Thumb ${ }^{\circledR} 16$-bit Instruction Set Quick Reference Card

This card lists all Thumb instructions available on Thumb-capable processors earlier than $\mathrm{ARM}^{\circledR}{ }^{\circledR} 6 \mathrm{~T} 2$. In addition, it lists all Thumb-2 16-bit instructions.
The instructions shown on this card are all 16-bit in Thumb-2, except where noted otherwise.
All registers are Lo (R0-R7) except where specified. Hi registers are R8-R15.

Key to Tables			
§ <loreglist>	See Table ARM architecture versions. A comma-separated list of Lo registers, enclosed in braces, $\{$ and \}.	$\begin{aligned} & \hline \text { <loreglist+LR> } \\ & \text { <loreglist+PC> } \end{aligned}$	A comma-separated list of Lo registers. plus the LR, enclosed in braces, $\{$ and \}. A comma-separated list of Lo registers. plus the PC, enclosed in braces, $\{$ and $\}$.

Operation		§	Assembler	Updates	Action	Notes
Move	Immediate Lo to Lo Hi to Lo, Lo to Hi, Hi to Hi Any to Any	6	MOVS Rd, \#<imm> MOVS Rd, Rm MOV Rd, Rm MOV Rd, Rm	$\begin{array}{ll} \mathrm{N} & \mathrm{Z} \\ \mathrm{~N} & \mathrm{Z} \end{array}$	$\begin{aligned} \mathrm{Rd} & :=\mathrm{imm} \\ \mathrm{Rd} & :=\mathrm{Rm} \\ \mathrm{Rd} & :=\mathrm{Rm} \\ \mathrm{Rd} & :=\mathrm{Rm} \end{aligned}$	imm range 0-255. Synonym of LSLS Rd, Rm, \#0 Not Lo to Lo. Any register to any register.
Add	Immediate 3 All registers Lo Hi to Lo , Lo to Hi , Hi to Hi Any to Any Immediate 8 With carry Value to SP Form address from SP Form address from PC	T2	```ADDS Rd, Rn, #<imm> ADDS Rd, Rn, Rm ADD Rd, Rd, Rm ADD Rd, Rd, Rm ADDS Rd, Rd, #<imm> ADCS Rd, Rd, Rm ADD SP, SP, #<imm> ADD Rd, SP, #<imm> ADR Rd, <label>```	$\begin{array}{cccc} \hline \mathrm{N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\ & & & \\ & & & \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{Rd}:=\mathrm{Rn}+\mathrm{imm} \\ & \mathrm{Rd}:=\mathrm{Rn}+\mathrm{Rm} \\ & \mathrm{Rd}:=\mathrm{Rd}+\mathrm{Rm} \\ & \mathrm{Rd}:=\mathrm{Rd}+\mathrm{Rm} \\ & \mathrm{Rd}:=\mathrm{Rd}+\mathrm{imm} \\ & \mathrm{Rd}:=\mathrm{Rd}+\mathrm{Rm}+\mathrm{C}-\mathrm{bit} \\ & \mathrm{SP}:=\mathrm{SP}+\mathrm{imm} \\ & \mathrm{Rd}:=\mathrm{SP}+\mathrm{imm} \\ & \mathrm{Rd}:=\text { label } \\ & \hline \end{aligned}$	imm range 0-7. Not Lo to Lo. Any register to any register. imm range 0-255. imm range 0-508 (word-aligned). imm range $0-1020$ (word-aligned). label range PC to $\mathrm{PC}+1020$ (word-aligned).
Subtract	Lo and Lo Immediate 3 Immediate 8 With carry Value from SP Negate		```SUBS Rd, Rn, Rm SUBS Rd, Rn, #<imm> SUBS Rd, Rd, #<imm> SBCS Rd, Rd, Rm SUB SP, SP, #<imm> RSBS Rd, Rn, #0```	$\begin{array}{\|cccc} \hline \mathrm{N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\ & & & \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Rd}:=\mathrm{Rn}-\mathrm{Rm} \\ & \mathrm{Rd}:=\mathrm{Rn}-\mathrm{imm} \\ & \mathrm{Rd}:=\mathrm{Rd}-\mathrm{imm} \\ & \mathrm{Rd}:=\mathrm{Rd}-\mathrm{Rm}-\text { NOT C-bit } \\ & \mathrm{SP}:=\mathrm{SP}-\mathrm{imm} \\ & \mathrm{Rd}:=-\mathrm{Rn} \end{aligned}$	imm range 0-7. imm range 0-255. imm range 0-508 (word-aligned). Synonym: NEG Rd, Rn
