changes Page
Revision 0 361

17 – Security in Low Power Flash Devices

Security in Programmable Logic
The need for security on FPGA programmable logic devices (PLDs) has never been greater than today.
If the contents of the FPGA can be read by an external source, the intellectual property (IP) of the system
is vulnerable to unauthorized copying. Actel Fusion,® IGLOO,® and ProASIC®3 devices contain state-of-
the-art circuitry to make the flash-based devices secure during and after programming. Low power flash
devices have a built-in 128-bit Advanced Encryption Standard (AES) decryption core (except for 30 k
gate devices and smaller). The decryption core facilitates secure in-system programming (ISP) of the
FPGA core array fabric, the FlashROM, and the Flash Memory Blocks (FBs) in Fusion devices. The
FlashROM, Flash Blocks, and FPGA core fabric can be programmed independently of each other,
allowing the FlashROM or Flash Blocks to be updated without the need for change to the FPGA core
fabric.
Actel has incorporated the AES decryption core into the low power flash devices and has also included
the Actel flash-based lock technology, FlashLock.® Together, they provide leading-edge security in a
programmable logic device. Configuration data loaded into a device can be decrypted prior to being
written to the FPGA core using the AES 128-bit block cipher standard. The AES encryption key is stored
in on-chip, nonvolatile flash memory.
This document outlines the security features offered in low power flash devices, some applications and
uses, as well as the different software settings for each application.

Figure 17-1 • Overview on Security
Revision 0 363

Security in Low Power Flash Devices
Security Support in Flash-Based Devices
The flash FPGAs listed in Table 17-1 support the security feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 17-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 17-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 17-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
364 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf

Fusion FPGA Fabric User’s Guide
Security Architecture
Fusion, IGLOO, and ProASIC3 devices have been designed with the most comprehensive programming
logic design security in the industry. In the architecture of these devices, security has been designed into
the very fabric. The flash cells are located beneath seven metal layers, and the use of many device
design and layout techniques makes invasive attacks difficult. Since device layers cannot be removed
without disturbing the charge on the programmed (or erased) flash gates, devices cannot be easily
deconstructed to decode the design. Low power flash devices are unique in being reprogrammable and
having inherent resistance to both invasive and noninvasive attacks on valuable IP. Secure, remote ISP
is now possible with AES encryption capability for the programming file during electronic transfer.
Figure 17-2 shows a view of the AES decryption core inside an IGLOO device; Figure 17-3 on page 366
shows the AES decryption core inside a Fusion device. The AES core is used to decrypt the encrypted
programming file when programming.

Note: *ISP AES Decryption is not supported by 30 k gate devices and smaller. For details of other architecture features
by device, refer to the appropriate family datasheet.

Figure 17-2 • Block Representation of the AES Decryption Core in IGLOO and ProASIC3 Devices

Flash*Freeze
Technology

Charge
Pumps

User Nonvolatile
FlashRom

ISP AES
Decryption*

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC

I/Os

Bank 0

B
an

k
3

B
an

k
3 B

ank 1
B

ank 1

Bank 2
Revision 0 365

Security in Low Power Flash Devices
Security Features
IGLOO and ProASIC3 devices have two entities inside: FlashROM and the FPGA core fabric. Fusion
devices contain three entities: FlashROM, FBs, and the FPGA core fabric. The parts can be programmed
or updated independently with a STAPL programming file. The programming files can be AES-encrypted
or plaintext. This allows maximum flexibility in providing security to the entire device. Refer to the
"Programming Flash Devices" section on page 349 for information on the FlashROM structure.
Unlike SRAM-based FPGA devices, which require a separate boot PROM to store programming data,
low power flash devices are nonvolatile, and the secured configuration data is stored in on-chip flash
cells that are part of the FPGA fabric. Once programmed, this data is an inherent part of the FPGA array
and does not need to be loaded at system power-up. SRAM-based FPGAs load the configuration
bitstream upon power-up; therefore, the configuration is exposed and can be read easily.
The built-in FPGA core, FBs, and FlashROM support programming files encrypted with the 128-bit AES
(FIPS-192) block ciphers. The AES key is stored in dedicated, on-chip flash memory and can be
programmed before the device is shipped to other parties (allowing secure remote field updates).

Security in ARM-Enabled Low Power Flash Devices
There are slight differences between the regular flash devices and the ARM®-enabled flash devices,
which have the M1 and M7 prefix.
The AES key is used by Actel and preprogrammed into the device to protect the ARM IP. As a result, the
design is encrypted along with the ARM IP, according to the details below.

Figure 17-3 • Block Representation of the AES Decryption Core in a Fusion AFS600 FPGA

VersaTile

CCC

CCC

I/Os

OSC

CCC/PLL

Bank 0

B
an

k
4 B

ank 2

Bank 1

Bank 3

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

Flash Memory Blocks Flash Memory BlocksADC

Analog
Quad

ISP AES
Decryption

User Nonvolatile
FlashROM Charge Pumps

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad
366 Revision 0

Fusion FPGA Fabric User’s Guide
Cortex-M1 Device Security
Cortex-M1–enabled devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted Write and Verify
• Fusion Embedded Flash Memory enabled for AES-encrypted Write

AES Encryption of Programming Files
Low power flash devices employ AES as part of the security mechanism that prevents invasive and
noninvasive attacks. The mechanism entails encrypting the programming file with AES encryption and
then passing the programming file through the AES decryption core, which is embedded in the device.
The file is decrypted there, and the device is successfully programmed. The AES master key is stored in
on-chip nonvolatile memory (flash). The AES master key can be preloaded into parts in a secure
programming environment (such as the Actel In-House Programming center), and then "blank" parts can
be shipped to an untrusted programming or manufacturing center for final personalization with an AES-
encrypted bitstream. Late-stage product changes or personalization can be implemented easily and
securely by simply sending a STAPL file with AES-encrypted data. Secure remote field updates over
public networks (such as the Internet) are possible by sending and programming a STAPL file with AES-
encrypted data.
The AES key protects the programming data for file transfer into the device with 128-bit AES encryption.
If AES encryption is used, the AES key is stored or preprogrammed into the device. To program, you
must use an AES-encrypted file, and the encryption used on the file must match the encryption key
already in the device.
The AES key is protected by a FlashLock security Pass Key that is also implemented in each device. The
AES key is always protected by the FlashLock Key, and the AES-encrypted file does NOT contain the
FlashLock Key. This FlashLock Pass Key technology is exclusive to the Actel flash-based device
families. FlashLock Pass Key technology can also be implemented without the AES encryption option,
providing a choice of different security levels.
In essence, security features can be categorized into the following three options:

• AES encryption with FlashLock Pass Key protection
• FlashLock protection only (no AES encryption)
• No protection

Each of the above options is explained in more detail in the following sections with application examples
and software implementation options.

Advanced Encryption Standard
The 128-bit AES standard (FIPS-192) block cipher is the NIST (National Institute of Standards and
Technology) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to
protect sensitive government information well into the 21st century. It replaces the aging DES, which
NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (securely) in low power flash devices in nonvolatile flash
memory. All programming files sent to the device can be authenticated by the part prior to programming
to ensure that bad programming data is not loaded into the part that may possibly damage it. All
programming verification is performed on-chip, ensuring that the contents of low power flash devices
remain secure.
Actel has implemented the 128-bit AES (Rijndael) algorithm in low power flash devices. With this key
size, there are approximately 3.4 × 1038 possible 128-bit keys. DES has a 56-bit key size, which provides
approximately 7.2 × 1016 possible keys. In their AES fact sheet, the National Institute of Standards and
Technology uses the following hypothetical example to illustrate the theoretical security provided by AES.
If one were to assume that a computing system existed that could recover a DES key in a second, it
would take that same machine approximately 149 trillion years to crack a 128-bit AES key. NIST
continues to make their point by stating the universe is believed to be less than 20 billion years old.1
Revision 0 367

Security in Low Power Flash Devices
The AES key is securely stored on-chip in dedicated low power flash device flash memory and cannot be
read out. In the first step, the AES key is generated and programmed into the device (for example, at a
secure or trusted programming site). The Actel Designer software tool provides AES key generation
capability. After the key has been programmed into the device, the device will only correctly decrypt
programming files that have been encrypted with the same key. If the individual programming file content
is incorrect, a Message Authentication Control (MAC) mechanism inside the device will fail in
authenticating the programming file. In other words, when an encrypted programming file is being loaded
into a device that has a different programmed AES key, the MAC will prevent this incorrect data from
being loaded, preventing possible device damage. See Figure 17-3 on page 366 and Figure 17-4 on
page 368 for graphical representations of this process.
It is important to note that the user decides what level of protection will be implemented for the device.
When AES protection is desired, the FlashLock Pass Key must be set. The AES key is a content
protection mechanism, whereas the FlashLock Pass Key is a device protection mechanism. When the
AES key is programmed into the device, the device still needs the Pass Key to protect the FPGA and
FlashROM contents and the security settings, including the AES key. Using the FlashLock Pass Key
prevents modification of the design contents by means of simply programming the device with a different
AES key.

AES Decryption and MAC Authentication
Low power flash devices have a built-in 128-bit AES decryption core, which decrypts the encrypted
programming file and performs a MAC check that authenticates the file prior to programming.
MAC authenticates the entire programming data stream. After AES decryption, the MAC checks the data
to make sure it is valid programming data for the device. This can be done while the device is still
operating. If the MAC validates the file, the device will be erased and programmed. If the MAC fails to
validate, then the device will continue to operate uninterrupted.
This will ensure the following:

• Correct decryption of the encrypted programming file
• Prevention of erroneous or corrupted data being programmed during the programming file

transfer
• Correct bitstream passed to the device for decryption

1. National Institute of Standards and Technology, “ADVANCED ENCRYPTION STANDARD (AES) Questions and Answers,”
28 January 2002 (10 January 2005). See http://csrc.nist.gov/archive/aes/index1.html for more information.

Figure 17-4 • Example Application Scenario Using AES in IGLOO and ProASIC3 Devices

Actel Designer
Software

Programming
File Generation

with AES
Encryption

IGLOO and ProASIC3

Decrypted
 Bitstream

MAC
Validation

AES
Decryption Core

Transmit Medium /
Public Network

Encrypted Bitstream

FlashROMAES
Key

FPGA
Core
368 Revision 0

http://csrc.nist.gov/archive/aes/index1.html

Fusion FPGA Fabric User’s Guide
FlashLock
Additional Options for IGLOO and ProASIC3 Devices
The user also has the option of prohibiting Write operations to the FPGA array but allowing Verify
operations on the FPGA array and/or Read operations on the FlashROM without the use of the
FlashLock Pass Key. This option provides the user the freedom of verifying the FPGA array and/or
reading the FlashROM contents after the device is programmed, without having to provide the FlashLock
Pass Key. The user can incorporate AES encryption on the programming files to better enhance the level
of security used.

Permanent Security Setting Options
In applications where a permanent lock is not desired, yet the security settings should not be modifiable,
IGLOO and ProASIC3 devices can accommodate this requirement.
This application is particularly useful in cases where a device is located at a remote location and must be
reprogrammed with a design or data update. Refer to the "Application 3: Nontrusted Environment—Field
Updates/Upgrades" section on page 372 for further discussion and examples of how this can be
achieved.
The user must be careful when considering the Permanent FlashLock or Permanent Security Settings
option. Once the design is programmed with the permanent settings, it is not possible to reconfigure the
security settings already employed on the device. Therefore, exercise careful consideration before
programming permanent settings.

Permanent FlashLock
The purpose of the permanent lock feature is to provide the benefits of the highest level of security to
IGLOO and ProASIC3 devices. If selected, the permanent FlashLock feature will create a permanent
barrier, preventing any access to the contents of the device. This is achieved by permanently disabling
Write and Verify access to the array, and Write and Read access to the FlashROM. After permanently
locking the device, it has been effectively rendered one-time-programmable. This feature is useful if the
intended applications do not require design or system updates to the device.

Figure 17-5 • Example Application Scenario Using AES in Fusion Devices

Actel Designer
Software

Programming
File Generation

with AES
Encryption

Fusion

Decrypted
 Bitstream

MAC
Validation

AES
Decryption Core

Transmit Medium /
Public Network

Encrypted Bitstream

FlashROMAES
Key

FPGA
Core FBs
Revision 0 369

Security in Low Power Flash Devices
Security in Action
This section illustrates some applications of the security advantages of Actel’s devices (Figure 17-6).

.

Note: Flash blocks are only used in Fusion devices
Figure 17-6 • Security Options

Plaintext
Source File

AES
Encryption

Cipher Text
Source File

Public
Domain

AES Decryption Core

FlashROM Flash Blocks

Flash Device
A

pp
lic

at
io

n
3

A
pp

lic
at

io
n

2

A
pp

lic
at

io
n

1

FPGA Core
370 Revision 0

Fusion FPGA Fabric User’s Guide
Application 1: Trusted Environment
As illustrated in Figure 17-7, this application allows the programming of devices at design locations
where research and development take place. Therefore, encryption is not necessary and is optional to
the user. This is often a secure way to protect the design, since the design program files are not sent
elsewhere. In situations where production programming is not available at the design location,
programming centers (such as Actel In-House Programming) provide a way of programming designs at
an alternative, secure, and trusted location. In this scenario, the user generates a STAPL programming
file from the Designer software in plaintext format, containing information on the entire design or the
portion of the design to be programmed. The user can choose to employ the FlashLock Pass Key feature
with the design. Once the design is programmed to unprogrammed devices, the design is protected by
this FlashLock Pass Key. If no future programming is needed, the user can consider permanently
securing the IGLOO and ProASIC3 device, as discussed in the "Permanent FlashLock" section on
page 369.

Application 2: Nontrusted Environment—Unsecured Location
Often, programming of devices is not performed in the same location as actual design implementation, to
reduce manufacturing cost. Overseas programming centers and contract manufacturers are examples of
this scenario.
To achieve security in this case, the AES key and the FlashLock Pass Key can be initially programmed
in-house (trusted environment). This is done by generating a programming file with only the security
settings and no design contents. The design FPGA core, FlashROM, and (for Fusion) FB contents are
generated in a separate programming file. This programming file must be set with the same AES key that
was used to program to the device previously so the device will correctly decrypt this encrypted
programming file. As a result, the encrypted design content programming file can be safely sent off-site
to nontrusted programming locations for design programming. Figure 17-7 shows a more detailed flow
for this application.

Notes:
1. Programmed portion indicated with dark gray.
2. Programming of FBs applies to Fusion only.
Figure 17-7 • Application 2: Device Programming in a Nontrusted Environment

Trusted Environment

Nontrusted Manufacturing Environment

Flash DeviceAES and/or
Pass Key
Protected
Programming File

FPGA/FlashROM/FBs
Contents

Security Settings

Generates Design
Contents Encrypted
with AES

Generates and Programs Security Settings Only
(programming of the security keys)

Programs Design
Contents to Devices

Ships Devices
to Manufacturer

Sends File(s)
to Manufacturer

OEM
Customers

Returns Programmed
Devices to Vendor

Ships Programmed
Devices to End Customer

Flash Device

Flash Device

OEM

FPGA/FlashROM/FBs

Security Settings*

FPGA/FlashROM/FBs

Security Settings
Revision 0 371

Security in Low Power Flash Devices
Application 3: Nontrusted Environment—Field Updates/Upgrades
Programming or reprogramming of devices may occur at remote locations. Reconfiguration of devices in
consumer products/equipment through public networks is one example. Typically, the remote system is
already programmed with particular design contents. When design update (FPGA array contents update)
and/or data upgrade (FlashROM and/or FB contents upgrade) is necessary, an updated programming file
with AES encryption can be generated, sent across public networks, and transmitted to the remote
system. Reprogramming can then be done using this AES-encrypted programming file, providing easy
and secure field upgrades. Low power flash devices support this secure ISP using AES. The detailed
flow for this application is shown in Figure 17-8. Refer to the "Microprocessor Programming of Actel’s
Low Power Flash Devices" chapter of an appropriate FPGA fabric user’s guide for more information.
To prepare devices for this scenario, the user can initially generate a programming file with the available
security setting options. This programming file is programmed into the devices before shipment. During
the programming file generation step, the user has the option of making the security settings permanent
or not. In situations where no changes to the security settings are necessary, the user can select this
feature in the software to generate the programming file with permanent security settings. Actel
recommends that the programming file use encryption with an AES key, especially when ISP is done via
public domain.
For example, if the designer wants to use an AES key for the FPGA array and the FlashROM,
Permanent needs to be chosen for this setting. At first, the user chooses the options to use an AES key
for the FPGA array and the FlashROM, and then chooses Permanently lock the security settings. A
unique AES key is chosen. Once this programming file is generated and programmed to the devices, the
AES key is permanently stored in the on-chip memory, where it is secured safely. The devices are sent to
distant locations for the intended application. When an update is needed, a new programming file must
be generated. The programming file must use the same AES key for encryption; otherwise, the
authentication will fail and the file will not be programmed in the device.

Figure 17-8 • Application 3: Nontrusted Environment—Field Updates/Upgrades

Remote Environment / System

Trusted Environment

Generates Updated Design Contents
Encrypted with AES

Original Design
Contents AES
Encrypted and
FlashLock Pass Key
Protected

OEM

AES Encrypted
Programming File

Transmits to
Remote System

Update/Upgrade

Flash Device
372 Revision 0

Fusion FPGA Fabric User’s Guide
FlashROM Security Use Models
Each of the subsequent sections describes in detail the available selections in Actel Designer as an aid
to understanding security applications and generating appropriate programming files for those
applications. Before proceeding, it is helpful to review Figure 17-7 on page 371, which gives a general
overview of the programming file generation flow within the Designer software as well as what occurs
during the device programming stage. Specific settings are discussed in the following sections.
In Figure 17-7 on page 371, the flow consists of two sub-flows. Sub-flow 1 describes programming
security settings to the device only, and sub-flow 2 describes programming the design contents only.
In Application 1, described in the "Application 1: Trusted Environment" section on page 371, the user
does not need to generate separate files but can generate one programming file containing both security
settings and design contents. Then programming of the security settings and design contents is done in
one step. Both sub-flow 1 and sub-flow 2 are used.
In Application 2, described in the "Application 2: Nontrusted Environment—Unsecured Location" section
on page 371, the trusted site should follow sub-flows 1 and 2 separately to generate two separate
programming files. The programming file from sub-flow 1 will be used at the trusted site to program the
device(s) first. The programming file from sub-flow 2 will be sent off-site for production programming.
In Application 3, described in the "Application 3: Nontrusted Environment—Field Updates/Upgrades"
section on page 372, typically only sub-flow 2 will be used, because only updates to the design content
portion are needed and no security settings need to be changed.
In the event that update of the security settings is necessary, see the "Reprogramming Devices" section
on page 383 for details. For more information on programming low power flash devices, refer to the "In-
System Programming (ISP) of Actel’s Low Power Flash Devices Using FlashPro4/3/3X" section on
page 389.
Revision 0 373

Security in Low Power Flash Devices
Note: If programming the Security Header only, just perform sub-flow 1.
If programming design content only, just perform sub-flow 2.

Figure 17-9 • Security Programming Flows

Software Generates Programming File
with Desired Security Settings:
 – Encrypted with AES and Protected
 with FlashLock Pass Key
 – Protected with FlashLock Pass Key Only

Program
Design
Contents

Program
Security
Settings

User

1

2

Designer Software Programming Software

Programming
Previously
Secured

Device(s)?

Yes

No

No

Software Generates
Programming File

with Desired
Design Contents

(FPGA Array,
FlashROM, FB,

or All) Yes

No

Device
Previously

Programmed?

Software Performs
Comparison of

FlashLock Pass Key
between

Programming File
and Device

Software Performs
Comparison of

FlashLock Pass Key
between

Programming File
and Device

Encrypted Design
Content Passes
through MAC for
Authentication

Software
Programs
Selected

Security Settings
into Device

No

Does
FlashLock
Pass Key
Match?

Does
FlashLock
Pass Key
Match?

Yes

No

Returns Error

Returns Error

Yes

Correct?

Yes

No

AES Key Used
Previously?

Yes

User Assigns Desired Security Settings
To FPGA/FlashROM/FB/All:
 – AES Key and FlashLock Pass Key
 – FlashLock Pass Key Only

User Must
Reassign Exact

FlashLock Pass Key
Previously

Programmed
into the Device

User Must
Reassign Exact

AES Key
Previously

Programmed
into the Device

Software Generates
Programming File

with FlashLock
Pass Key and

Design Contents

Design Content
Programmed
into Device

Software Generates
Programming File

with Encrypted
Design Contents

Design Content
Decrypted and
Programmed
into Device
374 Revision 0

Fusion FPGA Fabric User’s Guide
Generating Programming Files

Generation of the Programming File in a Trusted Environment—
Application 1
As discussed in the "Application 1: Trusted Environment" section on page 371, in a trusted environment,
the user can choose to program the device with plaintext bitstream content. It is possible to use plaintext
for programming even when the FlashLock Pass Key option has been selected. In this application, it is
not necessary to employ AES encryption protection. For AES encryption settings, refer to the next
sections.
The generated programming file will include the security setting (if selected) and the plaintext
programming file content for the FPGA array, FlashROM, and/or FBs. These options are indicated in
Table 17-2 and Table 17-3.

For this scenario, generate the programming file as follows:
1. Select the Silicon features to be programmed (Security Settings, FPGA Array, FlashROM,

Flash Memory Blocks), as shown in Figure 17-10 on page 376 and Figure 17-11 on page 376.
Click Next.
If Security Settings is selected (i.e., the FlashLock security Pass Key feature), an additional
dialog will be displayed to prompt you to select the security level setting. If no security setting is
selected, you will be directed to Step 3.

Table 17-2 • IGLOO and ProASIC3 Plaintext Security Options, No AES

Security Protection FlashROM Only FPGA Core Only
Both FlashROM

and FPGA
No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock – – –

Table 17-3 • Fusion Plaintext Security Options
Security Protection FlashROM Only FPGA Core Only FB Core Only All
No AES / no FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock – – – –

Note: For all instructions, the programming of Flash Blocks refers to Fusion only.
Revision 0 375

Security in Low Power Flash Devices
Figure 17-10 • All Silicon Features Selected for IGLOO and ProASIC3 Devices

Figure 17-11 • All Silicon Features Selected for Fusion
376 Revision 0

Fusion FPGA Fabric User’s Guide
2. Choose the appropriate security level setting and enter a FlashLock Pass Key. The default is the
Medium security level (Figure 17-12). Click Next.
If you want to select different options for the FPGA and/or FlashROM, this can be set by clicking
Custom Level. Refer to the "Advanced Options" section on page 384 for different custom
security level options and descriptions of each.

Figure 17-12 • Medium Security Level Selected for Low Power Flash Devices
Revision 0 377

Security in Low Power Flash Devices
3. Choose the desired settings for the FlashROM configurations to be programmed (Figure 17-13).
Click Finish to generate the STAPL programming file for the design.

Generation of Security Header Programming File Only—
Application 2
As mentioned in the "Application 2: Nontrusted Environment—Unsecured Location" section on page 371,
the designer may employ FlashLock Pass Key protection or FlashLock Pass Key with AES encryption on
the device before sending it to a nontrusted or unsecured location for device programming. To achieve
this, the user needs to generate a programming file containing only the security settings desired (Security
Header programming file).
Note: If AES encryption is configured, FlashLock Pass Key protection must also be configured.
The available security options are indicated in Table 17-4 and Table 17-5 on page 379.

Figure 17-13 • FlashROM Configuration Settings for Low Power Flash Devices

Table 17-4 • FlashLock Security Options for IGLOO and ProASIC3

Security Option FlashROM Only FPGA Core Only
Both FlashROM

and FPGA

No AES / no FlashLock – – –

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓
378 Revision 0

Fusion FPGA Fabric User’s Guide
For this scenario, generate the programming file as follows:
1. Select only the Security settings option, as indicated in Figure 17-14 and Figure 17-15 on

page 380. Click Next.

Table 17-5 • FlashLock Security Options for Fusion

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / no FlashLock – – – –

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓

Figure 17-14 • Programming IGLOO and ProASIC3 Security Settings Only
Revision 0 379

Security in Low Power Flash Devices
2. Choose the desired security level setting and enter the key(s).
– The High security level employs FlashLock Pass Key with AES Key protection.
– The Medium security level employs FlashLock Pass Key protection only.

Figure 17-15 • Programming Fusion Security Settings Only

Figure 17-16 • High Security Level to Implement FlashLock Pass Key and AES Key Protection
380 Revision 0

Fusion FPGA Fabric User’s Guide
Table 17-6 and Table 17-7 show all available options. If you want to implement custom levels,
refer to the "Advanced Options" section on page 384 for information on each option and how to
set it.

3. When done, click Finish to generate the Security Header programming file.

Generation of Programming Files with AES Encryption—
Application 3
This section discusses how to generate design content programming files needed specifically at
unsecured or remote locations to program devices with a Security Header (FlashLock Pass Key and AES
key) already programmed ("Application 2: Nontrusted Environment—Unsecured Location" section on
page 371 and "Application 3: Nontrusted Environment—Field Updates/Upgrades" section on page 372).
In this case, the encrypted programming file must correspond to the AES key already programmed into
the device. If AES encryption was previously selected to encrypt the FlashROM, FBs, and FPGA array,
AES encryption must be set when generating the programming file for them. AES encryption can be
applied to the FlashROM only, the FBs only, the FPGA array only, or all. The user must ensure both the
FlashLock Pass Key and the AES key match those already programmed to the device(s), and all security
settings must match what was previously programmed. Otherwise, the encryption and/or device
unlocking will not be recognized when attempting to program the device with the programming file.
The generated programming file will be AES-encrypted.
In this scenario, generate the programming file as follows:

1. Deselect Security settings and select the portion of the device to be programmed (Figure 17-17
on page 382). Select Programming previously secured device(s). Click Next.

Table 17-6 • All IGLOO and ProASIC3 Header File Security Options

Security Option FlashROM Only FPGA Core Only
Both FlashROM

and FPGA

No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓

Note: ✓ = options that may be used

Table 17-7 • All Fusion Header File Security Options

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / No FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓
Revision 0 381

Security in Low Power Flash Devices
Choose the High security level to reprogram devices using both the FlashLock Pass Key and AES key
protection (Figure 17-18 on page 383). Enter the AES key and click Next.
A device that has already been secured with FlashLock and has an AES key loaded must recognize the
AES key to program the device and generate a valid bitstream in authentication. The FlashLock Key is
only required to unlock the device and change the security settings.
This is what makes it possible to program in an untrusted environment. The AES key is protected inside
the device by the FlashLock Key, so you can only program if you have the correct AES key. In fact, the
AES key is not in the programming file either. It is the key used to encrypt the data in the file. The same
key previously programmed with the FlashLock Key matches to decrypt the file.
An AES-encrypted file programmed to a device without FlashLock would not be secure, since without
FlashLock to protect the AES key, someone could simply reprogram the AES key first, then program with
any AES key desired or no AES key at all. This option is therefore not available in the software.

Note: The settings in this figure are used to show the generation of an AES-encrypted programming file for the FPGA
array, FlashROM, and FB contents. One or all locations may be selected for encryption.

Figure 17-17 • Settings to Program a Device Secured with FlashLock and using AES Encryption
382 Revision 0

Fusion FPGA Fabric User’s Guide
Programming with this file is intended for an unsecured environment. The AES key encrypts the
programming file with the same AES key already used in the device and utilizes it to program the device.

Reprogramming Devices
Previously programmed devices can be reprogrammed using the steps in the "Generation of the
Programming File in a Trusted Environment—Application 1" section on page 375 and "Generation of
Security Header Programming File Only—Application 2" section on page 378. In the case where a
FlashLock Pass Key has been programmed previously, the user must generate the new programming file
with a FlashLock Pass Key that matches the one previously programmed into the device. The software
will check the FlashLock Pass Key in the programming file against the FlashLock Pass Key in the device.
The keys must match before the device can be unlocked to perform further programming with the new
programming file.
Figure 17-10 on page 376 and Figure 17-11 on page 376 show the option Programming previously
secured device(s), which the user should select before proceeding. Upon going to the next step, the
user will be notified that the same FlashLock Pass Key needs to be entered, as shown in Figure 17-19 on
page 384.

Figure 17-18 • Security Level Set High to Reprogram Device with AES Key
Revision 0 383

Security in Low Power Flash Devices
It is important to note that when the security settings need to be updated, the user also needs to select
the Security settings check box in Step 1, as shown in Figure 17-10 on page 376 and Figure 17-11 on
page 376, to modify the security settings. The user must consider the following:

• If only a new AES key is necessary, the user must re-enter the same Pass Key previously
programmed into the device in Designer and then generate a programming file with the same
Pass Key and a different AES key. This ensures the programming file can be used to access and
program the device and the new AES key.

• If a new Pass Key is necessary, the user can generate a new programming file with a new Pass
Key (with the same or a new AES key if desired). However, for programming, the user must first
load the original programming file with the Pass Key that was previously used to unlock the
device. Then the new programming file can be used to program the new security settings.

Advanced Options
As mentioned, there may be applications where more complicated security settings are required. The
“Custom Security Levels” section in the FlashPro User's Guide describes different advanced options
available to aid the user in obtaining the best available security settings.

Figure 17-19 • FlashLock Pass Key, Previously Programmed Devices
384 Revision 0

http://www.actel.com/documents/flashpro_ug.pdf

Fusion FPGA Fabric User’s Guide
Programming File Header Definition
In each STAPL programming file generated, there will be information about how the AES key and
FlashLock Pass Key are configured. Table 17-8 shows the header definitions in STAPL programming
files for different security levels.

Example File Headers
STAPL Files Generated with FlashLock Key and AES Key Containing Key Information

• FlashLock Key / AES key indicated in STAPL file header definition
• Intended ONLY for secured/trusted environment programming applications

===
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EDB9";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "KEYED ENCRYPT ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";
NOTE "PASS_KEY" "$00123456789012345678901234567890";
NOTE "AES_KEY" "$ABCDEFABCDEFABCDEFABCDEFABCDEFAB";
==

Table 17-8 • STAPL Programming File Header Definitions by Security Level

Security Level STAPL File Header Definition

No security (no FlashLock Pass Key or AES key) NOTE "SECURITY" "Disable";

FlashLock Pass Key with no AES key NOTE "SECURITY" "KEYED ";

FlashLock Pass Key with AES key NOTE "SECURITY" "KEYED ENCRYPT ";

Permanent Security Settings option enabled NOTE "SECURITY" "PERMLOCK ENCRYPT ";

AES-encrypted FPGA array (for programming updates) NOTE "SECURITY" "ENCRYPT CORE ";

AES-encrypted FlashROM (for programming updates) NOTE "SECURITY" "ENCRYPT FROM ";

AES-encrypted FPGA array and FlashROM (for
programming updates)

NOTE "SECURITY" "ENCRYPT FROM CORE ";
Revision 0 385

Security in Low Power Flash Devices
STAPL File with AES Encryption
• Does not contain AES key / FlashLock Key information
• Intended for transmission through web or service to unsecured locations for programming

===
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EF57";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "ENCRYPT FROM CORE ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";

Conclusion
The new and enhanced security features offered in Actel Fusion, IGLOO, and ProASIC3 devices provide
state-of-the-art security to designs programmed into these flash-based devices. Actel low power flash
devices employ the encryption standard used by NIST and the U.S. government—AES using the 128-bit
Rijndael algorithm.
The combination of an on-chip AES decryption engine and Actel FlashLock technology provides the
highest level of security against invasive attacks and design theft, implementing the most robust and
secure ISP solution. These security features protect IP within the FPGA and protect the system from
cloning, wholesale “black box” copying of a design, invasive attacks, and explicit IP or data theft.

Glossary

References
National Institute of Standards and Technology. “ADVANCED ENCRYPTION STANDARD (AES)

Questions and Answers.” 28 January 2002 (10 January 2005).
See http://csrc.nist.gov/archive/aes/index1.html for more information.

Term Explanation

Security Header
programming file

Programming file used to program the FlashLock Pass Key and/or AES key into the device to
secure the FPGA, FlashROM, and/or FBs.

AES (encryption) key 128-bit key defined by the user when the AES encryption option is set in the Actel Designer
software when generating the programming file.

FlashLock Pass Key 128-bit key defined by the user when the FlashLock option is set in the Actel Designer
software when generating the programming file.
The FlashLock Key protects the security settings programmed to the device. Once a device
is programmed with FlashLock, whatever settings were chosen at that time are secure.

FlashLock The combined security features that protect the device content from attacks. These features
are the following:
• Flash technology that does not require an external bitstream to program the device
• FlashLock Pass Key that secures device content by locking the security settings and

preventing access to the device as defined by the user
• AES key that allows secure, encrypted device reprogrammability
386 Revision 0

http://csrc.nist.gov/archive/aes/index1.html

Fusion FPGA Fabric User’s Guide
Related Documents

User’s Guides
FlashPro User's Guide
http://www.actel.com/documents/flashpro_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.5
(August 2009)

The "CoreMP7 Device Security" section was removed from "Security in ARM-
Enabled Low Power Flash Devices", since M7-enabled devices are no longer
supported.

366

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 17-1 • Flash-Based
FPGAs.

364

v1.3
(October 2008)

The "Security Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

364

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 17-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

364

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices.

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 364
Revision 0 387

http://www.actel.com/documents/flashpro_ug.pdf
http://www.actel.com/documents/flashpro_ug.pdf

18 – In-System Programming (ISP) of Actel’s Low
Power Flash Devices Using FlashPro4/3/3X

Introduction
Actel's low power flash devices are all in-system programmable. This document describes the general
requirements for programming a device and specific requirements for the FlashPro4/3/3X programmers1.
IGLOO,® ProASIC®3, SmartFusion™, and Fusion devices offer a low power, single-chip, live-at-power-
up solution with the ASIC advantages of security and low unit cost through nonvolatile flash technology.
Each device contains 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be
used in diverse system applications such as Internet Protocol (IP) addressing, user system preference
storage, device serialization, or subscription-based business models. IGLOO, ProASIC3, SmartFusion,
and Fusion devices offer the best in-system programming (ISP) solution, FlashLock® security features,
and AES-decryption-based ISP.

ISP Architecture
Low power flash devices support ISP via JTAG and require a single VPUMP voltage of 3.3 V during
programming. In addition, programming via a microcontroller in a target system is also supported.
Refer to the "Microprocessor Programming of Actel’s Low Power Flash Devices" chapter of an
appropriate FPGA fabric user’s guide.
Family-specific support:

• ProASIC3, ProASIC3E, SmartFusion, and Fusion devices support ISP.
• ProASIC3L devices operate using a 1.2 V core voltage; however, programming can be done only

at 1.5 V. Voltage switching is required in-system to switch from a 1.2 V core to 1.5 V core for
programming.

• IGLOO and IGLOOe V5 devices can be programmed in-system when the device is using a 1.5 V
supply voltage to the FPGA core.

• IGLOO nano V2 devices can be programmed at 1.2 V core voltage (when using FlashPro4 only)
or 1.5 V. IGLOO nano V5 devices are programmed with a VCC core voltage of 1.5 V. Voltage
switching is required in-system to switch from a 1.2 V supply (VCC,VCCI, and VJTAG) to 1.5 V
for programming. The exception is that V2 devices can be programmed at 1.2 V VCC with
FlashPro4.

IGLOO devices cannot be programmed in-system when the device is in Flash*Freeze mode. The device
should exit Flash*Freeze mode and be in normal operation for programming to start. Programming
operations in IGLOO devices can be achieved when the device is in normal operating mode and a 1.5 V
core voltage is used.

JTAG 1532
IGLOO, ProASIC3, SmartFusion, and Fusion devices support the JTAG-based IEEE 1532 standard for
ISP. To start JTAG operations, the IGLOO device must exit Flash*Freeze mode and be in normal
operation before starting to send JTAG commands to the device. As part of this support, when a device is
in an unprogrammed state, all user I/O pins are disabled. This is achieved by keeping the global IO_EN
signal deactivated, which also has the effect of disabling the input buffers. The SAMPLE/PRELOAD

1. FlashPro4 replaced FlashPro3/3X in 2010 and is backward compatible with FlashPro3/3X as long as there is no connection
to pin 4 on the JTAG header on the board. On FlashPro3/3X, there is no connection to pin 4 on the JTAG header; however,
pin 4 is used for programming mode (Prog_Mode) on FlashPro4. When converting from FlashPro3/3X to FlashPro4, users
should make sure that JTAG connectors on system boards do not have any connection to pin 4. FlashPro3X supports
discrete TCK toggling that is needed to support non-JTAG compliant devices in the chain. This feature is included in
FlashPro4.
Revision 0 389

In-System Programming (ISP) of Actel’s Low Power Flash Devices Using FlashPro4/3/3X
instruction captures the status of pads in parallel and shifts them out as new data is shifted in for loading
into the Boundary Scan Register (BSR). When the device is in an unprogrammed state, the OE and
output BSR will be undefined; however, the input BSR will be defined as long as it is connected and
being used. For JTAG timing information on setup, hold, and fall times, refer to the FlashPro User’s
Guide.