Multiply	Multiply		MULS Rd, Rd, Rm	N Z * *	$\mathrm{Rd}:=\mathrm{Rm}$ * Rd	* C and V flags unpredictable in §4T, unchanged in $\S 5 \mathrm{~T}$ and above
Compare	Negative Immediate		CMP Rn, Rm CMN Rn, Rm CMP Rn, \#<imm>	N Z C V N Z C V N Z C V	update CPSR flags on $\mathrm{Rn}-\mathrm{Rm}$ update CPSR flags on $\mathrm{Rn}+\mathrm{Rm}$ update CPSR flags on $\mathrm{Rn}-\mathrm{imm}$	Can be Lo to Lo, Lo to Hi, Hi to Lo, or Hi to Hi. imm range 0-255.
Logical	AND Exclusive OR OR Bit clear Move NOT Test bits		$\begin{array}{\|llll} \hline \text { ANDS } & \mathrm{Rd}, & \mathrm{Rd}, & \mathrm{Rm} \\ \text { EORS } & \mathrm{Rd}, & \mathrm{Rd}, & \mathrm{Rm} \\ \text { ORRS } & \mathrm{Rd}, & \mathrm{Rd}, & \mathrm{Rm} \\ \text { BICS Rd, } & \mathrm{Rd}, & \mathrm{Rm} \\ \text { MVNS Rd, } & \mathrm{Rd}, & \mathrm{Rm} \\ \text { TST Rn, } & \mathrm{Rm} & \\ \hline \end{array}$	$\begin{array}{ll} \hline N & Z \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{Rd}:=\mathrm{Rd} \text { AND Rm } \\ & \mathrm{Rd}:=\mathrm{Rd} \text { EOR } \mathrm{Rm} \\ & \mathrm{Rd}:=\mathrm{Rd} \text { OR } \mathrm{Rm} \\ & \mathrm{Rd}:=\mathrm{Rd} \text { AND NOT } \mathrm{Rm} \\ & \mathrm{Rd}:=\text { NOT Rm } \\ & \text { update CPSR flags on Rn AND Rm } \\ & \hline \end{aligned}$	
Shift/rotate	Logical shift left Logical shift right Arithmetic shift right Rotate right		```LSLS Rd, Rm, #<shift> LSLS Rd, Rd, Rs LSRS Rd, Rm, #<shift> LSRS Rd, Rd, RS ASRS Rd, Rm, #<shift> ASRS Rd, Rd, Rs RORS Rd, Rd, Rs```	$\begin{array}{lll} \hline \mathrm{N} & \mathrm{Z} & \mathrm{C}^{*} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C}^{*} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C}^{*} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C}^{*} \\ \mathrm{~N} & \mathrm{Z} & \mathrm{C}^{*} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Rd}:=\mathrm{Rm} \ll \operatorname{shift} \\ & \mathrm{Rd}:=\mathrm{Rd} \ll \operatorname{Rs}[7: 0] \\ & \mathrm{Rd}:=\mathrm{Rm} \gg \operatorname{shift} \\ & \mathrm{Rd}:=\mathrm{Rd} \gg \operatorname{Rs}[7: 0] \\ & \mathrm{Rd}:=\operatorname{Rm} \text { ASR shift } \\ & \mathrm{Rd}:=\operatorname{Rd} \text { ASR Rs[7:0] } \\ & \mathrm{Rd}:=\operatorname{Rd} \text { ROR Rs[7:0] } \end{aligned}$	```Allowed shifts 0-31. * C flag unaffected if shift is 0 . * C flag unaffected if Rs[7:0] is 0 . Allowed shifts 1-32. * C flag unaffected if \(\operatorname{Rs[7:0]~is~} 0\). Allowed shifts 1-32. * C flag unaffected if \(\operatorname{Rs}[7: 0]\) is 0 . * C flag unaffected if \(\operatorname{Rs}[7: 0]\) is 0 .```