ISP Support in Flash-Based Devices
The flash FPGAs listed in Table 18-1 support the ISP feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 18-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 18-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 18-1 • Flash-Based FPGAs Supporting ISP

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

SmartFusion SmartFusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
microcontroller subsystem (MSS) which includes programmable analog and
an ARM® Cortex™-M3 hard processor and flash memory in a monolithic
device

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

ProASIC ProASIC First generation ProASIC devices

ProASICPLUS Second generation ProASIC devices

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
390 Revision 0

http://www.actel.com/documents/flashpro_ug.pdf
http://www.actel.com/documents/flashpro_ug.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/SmartFusion_DS.pdf
http://www.actel.com/documents/ProASIC_DS.pdf
http://www.actel.com/documents/ProASICPlus_DS.pdf
http://www.actel.com/documents/ProASICPlus_DS.pdf

Fusion FPGA Fabric User’s Guide
Programming Voltage (VPUMP) and VJTAG
Low-power flash devices support on-chip charge pumps, and therefore require only a single 3.3 V
programming voltage for the VPUMP pin during programming. When the device is not being
programmed, the VPUMP pin can be left floating or can be tied (pulled up) to any voltage between 0 V
and 3.6 V1. During programming, the target board or the FlashPro4/3/3X programmer can provide
VPUMP. FlashPro4/3/3X is capable of supplying VPUMP to a single device. If more than one device is to
be programmed using FlashPro4/3/3X on a given board, FlashPro4/3/3X should not be relied on to
supply the VPUMP voltage. A FlashPro4/3/3X programmer is not capable of providing reliable VJTAG
voltage. The board must supply VJTAG voltage to the device and the VJTAG pin of the programmer
header must be connected to the device VJTAG pin. Actel recommends that VPUMP2 and VJTAG power
supplies be kept separate with independent filtering capacitors rather than supplying them from a
common rail. Refer to the "Board-Level Considerations" section on page 399 for capacitor requirements.
Low power flash device I/Os support a bank-based, voltage-supply architecture that simultaneously
supports multiple I/O voltage standards (Table 18-2). By isolating the JTAG power supply in a separate
bank from the user I/Os, low power flash devices provide greater flexibility with supply selection and
simplify power supply and printed circuit board (PCB) design. The JTAG pins can be run at any voltage
from 1.5 V to 3.3 V (nominal). Actel recommends that TCK be tied to GND through a 200 ohm to 1 Kohm
resistor. This prevents a possible totempole current on the input buffer stage. For TDI, TMS, and TRST
pins, the devices provide an internal nominal 10 Kohm pull-up resistor. During programming, all I/O pins,
except for JTAG interface pins, are tristated and weakly pulled up to VCCI. This isolates the part and
prevents the signals from floating. The JTAG interface pins are driven by the FlashPro4/3/3X during
programming, including the TRST pin, which is driven HIGH.

Nonvolatile Memory (NVM) Programming Voltage
SmartFusion and Fusion devices need stable VCCNVM/VCCENVM3 (1.5 V power supply to the
embedded nonvolatile memory blocks) and VCCOSC/VCCROSC3 (3.3 V power supply to the integrated
RC oscillator). The tolerance of VCCNVM/VCCENVM is ± 5% and VCCOSC/VCCROSC is ± 5%.
Unstable supply voltage on these pins can cause an NVM programming failure due to NVM page
corruption. The NVM page can also be corrupted if the NVM reset pin has noise. This signal must be tied
off properly.
Actel recommends installing the following capacitors4 on the VCCNVM/VCCENVM and
VCCOSC/VCCROSC pins:

• Add one bypass capacitor of 10 µF for each power supply plane followed by an array of
decoupling capacitors of 0.1 µF.

• Add one 0.1 µF capacitor near each pin.

1. During sleep mode in IGLOO devices connect VPUMP to GND.
2. VPUMP has to be quiet for successful programming. Therefore VPUMP must be separate and required capacitors must be

installed close to the FPGA VPUMP pin.

Table 18-2 • Power Supplies

Power Supply Programming Mode
Current during
Programming

VCC 1.2 V / 1.5 V < 70 mA

VCCI 1.2 V / 1.5 V / 1.8 V / 2.5 V / 3.3 V
(bank-selectable)

I/Os are weakly pulled up.

VJTAG 1.2 V / 1.5 V / 1.8 V / 2.5 V / 3.3 V < 20 mA

VPUMP 3.0 V to 3.6 V < 80 mA

Note: All supply voltages should be at 1.5 V or higher, regardless of the setting during normal
operation, except for IGLOO nano, where 1.2 V VCC and VJTAG programming is allowed.

3. VCCROSC is for SmartFusion.
4. The capacitors cannot guarantee reliable operation of the device if the board layout is not done properly.
Revision 0 391

In-System Programming (ISP) of Actel’s Low Power Flash Devices Using FlashPro4/3/3X
IEEE 1532 (JTAG) Interface
The supported industry-standard IEEE 1532 programming interface builds on the IEEE 1149.1 (JTAG)
standard. IEEE 1532 defines the standardized process and methodology for ISP. Both silicon and
software issues are addressed in IEEE 1532 to create a simplified ISP environment. Any IEEE 1532
compliant programmer can be used to program low power flash devices. Device serialization is not
supported when using the IEEE1532 standard. Refer to the standard for detailed information about IEEE
1532.

Security
Unlike SRAM-based FPGAs that require loading at power-up from an external source such as a
microcontroller or boot PROM, Actel nonvolatile devices are live at power-up, and there is no bitstream
required to load the device when power is applied. The unique flash-based architecture prevents reverse
engineering of the programmed code on the device, because the programmed data is stored in
nonvolatile memory cells. Each nonvolatile memory cell is made up of small capacitors and any physical
deconstruction of the device will disrupt stored electrical charges.
Each low power flash device has a built-in 128-bit Advanced Encryption Standard (AES) decryption core,
except for the 30 k gate devices and smaller. Any FPGA core or FlashROM content loaded into the
device can optionally be sent as encrypted bitstream and decrypted as it is loaded. This is particularly
suitable for applications where device updates must be transmitted over an unsecured network such as
the Internet. The embedded AES decryption core can prevent sensitive data from being intercepted
(Figure 18-1 on page 393). A single 128-bit AES Key (32 hex characters) is used to encrypt FPGA core
programming data and/or FlashROM programming data in the Actel tools. The low power flash devices
also decrypt with a single 128-bit AES Key. In addition, low power flash devices support a Message
Authentication Code (MAC) for authentication of the encrypted bitstream on-chip. This allows the
encrypted bitstream to be authenticated and prevents erroneous data from being programmed into the
device. The FPGA core, FlashROM, and Flash Memory Blocks (FBs), in Fusion only, can be updated
independently using a programming file that is AES-encrypted (cipher text) or uses plain text.
392 Revision 0

Fusion FPGA Fabric User’s Guide
Security in ARM-Enabled Low Power Flash Devices
There are slight differences between the regular flash device and the ARM®-enabled flash devices,
which have the M1 prefix.
The AES key is used by Actel and preprogrammed into the device to protect the ARM IP. As a result, the
design will be encrypted along with the ARM IP, according to the details below.

Cortex-M1 and Cortex-M3 Device Security
Cortex-M1–enabled and Cortex-M3 devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted write and verify
• Embedded Flash Memory enabled for AES encrypted write

Figure 18-1 • AES-128 Security Features

Actel Designer
Software

Programming
File Generation

with AES
Encryption

Flash Device

Decrypted
 Bitstream

MAC
Validation

AES
Decryption

FPGA Core,
FlashROM,

FBs

Transmit Medium /
Public Network

Encrypted Bistream

User Encryption AES Key
Revision 0 393

In-System Programming (ISP) of Actel’s Low Power Flash Devices Using FlashPro4/3/3X
Figure 18-2 shows different applications for ISP programming.
1. In a trusted programming environment, you can program the device using the unencrypted

(plaintext) programming file.
2. You can program the AES Key in a trusted programming environment and finish the final

programming in an untrusted environment using the AES-encrypted (cipher text) programming
file.

3. For the remote ISP updating/reprogramming, the AES Key stored in the device enables the
encrypted programming bitstream to be transmitted through the untrusted network connection.

Actel low power flash devices also provide the unique Actel FlashLock feature, which protects the Pass
Key and AES Key. Unless the original FlashLock Pass Key is used to unlock the device, security settings
cannot be modified. Low power flash devices do not support read-back of FPGA core-programmed data;
however, the FlashROM contents can selectively be read back (or disabled) via the JTAG port based on
the security settings established by the Actel Designer software. Refer to the "Security in Low Power
Flash Devices" section on page 363 for more information.

Figure 18-2 • Different ISP Use Models

Source
Plain Text

AES
Encryption

Source
Encrypted Bitstream

TCP/IP

FlashROM AES
Decryption

FPGA
Core

IGLOO or ProASIC3 Device

O
pt

io
n

1

O
pt

io
n

2

O
pt

io
n

3

394 Revision 0

Fusion FPGA Fabric User’s Guide
FlashROM and Programming Files
Each low power flash device has 1 kbit of on-chip, nonvolatile flash memory that can be accessed from
the FPGA core. This nonvolatile FlashROM is arranged in eight pages of 128 bits (Figure 18-3). Each
page can be programmed independently, with or without the 128-bit AES encryption. The FlashROM can
only be programmed via the IEEE 1532 JTAG port and cannot be programmed from the FPGA core. In
addition, during programming of the FlashROM, the FPGA core is powered down automatically by the
on-chip programming control logic.

When using FlashROM combined with AES, many subscription-based applications or device
serialization applications are possible. The FROM configurator found in the Libero® Integrated Designed
Environment (IDE) Catalog supports easy management of the FlashROM contents, even over large
numbers of devices. The FROM configurator can support FlashROM contents that contain the following:

• Static values
• Random numbers
• Values read from a file
• Independent updates of each page

In addition, auto-incrementing of fields is possible. In applications where the FlashROM content is
different for each device, you have the option to generate a single STAPL file for all the devices or
individual serialization files for each device. For more information on how to generate the FlashROM
content for device serialization, refer to the "FlashROM in Actel’s Low Power Flash Devices" section on
page 189.
Actel’s Libero IDE includes a unique tool to support the generation and management of FlashROM and
FPGA programming files. This tool is called FlashPoint.
Depending on the applications, designers can use the FlashPoint software to generate a STAPL file with
different contents. In each case, optional AES encryption and/or different security settings can be set.
In Designer, when you click the Programming File icon, FlashPoint launches, and you can generate
STAPL file(s) with four different cases (Figure 18-4 on page 396). When the serialization feature is used
during the configuration of FlashROM, you can generate a single STAPL file that will program all the
devices or an individual STAPL file for each device.
The following cases present the FPGA core and FlashROM programming file combinations that can be
used for different applications. In each case, you can set the optional security settings (FlashLock Pass
Key and/or AES Key) depending on the application.

1. A single STAPL file or multiple STAPL files with multiple FlashROM contents and the FPGA core
content. A single STAPL file will be generated if the device serialization feature is not used. You
can program the whole FlashROM or selectively program individual pages.

2. A single STAPL file for the FPGA core content

Figure 18-3 • FlashROM Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7
6
5
4
3
2
1
0

Byte Number in Page

Pa
ge

 N
um

be
r

Revision 0 395

In-System Programming (ISP) of Actel’s Low Power Flash Devices Using FlashPro4/3/3X
3. A single STAPL file or multiple STAPL files with multiple FlashROM contents. A single STAPL file
will be generated if the device serialization feature is not used. You can program the whole
FlashROM or selectively program individual pages.

4. A single STAPL file to configure the security settings for the device, such as the AES Key and/or
Pass Key.

Programming Solution
For device programming, any IEEE 1532–compliant programmer can be used; however, the
FlashPro4/3/3X programmer must be used to control the low power flash device's rich security features
and FlashROM programming options. The FlashPro4/3/3X programmer is a low-cost portable
programmer for the Actel flash families. It can also be used with a powered USB hub for parallel
programming. General specifications for the FlashPro4/3/3X programmer are as follows:

• Programming clock – TCK is used with a maximum frequency of 20 MHz, and the default
frequency is 4 MHz.

• Programming file – STAPL
• Daisy chain – Supported. You can use the ChainBuilder software to build the programming file for

the chain.
• Parallel programming – Supported. Multiple FlashPro4/3/3X programmers can be connected

together using a powered USB hub or through the multiple USB ports on the PC.
• Power supply – The target board must provide VCC, VCCI, VPUMP, and VJTAG during

programming. However, if there is only one device on the target board, the FlashPro4/3/3X
programmer can generate the required VPUMP voltage from the USB port.

Figure 18-4 • Flexible Programming File Generation for Different Applications

1 2 3 4

Actel's Designer Software Suite

FPGA Core
Content

Single/Multiple
FlashROM
Content(s)

FlashROM
Configuration

File (*.ufc)

Libero IDE
 Catalog

FPGA Core
Content

Single/Multiple
FlashROM
Content(s)

Programming
File

(FlashPoint)

Netlist

Security
Settings

Security
Settings

Security
Settings

Security
Settings
396 Revision 0

Fusion FPGA Fabric User’s Guide
ISP Programming Header Information
The FlashPro4/3/3X programming cable connector can be connected with a 10-pin, 0.1"-pitch
programming header. The recommended programming headers are manufactured by AMP (103310-1)
and 3M (2510-6002UB). If you have limited board space, you can use a compact programming header
manufactured by Samtec (FTSH-105-01-L-D-K). Using this compact programming header, you are
required to order an additional header adapter manufactured by Actel (FP3-10PIN-ADAPTER-KIT).
Existing ProASICPLUS family customers who are using the Samtec Small Programming Header
(FTSH-113-01-L-D-K) and are planning to migrate to IGLOO or ProASIC3 devices can use the adapter
kit FP3-10PIN-ADAPTER-KIT, which contains a compact 10-pin adapter kit as well as 26-pin migration
capability.

Table 18-3 • Programming Header Ordering Codes

Manufacturer Part Number Description

AMP 103310-1 10-pin, 0.1"-pitch cable header (right-angle PCB mount
angle)

3M 2510-6002UB 10-pin, 0.1"-pitch cable header (straight PCB mount
angle)

Samtec FTSH-113-01-L-D-K Small programming header supported by FlashPro and
Silicon Sculptor

Samtec FTSH-105-01-L-D-K Compact programming header

Samtec FFSD-05-D-06.00-01-N 10-pin cable with 50 mil pitch sockets; included in FP3-
10PIN-ADAPTER-KIT.

Actel FP3-10PIN-ADAPTER-KIT Compact header and migration kit

Note: *Prog_Mode on FlashPro4 is an output signal that goes High during device programming and
returns to Low when programming is complete. This signal can be used to drive a system to provide
a 1.5 V programming signal to IGLOO nano and ProASIC3L devices that can run with 1.2 V core
voltage but require 1.5 V for programming.

Figure 18-5 • Programming Header (top view)

1 2
3 4
5 6
7 8
9

TCK
TDO
TMS
VPUMP
TDI

GND
NC (FlashPro3/3X); Prog_Mode* (FlashPro4)

TRST
GND10

VJTAG
Revision 0 397

In-System Programming (ISP) of Actel’s Low Power Flash Devices Using FlashPro4/3/3X
Table 18-4 • Programming Header Pin Numbers and Description

Pin Signal Source Description

1 TCK Programmer JTAG Clock

2 GND1 – Signal Reference

3 TDO Target Board Test Data Output

4 NC – No Connect (FlashPro3/3X); Prog_Mode (FlashPro4).
See note associated with Figure 18-5 on page 397
regarding Prog_Mode on FlashPro4.

5 TMS Programmer Test Mode Select

6 VJTAG Target Board JTAG Supply Voltage

7 VPUMP2 Programmer/Target Board Programming Supply Voltage

8 nTRST Programmer JTAG Test Reset (Hi-Z with 10 kΩ pull-down, HIGH,
LOW, or toggling)

9 TDI Programmer Test Data Input

10 GND1 – Signal Reference

Notes:
1. Both GND pins must be connected.
2. FlashPro4/3/3X can provide VPUMP if there is only one device on the target board.
398 Revision 0

Fusion FPGA Fabric User’s Guide
Board-Level Considerations
A bypass capacitor is required from VPUMP to GND for all low power flash devices during programming.
This bypass capacitor protects the devices from voltage spikes that may occur on the VPUMP supplies
during the erase and programming cycles. Refer to the "Pin Descriptions and Packaging" chapter of the
appropriate device datasheet for specific recommendations. For proper programming, 0.01 µF and 0.33
µF capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and
positioned as close to the FPGA pins as possible. The bypass capacitor must be placed within 2.5 cm of
the device pins.

Troubleshooting Signal Integrity
Symptoms of a Signal Integrity Problem
A signal integrity problem can manifest itself in many ways. The problem may show up as extra or
dropped bits during serial communication, changing the meaning of the communication. There is a
normal variation of threshold voltage and frequency response between parts even from the same lot.
Because of this, the effects of signal integrity may not always affect different devices on the same board
in the same way. Sometimes, replacing a device appears to make signal integrity problems go away, but
this is just masking the problem. Different parts on identical boards will exhibit the same problem sooner
or later. It is important to fix signal integrity problems early. Unless the signal integrity problems are
severe enough to completely block all communication between the device and the programmer, they
may show up as subtle problems. Some of the FlashPro4/3/3X exit codes that are caused by signal
integrity problems are listed below. Signal integrity problems are not the only possible cause of these
errors, but this list is intended to show where problems can occur. FlashPro4/3/3X allows TCK to be
lowered from 6 MHz down to 1 MHz to allow you to address some signal integrity problems that may

Note: *NC (FlashPro3/3X); Prog_Mode (FlashPro4). Prog_Mode on FlashPro4 is an output signal that goes High during
device programming and returns to Low when programming is complete. This signal can be used to drive a
system to provide a 1.5 V programming signal to IGLOO nano and ProASIC3L devices that can run with 1.2 V
core voltage but require 1.5 V for programming.

Figure 18-6 • Board Layout and Programming Header Top View

VCC
VCCI

VJTAG

GND
TCK
TDO
TMS

VPUMP
TDI

C1 C2

TRST

1 TCK 2 GND
3 TDO 4 NC*
5 TMS 6 VJTAG
7 VPUMP 8 TRST
9 TDI 10 GND

Low-Power Flash Device

VCC from the target board

VJTAG from the target board
VCCI from the target board

Polarizing Notch
Revision 0 399

In-System Programming (ISP) of Actel’s Low Power Flash Devices Using FlashPro4/3/3X
occur with impedance mismatching at higher frequencies. Customers are expected to troubleshoot
board-level signal integrity issues by measuring voltages and taking scope plots.

Scan Chain Failure
Normally, the FlashPro4/3/3X Scan Chain command expects to see 0x1 on the TDO pin. If the command
reports reading 0x0 or 0x3, it is seeing the TDO pin stuck at 0 or 1. The only time the TDO pin comes out
of tristate is when the JTAG TAP state machine is in the Shift-IR or Shift-DR state. If noise or reflections
on the TCK or TMS lines have disrupted the correct state transitions, the device's TAP state controller
might not be in one of these two states when the programmer tries to read the device. When this
happens, the output is floating when it is read and does not match the expected data value. This can also
be caused by a broken TDO net. Only a small amount of data is read from the device during the Scan
Chain command, so marginal problems may not always show up during this command. Occasionally a
faulty programmer can cause intermittent scan chain failures.

Exit 11
This error occurs during the verify stage of programming a device. After programming the design into the
device, the device is verified to ensure it is programmed correctly. The verification is done by shifting the
programming data into the device. An internal comparison is performed within the device to verify that all
switches are programmed correctly. Noise induced by poor signal integrity can disrupt the writes and
reads or the verification process and produce a verification error. While technically a verification error, the
root cause is often related to signal integrity.
Refer to the FlashPro User's Guide for other error messages and solutions. For the most up-to-date
known issues and solutions, refer to http://www.actel.com/support.

Conclusion
IGLOO, ProASIC3, SmartFusion, and Fusion devices offer a low-cost, single-chip solution that is live at
power-up through nonvolatile flash technology. The FlashLock Pass Key and 128-bit AES Key security
features enable secure ISP in an untrusted environment. On-chip FlashROM enables a host of new
applications, including device serialization, subscription-based applications, and IP addressing.
Additionally, as the FlashROM is nonvolatile, all of these services can be provided without battery
backup.

Related Documents

User’s Guides
FlashPro User's Guide
http://www.actel.com/documents/flashpro_ug.pdf
400 Revision 0

http://www.actel.com/documents/flashpro_ug.pdf
http://www.actel.com/support
http://www.actel.com/documents/flashpro_ug.pdf
http://www.actel.com/documents/flashpro_ug.pdf

Fusion FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

References to FlashPro4 and FlashPro3X were added to this chapter, giving
distinctions between them. References to SmartGen were deleted and replaced
with Libero IDE Catalog.

N/A

The "ISP Architecture" section was revised to indicate that V2 devices can be
programmed at 1.2 V VCC with FlashPro4.

389

SmartFusion was added to Table 18-1 • Flash-Based FPGAs Supporting ISP. 390

The "Programming Voltage (VPUMP) and VJTAG" section was revised and 1.2 V
was added to Table 18-2 • Power Supplies.

391

The "Nonvolatile Memory (NVM) Programming Voltage" section is new. 391

 Cortex-M3 was added to the "Cortex-M1 and Cortex-M3 Device Security" section. 393

In the "ISP Programming Header Information" section, the additional header
adapter ordering number was changed from FP3-26PIN-ADAPTER to FP3-10PIN-
ADAPTER-KIT, which contains 26-pin migration capability.

397

The description of NC was updated in Figure 18-5 • Programming Header (top
view), Table 18-4 • Programming Header Pin Numbers and Description and
Figure 18-6 • Board Layout and Programming Header Top View.

397, 398

The "Symptoms of a Signal Integrity Problem" section was revised to add that
customers are expected to troubleshoot board-level signal integrity issues by
measuring voltages and taking scope plots. "FlashPro4/3/3X allows TCK to be
lowered from 6 MHz down to 1 MHz to allow you to address some signal integrity
problems" formerly read, "from 24 MHz down to 1 MHz." "The Scan Chain
command expects to see 0x2" was changed to 0x1.

399

The "Chain Integrity Test Error Analyze Chain Failure" section was renamed to the
"Scan Chain Failure" section, and the Analyze Chain command was changed to
Scan Chain. It was noted that occasionally a faulty programmer can cause scan
chain failures.

400

v1.5
(August 2009)

The "CoreMP7 Device Security" section was removed from "Security in ARM-
Enabled Low Power Flash Devices", since M7-enabled devices are no longer
supported.

393

v1.4
(December 2008)

The "ISP Architecture" section was revised to include information about core
voltage for IGLOO V2 and ProASIC3L devices, as well as 50 mV increments
allowable in Designer software.

389

IGLOO nano and ProASIC3 nano devices were added to Table 18-1 • Flash-Based
FPGAs Supporting ISP.

390

A second capacitor was added to Figure 18-6 • Board Layout and Programming
Header Top View.

399

v1.3
(October 2008)

The "ISP Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

390
Revision 0 401

In-System Programming (ISP) of Actel’s Low Power Flash Devices Using FlashPro4/3/3X
v1.2
(June 2008)

The following changes were made to the family descriptions in Table 18-1 • Flash-
Based FPGAs Supporting ISP:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

390

v1.1
(March 2008)

The "ISP Architecture" section was updated to included the IGLOO PLUS family in
the discussion of family-specific support. The text, "When 1.2 V is used, the device
can be reprogrammed in-system at 1.5 V only," was revised to state, "Although the
device can operate at 1.2 V core voltage, the device can only be reprogrammed
when all supplies (VCC, VCCI, and VJTAG) are at 1.5 V."

389

The "ISP Support in Flash-Based Devices" section and Table 18-1 • Flash-Based
FPGAs Supporting ISP were updated to include the IGLOO PLUS family. The
"IGLOO Terminology" section and "ProASIC3 Terminology" section are new.

390

The "Security" section was updated to mention that 15 k gate devices do not have a
built-in 128-bit decryption core.

392

Table 18-2 • Power Supplies was revised to remove the Normal Operation column
and add a table note stating, "All supply voltages should be at 1.5 V or higher,
regardless of the setting during normal operation."

391

The "ISP Programming Header Information" section was revised to change
FP3-26PIN-ADAPTER to FP3-10PIN-ADAPTER-KIT. Table 18-3 • Programming
Header Ordering Codes was updated with the same change, as well as adding the
part number FFSD-05-D-06.00-01-N, a 10-pin cable with 50-mil-pitch sockets.

397

The "Board-Level Considerations" section was updated to describe connecting two
capacitors in parallel across VPUMP and GND for proper programming.

399

v1.0
(January 2008)

Information was added to the "Programming Voltage (VPUMP) and VJTAG" section
about the JTAG interface pin.

391

51900055-2/7.06 ACTgen was changed to SmartGen. N/A

In Figure 18-6 • Board Layout and Programming Header Top View, the order of the
text was changed to:
VJTAG from the target board
VCCI from the target board
VCC from the target board

399

Date Changes Page
402 Revision 0

19 – Microprocessor Programming of Actel’s Low
Power Flash Devices

Introduction
The Fusion, IGLOO,® and ProASIC®3 families of flash FPGAs support in-system programming (ISP)
with the use of a microprocessor. Flash-based FPGAs store their configuration information in the actual
cells within the FPGA fabric. SRAM-based devices need an external configuration memory, and hybrid
nonvolatile devices store the configuration in a flash memory inside the same package as the SRAM
FPGA. Since the programming of a true flash FPGA is simpler, requiring only one stage, it makes sense
that programming with a microprocessor in-system should be simpler than with other SRAM FPGAs.
This reduces bill-of-materials costs and printed circuit board (PCB) area, and increases system reliability.
Nonvolatile flash technology also gives the low power flash devices the advantage of a secure, low
power, live-at-power-up, and single-chip solution. Low power flash devices are reprogrammable and offer
time-to-market benefits at an ASIC-level unit cost. These features enable engineers to create high-
density systems using existing ASIC or FPGA design flows and tools.
This document is an introduction to microprocessor programming only. To explain the difference between
the options available, user's guides for DirectC and STAPL provide more detail on implementing each
style.

Figure 19-1 • ISP Using Microprocessor

Microprocessor

Internal RAM

I/O Functions

JTAG Bus

Flash
Device

Internal/External
Memory Running

DirectC

On-Board
Memory
Device
.dat file
Revision 0 403

Microprocessor Programming of Actel’s Low Power Flash Devices
Microprocessor Programming Support in Flash Devices
The flash-based FPGAs listed in Table 19-1 support programming with a microprocessor and the
functions described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 19-1. Where the information applies to only one device or limited devices, these exclusions will
be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 19-1. Where the information applies to only one device or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 19-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
404 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf

Fusion FPGA Fabric User’s Guide
Programming Algorithm

JTAG Interface
The low power flash families are fully compliant with the IEEE 1149.1 (JTAG) standard. They support all
the mandatory boundary scan instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) as well as six
optional public instructions (USERCODE, IDCODE, HIGHZ, and CLAMP).

IEEE 1532
The low power flash families are also fully compliant with the IEEE 1532 programming standard. The
IEEE 1532 standard adds programming instructions and associated data registers to devices that comply
with the IEEE 1149.1 standard (JTAG). These instructions and registers extend the capabilities of the
IEEE 1149.1 standard such that the Test Access Port (TAP) can be used for configuration activities. The
IEEE 1532 standard greatly simplifies the programming algorithm, reducing the amount of time needed
to implement microprocessor ISP.

Implementation Overview
To implement device programming with a microprocessor, the user should first download the C-based
STAPL player or DirectC code from the Actel website. See the Actel website for future updates regarding
the STAPL player and DirectC code.

http://www.actel.com/download/program_debug/stapl/default.aspx
http://www.actel.com/download/program_debug/directc/default.aspx

Using the easy-to-follow Actel user's guide, create the low-level application programming interface (API)
to provide the necessary basic functions. These API functions act as the interface between the
programming software and the actual hardware (Figure 19-2).

The API is then linked with the STAPL player or DirectC and compiled using the microprocessor's
compiler. Once the entire code is compiled, the user must download the resulting binary into the MCU
system's program memory (such as ROM, EEPROM, or flash). The system is now ready for
programming.
To program a design into the FPGA, the user creates a bitstream or STAPL file using the Actel Designer
software, downloads it into the MCU system's volatile memory, and activates the stored programming
binary file (Figure 19-3 on page 406). Once the programming is completed, the bitstream or STAPL file
can be removed from the system, as the configuration profile is stored in the flash FPGA fabric and does
not need to be reloaded at every system power-on.

Figure 19-2 • Device Programming Code Relationship

STAPL File

STAPL Player or DirectC

API

Programming
Algorithm and Data

Programming
Software

I/O and Memory
Functions
Revision 0 405

http://www.actel.com/download/program_debug/directc/default.aspx
http://www.actel.com/download/program_debug/stapl/default.aspx

Microprocessor Programming of Actel’s Low Power Flash Devices
FlashROM
Actel low power flash devices have 1 kbit of user-accessible, nonvolatile, FlashROM on-chip. This
nonvolatile FlashROM can be programmed along with the core or on its own using the standard IEEE
1532 JTAG programming interface.
The FlashROM is architected as eight pages of 128 bits. Each page can be individually programmed
(erased and written). Additionally, on-chip AES security decryption can be used selectively to load data
securely into the FlashROM (e.g., over public or private networks, such as the Internet). Refer to the
"FlashROM in Actel’s Low Power Flash Devices" section on page 189.

Figure 19-3 • MCU FPGA Programming Model

Programming
Software

Source Code

Microprocessor Compiler

BIN File

Download to System

Program Device

Programming
File
406 Revision 0

Fusion FPGA Fabric User’s Guide
STAPL vs. DirectC
Programming the low power flash devices is performed using DirectC or the STAPL player. Both tools
use the STAPL file as an input. DirectC is a compiled language, whereas STAPL is an interpreted
language. Microprocessors will be able to load the FPGA using DirectC much more quickly than STAPL.
This speed advantage becomes more apparent when lower clock speeds of 8- or 16-bit microprocessors
are used. DirectC also requires less memory than STAPL, since the programming algorithm is directly
implemented. STAPL does have one advantage over DirectC—the ability to upgrade. When a new
programming algorithm is required, the STAPL user simply needs to regenerate a STAPL file using the
latest version of the Designer software and download it to the system. The DirectC user must download
the latest version of DirectC from Actel, compile everything, and download the result into the system
(Figure 19-4).

Figure 19-4 • STAPL vs. DirectC

STAPL Flow DirectC Flow

DirectC Source Code Input STAPL File

Microprocessor
Compiler

BIN File

Generate the
New STAPL File

Download to System

Program Device

Download to System

Program Device
Revision 0 407

Microprocessor Programming of Actel’s Low Power Flash Devices
Remote Upgrade via TCP/IP
Transmission Control Protocol (TCP) provides a reliable bitstream transfer service between two
endpoints on a network. TCP depends on Internet Protocol (IP) to move packets around the network on
its behalf. TCP protects against data loss, data corruption, packet reordering, and data duplication by
adding checksums and sequence numbers to transmitted data and, on the receiving side, sending back
packets and acknowledging the receipt of data.
The system containing the low power flash device can be assigned an IP address when deployed in the
field. When the device requires an update (core or FlashROM), the programming instructions along with
the new programming data (AES-encrypted cipher text) can be sent over the Internet to the target system
via the TCP/IP protocol. Once the MCU receives the instruction and data, it can proceed with the FPGA
update. Low power flash devices support Message Authentication Code (MAC), which can be used to
validate data for the target device. More details are given in the "Message Authentication Code (MAC)
Validation/Authentication" section.

Hardware Requirement
To facilitate the programming of the low power flash families, the system must have a microprocessor
(with access to the device JTAG pins) to process the programming algorithm, memory to store the
programming algorithm, programming data, and the necessary programming voltage. Refer to the
relevant datasheet for programming voltages.

Security

Read-Back Prevention
The low power flash devices are designed with security in mind. Even without any security measures
(such as FlashLock with AES), it is not possible to read back the programming data from a programmed
device. Upon programming completion, the programming algorithm will reload the programming data into
the device. The device will then use built-in circuitry to determine if it was programmed correctly.
As an additional security measure, the devices are equipped with AES decryption. AES works in two
steps. The first step is to program a key into the devices in a secure or trusted programming center (such
as Actel In-House Programming (IHP) center). The second step is to encrypt any programming files with
the same encryption key. The encrypted programming file will only work with the devices that have the
same key. The AES used in the low power flash families is the 128-bit AES decryption engine (Rijndael
algorithm).

Message Authentication Code (MAC) Validation/Authentication
As part of the AES decryption flow, the devices are equipped with a MAC validation/authentication
system. MAC is an authentication tag, also called a checksum, derived by applying an on-chip
authentication scheme to a STAPL file as it is loaded into the FPGA. MACs are computed and verified
with the same key so they can only be verified by the intended recipient. When the MCU system receives
the AES-encrypted programming data (cipher text), it can validate the data by loading it into the FPGA
and performing a MAC verification prior to loading the data, via a second programming pass, into the
FPGA core cells. This prevents erroneous or corrupt data from getting into the FPGA.
Low power flash devices with AES and MAC are superior to devices with only DES or 3DES encryption.
Because the MAC verifies the correctness of the data, the FPGA is protected from erroneous loading of
invalid programming data that could damage a device (Figure 19-5 on page 409).
The AES with MAC enables field updates over public networks without fear of having the design stolen.
An encrypted programming file can only work on devices with the correct key, rendering any stolen files
408 Revision 0

Fusion FPGA Fabric User’s Guide
useless to the thief. To learn more about the low power flash devices’ security features, refer to the
"Security in Low Power Flash Devices" section on page 363.

Conclusion
The Actel Fusion, IGLOO, and ProASIC3 FPGAs are ideal for applications that require field upgrades.
The single-chip devices save board space by eliminating the need for EEPROM. The built-in AES with
MAC enables transmission of programming data over any network without fear of design theft. Fusion,
IGLOO, and ProASIC3 FPGAs are IEEE 1532–compliant and support STAPL, making the target
programming software easy to implement.

Figure 19-5 • ProASIC3 Device Encryption Flow

ProASIC3

AES
Encryption

Encrypted Stream

AES
Decryption

Encrypted Stream

Designer Software Decrypted Stream

MAC
Validation

Programming
Control

AES KEY

TCP/IP
Public Network
Revision 0 409

Microprocessor Programming of Actel’s Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 19-1 • Flash-
Based FPGAs.

404

v1.3
(October 2008)

The "Microprocessor Programming Support in Flash Devices" section was
revised to include new families and make the information more concise.

404

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 19-1 •
Flash-Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

404

v1.1
(March 2008)

The "Microprocessor Programming Support in Flash Devices" section was
updated to include information on the IGLOO PLUS family. The "IGLOO
Terminology" section and "ProASIC3 Terminology" section are new.

404
410 Revision 0

20 – Boundary Scan in Low Power Flash Devices

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing.
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 20-2 on page 414).
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 20-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state.
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 20-1 • TAP Controller State Machine

1

TEST_LOGIC_RESET

RUN_TEST_IDLE SELECT_DR

CAPTURE_DR

SHIFT_DR

EXIT1_DR

PAUSE_DR

EXIT2_DR

UPDATE_DR

SELECT_IR

CAPTURE_IR

SHIFT_IR

EXIT1_IR

PAUSE_IR

EXIT2_IR

UPDATE_IR

1

0

1

0
1

0

1

0

1

0

1

0

1

0

1

0

1
0

1

0

1 0

1

0

0
0

1

0

1

0

1

Revision 0 411

Boundary Scan in Low Power Flash Devices
Actel’s Flash Devices Support the JTAG Feature
The flash-based FPGAs listed in Table 20-1 support the JTAG feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 20-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 20-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 20-1 • Flash-Based FPGAs

Series Family* Description

IGLOO® IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC®3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
412 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf

Fusion FPGA Fabric User’s Guide
Boundary Scan Support in Low Power Devices
The information in this document applies to all Fusion, IGLOO, and ProASIC3 devices. For IGLOO,
IGLOO PLUS, and ProASIC3L devices, the Flash*Freeze pin must be deasserted for successful
boundary scan operations. Devices cannot enter JTAG mode directly from Flash*Freeze mode.

Boundary Scan Opcodes
Low power flash devices support all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD,
and BYPASS) and the optional IDCODE instruction (Table 20-2).

Boundary Scan Chain
The serial pins are used to serially connect all the boundary scan register cells in a device into a
boundary scan register chain (Figure 20-2 on page 414), which starts at the TDI pin and ends at the TDO
pin. The parallel ports are connected to the internal core logic I/O tile and the input, output, and control
ports of an I/O buffer to capture and load data into the register to control or observe the logic state of
each I/O.
Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input),
TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI,
and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied
to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" description in
the "Pin Descriptions and Packaging" chapter of the appropriate device datasheet for pull-up/-down
recommendations for TDO and TCK pins.