Thumb 16-bit Instruction Set

Quick Reference Card

\begin{tabular}{|c|c|c|c|c|c|}
\hline Operation \& \& § \& Assembler \& Action \& Notes \\
\hline Load \& \begin{tabular}{l}
with immediate offset, word halfword byte \\
with register offset, word halfword signed halfword byte signed byte \\
PC-relative \\
SP-relative \\
Multiple, not including base Multiple, including base
\end{tabular} \& \& LDR Rd, [Rn, \#<imm>]
LDRH Rd, [Rn, \#<imm>]
LDRB Rd, [Rn, \#<imm>]
LDR Rd, [Rn, Rm]
LDRH Rd, [Rn, Rm]
LDRSH Rd, [Rn, Rm]
LDRB Rd, [Rn, Rm]
LDRSB Rd, [Rn, Rm]
LDR Rd, <label>
LDR Rd, [SP, \#<imm>]
LDM Rn!, <loreglist>
LDM Rn, <loreglist> \& \begin{tabular}{l}
\(\mathrm{Rd}:=[\mathrm{Rn}+\mathrm{imm}]\) \\
Rd := ZeroExtend([Rn + imm][15:0]) \\
Rd := ZeroExtend([Rn + imm][7:0]) \\
\(\mathrm{Rd}:=[\mathrm{Rn}+\mathrm{Rm}]\) \\
\(\operatorname{Rd}:=\operatorname{ZeroExtend}([\mathrm{Rn}+\operatorname{Rm}][15: 0])\) \\
\(\operatorname{Rd}:=\operatorname{SignExtend}([\mathrm{Rn}+\mathrm{Rm}][15: 0])\) \\
\(\operatorname{Rd}:=\operatorname{ZeroExtend}([\operatorname{Rn}+\operatorname{Rm}][7: 0])\) \\
\(\operatorname{Rd}:=\operatorname{SignExtend}([\operatorname{Rn}+\operatorname{Rm}][7: 0])\) \\
\(\mathrm{Rd}:=\) [label] \\
Rd := [SP + imm] \\
Loads list of registers (not including Rn) \\
Loads list of registers (including Rn)
\end{tabular} \& \begin{tabular}{l}
imm range \(0-124\), multiple of 4 . \\
Clears bits \(31: 16\). imm range \(0-62\), even. \\
Clears bits 31:8. imm range 0-31. \\
Clears bits 31:16 \\
Sets bits 31:16 to bit 15 \\
Clears bits 31:8 \\
Sets bits \(31: 8\) to bit 7 \\
label range PC to PC+1020 (word-aligned). imm range \(0-1020\), multiple of 4 . \\
Always updates base register, Increment After. \\
Never updates base register, Increment After.
\end{tabular} \\
\hline Store \& \begin{tabular}{l}
with immediate offset, word \\
halfword \\
byte \\
with register offset, word \\
halfword \\
byte \\
SP-relative, word \\
Multiple
\end{tabular} \& \& \begin{tabular}{l}
STR Ra, [Rn, \#<imm>] \\
STRH Rd, [Rn, \#<imm>] \\
STRB Rd, [Rn, \#<imm>] \\
STR Rd, [Rn, Rm] \\
STRH Rd, [Rn, Rm] \\
STRB Rd, [Rn, Rm] \\
STR Rd, [SP, \#<imm>] \\
STM Rn!, <loreglist>
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& {[\mathrm{Rn}+\mathrm{imm}]:=\operatorname{Rd}} \\
\& {[\mathrm{Rn}+\mathrm{imm}][15: 0]:=\operatorname{Rd}[15: 0]} \\
\& {[\mathrm{Rn}+\mathrm{imm}][7: 0]:=\operatorname{Rd}[7: 0]} \\
\& {[\mathrm{Rn}+\mathrm{Rm}]:=\mathrm{Rd}} \\
\& {[\mathrm{Rn}+\operatorname{Rm}][15: 0]:=\operatorname{Rd}[15: 0]} \\
\& {[\operatorname{Rn}+\operatorname{Rm}][7: 0]:=\operatorname{Rd}[7: 0]} \\
\& {[\mathrm{SP}+\mathrm{imm}]:=\mathrm{Rd}}
\end{aligned}
\] \\
Stores list of registers
\end{tabular} \& \begin{tabular}{l}
imm range \(0-124\), multiple of 4 . \\
Ignores \(\operatorname{Rd}[31: 16]\). imm range \(0-62\), even. \\
Ignores \(\operatorname{Rd}[31: 8]\). imm range \(0-31\). \\
Ignores \(\operatorname{Rd}[31: 16]\) \\
Ignores \(\operatorname{Rd}[31: 8]\) \\
imm range 0-1020, multiple of 4 . \\
Always updates base register, Increment After.
\end{tabular} \\
\hline Push \& \begin{tabular}{l}
Push \\
Push with link
\end{tabular} \& \& \[
\begin{aligned}
\& \text { PUSH <loreglist> } \\
\& \text { PUSH <loreglist+LR> }
\end{aligned}
\] \& \begin{tabular}{l}
Push registers onto full descending stack \\
Push LR and registers onto full descending stack
\end{tabular} \& \\
\hline Pop \& \begin{tabular}{l}
Pop \\
Pop and return \\
Pop and return with exchange
\end{tabular} \& \[
\begin{aligned}
\& 4 \mathrm{~T} \\
\& 5 \mathrm{~T}
\end{aligned}
\] \& POP <loreglist>
POP <loreglist+PC>
POP <loreglist+PC> \& \begin{tabular}{l}
Pop registers from full descending stack \\
Pop registers, branch to address loaded to PC \\
Pop, branch, and change to ARM state if address \([0]=0\)
\end{tabular} \& \\
\hline If-Then \& If-Then \& T2 \& IT \{pattern\} \{cond\} \& Makes up to four following instructions conditional, according to pattern. pattern is a string of up to three letters. Each letter can be T (Then) or E (Else). \& \begin{tabular}{l}
The first instruction after IT has condition cond. The following instructions have condition cond if the corresponding letter is T , or the inverse of cond if the corresponding letter is E . \\
See Table Condition Field.
\end{tabular} \\
\hline Branch \& \begin{tabular}{l}
Conditional branch \\
Compare, branch if (non) zero Unconditional branch \\
Long branch with link \\
Branch and exchange \\
Branch with link and exchange \\
Branch with link and exchange
\end{tabular} \& T2