Table 20-2 • Boundary Scan Opcodes

Hex Opcode

EXTEST 00

HIGHZ 07

USERCODE 0E

SAMPLE/PRELOAD 01

IDCODE 0F

CLAMP 05

BYPASS FF
Revision 0 413

Boundary Scan in Low Power Flash Devices
Board-Level Recommendations
Table 20-3 gives pull-down recommendations for the TRST and TCK pins.

Figure 20-2 • Boundary Scan Chain

Device
Logic

TD
I

TC
K

TM
S

TR
S

T
TD

O

I/OI/OI/O I/OI/O

I/OI/OI/O I/OI/O

I/O
I/O

I/O
I/O

Bypass Register

Instruction
Register

TAP
Controller

Test Data
Registers

Table 20-3 • TRST and TCK Pull-Down Recommendations

VJTAG Tie-Off Resistance*

VJTAG at 3.3 V 200 Ω to 1 kΩ

VJTAG at 2.5 V 200 Ω to 1 kΩ

VJTAG at 1.8 V 500 Ω to 1 kΩ

VJTAG at 1.5 V 500 Ω to 1 kΩ

VJTAG at 1.2 V TBD

Note: Equivalent parallel resistance if more than one device is on JTAG chain (Figure 20-3)
414 Revision 0

Fusion FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Note: TCK is correctly wired with an equivalent tie-off resistance of 500 Ω, which satisfies the table for
VJTAG of 1.5 V. The resistor values for TRST are not appropriate in this case, as the tie-off
resistance of 375 Ω is below the recommended minimum for VJTAG = 1.5 V, but would be
appropriate for a VJTAG setting of 2.5 V or 3.3 V.

Figure 20-3 • Parallel Resistance on JTAG Chain of Devices

TDI

TDI

TDI

TDI

TDO

TDO

TDO

TDO

JTAG
Header

Actel
FPGA 1

Actel
FPGA 2

Actel
FPGA 3

Actel
FPGA 4

2 kΩ

2 kΩ

2 kΩ

2 kΩ

1.5 V

TCK
TRST
VJTAG

GND

1.5 kΩ

1.5 kΩ

1.5 kΩ

1.5 kΩ

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

Table 20-3 • TRST and TCK Pull-Down Recommendations was revised to add
VJTAG at 1.2 V.

414

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 20-1 • Flash-Based
FPGAs.

412

v1.3
(October 2008)

The "Boundary Scan Support in Low Power Devices" section was revised to include
new families and make the information more concise.

413

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 20-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

412

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices.

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 412
Revision 0 415

21 – UJTAG Applications in Actel’s Low Power
Flash Devices

Introduction
In Fusion, IGLOO,® and ProASIC®3 devices, there is bidirectional access from the JTAG port to the core
VersaTiles during normal operation of the device (Figure 21-1). User JTAG (UJTAG) is the ability for the
design to use the JTAG ports for access to the device for updates, etc. While regular JTAG is used, the
UJTAG tiles, located at the southeast area of the die, are directly connected to the JTAG Test Access
Port (TAP) Controller in normal operating mode. As a result, all the functional blocks of the device, such
as Clock Conditioning Circuits (CCCs) with PLLs, SRAM blocks, embedded FlashROM, flash memory
blocks, and I/O tiles, can be reached via the JTAG ports. The UJTAG functionality is available by
instantiating the UJTAG macro directly in the source code of a design. Access to the FPGA core
VersaTiles from the JTAG ports enables users to implement different applications using the TAP
Controller (JTAG port). This document introduces the UJTAG tile functionality and discusses a few
application examples. However, the possible applications are not limited to what is presented in this
document. UJTAG can serve different purposes in many designs as an elementary or auxiliary part of the
design. For detailed usage information, refer to the "Boundary Scan in Low Power Flash Devices"
section on page 411.

Figure 21-1 • Block Diagram of Using UJTAG to Read FlashROM Contents

FROM

Addr [6:0]

Data[7:0]
CLK

Enable

SDO

SDI

RESET

Addr[6:0]

Data[7:0]

TDI

TCK

TDO

TMS

TRST
UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD

URSTB

UIREG[7:0]

Control

UJTAG
Address Generation and

Data Serlialization
Revision 0 417

UJTAG Applications in Actel’s Low Power Flash Devices
UJTAG Support in Flash-Based Devices
The flash-based FPGAs listed in Table 21-1 support the UJTAG feature and the functions described in
this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 21-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 21-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 21-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
418 Revision 0

http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/LPFPGA_FS_PIB.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/IGLOO_DS.pdf
http://www.actel.com/documents/IGLOOe_DS.pdf
http://www.actel.com/documents/IGLOOPLUS_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3E_DS.pdf
http://www.actel.com/documents/PA3L_DS.pdf
http://www.actel.com/documents/PA3_Auto_DS.pdf
http://www.actel.com/documents/Mil_PA3_EL_DS.pdf
http://www.actel.com/documents/RTPA3_DS.pdf
http://www.actel.com/documents/IGLOO_nano_DS.pdf
http://www.actel.com/documents/PA3_nano_DS.pdf

Fusion FPGA Fabric User’s Guide
UJTAG Macro
The UJTAG tiles can be instantiated in a design using the UJTAG macro from the Fusion, IGLOO, or
ProASIC3 macro library. Note that "UJTAG" is a reserved name and cannot be used for any other user-
defined blocks. A block symbol of the UJTAG tile macro is presented in Figure 21-2. In this figure, the
ports on the left side of the block are connected to the JTAG TAP Controller, and the right-side ports are
accessible by the FPGA core VersaTiles. The TDI, TMS, TDO, TCK, and TRST ports of UJTAG are only
provided for design simulation purposes and should be treated as external signals in the design netlist.
However, these ports must NOT be connected to any I/O buffer in the netlist. Figure 21-3 on page 420
illustrates the correct connection of the UJTAG macro to the user design netlist. Actel Designer software
will automatically connect these ports to the TAP during place-and-route. Table 21-2 gives the port
descriptions for the rest of the UJTAG ports:

Table 21-2 • UJTAG Port Descriptions

Port Description
UIREG [7:0] This 8-bit bus carries the contents of the JTAG Instruction Register of each device. Instruction Register

values 16 to 127 are not reserved and can be employed as user-defined instructions.
URSTB URSTB is an active-low signal and will be asserted when the TAP Controller is in Test-Logic-Reset

mode. URSTB is asserted at power-up, and a power-on reset signal resets the TAP Controller. URSTB
will stay asserted until an external TAP access changes the TAP Controller state.

UTDI This port is directly connected to the TAP's TDI signal.
UTDO This port is the user TDO output. Inputs to the UTDO port are sent to the TAP TDO output MUX when

the IR address is in user range.
UDRSH Active-high signal enabled in the ShiftDR TAP state
UDRCAP Active-high signal enabled in the CaptureDR TAP state
UDRCK This port is directly connected to the TAP's TCK signal.
UDRUPD Active-high signal enabled in the UpdateDR TAP state

Figure 21-2 • UJTAG Tile Block Symbol

TDI

TCK

TDO

TMS

TRST

UIREG0
UIREG1
UIREG2
UIREG3
UIREG4
UIREG5
UIREG6
UIREG7

UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD

URSTB
Revision 0 419

UJTAG Applications in Actel’s Low Power Flash Devices
UJTAG Operation
There are a few basic functions of the UJTAG macro that users must understand before designing with it.
The most important fundamental concept of the UJTAG design is its connection with the TAP Controller
state machine.

TAP Controller State Machine
The 16 states of the TAP Controller state machine are shown in Figure 21-4 on page 421. The 1s and 0s,
shown adjacent to the state transitions, represent the TMS values that must be present at the time of a
rising TCK edge for a state transition to occur. In the states that include the letters "IR," the instruction
register operates; in the states that contain the letters "DR," the test data register operates. The TAP
Controller receives two control inputs, TMS and TCK, and generates control and clock signals for the rest
of the test logic.
On power-up (or the assertion of TRST), the TAP Controller enters the Test-Logic-Reset state. To reset
the controller from any other state, TMS must be held HIGH for at least five TCK cycles. After reset, the
TAP state changes at the rising edge of TCK, based on the value of TMS.

Note: Do not connect JTAG pins (TDO, TDI, TMS, TCK, or TRST) to I/Os in the design.
Figure 21-3 • Connectivity Method of UJTAG Macro

TDI

TCK

TDO

TMS

TRST UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD
URSTB

UIREG[7:0]

INPUTS

OUTPUTS

TDI

TCK

TDO

TMS

TRST UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD
URSTB

UIREG[7:0]

INPUTS

OUTPUTS

a) CORRECT Instantiation

b) INCORRECT Instantiation

FPGA
VersaTiles

FPGA
VersaTiles
420 Revision 0

Fusion FPGA Fabric User’s Guide
UJTAG Port Usage
UIREG[7:0] hold the contents of the JTAG instruction register. The UIREG vector value is updated when
the TAP Controller state machine enters the Update_IR state. Instructions 16 to 127 are user-defined and
can be employed to encode multiple applications and commands within an application. Loading new
instructions into the UIREG vector requires users to send appropriate logic to TMS to put the TAP
Controller in a full IR cycle starting from the Select IR_Scan state and ending with the Update_IR state.
UTDI, UTDO, and UDRCK are directly connected to the JTAG TDI, TDO, and TCK ports, respectively.
The TDI input can be used to provide either data (TAP Controller in the Shift_DR state) or the new
contents of the instruction register (TAP Controller in the Shift_IR state).
UDRSH, UDRUPD, and UDRCAP are HIGH when the TAP Controller state machine is in the Shift_DR,
Update_DR, and Capture_DR states, respectively. Therefore, they act as flags to indicate the stages of
the data shift process. These flags are useful for applications in which blocks of data are shifted into the
design from JTAG pins. For example, an active UDRSH can indicate that UTDI contains the data
bitstream, and UDRUPD is a candidate for the end-of-data-stream flag.
As mentioned earlier, users should not connect the TDI, TDO, TCK, TMS, and TRST ports of the UJTAG
macro to any port or net of the design netlist. The Designer software will automatically handle the port
connection.

Figure 21-4 • TAP Controller State Diagram

Run_Test/
Idle0

Test_Logic_Reset1

0
1 Select_

DR_Scan

Update_DR

Exit2_DR

Pause_DR

Exit1_DR

Shift_DR

Capture_DR

Select_
IR_Scan

Update_IR

Exit2_IR

Pause_IR

Exit1_IR

Shift_IR

Capture_IR

0

0

00

0

0

1
0

0

00

0

0

0

11

1

1

1

1

1

0

1

11

1

11
Revision 0 421

UJTAG Applications in Actel’s Low Power Flash Devices
Typical UJTAG Applications
Bidirectional access to the JTAG port from VersaTiles—without putting the device into test mode—
creates flexibility to implement many different applications. This section describes a few of these. All are
based on importing/exporting data through the UJTAG tiles.

Clock Conditioning Circuitry—Dynamic Reconfiguration
In low power flash devices, CCCs, which include PLLs, can be configured dynamically through either an
81-bit embedded shift register or static flash programming switches. These 81 bits control all the
characteristics of the CCC: routing MUX architectures, delay values, divider values, etc. Table 21-3 lists
the 81 configuration bits in the CCC.

The embedded 81-bit shift register (for the dynamic configuration of the CCC) is accessible to the
VersaTiles, which, in turn, have access to the UJTAG tiles. Therefore, the CCC configuration shift
register can receive and load the new configuration data stream from JTAG.
Dynamic reconfiguration eliminates the need to reprogram the device when reconfiguration of the CCC
functional blocks is needed. The CCC configuration can be modified while the device continues to
operate. Employing the UJTAG core requires the user to design a module to provide the configuration
data and control the CCC configuration shift register. In essence, this is a user-designed TAP Controller
requiring chip resources.

Table 21-3 • Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC Blocks
Bit Number(s) Control Function
80 RESET ENABLE

79 DYNCSEL

78 DYNBSEL

77 DYNASEL

<76:74> VCOSEL [2:0]

73 STATCSEL

72 STATBSEL

71 STATASEL

<70:66> DLYC [4:0]

<65:61> DLYB {4:0]

<60:56> DLYGLC [4:0]

<55:51> DLYGLB [4:0]

<50:46> DLYGLA [4:0]

45 XDLYSEL

<44:40> FBDLY [4:0]

<39:38> FBSEL

<37:35> OCMUX [2:0]

<34:32> OBMUX [2:0]

<31:29> OAMUX [2:0]

<28:24> OCDIV [4:0]

<23:19> OBDIV [4:0]

<18:14> OADIV [4:0]

<13:7> FBDIV [6:0]

<6:0> FINDIV [6:0]
422 Revision 0

Fusion FPGA Fabric User’s Guide
Similar reconfiguration capability exists in the Actel ProASICPLUS® family. The only difference is the
number of shift register bits controlling the CCC (27 in ProASICPLUS and 81 in IGLOO, ProASIC3, and
Fusion).

Fine Tuning
In some applications, design constants or parameters need to be modified after programming the original
design. The tuning process can be done using the UJTAG tile without reprogramming the device with
new values. If the parameters or constants of a design are stored in distributed registers or embedded
SRAM blocks, the new values can be shifted onto the JTAG TAP Controller pins, replacing the old
values. The UJTAG tile is used as the “bridge” for data transfer between the JTAG pins and the FPGA
VersaTiles or SRAM logic. Figure 21-5 shows a flow chart example for fine-tuning application steps using
the UJTAG tile.
In Figure 21-5, the TMS signal sets the TAP Controller state machine to the appropriate states. The flow
mainly consists of two steps: a) shifting the defined instruction and b) shifting the new data. If the target
parameter is constantly used in the design, the new data can be shifted into a temporary shift register
from UTDI. The UDRSH output of UJTAG can be used as a shift-enable signal, and UDRCK is the shift
clock to the shift register. Once the shift process is completed and the TAP Controller state is moved to
the Update_DR state, the UDRUPD output of the UJTAG can latch the new parameter value from the
temporary register into a permanent location. This avoids any interruption or malfunctioning during the
serial shift of the new value.

Figure 21-5 • Flow Chart Example of Fine-Tuning an Application Using UJTAG

Yes

No

TAP Controller in
Test_Logic_Reset

State

Set TAP state to
SHIFT_IR

Shift the user-defined
instruction of tuning

application

Set TAP state to
Update_IR

Latch the recorded data
onto the location of stored

parameter
UIREG Equal to
the user-defined

instruction

Set TAP state to
SHIFT_DR

Shift data into TDI and
record UTDI in a shift

register

Set TAP state in
Update_DR
Revision 0 423

UJTAG Applications in Actel’s Low Power Flash Devices
Silicon Testing and Debugging
In many applications, the design needs to be tested, debugged, and verified on real silicon or in the final
embedded application. To debug and test the functionality of designs, users may need to monitor some
internal logic (or nets) during device operation. The approach of adding design test pins to monitor the
critical internal signals has many disadvantages, such as limiting the number of user I/Os. Furthermore,
adding external I/Os for test purposes may require additional or dedicated board area for testing and
debugging.
The UJTAG tiles of low power flash devices offer a flexible and cost-effective solution for silicon test and
debug applications. In this solution, the signals under test are shifted out to the TDO pin of the TAP
Controller. The main advantage is that all the test signals are monitored from the TDO pin; no pins or
additional board-level resources are required. Figure 21-6 illustrates this technique. Multiple test nets are
brought into an internal MUX architecture. The selection of the MUX is done using the contents of the
TAP Controller instruction register, where individual instructions (values from 16 to 127) correspond to
different signals under test. The selected test signal can be synchronized with the rising or falling edge of
TCK (optional) and sent out to UTDO to drive the TDO output of JTAG.
The test and debug procedure is not limited to the example in Figure 21-5 on page 423. Users can
customize the debug and test interface to make it appropriate for their applications. For example, multiple
test signals can be registered and then sent out through UTDO, each at a different edge of TCK. In other
words, n signals are sampled with an FTCK / n sampling rate. The bandwidth of the information sent out
to TDO is always proportional to the frequency of TCK.

SRAM Initialization
Users can also initialize embedded SRAMs of the low power flash devices. The initialization of the
embedded SRAM blocks of the design can be done using UJTAG tiles, where the initialization data is
imported using the TAP Controller. Similar functionality is available in ProASICPLUS devices using JTAG.
The guidelines for implementation and design examples are given in the RAM Initialization and ROM
Emulation in ProASICPLUS Devices application note.
SRAMs are volatile by nature; data is lost in the absence of power. Therefore, the initialization process
should be done at each power-up if necessary.

Figure 21-6 • UJTAG Usage Example in Test and Debug Applications

TDI

TCK

TDO

TMS

TRST
UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD

URSTB

UIREG[7:0]

CLK

D Q

Internal Test Nets

Instruction
Decode

To Scope Channel
424 Revision 0

http://www.actel.com/documents/APA_RAM_Initd_AN.pdf
http://www.actel.com/documents/APA_RAM_Initd_AN.pdf

Fusion FPGA Fabric User’s Guide
FlashROM Read-Back Using JTAG
The low power flash architecture contains a dedicated nonvolatile FlashROM block, which is formatted
into eight 128-bit pages. For more information on FlashROM, refer to the "FlashROM in Actel’s Low
Power Flash Devices" section on page 189. The contents of FlashROM are available to the VersaTiles
during normal operation through a read operation. As a result, the UJTAG macro can be used to provide
the FlashROM contents to the JTAG port during normal operation. Figure 21-7 illustrates a simple block
diagram of using UJTAG to read the contents of FlashROM during normal operation.
The FlashROM read address can be provided from outside the FPGA through the TDI input or can be
generated internally using the core logic. In either case, data serialization logic is required (Figure 21-7)
and should be designed using the VersaTile core logic. FlashROM contents are read asynchronously in
parallel from the flash memory and shifted out in a synchronous serial format to TDO. Shifting the serial
data out of the serialization block should be performed while the TAP is in UDRSH mode. The
coordination between TCK and the data shift procedure can be done using the TAP state machine by
monitoring UDRSH, UDRCAP, and UDRUPD.

Conclusion
Actel low power flash FPGAs offer many unique advantages, such as security, nonvolatility,
reprogrammablity, and low power—all in a single chip. In addition, Fusion, IGLOO, and ProASIC3
devices provide access to the JTAG port from core VersaTiles while the device is in normal operating
mode. A wide range of available user-defined JTAG opcodes allows users to implement various types of
applications, exploiting this feature of these devices. The connection between the JTAG port and core
tiles is implemented through an embedded and hardwired UJTAG tile. A UJTAG tile can be instantiated in
designs using the UJTAG library cell. This document presents multiple examples of UJTAG applications,
such as dynamic reconfiguration, silicon test and debug, fine-tuning of the design, and RAM initialization.
Each of these applications offers many useful advantages.

Figure 21-7 • Block Diagram of Using UJTAG to Read FlashROM Contents

FROM

Addr [6:0]

Data[7:0]
CLK

Enable

SDO

SDI

RESET

Addr[6:0]

Data[7:0]

TDI

TCK

TDO

TMS

TRST
UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD

URSTB

UIREG[7:0]

Control

UJTAG
Address Generation and

Data Serlialization
Revision 0 425

UJTAG Applications in Actel’s Low Power Flash Devices
Related Documents

Application Notes
RAM Initialization and ROM Emulation in ProASICPLUS Devices
http://www.actel.com/documents/APA_RAM_Initd_AN.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 21-1 • Flash-Based
FPGAs.

418

v1.3
(October 2008)

The "UJTAG Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

418

The title of Table 21-3 • Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC
Blocks was revised to include Fusion.

422

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 21-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

418

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices.

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 418
426 Revision 0

http://www.actel.com/documents/APA_RAM_Initd_AN.pdf
http://www.actel.com/documents/APA_RAM_Initd_AN.pdf

22 – Fusion Board-Level Design Guidelines

Objective
The successful design of Printed Circuit Boards (PCBs) incorporating the Actel Fusion® mixed-signal
FPGA requires good understanding of the mixed-signal nature of the Fusion chips. Good board design
practices are required to achieve the expected performance from the PCB and Fusion device and are
essential to achieve high quality and reliable results, such as minimal noise levels, and adequate
isolation between digital and analog domain.
This chapter presents guidelines for board-level design specific to applications using Fusion mixed-signal
FPGAs. Note that these guidelines should be treated as a supplement to standard board-level design
practices. This document assumes readers are experienced in digital and analog board layout and
knowledgeable in the electrical characteristics of mixed-signal systems. Background information on the
key theories and concepts of mixed-signal board-level design is available in High Speed Digital Design:
A Handbook of Black Magic1, as well as in many reference text books and literature.

Analog and Digital Plane Isolation
Since Fusion is a mixed-signal product in which both analog and digital components exist, it requires
both analog and digital supply and ground planes. In addition, there are several voltage supply and
ground pins on the device to power different components on the die. This section discusses the layout of
the different analog or digital planes and recommends schemes to efficiently isolate different digital and
analog domains from each other. This section also describes all ground and supply pins of the Fusion
device, required to operate the chip, and explains how to connect them to the existing digital or analog
supply or ground planes.

Placement of Fusion Device and Isolation of Ground Planes
In applications using Fusion devices, two separate grounds to the device should be provided: GND
(digital ground) and GNDA (analog ground). The ground pins of the device are to be connected to one of
the aforementioned ground planes appropriately, as discussed in "Isolation of Ground Planes" on
page 429. GND is the digital ground plane that connects to all GND pins of a Fusion device. GNDA is the
analog ground plane that connects to all GNDA pins of a Fusion device.
To avoid noise propagation from one plane to another (e.g. from digital to analog ground), the ground
planes should be well isolated from each other. Correct layout of the ground planes on the board for
current and return paths in the board will prevent the noise in one plane to affect others. For example if
the return path of a digital signal trace on the board passes through the ground analog plane, the analog
ground will be vulnerable to noise induced by the digital signal. Therefore, it is critical for digital traces
and components on the board to be routed and placed only in the area of their corresponding layer that is
covered by digital ground in the ground plane. Similar regulation should be applied to analog traces and
components with respect to the analog ground as well. Figure 22-1 on page 428 illustrates the
aforementioned regulation.
In Figure 22-1 on page 428, digital component C and the traces that connect to it overlap with the analog
ground layout in the ground plane. This may cause some of the digital signaling current and return paths
to pass through the analog domain and induce noise in this noise-sensitive domain.
Figure 22-1 on page 428 brings up a critical point: How a mixed-signal device, such as a Fusion device,
should be placed on the board.

1. Johnson, Howard, and Martin Graham, High Speed Digital Design: A Handbook of Black Magic. Prentice Hall PTR, 1993.
ISBN-10 0133957241 or ISBN-13: 978-0133957242
Revision 0 427

Fusion Board-Level Design Guidelines
Placement of Fusion Device on Board
Fusion devices contain both analog and digital components and can interface with other digital and
analog components on the board.
A Fusion device should be placed on boards such that analog signaling of the system falls within the
boundaries of the analog ground and supply domain. Similarly, digital signaling of the system should fall
within the boundaries of the digital domain. Figure 22-2 shows a simple illustration of the placement of a
Fusion device on the board.

As shown in Figure 22-2, the Fusion chip is placed on the boundary of analog and digital domains, so
that the analog pins of the Fusion device are within the analog ground domain and the digital portion of
the chip is placed within the digital ground domain.

In complicated system designs and more complicated device packages, the placement of a Fusion
device may not be as straight forward as shown in the simplified diagram of Figure 22-2. However, in any
board layout, it is critical to keep digital signals and their return paths well isolated from the analog

Figure 22-1 • Illustration of Analog and Digital Components Placement on Boards

Figure 22-2 • Simple Illustration of Fusion Device Placement on Boards
428 Revision 0

Fusion FPGA Fabric User’s Guide
domain. The "Isolation of Ground Planes" section discusses an example of Fusion placement and
ground plane layout in a real-world mixed-signal system design.
Figure 22-2 on page 428 also shows that the analog and digital grounds are to be connected to each
other at a single point. The layout of the ground planes, as well as the power supply planes, plays a key
role in reducing the noise and hence enhancing the performance and accuracy of the system.

Isolation of Ground Planes
As mentioned in "Placement of Fusion Device and Isolation of Ground Planes" on page 427, the ground
and supply planes should be divided in two main domains: digital (e.g. GND) and analog (e.g. GNDA).
Though there is no technical limitation in implementing more ground and supply domains for other
necessary ground and supply pins of a Fusion device, the rest of the ground and supply pins can be
connected to one of the aforementioned domains.
In order to isolate the ground of different domains from each other, the ground plane (or planes) of the
board should be split into two domains: GND and GNDA, as an example. The components and signaling
in each domain should remain within the boundaries of each ground as discussed in "Placement of
Fusion Device and Isolation of Ground Planes" on page 427 and "Placement of Fusion Device on Board"
on page 428. However, since data and control signals usually exchange between different domains, a
common connection between analog and digital grounds is needed to ensure the two planes are at the
same potential. Connection between two grounds should be made only through a single point as shown
Figure 22-2 on page 428. More than a single connection point between two grounds can result in inter-
domain current paths that can induce noise from one domain to another. Furthermore, the single point
connection should be as far as possible from the Fusion device.
Figure 22-3 shows a real-world example of a ground plane layout and the relative placement of the
Fusion chip. Refer to the "Analog and Digital Plane Isolation" section on page 427 for board layout
recommendations.

Other ground pins of the Fusion device can connect to one of the two grounds using traces on the board
if necessary. However, the length of the traces should be kept as short as possible to reduce the trace

Note: Blue = GND, Yellow = VCCI, and Green = GNDA
Figure 22-3 • Example of Ground Plane Layout and Fusion Device Placement
Revision 0 429

Fusion Board-Level Design Guidelines
inductance between ground pins and the ground plane. Table 22-1 lists all the ground pins of a Fusion
device and the ground plane that they connect to.

Analog and Digital Voltage Supply Isolation
Digital and analog voltage supplies should be isolated from each other similar to the grounds as
discussed in "Placement of Fusion Device and Isolation of Ground Planes" on page 427. There are three
main power supplies to Fusion devices: VCC33A (3.3 V analog supply), VCC (1.5 V digital core supply),
and VCCI (digital I/O supply). There may be multiple VCCI levels (for digital I/Os) since Fusion devices
offer multiple I/O banks. Regardless of the number of power supply voltage levels, the layout of the
board's power plans should conform to the same specifications as recommended for the ground plane in
"Placement of Fusion Device and Isolation of Ground Planes" on page 427. None of the digital power
domains should overlap with the analog power supply domain (VCC33A). This ensures that digital
signaling and its return paths are well isolated form the analog power supply, minimizing noise in the
analog domain. Figure 22-4 on page 431 shows a simple illustration of mixed-signal board layers and
relative layout of the digital and analog domains.

Table 22-1 • Ground Pin Connections to Ground Plate on Board

Ground Pin Name Ground Domain

GND Digital(GND)

GNDQ Digital(GND)

ADCGNDREF Analog(GNDA)

GNDA Analog(GNDA)

GNDAQ Analog(GNDA)

GNDNVM Digital(GND)

GNDOSC Digital(GND)

VCOMPPLA/B* Digital(GND)

Note: *Older revisions of datasheets referred to a signal called VCOMPLF. This is now called
VCOMPLA/B.
430 Revision 0

Fusion FPGA Fabric User’s Guide
As shown in Figure 22-4, no digital grounds or voltage supplies overlap with the analog domain. The
ground plane is divided into two domains of analog and digital ground. The power planes in the
Figure 22-4 board stack up follow the same layout as the ground plane. The Fusion device is placed on
the boundary of the digital and analog domains as recommended in "Placement of Fusion Device and
Isolation of Ground Planes" on page 427. Digital planes may be split if needed to accommodate
additional supplies. For example, the VCCI plane can be split into 3.3 V and 2.5 V planes. The addition of
another plane just to support the additional supply is typically not needed.
Additionally, Figure 22-4 emphasizes the layout of the signal traces in the signal layers of the board stack
up. The digital signal traces are laid out within the digital domain and the analog traces are contained
within the analog area of the layer.
Other power pins of the Fusion device can connect to one of the two domains using traces on the board.
However, the length of the traces should be kept as short as possible to reduce the trace inductance
between power pins and the power plane, induced by board traces, to a minimum. Figure 22-2 on
page 428 shows that the analog and digital grounds are to be connected to each other at a single point.
The same technique should be applied to digital and analog 3.3 V supplies.

Figure 22-4 • Simplified Illustration of a Mixed-Signal Board Stack Up
Revision 0 431

Fusion Board-Level Design Guidelines
Table 22-2 lists all the power pins of a Fusion device and the power plane that they connect to.

Similar to any other board-level designs, decoupling/bypass capacitors or other power supply filtering
techniques should be used between power supply pins and ground to reduce any potential fluctuation on
the supply lines. Actel's Board-Level Considerations application note
(http://www.actel.com/documents/BoardLevelCons_AN.pdf) provides additional recommendations on
using decoupling capacitors. There are numerous other industry publications and guidelines available on
the subject.

Other Special Function Pins
In addition to the general power and ground pins discussed in "Analog and Digital Plane Isolation" on
page 427, there are a few other special pins that require special board considerations to ensure proper
functionality of the Fusion device. This section of the document lists these pins and describes their
connectivity in the board-level design.

VAREF
This pin is the voltage reference for Fusion’s analog to digital converter (ADC). The Fusion device can
provide a 2.56 V internal reference voltage. While using the internal reference, the reference voltage is
output on VAREF for use as a system reference. If a different reference voltage is required, it can be
externally supplied to VAREF and used by the ADC.
Since VAREF is the reference voltage for the ADC, it is critical for VAREF (either internal or external) to
be very clean. Noise on VAREF affects the accuracy of the ADC and may cause the analog system to
operate outside the specification listed in the Fusion Family of Mixed-Signal Flash FPGAs datasheet. For
internal VAREF use model, Actel recommends an external capacitor to be placed between VAREF and
the analog ground, as close as possible to the VAREF pin. Actel recommends the capacitor value to be
between 3.3 µF to 22 µF. High capacitor values (up to 22 µF) result in better noise filtering and higher
ADC accuracy. However, the larger the capacitor value, the longer the rise time of VAREF at power-up.
Longer time of VAREF will in turn delay the power-up time to functional of the analog block. Smaller
capacitor values cause faster power-up time for VAREF, but noise filtering will be relatively less. The
choice of capacitor values also depends on the total amount of noise existing on the user’s board.

Table 22-2 • Power Pin Connections to Power Plane on Board

Supply Pin Name Supply Domain

VCC Digital (VCC)

VCC15A Digital (VCC)

VCC33A Analog (VCC33A)

VCC33PMP Analog (VCC33A)

VCCNVM Digital (VCC)

VCCOSC Digital (3.3V)1

VCCIBx Digital (VCCI)2

VCCPLA/B Digital (VCC through recommended capacitors)3

Notes:
1. Can be tied to any digital 3.3 V rail available in the application board (e.g. VCCIBx if the bank

requires a 3.3 V supply)
2. If multiple banks are powered with different supply levels, different VCCI planes are needed for

each voltage level
3. Capacitor recommendations for VCCPLA/B pins are similar to those for the ProASIC3 family device

and can be found in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal
FPGAs" section on page 53.
432 Revision 0

http://www.actel.com/documents/BoardLevelCons_AN.pdf
http://www.actel.com/documents/BoardLevelCons_AN.pdf
http://www.actel.com/documents/BoardLevelCons_AN.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Fusion FPGA Fabric User’s Guide
Boards with relatively higher noise levels may need to have capacitor values close to 22 µF and a
VAREF pin, and may not perform to expectation if the capacitor values are close to 3.3 µF.
When VAREF is provided by an external source, the source must be clean to ensure the highest
accuracy of the ADC. Refer to the Fusion Family of Mixed-Signal Flash FPGAs datasheet and the
"Interfacing with the Fusion Analog System: Processor/Microcontroller Interface" section on page 251 for
more information on selecting the right capacitor value for internally generated VAREF.

VCC33N, PCAP, and NCAP
These three pins are associated with the -3.3 V charge pump. This charge pump uses two external
capacitors in order to generate the -3.3 V supply. One capacitor is connected between the NCAP and
PCAP pins, while the other is connected between VCC33N and the analog ground. The impulse charging
of the capacitors, while the charge pump is in operation, is a source of electromagnetic interference
(EMI). To reduce EMI, each of these capacitors consist of a 0.1 µF ceramic capacitor in parallel with a
tantalum capacitor. The ceramic capacitors should be mounted as close as possible to the pins, using
capacitors of small physical size. For the BGA package, these capacitors are to be mounted on the
bottom layer, directly underneath the respective pins. The tantalum capacitors can be mounted a little
further off, but users should try to minimize the distance. Ceramic capacitors are also available in higher
values such as 2.2 µF. If such a capacitor is used, the 0.1 µF capacitor might not be needed.

XTAL1 and XTAL2
These pins are input from external oscillators to Fusion devices. Very slow rise and fall times of typical
oscillator output (input to XTAL1 and XTAL2 pins) are much more prone to any noise induced by the
system, and can result in the oscillator frequency to be misinterpreted by the Fusion device. Typical
crystal oscillators generating low frequency signals, such as 32.768 KHz, typically have very slow rise
and fall times (sinusoidal signal). Any small noise on the generated sine wave can result in
misinterpretation of the frequency of the sine wave for the Fusion device and affect the correct
functionality of the design. Therefore, for very low frequency signals, such as 32.768 KHz input to XTAL
inputs of the Fusion device, Actel recommends users utilize a digital oscillator (fast rise and fall times) or
to use Schmitt trigger buffers to shorten the rise and fall time of typical oscillators. For signals at 1 MHz
and above, since the rise and fall times are inherently fast, a typical analog crystal oscillator can be used
with no specific precaution.
For the layout and connection of the external crystal and the associated capacitors, keep stray
capacitance and inductance to a minimum. It is important to keep any noise from coupling to the on-chip
oscillator by way of the power supply, the crystal, the two load capacitors, or the copper traces used to
connect these components. It is also important to prevent noise from coupling from the oscillator into the
analog power supply, affecting the performance and accuracy of other analog circuitry. The following
guidelines help achieve these objectives:

• The oscillator power supply pins should be decoupled by a 0.1 µF capacitor connected as close
as possible between the VCCOSC and GNDOSC pins of the Fusion device. For a BGA package,
this capacitor can be placed on the bottom layer; and if it is size 402, it fits between the pins.

• The crystal should be placed as close as possible to the XTAL1 and XTAL2 pins.
• The spacing between traces connecting crystal to XTAL1 and XTAL2 pins and nearby traces

should be increased beyond the minimum spacing dictated by the PCB design rules to prevent
any noise from coupling into these traces. In addition, copper traces carrying high speed digital
signals should not be routed in parallel to the copper traces connected to the XTAL1 and XTAL2
pins, either on the same layer or on the other layers.

• To reduce electromagnetic emissions and provide good mechanical stability to the crystal, a
copper pad slightly larger than the crystal and grounded to GNDOSC should be placed on the top
layer of the PCB. The metal package of the crystal should be grounded to this pad with a suitable
clip. Copper traces connected to this grounded pad and extending around the copper traces
leading from the crystal to XTAL1 and XTAL2 pins shield these pins and further increase noise
immunity of the oscillator. The shields add a very small amount of stray capacitance and this can
be accounted for in the selection of the load capacitors.
Revision 0 433

http://www.actel.com/documents/Fusion_DS.pdf

Fusion Board-Level Design Guidelines
Application-Specific Recommendations
This section of the document discusses some recommendations that are specific to temperature,
voltage, or current monitoring applications. These recommendations are merely for improving the
accuracy of the applications.

Temperature Monitor
The temperature monitor generates a voltage of about 2.5 mV/K (per degree Kelvin), as seen by the
ADC. However, the voltage change that appears across the external discreet bipolar transistor may be
much smaller. Such low levels mean that precautions should be taken to not couple noisy signals to the
conductors connecting the transistor to the temperature monitor pins.
If the temperature sensing the diode/transistor is connected to an Actel Fusion device through cables,
Actel recommends using a twin lead shielded cable to carry the AT and ATRTN traces with the shield of
the cable grounded at the board.
If the connections are made by copper traces on the PCB, AT and ATRTN traces should be routed in
such a way that traces carrying digital signal are not parallel to them above, below, or on the sides. To
achieve this, lay the AT and ATRTN traces on the top layer, so that the next adjacent layer in the PCB
stack is the ground layer. This provides for shielding against digital signals that can couple to the signals
on the copper traces connected to the AT and ATRTN pins.
If digital signal carrying traces can not be avoided in the vicinity of the traces connecting to the transistor,
sufficient distance is to be created between the offending trace and the AT or ATRTN traces.
It is important to minimize the resistance of the conductors connecting the external discrete bipolar
transistor to the AT and ATRTN pins of the Fusion chip. If PCB copper traces are used as the
interconnecting conductors, they should be of such a width that, taking into account their length, they
contribute only a negligible voltage drop compared to 200 µV. The current through the bipolar transistor
used for sensing the temperature changes by 90 µA during the measurement process. This current,
multiplied by the total resistance of the copper trace from the AT pin to the transistor and from the
transistor back to the ATRTN pin, should be negligible compared to 200 µV. If a shielded cable is used,
the wire gauge of its conductors should be appropriately selected. If the system using the Actel Fusion
devices is to be operated at other than room temperature, the effect of temperature on the resistance of
the wire or copper traces should also be taken into account.