5 T
5 T \& ```
B{cond} <label>
CB{N}Z Rn,<label>
B <label>
BL <label>
BX Rm
BLX <label>
BLX Rm

``` & \begin{tabular}{l}
If \{cond\} then PC := label \\
If Rn \(\{==\mid!=\} 0\) then PC := label \\
PC := label \\
LR := address of next instruction, PC := label \\
PC := Rm AND 0xFFFFFFFE \\
LR := address of next instruction, PC := label Change to ARM \\
LR := address of next instruction, \\
PC := Rm AND 0xFFFFFFFE
\end{tabular} & \begin{tabular}{l}
label must be within -252 to +258 bytes of current instruction. See Table Condition Field. \\
label must be within +4 to +130 bytes of current instruction. label must be within \(\pm 2 \mathrm{~KB}\) of current instruction. \\
This is a 32 -bit instruction. label must be within \(\pm 4 \mathrm{MB}\) of current instruction ( \(\mathrm{T} 2: \pm 16 \mathrm{MB}\) ). Change to ARM state if \(\operatorname{Rm}[0]=0\). \\
This is a 32 -bit instruction. \\
label must be within \(\pm 4 \mathrm{MB}\) of current instruction ( \(\mathrm{T} 2: \pm 16 \mathrm{MB}\) ). \\
Change to ARM state if \(\operatorname{Rm}[0]=0\)
\end{tabular} \\
\hline Extend & Signed, halfword to word Signed, byte to word Unsigned, halfword to word Unsigned, byte to word & \[
\begin{aligned}
& 6 \\
& 6 \\
& 6 \\
& 6
\end{aligned}
\] & SXTH Rd, Rm SXTB Rd, Rm UXTH Rd, Rm UXTB Rd, Rm & \[
\begin{aligned}
& \operatorname{Rd}[31: 0]:=\text { SignExtend(Rm[15:0]) } \\
& \operatorname{Rd}[31: 0]:=\text { SignExtend }(\operatorname{Rm}[7: 0]) \\
& \operatorname{Rd}[31: 0]:=\text { ZeroExtend }(\operatorname{Rm}[15: 0]) \\
& \operatorname{Rd}[31: 0]:=\text { ZeroExtend }(\operatorname{Rm}[7: 0]) \\
& \hline
\end{aligned}
\] & \\
\hline Reverse & \begin{tabular}{l}
Bytes in word \\
Bytes in both halfwords \\
Bytes in low halfword, sign extend
\end{tabular} & \[
6
\] & \begin{tabular}{lll} 
REV Rd, & \(R m\) \\
REV16 & Rd, & Rm \\
REVSH & Rd, & Rm
\end{tabular} & \[
\begin{aligned}
& \operatorname{Rd}[31: 24]:=\operatorname{Rm}[7: 0], \operatorname{Rd}[23: 16]:=\operatorname{Rm}[15: 8], \operatorname{Rd}[15: 8] \\
& \operatorname{Rd}[15: 8]:=\operatorname{Rm}[7: 0], \operatorname{Rd}[7: 0]:=\operatorname{Rm}[15: 8], \operatorname{Rd}[31: 24]:= \\
& \operatorname{Rd}[15: 8]:=\operatorname{Rm}[7: 0], \operatorname{Rd}[7: 0]:=\operatorname{Rm}[15: 8], \operatorname{Rd}[31: 16]:=
\end{aligned}
\] & \[
\begin{aligned}
& 1:=\operatorname{Rm}[23: 16], \operatorname{Rd}[7: 0]:=\operatorname{Rm}[31: 24] \\
& =\operatorname{Rm}[23: 16], \operatorname{Rd}[23: 16]:=\operatorname{Rm}[31: 24] \\
& =\operatorname{Rm}[7] * \text { \&FFF }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Thumb 16-bit Instruction Set}

\section*{Quick Reference Card}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Operation} & § & Assembler & Action & Notes \\
\hline Processor state change & \begin{tabular}{l}
Supervisor Call \\
Change processor state \\
Set endianness \\
Breakpoint
\end{tabular} & \[
\begin{gathered}
6 \\
6 \\
6 \\
5 \mathrm{~T}
\end{gathered}
\] & ```
SVC <immed_8>
CPSID <iflags>
CPSIE <iflags>
SETEND <endianness>
BKPT <immed_8>
``` & \begin{tabular}{l}
Supervisor Call processor exception \\
Disable specified interrupts \\
Enable specified interrupts \\
Sets endianness for loads and saves. \\
Prefetch abort or enter debug state
\end{tabular} & \begin{tabular}{l}
8-bit immediate value encoded in instruction. Formerly SWI. \\
<endianness> can be BE (Big Endian) or LE (Little Endian). 8 -bit immediate value encoded in instruction.
\end{tabular} \\
\hline No Op & No operation & 6 & NOP & None, might not even consume any time. & \\
\hline Hint & \begin{tabular}{l}
Set event \\
Wait for event \\
Wait for interrupt \\
Yield
\end{tabular} & T2 & \begin{tabular}{l}
SEV \\
WFE \\
WFI \\
YIELD
\end{tabular} & \begin{tabular}{l}
Signal event in multiprocessor system. \\
Wait for event, IRQ, FIQ, Imprecise abort, or Debug entry request. Wait for IRQ, FIQ, Imprecise abort, or Debug entry request. \\
Yield control to alternative thread.
\end{tabular} & No action if not implemented. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|l|}{ Condition Field } \\
\hline Mnemonic & Description \\
\hline EQ & Equal \\
NE & Not equal \\
CS \(/\) HS & Carry Set / Unsigned higher or same \\
CC / LO & Carry Clear / Unsigned lower \\
MI & Negative \\
PL & Positive or zero \\
VS & Overflow \\
VC & No overflow \\
HI & Unsigned higher \\
LS & Unsigned lower or same \\
GE & Signed greater than or equal \\
LT & Signed less than \\
GT & Signed greater than \\
LE & Signed less than or equal \\
AL & Always. Do not use in B \{ cond \} \\
\hline
\end{tabular}

In Thumb code for processors earlier than ARMv6T2, cond must not appear anywhere except in Conditional Branch (\(\mathrm{B}\{\) cond) instructions.

In Thumb-2 code, cond can appear in any of these instructions (except CBZ, CBNZ, CPSID, CPSIE, IT, and SETEND).
The condition is encoded in a preceding IT instruction (except in the case of \(B\{\) cond \(\}\) instructions).
If IT instructions are explicitly provided in the Assembly language source file, the conditions in the instructions must match the corresponding IT instructions.

\section*{ARM architecture versions}
4T \(\quad\) All Thumb versions of ARM v4 and above.
\(5 \mathrm{~T} \quad\) All Thumb versions of ARM v5 and above.
6 All Thumb versions of ARM v6 and above.
T2 All Thumb-2 versions of ARM v6 and above.

\section*{Proprietary Notice}

Words and logos marked with \({ }^{\circledR}\) or \({ }^{\text {TM }}\) are registered trademarks or trademarks owned by ARM Limited. Other brands and names mentioned herein may be the trademarks of their respective owners.
Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.
This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage arising from the use of any information in this reference card, or any error or omission in such information, or any incorrect use of the product.

\section*{Document Number}

ARM QRC 0006D
Change Log
\begin{tabular}{lll}
Issue & Date & Change \\
A & November 2004 & First Release \\
B & May 2005 & RVCT 2.2 SP1 \\
C & March 2006 & RVCT 3.0 \\
D & March 2007 & RVCT 3.1
\end{tabular}```