Voltage and Current Monitor
If any of the AV channels are used in the direct mode that is directly connecting to the ADC without
prescalers, it is recommend that a ceramic capacitor of the NPO or COG variety, or better yet, a polyester
capacitor of 2200 pF be placed from the corresponding AV channel pin to the analog ground, and as
close as possible to the AV pin.
A resistor of 100 Ω should then be connected between the AV pin and whatever point is being monitored
by the particular AV channel. If the accuracy requirements are not stringent, one may be able to get by
without using the above mentioned resistor/capacitor combination. However, it is good practice to at least
make provision for these components on the prototype PCB. The ADC is a switched capacitor design
and needs to be driven from a low impedance. It draws a charging current every time a channel is
sampled, and the capacitor helps to maintain the voltage steady at the particular AV pin during such
intervals. All copper traces connecting to the AV or the AC pins should stay within the area covered by
the analog ground plane. The power for the ADC, voltage and current monitors, and the internal voltage
reference is provided from the same pins. These pins are to be adequately decoupled with 0.1 µF
ceramic X7R dielectric capacitors in parallel with a tantalum capacitor of 22 µF capacity.
In applications using current monitor, it is important to route the AV and AC signals of each channel in
parallel and keep the two traces matched as much as possible. Large differences in the nets bringing AV
and AC signals to the device may cause significant inaccuracy in differential voltage across the AV and
AC pin.
In current monitor applications, the current sense resistor should be chosen carefully so that optimal
accuracy and resolution can be achieved. The Fusion Family of Mixed-Signal Flash FPGAs datasheet
describes the recommended resistor values for various current ranges.
434 Revision 0

http://www.actel.com/documents/Fusion_DS.pdf

Fusion FPGA Fabric User’s Guide
Connection to PLL
Table 22-1 on page 430 and Table 22-2 on page 432 describe the connection of the VCCPLA/B and
VCOMPLA/B pins of the Fusion device to the power and ground planes. This section of the document
discusses how these pins and the dedicated clock pins of the Fusion device connect to the PLLs on the
chip. Connecting external signals into PLL and powering them up should be done considering that
AFS090 and AFS250 devices contain only one PLL, while AFS600 and AFS1500 devices contain two
PLL blocks. In AFS090 and AFS250 devices, the PLL is located on the west side of the die. In devices
with two PLLs, the second PLL is placed on east side of the die1.
Table 22-3 shows the corresponding power and ground pins for each PLL block

In addition to hardwire clock pins, Fusion device PLLs can be driven by any internal net or external I/O
pins. Although the hardwire I/Os can be used as any user I/O, if designers are required to minimize the
propagation from external clock to the PLL, hardwire clock pins of the PLL provide the shortest paths
from board to PLL clock input. Table 22-4 lists the hardwire clock pins for each PLL on the device.

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

1. Refer to Fusion Family of Mixed-Signal Flash FPGAs datasheet for more information on Clock Conditioning Circuits and
location of PLLs.

Table 22-3 • Power and Ground Pin Names For Fusion Device PLLs

PLL/Device AFS090 AFS250 AFS600 AFS1500

West PLL VCCPLA/VCOMPLA VCCPLA/VCOMPLA VCCPLA/VCOMPLA VCCPLA/VCOMPLA

East PLL – – VCCPLB/VCOMPLB VCCPLB/VCOMPLB

Table 22-4 • Hardwire Clock Pin Connections to PLL

PLL/Device AFS090 AFS250 AFS600 AFS1500

West PLL GFA0/GFA1/GFA2* GFA0/GFA1/GFA2* GFA0/GFA1/GFA2 GFA0/GFA1/GFA2

East PLL – – GCA0/GCA1/GCA2 GCA0/GCA1/GCA2

Note: * Depending on the selected package, not all three hardwire clock I/Os may be available.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of the Fusion FPGA Fabric User’s Guide.

v1.1
(November 2008)

The "Temperature Monitor" section was revised to remove information about
capacitors.

434
Revision 0 435

http://www.actel.com/documents/Fusion_DS.pdf

23 – Fusion Solutions, Design Examples, and
Reference Designs

The unprecedented level of integration of Actel Fusion® enables a wide variety of functionality, such as
power and thermal management, remote communications, and system clocking, in a single mixed-signal
FPGA.
Actel, the world leader of mixed-signal FPGAs, now offers the only single-chip system management
solution. The Actel Fusion mixed-signal FPGA integrates configurable analog, large flash memory
blocks, comprehensive clock generation and management circuitry, and high-performance
programmable logic in a monolithic device. Actel has developed turn-key solutions, including a
development kit and a software GUI, for system management. This level of integration, configurability,
and support establishes Fusion as the definitive system management solution.
This chapter captures the design examples and reference design information for Fusion applications in
various aspects.

System Management Applications
System management continues to gain importance in the design of all electronic systems. Smaller
process geometries drive more multivolt devices and are more susceptible to voltage and temperature
fluctuations. Whereas system management designs can run into hundreds of discrete components, the
Actel Fusion mixed-signal FPGA solution can integrate these system management functions and provide
programmable flexibility and system-level integration—all in a single chip. Unprecedented integration in
Fusion devices can offer cost and space savings of 50% or greater relative to current implementations.
White paper: System Management Using a Mixed-Signal FPGA

Power Management
• Control up to 10 power supplies

– Voltage monitoring
– Current monitoring

• Power-on detection and reset
• Custom power mode topology support for total system power reduction
• Power-up sequencing

Power Supply Monitoring
Application note: Multi-Channel Analog Voltage Comparator in Fusion FPGAs

• VHDL Design Files
• Verilog Design Files

Power Sequencing
Application note: Fusion Power Sequencing and Ramp-Rate Control

• Design Files
Revision 0 437

http://www.actel.com/documents/System_Management_WP.pdf
http://www.actel.com/documents/Fusion_VoltageComp_AN.pdf
http://www.actel.com/documents/Voltage_Comparator_VHDL.zip
http://www.actel.com/documents/Voltage_Comp_Verilog.zip
http://www.actel.com/documents/Fusion_Power_Sequencing_AN.pdf
http://www.actel.com/documents/Power_Sequencing_Ramp_Rate_Control.zip

Fusion Solutions, Design Examples, and Reference Designs
Motor Control
An obstacle to wide-scale use of electronic motor control has been the high cost of the computer and
power electronics. This obstacle is diminishing due to tremendous technology improvement in
semiconductor processes and integration. The Actel Fusion mixed-signal FPGA offers unprecedented
integration by combining mixed-signal analog, flash memory, and FPGA fabric in a monolithic PSC. This
means that for the first time, engineers can combine the motor control analog front end, high-speed flash
lookup tables, and deterministic algorithm processing capabilities of programmable logic in a single-chip
solution.
Reference board: Motor Control Reference Board
Application note: PID Control

MicroTCA
Actel provides highly integrated solutions for MicroTCA system management. Actel supports Fusion-
based solutions with reference designs, semiconductor intellectual property (IP), software, and
customization services that enable quicker time to market for Actel customers with reduced risk, lower
costs, and improved availability over existing solutions. The high integration of Actel MicroTCA solutions
also provides increased functionality in a fixed form factor.
Nearly every electronic system needs system management, especially those with telecommunications-
driven standards like MicroTCA, ATCA, and AMC, as well as those with server-driven standards like
IPMI. Fusion and ProASIC®3 are adept at supporting both proprietary and standards-based
implementations.
Application note: Actel Fusion FPGAs Supporting Intelligent Peripheral Management Interface (IPMI)
Applications
Application note: MicroTCA
Reference design: MicroTCA Power Module Reference Design

Other Applications
Single chip, live at power-up, embedded flash memory, and low power make Fusion suitable for many
other applications.
Application note: Context Save and Reload

• Design Files
Application note: Real-Time Calendar Applications in Actel Fusion Devices

• Design Files
Technical brief: Using Fusion FIFO for Generating Periodic Waveforms

• Fusion Sine Table
Application note: Using Fusion RAM as Multipliers
Application note: Configuring CorePWM Using RTL Blocks

• Verilog Design Files
• VHDL Design Files

Application brief: Smart Battery Management Applications
438 Revision 0

http://www.actel.com/products/solutions/motorcontrol/ref_design.aspx
http://www.actel.com/documents/Fusion_IPMI_AN.pdf
http://www.actel.com/documents/Fusion_IPMI_AN.pdf
http://www.actel.com/documents/MicroTCA_AN.pdf
http://www.actel.com/products/solutions/microtca/default.aspx#pm
http://www.actel.com/documents/Fusion_ContextSaving_AN.pdf
http://www.actel.com/documents/PowerManagement_ContextSaving.zip
http://www.actel.com/documents/Fusion_RTC_AN.pdf
http://www.actel.com/documents/RTC_Demo.zip
http://www.actel.com/documents/Fusion_Waveform_TB.pdf
http://www.actel.com/documents/Fusion_sine_table.xls
http://www.actel.com/documents/Fusion_Multipliers_AN.pdf
http://www.actel.com/documents/CorePWM_RTL_AN.pdf
http://www.actel.com/documents/CorePWM_RTL_Verilog.zip
http://www.actel.com/documents/CorePWM_RTL_VHDL.zip
http://www.actel.com/documents/Fusion_SmartBat_AB.pdf
http://www.actel.com/documents/PID_AN.pdf

Fusion FPGA Fabric User’s Guide
Development System

Fusion Starter Kit
The Fusion Starter Kit is an all-inclusive, low-cost evaluation kit for the Actel Fusion family. Users can
utilize this starter kit to explore the voltage, current, and temperature monitor, real-time counter for low
power use model, and embedded flash for context-saving applications.
User’s guide: Fusion Starter Kit User's Guide & Tutorial

• Design Files for Fusion Starter Kit Tutorial

System Management Development Kit
The Actel System Management Development Kit provides an excellent platform for developing system
management applications and applications with a microprocessor. The kit includes an ARM-enabled
Fusion device, a system management GUI, and a platform for systems that performs these functions:

• Power-up detection
• Power sequencing
• Thermal management
• Sleep modes
• System diagnostics
• Remote communications
• Clock generation and management
• Data logging

User’s guide: System Management Board User's Guide
Revision 0 439

http://www.actel.com/documents/Fusion_StartKit_UG.pdf
http://www.actel.com/documents/AS_PwrM_TemM_RTC.zip
http://www.actel.com/documents/SysMgmtBrd_UG.pdf

A – Fusion Glossary

AB
Analog Block

ACM
Analog Configuration Multiplexer. Stores configuration data for the Analog Quads.

ACMCLK
The clock input to the ACM used for configuration/initialization of the Analog Quads: 10 MHz max.

ADC
Analog-to-digital converter

ADCCLK
The clock input to the AB used by the ADC: 10 MHz max.

ADCSTART
Request to the ADC to begin sampling and convert a defined channel

AHB
Advanced High-Performance Bus. The AHB sits above the APB in the AMBA architecture and
implements the features required for high-performance, high-clock-frequency systems, including burst
transfers, split transactions, single-cycle bus master handover, single-clock-edge operation, non-tristate
implementation, and wider data bus configurations (64/128 bits).

AMBA
Advanced Microcontroller Bus Architecture. The AMBA protocol is an open-standard, on-chip bus
specification that details a strategy for the interconnection and management of functional blocks.
APB
Advanced Peripheral Bus. As part of the AMBA architecture, the APB is optimized for reduced interface
complexity and is used to interface with low-bandwidth peripherals.

ASB
Analog System Builder

ASSC
ADC Sample Sequence Controller

CCC
Clock Conditioning Circuit, which may include a PLL

CoreABC
AMBA Bus Controller soft IP

CoreAI
Analog Interface IP for microprocessors/-controllers

CoreConsole IP Deployment Platform (IDP)
IDP enabling users to construct a processor subsystem and assemble IP blocks within a design

CTRL_STAT
8-bit register located within the ACM that defines the operation of the RTC

Designer
Actel's place-and-route tool, which allows users to assign I/Os, evaluate timing, and generate
programming files
Revision 0 441

FPGAGOOD
Signal from VRPSM indicating the internal voltage regulator is on

INITCLK
Initialization clock used in the initialization client: 10 MHz max.

Libero® Integrated Design Environment (IDE)
Actel's FPGA design environment, integrating synthesis, simulation, place-and-route, design entry, and
IP generation tools

MATCH
Signal indicating that RTC count register (COUNTER) matches MATCHREG

MATCHREG
40-bit register containing a user-defined value to be compared with RTC count register

PCLK
APB interface clock

PUB
Power Up (Bar). FPGA input with weak internal pull-up used to force power-up of internal voltage
regulator

PUCORE
Inverse of PUB

RTC
Real-Time Counter

RTCPSMMATCH
Match signal from RTC that is passed to VRPSM to power up voltage regulator

SmartTime
Actel's static timing analysis tool, integrated into Designer

SMEV
System Monitor Evaluation Phase State Machine

SMTR
System Monitor Transition Phase State Machine

STC
Sample Time Control setting for the acquisition time in ASB

TVC
8-bit user-configurable register that determines the division value required to bring the system clock to
less that 10 MHz for the ADC

VRINITSTATE
Defines the voltage regulator state upon power-up

VRPSM
Voltage Regulator Power Supply Monitor

VRPU
Voltage Regulator Power-Up. Internal, user-accessible signal to turn off internal voltage regulator from
FPGA core
442 Revision 0

B – Summary of Changes

History of Revision to Chapters
The following table lists chapters that were affected in each revision of this document. Each chapter
includes its own change history because it may appear in other device family user’s guides. Refer to the
individual chapter for a list of specific changes.

Revision
(month/year) Chapter Affected

List of Changes
(page number)

Revision 0
(July 2010)

The Actel Fusion Handbook was divided into two parts to create the Fusion
Mixed Signal FPGAs datasheet and the Fusion FPGA Fabric User’s Guide.

N/A

"Global Resources in Actel Low Power Flash Devices" was revised. 51

"Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal
FPGAs" was revised.

103

"I/O Software Control in Low Power Flash Devices" was revised. 328

"DDR for Actel’s Low Power Flash Devices" was revised. 343

"Programming Flash Devices" was revised. 360

"In-System Programming (ISP) of Actel’s Low Power Flash Devices Using
FlashPro4/3/3X" was revised.

401

"Boundary Scan in Low Power Flash Devices" was revised. 415
Revision 0 443

C – Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical
Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix
contains information about contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer
your hardware, software, and design questions. The Customer Technical Support Center spends a great
deal of time creating application notes and answers to FAQs. So, before you contact us, please visit our
online resources. It is very likely we have already answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at
www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 a.m. to 6:00 p.m., Pacific Time,
Monday through Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.
Revision 0 445

http://www.actel.com/support/search/default.aspx
http://www.actel.com

Product Support
The technical support email address is tech@actel.com.

Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name,
company name, phone number and your question, and then issues a case number. The Center then
forwards the information to a queue where the first available application engineer receives the data and
returns your call. The phone hours are from 7:00 a.m. to 6:00 p.m., Pacific Time, Monday through Friday.
The Technical Support numbers are:

650.318.4460
800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via email
(tech@actel.com) or contact a local sales office. Sales office listings can be found on the website at
www.actel.com/company/contact/default.aspx.
446 Revision 0

mailto:tech@actel.com
http://www.actel.com/company/contact/default.aspx

Index

A
ACMCLK 254
acquisition time calculation 239
Actel

electronic mail 445
telephone 446
web-based technical support 445
website 445

ADC
background 231
clock 234
configuration and calibration 259
settings 253

ADCCLK 254
AES encryption 367
Analog Configuration MUX (ACM) 241, 288

configuration 251
initialization 256
reset 256

Analog Quad
configuration 252

Analog System
Analog Block settings 281
design 231
interconnects 142
interface components 272
IP interface 271
microcontroller interface 251
operation 274
processor interface 251
soft IP design 271

flow 245
Analog System Client 141
applications

current monitoring 263
gate driver 265
temperature monitoring 264
voltage monitoring 260

architecture 203
four I/O banks 15
global 23
IGLOO 14
IGLOO nano 13
IGLOO PLUS 15
IGLOOe 16
PraASIC3 nano 13
ProASIC3E 16
routing 20
spine 33
SRAM and FIFO 207

architecture overview 13
array coordinates 18

B
boundary scan 411

board-level recommendations 414
chain 413
opcodes 413

C
CCC 73

board-level considerations 102
cascading 99
Fusion locations 74
global resources 54
hardwired I/O clock input 98
IGLOO locations 72
IGLOOe locations 73
locations 71
overview 53
ProASIC3 locations 72
ProASIC3E locations 73
programming 54
software configuration 86
with integrated PLLs 70
without integrated PLLs 70

chip global aggregation 35
CLKDLY macro 57
clock aggregation 36
clock macros 38
clock resources 107
clock sources

core logic 67
PLL and CLKDLY macros 64

clocking scheme 254
ACMCLK 254
ADCCLK 254
initialization clock 254

clocks
delay adjustment 77
detailed usage information 94
multipliers and dividers 76
phase adjustment 77
physical constraints for quadrant clocks 98
SmartGen settings 95
static timing analysis 97

Common Flash Interface (CFI)
CoreAhbNvm supported commands 183
data client 167

compiling 319
report 319

contacting Actel
customer service 445
electronic mail 445
telephone 446
Revision 0 447

Index
web-based technical support 445
CoreAhbNvm

configuration 179
port signal descriptions 182
status register flags 184
supported Common Flash Interface (CFI) commands

183
CoreAI 251

settings 251
crystal oscillator 112

package connections 121
current monitoring applications 263
customer service 445

D
Data Storage Client 162
DDR

architecture 329
design example 340
I/O options 331
input/output support 333
instantiating registers 334

design
analog system soft IP flow 245
examples 266, 437
flow 249
microprocessor/microcontroller 248
solutions and methodologies 245
state management 247

design example 47
design recommendations 38
device architecture 203
DirectC code 405

E
efficient long-line resources 21
embedded flash memory 135

busy signal handling 172
initialization IP interface 136
interconnects 142, 144
macro and interface 156
page programming 173
priority of operations 171
read operations 176
updating contents 178
using for general data storage 156
using for initialization 135
write operations 173

encryption 409
examples, design 437

F
FIFO

features 213
initializing 220
memory block consumption 219
software support 226

usage 216
flash memory, embedded

see embedded flash memory
flash switch for programming 11
FlashLock

IGLOO and ProASIC devices 369
permanent 369

FlashROM
access using JTAG port 195
architecture 395
architecture of user nonvolatile 189
configuration 192
custom serialization 201
design flow 196
generation 197
programming and accessing 194
programming file 199
programming files 395
SmartGen 198

FlashROM read-back 425

G
gate driver applications 265
global architecture 23
global buffers

no programmable delays 56
with PLL function 59
with programmable delays 56

global macros
Synplicity 42

globals
designer flow 45
networks 50
spines and rows 33

glossary 441

H
HLD code

instantiating 316

I
I/O banks

standards 32
I/O standards 68

global macros 38
I/Os

assigning technologies 322
assignments defined in PDC file 317
automatically assigning 326
buffer schematic cell 315
cell architecture 331
configuration with SmartGen 312
global, naming 27
manually assigning technologies 322
software-controlled attributes 311
user I/O assignment flow chart 309

initialization clients 135
448 Revision 0

Fusion FPGA Fabric User’s Guide
Analog System 141
RAM 144
Standalone

see Standalone Initialization Client
initialization clock 254
ISP 351, 352

architecture 389
board-level considerations 399
microprocessor 403

J
JTAG 1532 389
JTAG interface 405

L
layout

device-specific 69

M
MAC validation/authentication 408
macros

CLKBUF 68
CLKBUF_LVDS/LVPECL 68
CLKDLY 57, 64
FIFO4KX18 213
PLL 64
PLL macro signal descriptions 60
RAM4K9 209
RAM512X18 211
supported basic RAM macros 208
UJTAG 419

MCU FPGA programming model 406
memory

changing content 247
embedded flash

see embedded flash memory
memory availability 218
memory blocks 207
microcontroller

design 248
interface 179

microprocessor
design 248
interface 179

microprocessor programming 403

N
No-Glitch Multiplexer (NGMUX) 121

connections 128
modes of operation 122
placement 128
timing analysis 126
tips 126
usage 124

O
OTP 351

P
PDC

global promotion and demotion 43
place-and-route 317
PLL

configuration bits 80
core specifications 75
dynamic PLL configuration 78
functional description 76
power supply decoupling scheme 102

PLL block signals 60
PLL macro block diagram 61
prescaler selection 241
product support 446

customer service 445
electronic mail 445
technical support 445
telephone 446
website 445

programmers 353
device support 356

programming
AES encryption 381
basics 351
features 351
file header definition 385
flash and antifuse 353
flash devices 351
glossary 386
guidelines for flash programming 357
header pin numbers 398
microprocessor 403
power supplies 391
security 375
solution 396
solutions 355
voltage 391
volume services 354

programming support 349

R
RAM

memory block consumption 219
RAM Initialization Client 144
RAM interconnects 144
RC oscillator, internal 108

package connections 112
Real-Time Counter (RTC) 129

designing with 270
interconnection 134
tips 133
usage 129

reference designs 437
remote upgrade via TCP/IP 408
Revision 0 449

Index
routing structure 20

S
sample code 289
sample rate calculation 238
sample sequencing

calculation 238
overview 237

security 392
architecture 365
examples 370
features 366
FlashLock 369
FlashROM 193
FlashROM use models 373
in programmable logic 363
overview 363
read-back prevention 408

signal integrity problem 399
silicon testing 424
SmartDesign

design state management 247
SmartGen 226

soft IP blocks 275
ADC Sample Sequence Controller (ASSC) 275
System Monitor Evaluation Phase State Machine

(SMEV) 279
System Monitor Transition Phase State Machine

(SMTR) 281
solutions 437
spine architecture 33
spine assignment 44
SRAM

features 209
initializing 220
software support 226
usage 213

Standalone Initialization Client 148

flash memory ports 148
usages 150

STAPL player 405
STAPL vs. DirectC 407
synthesizing 316

T
TAP controller state machine 411, 420
technical support 445
temperature monitoring applications 264
tools overview 249

U
UJTAG

CCC dynamic reconfiguration 422
fine tuning 423
macro 419
operation 420
port usage 421
use to read FLashROM contents 417

ultra-fast local lines 20

V
variable aspect ratio and cascading 217
VersaNet global networks 25
VersaTile 17
very-long-line resources 21
ViewDraw 315
voltage monitoring applications 260
Voltage Regulator Power Supply Monitor (VRPSM)

427
VREF pins

manually assigning 323

W
web-based technical support 445
450 Revision 0

50200265-0/7.10

Actel Corporation
2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.
River Court,Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540

Actel Japan
EXOS Ebisu Buillding 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com

Actel Hong Kong
Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn

Actel is the leader in low power FPGAs and mixed signal FPGAs and offers the most comprehensive portfolio of
system and power management solutions. Power Matters. Learn more at www.actel.com.

© 2010 Actel Corporation. All rights reserved. Actel, Actel Fusion, IGLOO, Libero, Pigeon Point, ProASIC, SmartFusion and the associated logos are
trademarks or registered trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective owners.

http://jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	Introduction
	Contents
	Revision History
	Related Information

	1 - FPGA Array Architecture in Low Power Flash Devices
	Device Architecture
	Advanced Flash Switch

	FPGA Array Architecture Support
	Device Overview
	Core Architecture
	Array Coordinates
	Routing Architecture

	Related Documents
	User’s Guides

	List of Changes

	2 - Global Resources in Actel Low Power Flash Devices
	Introduction
	Global Architecture
	Global Resource Support in Flash-Based Devices
	VersaNet Global Network Distribution
	Chip and Quadrant Global I/Os
	Naming of Global I/Os
	Unused Global I/O Configuration
	I/O Banks and Global I/O Standards

	Spine Architecture
	Spine Access

	Using Clock Aggregation
	Clock Aggregation Architecture

	Design Recommendations
	Global Macros and I/O Standards
	Global Macro and Placement Selections
	Using Global Macros in Synplicity
	Global Promotion and Demotion Using PDC
	Spine Assignment
	Designer Flow for Global Assignment
	Simple Design Example
	Global Management in PLL Design
	Using Spines of Occupied Global Networks

	Conclusion
	Related Documents
	User’s Guides

	List of Changes

	3 - Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
	Introduction
	Overview of Clock Conditioning Circuitry
	CCC Programming
	Global Resources

	CCC Support in Actel’s Flash Devices
	Global Buffers with No Programmable Delays
	Global Buffer with Programmable Delay
	CLKDLY Macro Signal Descriptions
	CLKDLY Macro Usage

	Global Buffers with PLL Function
	PLL Macro Signal Descriptions
	PLL Macro Block Diagram

	Global Input Selections
	Clock Sources for PLL and CLKDLY Macros
	Available I/O Standards
	Global Synthesis Constraints

	Device-Specific Layout
	Clock Conditioning Circuits with Integrated PLLs
	Clock Conditioning Circuits without Integrated PLLs
	CCC Locations
	IGLOO and ProASIC3 CCC Locations
	IGLOOe and ProASIC3E CCC Locations
	Fusion CCC Locations

	PLL Core Specifications
	Loop Bandwidth
	PLL Core Operating Principles

	Functional Description
	Clock Dividers and Multipliers
	Clock Delay Adjustment
	Phase Adjustment
	Dynamic PLL Configuration
	PLL Configuration Bits Description

	Software Configuration
	Static PLL Configuration
	Dynamic PLL Configuration
	Delayed Clock Configuration

	Detailed Usage Information
	Clock Frequency Synthesis
	Simulation Verification
	Place-and-Route Stage Considerations
	Cascading CCCs

	Recommended Board-Level Considerations
	PLL Power Supply Decoupling Scheme

	Conclusion
	Related Documents
	Application Notes
	Datasheets
	User’s Guides

	List of Changes

	4 - Fusion Clock Resources
	Internal RC Oscillator
	RC Oscillator Usage
	RC Oscillator Tips and Package Connections

	Crystal Oscillator (XTLOSC)
	Crystal Oscillator Tips and Package Connections

	No-Glitch Multiplexer (NGMUX)
	NGMUX Modes of Operation
	NGMUX Usage
	NGMUX Tips
	NGMUX Timing Analysis
	NGMUX Connections
	NGMUX Placement

	Real-Time Counter (RTC)
	RTC Usage
	RTC Tips
	RTC Interconnection

	Related Documents
	Datasheet
	User’s Guides

	List of Changes

	5 - Fusion Embedded Flash Memory Blocks
	Using the Embedded Flash Memory for Initialization
	Embedded Flash Initialization IP Interface
	Analog System Client
	RAM Initialization Client
	Standalone Initialization Client

	Using the Embedded Flash Memory for General Data Storage
	Flash Memory Macro and Interface
	Data Storage Client Interface
	Common Flash Interface Data Client
	Flash Operation Priority
	Flash Busy Signal Handling
	Write Operations and Page Programming
	Read Operations
	Note on Updating the Contents of Flash

	Microprocessor/Microcontroller Interface
	CoreAhbNvm IP Configuration
	Supported CFI Commands

	6 - FlashROM in Actel’s Low Power Flash Devices
	Introduction
	Architecture of User Nonvolatile FlashROM
	FlashROM Support in Flash-Based Devices
	FlashROM Applications
	FlashROM Security
	Programming and Accessing FlashROM
	FlashROM Design Flow
	FlashROM Generation and Instantiation in the Design
	Simulation of FlashROM Design
	Programming File Generation for FlashROM Design

	Custom Serialization Using FlashROM
	Conclusion
	Related Documents
	User’s Guides

	List of Changes

	7 - SRAM and FIFO Memories in Actel's Low Power Flash Devices
	Introduction
	Device Architecture
	SRAM/FIFO Support in Flash-Based Devices
	SRAM and FIFO Architecture
	Memory Blocks and Macros
	SRAM Features
	FIFO Features
	Variable Aspect Ratio and Cascading

	Initializing the RAM/FIFO
	Example of RAM Initialization
	Sample Verilog Code

	Software Support
	Limitations

	Conclusion
	List of Changes

	8 - Designing the Fusion Analog System
	Introduction
	Analog-to-Digital Converter Background
	ADC Clock
	Sample Sequencing Overview
	Sample Rate and Sample Sequence Calculation
	Acquisition Time Calculation
	Using the ADC with Direct Input
	Using the ADC with Built-In Prescaler

	Prescaler Selection
	Analog Configuration MUX (ACM)

	9 - Fusion Design Solutions and Methodologies
	HDL Design with Analog System Soft IP
	Design State Management in SmartDesign
	Changing Memory Content

	Microprocessor/Microcontroller Design
	Tools Overview

	10 - Interfacing with the Fusion Analog System: Processor/Microcontroller Interface
	Objective
	CoreAI
	Introduction
	CoreAI Settings in CoreConsole
	Analog Configuration MUX (ACM) Clocking, Interrupt, and Internal Temperature Monitor Configuration
	Analog Quad Configuration
	ADC Settings

	Clocking Scheme
	SYSCLK
	ACMCLK
	ADCCLK
	Initialization Clock

	Analog Configuration MUX Initialization
	ACM Reset
	ACM Initialization

	ADC Configuration and Calibration
	Implementing Voltage Monitoring Applications
	Channel Selection, ADC Sample, and Conversion Request
	Obtaining Results from the ADC Output
	Sample Sequencing
	Sample Averaging
	Techniques to Enhance Design Performance/Throughput

	Implementing Current Monitor Applications
	Implementing Temperature Monitor Applications
	Implementing Gate Driver Applications
	Software-Controlled Gate Drivers
	Hardware-Controlled Gate Drivers

	Design Example
	Functionality
	Implementation in a Fusion Device

	Designing with the RTC
	List of Changes

	11 - Interfacing with the Fusion Analog System: IP Interface
	Fusion Analog System Soft IP Design
	System Overview - Interface Components
	System Operation
	Initialization
	Sample and Convert

	SmartGen Soft IP Blocks
	ADC Sample Sequence Controller (ASSC)
	System Monitor Evaluation Phase State Machine (SMEV)
	System Monitor Transition Phase State Machine (SMTR)

	Basic Analog Block Settings
	AV Parameter Settings
	AC Parameter Settings
	AT Parameter Settings
	Sample Sequence Setting
	Package Pin Assignment

	Soft IP Implementation Options
	Default Implementation (ASSC, SMEV, and SMTR)
	Use Default Implementation and Expose ADC Result (ASSC I/Os, SMEV I/Os, and ACM I/Os)
	Use IP Cores for ADC Sequence Control Only
	VAREF Capacitor Value Selection

	Analog Configuration MUX (ACM)
	Sample Code
	List of Changes

	12 - Temperature, Voltage, and Current Calibration in Fusion FPGAs
	Introduction
	General Calibration Concept
	Calibration Methods

	Calibration Measurements
	Offset-Only Calibration Measurement
	Offset-and-Gain (two-point) Calibration Measurement
	Choosing Calibration Data Points

	Actel Calibration Solution
	Coefficient Measurement and Programming
	Calibration IP Deployment
	Design Flow and Tips
	Utilization and Performance
	Improvement from Actel Calibration Solution
	Microprocessor-Based Design Flow

	Performing System-Level Calibration Using Fusion
	Conclusion
	Related Documents
	Datasheets

	List of Changes

	13 - I/O Software Control in Low Power Flash Devices
	Flash FPGAs I/O Support
	Software-Controlled I/O Attributes
	Implementing I/Os in Actel Software
	Design Entry
	Synthesizing the Design
	Performing Place-and-Route on the Design
	Compiling the Design
	Understanding the Compile Report

	Assigning Technologies and VREF to I/O Banks
	Manually Assigning Technologies to I/O Banks
	Manually Assigning VREF Pins
	VREF Rules for the Implementation of Voltage-Referenced I/O Standards
	Assigning the VREF Voltage to a Bank
	Assigning VREF Pins for a Bank
	Automatically Assigning Technologies to I/O Banks

	Conclusion
	Related Documents
	User’s Guides

	List of Changes

	14 - DDR for Actel’s Low Power Flash Devices
	Introduction
	Double Data Rate (DDR) Architecture
	DDR Support in Flash-Based Devices
	I/O Cell Architecture
	Input Support for DDR
	Output Support for DDR
	Instantiating DDR Registers
	DDR Input Register
	DDR Output Register
	DDR Tristate Output Register
	DDR Bidirectional Buffer

	Design Example
	Simulation Consideration

	Conclusion
	List of Changes

	15 - Prototyping With AFS600 for Smaller Devices
	Prototype Guideline
	AFS090, AFS250, AFS600, and AFS1500 Device Configuration
	List of the Guidelines for Prototyping
	Prototype Consideration in Software

	Summary

	16 - Programming Flash Devices
	Introduction
	Summary of Programming Support
	Programming Support in Flash Devices
	General Flash Programming Information
	Programming Basics
	Programming Features for Actel Devices
	Types of Programming for Flash Devices
	Programming Solutions

	Important Programming Guidelines
	Preprogramming Setup
	Programming Failure Allowances
	Contacting the Customer Support Group

	Related Documents
	Application Notes
	User’s Guides
	Other Documents

	List of Changes

	17 - Security in Low Power Flash Devices
	Security in Programmable Logic
	Security Support in Flash-Based Devices
	Security Architecture
	Security Features
	Security in ARM-Enabled Low Power Flash Devices
	AES Encryption of Programming Files
	FlashLock
	Permanent Security Setting Options

	Security in Action
	Application 1: Trusted Environment
	Application 2: Nontrusted Environment-Unsecured Location
	Application 3: Nontrusted Environment-Field Updates/Upgrades

	FlashROM Security Use Models
	Generating Programming Files
	Generation of the Programming File in a Trusted Environment- Application 1
	Generation of Security Header Programming File Only- Application 2
	Generation of Programming Files with AES Encryption- Application 3
	Reprogramming Devices
	Advanced Options
	Programming File Header Definition

	Conclusion
	Glossary
	References
	Related Documents
	User’s Guides

	List of Changes

	18 - In-System Programming (ISP) of Actel’s Low Power Flash Devices Using FlashPro4/3/3X
	Introduction
	ISP Architecture
	JTAG 1532

	ISP Support in Flash-Based Devices
	Programming Voltage (VPUMP) and VJTAG
	Nonvolatile Memory (NVM) Programming Voltage
	IEEE 1532 (JTAG) Interface
	Security
	Security in ARM-Enabled Low Power Flash Devices
	Cortex-M1 and Cortex-M3 Device Security

	FlashROM and Programming Files
	Programming Solution
	ISP Programming Header Information
	Board-Level Considerations
	Troubleshooting Signal Integrity

	Conclusion
	Related Documents
	User’s Guides

	List of Changes

	19 - Microprocessor Programming of Actel’s Low Power Flash Devices
	Introduction
	Microprocessor Programming Support in Flash Devices
	Programming Algorithm
	JTAG Interface
	IEEE 1532

	Implementation Overview
	FlashROM
	STAPL vs. DirectC
	Remote Upgrade via TCP/IP

	Hardware Requirement
	Security
	Read-Back Prevention
	Message Authentication Code (MAC) Validation/Authentication

	Conclusion
	List of Changes

	20 - Boundary Scan in Low Power Flash Devices
	Boundary Scan
	TAP Controller State Machine
	Actel’s Flash Devices Support the JTAG Feature
	Boundary Scan Support in Low Power Devices
	Boundary Scan Opcodes
	Boundary Scan Chain
	Board-Level Recommendations
	List of Changes

	21 - UJTAG Applications in Actel’s Low Power Flash Devices
	Introduction
	UJTAG Support in Flash-Based Devices
	UJTAG Macro
	UJTAG Operation
	TAP Controller State Machine
	UJTAG Port Usage

	Typical UJTAG Applications
	Clock Conditioning Circuitry-Dynamic Reconfiguration
	Fine Tuning
	Silicon Testing and Debugging
	SRAM Initialization
	FlashROM Read-Back Using JTAG

	Conclusion
	Related Documents
	Application Notes

	List of Changes

	22 - Fusion Board-Level Design Guidelines
	Objective
	Analog and Digital Plane Isolation
	Placement of Fusion Device and Isolation of Ground Planes
	Analog and Digital Voltage Supply Isolation

	Other Special Function Pins
	VAREF
	VCC33N, PCAP, and NCAP
	XTAL1 and XTAL2

	Application-Specific Recommendations
	Temperature Monitor
	Voltage and Current Monitor
	Connection to PLL

	List of Changes

	23 - Fusion Solutions, Design Examples, and Reference Designs
	System Management Applications
	Power Management
	Motor Control
	MicroTCA

	Other Applications
	Development System
	Fusion Starter Kit
	System Management Development Kit

	A - Fusion Glossary
	B - Summary of Changes
	History of Revision to Chapters

	C - Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

